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Annotation of phrases in birdsongs can be helpful to behavioral and population studies. To reduce

the need for manual annotation, an automated birdsong phrase classification algorithm for limited

data is developed. Limited data occur because of limited recordings or the existence of rare phrases.

In this paper, classification of up to 81 phrase classes of Cassin’s Vireo is performed using one to

five training samples per class. The algorithm involves dynamic time warping (DTW) and two

passes of sparse representation (SR) classification. DTW improves the similarity between training

and test phrases from the same class in the presence of individual bird differences and phrase seg-

mentation inconsistencies. The SR classifier works by finding a sparse linear combination of train-

ing feature vectors from all classes that best approximates the test feature vector. When the class

decisions from DTW and the first pass SR classification are different, SR classification is repeated

using training samples from these two conflicting classes. Compared to DTW, support vector

machines, and an SR classifier without DTW, the proposed classifier achieves the highest classifica-

tion accuracies of 94% and 89% on manually segmented and automatically segmented phrases,

respectively, from unseen Cassin’s Vireo individuals, using five training samples per class.
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I. INTRODUCTION

Bird vocalizations are compositions of short individual

units or syllables, each generally lasting less than a second.

Sound recordings of bird vocalizations are helpful in behav-

ioral and population studies (Brandes, 2008; Mennill, 2011),

especially in dense vegetation environment where visual

identification is difficult. Typically, longer and more elabo-

rate songs are used for mate attraction and territory declara-

tion; shorter calls are often used for family member contacts

and identification, predator announcement, or food informa-

tion communication (Catchpole and Slater, 2008).

Automated bird song classification has already proved useful

for species identification (H€arm€a, 2003; Frommolt et al.,
2008; Trifa et al., 2008; Agranat, 2009; Graciarena et al.,
2011), individual recognition (Kirschel et al., 2011), and

classification of particular syllables or phrases expressed by

birds with complex song structures (Kogan and Margoliash,

1998; Ranjard and Ross, 2008; Hansson-Sandsten et al.,
2011; Sasahara et al., 2012; Tachibana et al., 2014). Much

of this research has been reviewed by Brandes (2008) and

Mennill (2011). Such applications will gain importance with

an increasing general interest in “soundscape ecology”

(Pijanowski et al., 2011; Stowell et al., 2013; Glotin et al.,
2013). In this paper, the task of interest is automated

classification of birdsong phrases of the Cassin’s Vireo

(Vireo cassinii) species. Syllable/phrase level birdsong anno-

tations can facilitate studies to better understand bird com-

munication, including song syntax (Berwick et al., 2011;

Briefer et al., 2013) and common phrases used for conveying

certain information (e.g., mate attraction and territory

declaration).

Bird call or song element classification becomes espe-

cially challenging when the song repertoire is diverse; some

species have thousