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Abstract

This paper explores the use of automatic speech recognition
(ASR) and large language models (LLMs) for automated scor-
ing and feedback generation in spoken language assessment.
We design a three stage pipeline that (1) optimizes ASR hy-
potheses from student speech, (2) performs task-based scoring
using LLMs, and (3) generates natural language feedback jus-
tifying each score. We evaluate this pipeline using audio re-
sponses from 3rd-8th grade students in the Atlanta, Georgia
area, recorded as part of the Test of Narrative Language. Our
results show that LLMs can reliably replicate expert annota-
tions while providing interpretable feedback. We further ana-
lyze model performance across demographic factors, including
dialect and reading proficiency, to assess equity. Our findings
demonstrate the promise of ASR and LLMs for robust, explain-
able, and fair assessment of children’s spoken narratives.
Index Terms: Children’s Speech, Spoken Language As-
sessments, Automatic Speech Recognition, Computer-Assisted
Language Learning

1. Introduction

Spoken language assessments (SLA) are essential for evaluat-
ing oral language skills and diagnosing impairments in educa-
tional settings. Recent advances in Automatic Speech Recogni-
tion (ASR) and Natural Language Processing (NLP) have en-
abled scalable, feedback-driven solutions that reduce teacher
workload and support PreK-12 instruction (i.e., education from
pre-kindergarten through grade 12) [1, 2]. Yet traditional SLA
methods remain labor intensive and prone to rater variabil-
ity. The emergence of large language models (LLMs) marks a
paradigm shift in automated assessment. Pretrained on massive
text corpora, LLMs like GPT 4o [3] possess strong linguistic
priors and can evaluate transcripts for grammar, content, and
coherence [4]. Their success in educational tasks such as essay
scoring and feedback generation [5, 6] has spurred interest in
extending LLMs to spoken assessments, particularly for tasks
such as evaluating children’s oral narratives. Early work shows
that, when paired with robust ASR, LLMs can support holistic
evaluation of narrative speech [7].

However, applying LLM-based SLA systems to children’s
speech introduces unique challenges. Children’s speech is
marked by high acoustic and linguistic variability due to ongo-
ing developmental changes in articulation and language acqui-
sition [8]. ASR systems tend to perform poorly on child speech,
particularly for children who speak non-mainstream dialects
such as African American English (AAE), or have language-
related disabilities [9, 10]. These disparities are in part due to
the underrepresentation of such populations in training data, re-

sulting in systemic ASR biases [11, 12]. The consequence is
degraded transcripts that can distort downstream scoring and
feedback generation, threatening the fairness and validity of
the assessment. Additionally, common ASR practices such as
Whisper’s tendency to generate hallucinations [13] and normal-
ize speech by removing hesitations [14] can eliminate linguistic
features that are informative for SLA tasks.

LLM-based feedback generation introduces further com-
plexity. While promising results have been reported on text-
based feedback [15, 16, 17], providing interpretable and peda-
gogically useful feedback in spoken SLA, particularly for low-
resource populations, remains underexplored [18]. In parallel,
recent work has evaluated GPT 4o for pronunciation assess-
ment across multiple granularities, demonstrating the potential
of large multimodal models for both scoring and feedback on
fluency-related dimensions [19].

Prior research in SLA and educational NLP has explored a
range of approaches to address these challenges from modeling
coherence using ASR transcripts [20] to leveraging pronunci-
ation training systems [21] and adapting essay scoring meth-
ods [22]. Multimodal extensions of LLMs have been shown
to handle acoustic-text fusion for pronunciation feedback with
competitive results [23]. Within child SLA specifically, prior
work has explored multitask learning to cope with limited data
[24], automatic assessment of prosodic and linguistic markers
for reading fluency [25], the use of ASR-derived embeddings
[26], and scoring of transcribed spoken responses [27, 28, 29].
Related work on the Test of Narrative Language (TNL) has eval-
uated BERT-based feature fusion techniques and investigated
fairness across dialects, reading levels, and language impair-
ment status [30, 31, 32].

In this work, we present a three-stage pipeline for fair, ac-
curate, and interpretable spoken language assessment scoring
using LLMs. We evaluate our system on audio recordings from
3rd-8th grade students in Atlanta, Georgia, performing tasks
from the Test of Narrative Language (TNL). In the first stage,
we generate and rerank ASR hypotheses to minimize transcrip-
tion errors. In the second stage, an LLM scores and provides
feedback on each test item using rubric-aligned prompts applied
to annotated transcripts, augmented with a list of common ASR
mistranscriptions. In the final stage, a separate LLM evaluates
the quality of the generated feedback. We assess system perfor-
mance across demographic and ability-based subgroups, com-
paring model outputs to expert scores and conducting human-
in-the-loop evaluations of feedback quality. Our results show
that LLMs can produce reliable scores, informative feedback,
and equitable performance with no task-specific fine-tuning.
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Figure 1: Three-stage SLA pipeline: ASR hypothesis reranking, LLM-
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2.1. ASR Benchmarking and Hypothesis Correction

Building on prior findings that ASR systems struggle with chil-
dren’s speech particularly for speakers of African American
English (AAE) and students with language or reading impair-
ments, we begin by benchmarking a diverse set of commercial
ASR offerings such as Azure', AWS Transcribe?, Assembly
AI3, Deepgram4, ElevenLabs’ s Speechmatics6, RevAl’, Gem-
ini®, and GPT 40’, alongside open source models like Whisper
[33], Canary Flash [34], and Parakeet v2 [35]. These systems
vary in their training data, handling of dialects, and treatment of
disfluencies.

To mitigate the transcription errors that persist across sys-
tems, we implement a generative hypothesis correction step.
Specifically, we aggregate outputs from all ASR systems and
apply Generative Speech Error Correction (GenSec) [36, 37]
using a Flan-T5 model [38] fine-tuned on ASR correction pairs
derived from child speech [39]. Since the model was fine-tuned
to operate on five hypotheses, we select the top five ASR out-
puts (ranked by WER) and feed them into GenSec, which fuses
information across hypotheses to produce a corrected transcript.
The resulting transcripts serve as inputs to the scoring and feed-
back stages of our pipeline.

2.2. LLM-Based Narrative Scoring

The second stage of our system involves scoring each narrative
response using large language models (LLMs). Our goals are
twofold: to evaluate how well LLMs can replicate human scor-
ing and to examine how model type, input modality, and pre-
processing strategies affect scoring performance. Unlike prior
work on the same dataset, which trained a BERT-based scoring
model on ASR transcripts [31], we do not fine-tune or perform
task-specific training of any models. Instead, we evaluate LLMs
in a zero-shot setting, relying solely on rubric-aligned prompt-
ing to assess scoring accuracy. We provide rubric-aligned
prompt templates for both scoring and feedback generation, as
shown in Table 1

To guide the models, we introduce a lightweight entity an-
notation step that highlights key linguistic elements in each

"https://azure.microsoft.com/
2https://aws.amazon.com/transcribe/
3https://www.assemblyai.com/
“https://deepgram.com/
Shttps://elevenlabs.io/
Shttps://speechmatics.com/
"https://rev.ai/
8https://gemini.google.com/
https://openai.com/

transcript. Specifically, we use SpaCy’s [40] part-of-speech
(POS) tagger to embed inline annotations within the ASR out-
put, providing weak supervision to help the LLM attend to rel-
evant grammatical features. In addition, each prompt includes
examples of common ASR mistranscriptions, and instructs the
model to be tolerant of mispronunciations and minor recogni-
tion errors. The model is explicitly prompted to assign a rubric-
aligned score for each item and generate accompanying feed-
back explaining the rationale behind the assigned score.

We evaluate a range of models, including general purpose
LLMs (GPT 40°, Deepseek v3'), and reasoning focused mod-
els (Gemini 2.5 Pro®, GPT 03°, GPT 04 Mini’, Claude 3.7'").
All models are prompted using scoring templates aligned with
the assessment rubric, enabling direct comparison across both
model size and token cost. Beyond text-only inputs, we also
test multimodal scoring capabilities by using models that accept
raw audio in addition to text. For multimodal LLMs that support
audio input (GPT 40, Gemini 2.5 Pro), we provide the original
speech waveform along with the ASR transcript, allowing the
model to leverage acoustic cues in its evaluation. Finally, we
conduct an ablation study using human ground truth transcripts.
This allows us to isolate the scoring ability of each model in
the absence of ASR noise, and to estimate the upper bound of
model performance under ideal transcription conditions.

Table 1: LLM prompt templates for narrative scoring and feedback
evaluation

Score Generation

You are an assistant that scores a child’s narrated story based on content.
For each Qi, assign 1 point if the child produced the exact target word
(including any required inflection or tense), otherwise 0. Be forgiving of
clear pronunciation errors, such as { ASR examples}.

Some target words/phrases are pre-marked with tags such as
<NOUN>. ..</NOUN>. After each Qi score, provide feedback Fi ex-
plaining what the child said and whether it met the target. Our scoring
rubric is as follows: {scoring rubric}

Feedback Evaluation

The feedback pertains to a section of the Test of Narrative Language,
where the teacher first tells a story, then asks the child to retell it, and
evaluates whether the retelling includes specific target words or phrases.
As an English teacher, you will evaluate this feedback on three dimen-
sions: {feedback rubric}

2.3. Evaluation of Scoring Feedback

In the final stage of our pipeline, we generate natural language
feedback for each scored item to explain the assigned score and
support instructional use. While LLMs have shown promise in
free-text generation, standardized methods for evaluating feed-
back quality in spoken language assessment remain limited. We
adopt a model-based evaluation approach using three LLMs
(GPT 03, Gemini 2.5 Pro, and Claude 3.7) as automated raters.
Each model receives the student transcript, assessment prompt,
and model-generated feedback, and assigns a score from 1 to 10
across three criteria [18]: 1) Explainability: Is the model’s ra-
tionale for the score clearly presented and understandable to an
educator? 2) Usefulness: Does the feedback offer meaningful
insights that could help an educator better understand the stu-
dent’s performance or guide instruction? 3) Accuracy: Is the
feedback grammatically correct, and does it accurately reflect
both the student’s response and the scoring criteria?

A representative subset of feedback samples (ensuring cov-
erage across score ranges and demographic groups) is also rated
by a trained educational expert using the same rubric. Human
and model ratings are directly compared to assess alignment.

Ohttps://deepseek.com/
Uhttps://claude.ai/



While each criterion is rated on a 1-10 scale, we additionally
group scores into qualitative bands: 10 indicates perfect align-
ment, >5 indicates partial satisfaction, and <5 indicates un-
satisfactory feedback. This stratification provides a more in-
terpretable view of how well model-generated feedback meets
pedagogical expectations. This dual evaluation enables us to as-
sess the validity of LLM-generated feedback and the potential
of LLMs to serve as scalable proxies for expert judgment.

3. Experiments
3.1. Data
This paper uses audio recordings of 184 3rd-8th grade students

from Atlanta, Georgia as they perform the “Test of Narrative
Language (TNL) - Task 1, Story Retelling” assessment (data
collected in [41]) where students are read a story by the test
administerer. Of these 184 recordings, 157 were from grades
3 and 4. The students are then asked to retell the story and
graded on their ability to use the set of pre-determined test key-
words from the original story-telling. These keywords contain
story elements (eg. character names, locations, times, impor-
tant objects, and action verbs) that must be retold in the same
verb tense and order to receive credit in the test scoring. For
example, if a test item contained the sentence, “Tim eats his
lunch while Matt plays football” where the bolded words are
the scored keywords, the child will receive points for two of the
four keywords if they retell it as “Tim played football while
Matt ate lunch,” as the word order or tense of the other two
keywords are incorrect. Each child’s assessment was admin-
istered and audio recorded by a trained member of the project
staff according to the TNL standardization manual protocols.
The recordings were then independently scored by a speech-
language pathologist and a second trained speech-language staff
member. If disagreements occurred in scoring, the two scorers
reviewed the differences to come to a consensus. Each child’s
score was an integer between 0 and the total number of test key-
words. Recordings were taken at the child’s school. Audio was
recorded in stereo at a sampling rate of 48kHz. All recordings
were resampled to mono with a sampling rate of 16kHz for ex-
perimentation. Each of the children gave a response with an av-
erage length of about 5 min, resulting in approximately 16 total
hours of speech. The dataset additionally contains demographic
metadata on the students in the following categories: 1) the
presence of reading/language impairment, 2) the student’s read-
ing ability (good or poor) as measured by standardized reading
tests, and 3) the speaker’s dialect (either African American En-
glish (AAE) or Southern American English) as labeled by the
authors according to the procedure in [11].

3.2. Evaluation Metrics

To evaluate the output of each ASR system and our generative
correction pipeline, we compute Word Error Rate (WER) be-
tween hypothesis and reference transcripts. Both are normal-
ized using Whisper’s text normalization pipeline [33] to ensure
consistency in casing and punctuation. In addition, we report
Speech WER [14], which retains hesitations to more accurately
capture transcription performance on spontaneous child speech.
For LLM-based scoring, we evaluate the agreement between
predicted and expert-annotated scores using classification accu-
racy. We report Pearson’s correlation coefficient (PCC) as an in-
terpretable baseline for linear association, Spearman’s rank cor-
relation coefficient (SCC) for ordinal association, and Kendall’s
Tau (KRC) as a stricter ordinal measure emphasizing pairwise
concordance. For generated feedback, we first compute the per-
cent agreement between the feedback content and the judgment
of a human/separate LLM evaluator holistically across three di-
mensions: Explainability, Usefulness, and Accuracy. To as-

sess overall alignment with expert evaluation, we then compute
the Quadratic Weighted Kappa (x) between LLM-predicted and
human-assigned scores.

4. Results and Discussion
4.1. ASR Results and Impact of Hypothesis Correction

Table 2: Zero-shot WER and Speech WER across ASR systems on the
TNL recordings. GenSec refers to the output transcript generated by a
hypothesis correction model that fuses hypotheses from the top ASR sys-
tems. Bold indicates best performance. * denotes open-source models.

Model WER (%)  Speech WER (%)
ElevenLabs 11.4 13.5
RevAl 12.1 13.8
Gemini 12.3 14.6
AWS Transcribe 13.1 15.1
Speechmatics 14.3 16.7
Deepgram 13.3 17.1
Canary Flash™ 15.6 17.5
Parakeet v2 * 16.8 17.9
Assembly Al 14.1 18.2
Azure 15.3 19.4
GPT 4o 21.0 24.9
Whisper Large v3* 24.5 28.4
GenSec 11.0 12.9

Table 2 reveals a clear performance gap between commer-
cial and open-source ASR systems in transcribing spontaneous
child speech. Commercial systems such as ElevenLabs (11.4%
WER) and RevAl (12.1%) consistently outperform open-source
alternatives like Whisper Large v3 (24.5%) and Parakeet v2
(16.8%). This disparity suggests that proprietary systems, likely
benefiting from large-scale private training corpora, are better
equipped to handle the variability in children’s speech. Further-
more, when accounting for hesitations via Speech WER, open-
source systems degrade more severely, highlighting their limita-
tions on spontaneous child language. Despite these challenges,
our generative error-corrected ensemble (GenSec) [39] which
fuses hypotheses from the top-performing ASR systems using
a fine-tuned Flan-TS model outperforms all individual models,
achieving the lowest WER (11.0%) and Speech WER (12.9%).
This demonstrates the value of hypothesis-level fusion in cor-
recting transcription errors and improving transcript quality.

Table 3: Zero-shot WER and Speech WER breakdown of GenSec tran-
script by dialect, language impairment status (Lang. Impair.), and read-
ing ability. AAE = African American English, RD = Reading Disability,
LI = Language Impairment.

Category  Group Count WER  Speech WER
Dialect AAE 116 11.7 13.5
non-AAE 68 9.8 12.0
Lang. Control 32 8.2 9.8
ang RD Only 60 115 13.2
Impair. RD +Li 27 136 15.4
Reading Good Readers 152 8.2 9.8
Status Poor Readers 32 11.7 13.6
Overall 184 11.0 12.9

Table 3 further examines ASR performance across de-
mographic subgroups following hypothesis correction. While
GenSec maintains low overall error rates, significant dispari-
ties persist. Transcriptions for speakers of African American
English (AAE) show elevated WER (11.7%) compared to non-
AAE peers (9.8%), underscoring continued dialect mismatches
in training data. Likewise, children with both reading and lan-
guage impairments (RD + LI) experience the highest WER
(13.6%), suggesting that even hypothesis correction does not
fully resolve accessibility gaps for learner populations.



Table 4: Scoring performance of LLMs on the TNL assessment. Acc. =
Accuracy, PCC = Pearson’s correlation coefficient, SCC = Spearman’s
rank correlation, KRC = Kendall’s Tau.

Model Acc. PCC SCcC KRC
General Purpose Models
Deepseek v3 5217 0.892  0.909  0.778
GPT 4o 33.15 0618 0.612  0.460
Reasoning Models
GPT o4 Mini 81.52 0969 0964  0.886
Claude 3.7 80.43 0961 0955 0.870
Gemini 2.5Pro  82.07 0958 0953  0.858
GPT 03 86.96 0.977 0973  0.909

Table 5: Scoring performance of multimodal LLMs (GPT 4o, Gemini
2.5 Pro) and best reasoning LLM (GPT 03) under different inputs: ASR
transcripts, ASR with audio, and Ground Truth (GT) Transcripts

Model Input Accuracy PCC SCC KRC
ASR 33.15 0.618 0.612 0.460
GPT 40 ASR + Audio 33.70 0.687 0.668 0.511
GT 40.76 0.750 0.721 0.568
ASR 80.98 0.954 0.946 0.848
Gemini 2.5 Pro  ASR + Audio 82.07 0.967 0.963 0.882
GT 84.78 0.967 0.961 0.882
GPT 03 ASR 86.96 0.977 0.973 0.909
GT 88.04 0.977 0.975 0.909

4.2. Evaluating LLMs for Narrative Scoring

Table 4 presents the scoring accuracy of various LLMs on the
narrative task. GPT o3 outperforms all other models, achiev-
ing 86.96% accuracy and strong correlation with human ratings
(PCC =0.977, SCC =0.973, KRC = 0.909). Lightweight mod-
els such as 04 Mini also perform competitively (81.52% accu-
racy), suggesting that smaller models, while less aligned with
human judgment, may offer reasonable trade-offs between per-
formance and computational cost. The strong performance of
GPT 03 suggests that reasoning steps in LLMs contribute to
better agreement with rubric-based scoring tasks.

Table 5 evaluates multimodal models that accept additional
audio input (GPT 40, Gemini 2.5 Pro) alongside the best per-
forming model from Table 4 (GPT 03), and shows that tran-
scription quality strongly affects LLM scoring accuracy. We
conduct an ablation using ground truth (GT) transcripts to iso-
late the effect of ASR errors, and find that, as expected, GT
consistently yields the highest performance across models, un-
derscoring the sensitivity of LLMs to transcription quality. No-
tably, GPT 03 shows only a minor drop in accuracy when mov-
ing from GT to ASR input (88.04% to 86.96%), suggesting
strong robustness to transcription noise, likely because com-
mon transcription errors were explicitly included in the prompt.
For models that support audio input (GPT 40, Gemini 2.5
Pro), adding speech provides only modest improvements over
transcript-only inputs. GPT 03 remains the most robust across
all conditions, while GPT 4o lags significantly, particularly
when using ASR transcripts alone.

Table 6 reveals two key trends in model performance across
demographic subgroups. First, scoring accuracy with ASR in-
puts consistently trails GT-based accuracy, closely mirroring
subgroup-specific WER, indicating that transcription errors im-
pact downstream scoring. Second, even after controlling for
WER, predicted scores for non-mainstream groups show persis-
tent deficits. For example, AAE speakers see no accuracy gain
when switching from ASR to GT input, and RD + LI students
perform worse than the control group even with perfect tran-
scripts. These discrepancies suggest that current LLM-based
scoring may carry latent biases or struggle to generalize to non-
standard language patterns, raising fairness concerns that extend
beyond ASR quality.

Table 6: WER and GPT 03 scoring accuracy across student subgroups
using ASR and ground-truth (GT) transcripts

Category  Group Count WER ASRAce. GT Ace.
Dialect AAE 116 11.7 86.21% 86.21%
non-AAE 68 9.8 88.24% 91.18%

Lang. Control 32 8.2 87.50% 92.50%
by RD Only 60 11.5 85.00% 91.67%
Impair. RD + LI 27 13.6 84.78% 88.89%
Reading Good 152 8.2 87.50% 92.50%
Status Poor 32 11.7 86.84% 88.16%
Overall 184 11.0 86.96% 88.04%

Table 7: Percent agreement of scores for generated feedback, and
quadratic weighted kappa (QWK) between LLM and human ratings.

Human GPTo3 Claude3.7 Gemini 2.5 Pro

% agreement 93 90 91 90
QWK - 0.24 0.51 0.64

4.3. Evaluation of Scoring Feedback
Table 7 summarizes evaluation results for the feedback gener-

ated in Stage 2 of the pipeline (by GPT 03). We assess the
quality of this feedback using both human ratings and separate
LLMs (GPT o3, Claude 3.7, Gemini 2.5 Pro), following the
rubric introduced in Section 3.3. The percent agreement met-
ric reflects whether the evaluator, human or model, judged the
feedback as satisfactory across all three criteria: Explainability,
Usefulness, and Accuracy. Human ratings indicate that 93%
of the feedback was satisfactory, with LLM evaluators closely
matching at 90-91%. To capture more fine-grained scoring cor-
relation, we compute Quadratic Weighted Kappa (x) between
the total human rating and model-predicted scores. Gemini 2.5
Pro achieves the highest agreement (x = 0.64), while GPT 03
lags with notably lower correlation (x = 0.24), despite having
generated the original feedback. When analyzing ratings across
dimensions, we find that all models consistently undervalue the
’Usefulness’ of feedback compared to human evaluators, sug-
gesting limitations in LLMs’ ability to assess pedagogical util-
ity. These results point to the potential of LLMs as scalable
raters of generated feedback, while also underscoring the need
for targeted prompting or calibration to better reflect human pri-
orities in instructional contexts.

5. Conclusion
We present a three-stage pipeline for automated spoken lan-

guage assessment using LLMs, combining ASR hypothesis re-
finement, rubric-aligned scoring, and natural language feedback
generation. On narrative responses from 3rd—8th graders, com-
mercial ASR systems outperform open-source models, but our
generative error correction module (GenSec) achieves the best
performance (WER 11.0%). For scoring, GPT 03 yields the
highest accuracy (86.96%) and strongest alignment with human
ratings (PCC 0.977), with ablations revealing minimal degrada-
tion from ASR errors. Feedback is rated favorably by both hu-
man and model evaluators (up to 93% agreement; QWK 0.64),
though human raters found the feedback more pedagogically
useful. These results show that LLM-driven scoring systems
can produce reliable scores and meaningful feedback. Unlike
traditional SLA systems, ASR-LLM pipelines do not require
training separate models for each task, enabling greater flexibil-
ity and scalability. While challenges remain, particularly for un-
derrepresented groups (dialects, reading abilities, and language
impairments), our findings highlight the promise of ASR-LLM
pipelines for scalable, accurate, and equitable evaluation of chil-
dren’s spoken narratives.

6. Acknowledgements
The research is supported in part by the NSF and the IES, U.S.

Department of Education (DoE), through Grant R305C240046



to the U. at Buffalo. The opinions expressed are those of the
authors and do not represent views of the IES, DoE, or the NSF.

[1]

[2]

[3]
[4]

[5]

[6

=

[7]

[8

=

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

7. References

J. Bryant et al., “How artificial intelligence will impact k—12
teachers,” McKinsey & Company, 2020.

A. L. Bailey et al., “Addressing bias in spoken language sys-
tems used in the development and implementation of automated
child language-based assessment,” Journal of Educational Mea-
surement, 2025.

A. Hurst et al., “Gpt-4o system card,” arXiv:2410.21276, 2024.

S. Abdurahman et al., “Perils and opportunities in using large
language models in psychological research,” PNAS nexus, vol. 3,
no. 7, 2024.

S. Kim and M. Jo, “Is gpt-4 alone sufficient for automated es-
say scoring?: A comparative judgment approach based on rater
cognition,” in Proceedings of the Eleventh ACM Conference on
Learning Scale, 2024, pp. 315-319.

J. Han et al., “Llm-as-a-tutor in efl writing education: Focusing
on evaluation of student-llm interaction,” in Proceedings of the
1st Workshop on Customizable NLP: Progress and Challenges in
Customizing NLP for a Domain, Application, Group, or Individ-
ual, 2024, pp. 284-293.

S. Banno et al., “Can gpt-4 do 12 analytic assessment?” in Pro-
ceedings of the 19th Workshop on Innovative Use of NLP for
Building Educational Applications, 2024.

S. Lee et al., “Acoustics of children’s speech: Developmental
changes of temporal and spectral parameters,” JASA, vol. 105,
no. 3, pp. 1455-1468, 1999.

S. Dutta et al., “Challenges remain in building asr for sponta-
neous preschool children speech in naturalistic educational envi-
ronments,” Interspeech, pp. 4322-4326, 2022.

G. Yeung and A. Alwan, “On the difficulties of automatic speech
recognition for kindergarten-aged children,” Interspeech, 2018.

A. Koenecke et al., “Racial disparities in automated speech recog-
nition,” Proceedings of the National Academy of Sciences, vol.
117, no. 14, pp. 7684-7689, 2020.

A. Johnson et al., “An analysis of large language models for
african american english speaking children’s oral language assess-
ment,” Journal of Black Excellence in Engineering, Science, &
Technology, vol. 1, 2023.

A. Koenecke et al., “Careless whisper: Speech-to-text hallucina-
tion harms,” in Proceedings of the 2024 ACM Conference on Fair-
ness, Accountability, and Transparency, 2024, pp. 1672—-1681.

R. Ma et al., “Adapting an asr foundation model for spoken lan-
guage assessment,” in 9th Workshop on Speech and Language
Technology in Education, 2023, pp. 104—108.

M. Stahl et al., “Exploring 1lm prompting strategies for joint es-
say scoring and feedback generation,” in Proceedings of the 19th
Workshop on Innovative Use of NLP for Building Educational Ap-
plications, 2024.

C. Xiao et al., “Human-ai collaborative essay scoring: A dual-
process framework with 1lms,” in Proceedings of the 15th Inter-
national Learning Analytics and Knowledge Conference, 2025,
pp. 293-305.

S. Gombert et al., “From the automated assessment of student
essay content to highly informative feedback: A case study,” In-
ternational Journal of Artificial Intelligence in Education, vol. 34,
no. 4, pp. 1378-1416, 2024.

N. Phan et al., “Automated content assessment and feedback for
finnish 12 learners in a picture description speaking task,” in Inter-
speech, 2024, pp. 317-321.

K. Wang et al., “Exploring the potential of large multimodal mod-
els as effective alternatives for pronunciation assessment,” in In-
terspeech, 2024.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

K. Zechner et al., “Automated scoring of speaking tasks in the test
of english-for-teaching,” ETS Research Report Series, vol. 2015,
no. 2, pp. 1-17, 2015.

M. Sancinetti et al., “A transfer learning approach for pronuncia-
tion scoring,” in 2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2022, pp. 6812-6816.

M. Uto et al., “Neural automated essay scoring incorporating
handcrafted features,” in Proceedings of the 28th International
Conference on Computational Linguistics, Dec. 2020, pp. 6077—
6088.

K. Fu et al., “Pronunciation assessment with multi-modal large
language models,” arXiv:2407.09209, 2024.

I. Baumann et al., “Nonwords pronunciation classification in lan-
guage development tests for preschool children,” Interspeech,
2022.

G. Bailly et al., “Automatic assessment of oral readings of young
pupils,” Speech Communication, vol. 138, pp. 67-79, 2022.

Y. Getman et al., “wav2vec2-based Speech Rating System for
Children with Speech Sound Disorder,” in Interspeech, 2022, pp.
3618-3622.

D. Ramesh and S. K. Sanampudi, “An automated essay scoring
systems: a systematic literature review,” Artificial Intelligence Re-
view, vol. 55, no. 3, pp. 2495-2527, 2022.

B. W. Lee et al., “Pushing on text readability assessment: A trans-
former meets handcrafted linguistic features,” in Proceedings of
the 2021 Conference on Empirical Methods in Natural Language
Processing, Nov. 2021, pp. 10 669-10 686.

R. Gale et al., “Automatic assessment of language ability in chil-
dren with and without typical development,” in 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine &
Biology Society, 2020, pp. 6111-6114.

H. Veeramani et al., “Towards automatically assessing children’s
oral picture description tasks,” in 9th Workshop on Speech and
Language Technology in Education, 2023, pp. 119-120.

A. Johnson et al., “An equitable framework for automatically as-
sessing children’s oral narrative language abilities,” Interspeech,
2023.

H. Veeramani et al., “Large language model-based pipeline for
item difficulty and response time estimation for educational as-
sessments,” in Proceedings of the 19th Workshop on Innovative
Use of NLP for Building Educational Applications, 2024.

A. Radford et al., “Robust speech recognition via large-scale weak
supervision,” in International Conference on Machine Learning,
ICML 2023, vol. 202. PMLR, 2023, pp. 28 492-28518.

K. C. Puvvada et al., “Less is more: Accurate speech recognition
& translation without web-scale data,” in Interspeech, 2024, pp.
3964-3968.

D. Rekesh et al., “Fast conformer with linearly scalable attention
for efficient speech recognition,” 2023 IEEE Automatic Speech
Recognition and Understanding Workshop, pp. 1-8, 2023.

S. Banno er al., “Towards end-to-end spoken grammatical error
correction,” in 2024 IEEFE International Conference on Acoustics,
Speech and Signal Processing, 2024, pp. 10791-10795.

K. Manuel et al., “Towards improving asr outputs of spontaneous
speech with 1lms,” in Proceedings of the 20th Conference on Nat-
ural Language Processing, 2024, pp. 339-348.

H. W. Chung et al., “Scaling instruction-finetuned language mod-
els,” Journal of Machine Learning Research, vol. 25, no. 70, pp.
1-53, 2024.

N. B. Shankar et al., “Chser: A dataset and case study on gen-
erative speech error correction for child asr,” arXiv:2505.18463,
2025.

M. Honnibal et al., “spacy: Industrial-strength natural language
processing in python,” 2020, available at https://spacy.io/.

E. L. Fisher et al., “Executive functioning and narrative language
in children with dyslexia,” American journal of speech-language
pathology, vol. 28, no. 3, pp. 1127-1138, 2019.



	 Introduction
	 Methodology
	 ASR Benchmarking and Hypothesis Correction
	 LLM-Based Narrative Scoring
	 Evaluation of Scoring Feedback

	 Experiments
	 Data
	 Evaluation Metrics

	 Results and Discussion
	 ASR Results and Impact of Hypothesis Correction
	 Evaluating LLMs for Narrative Scoring
	 Evaluation of Scoring Feedback

	 Conclusion
	 Acknowledgements
	 References

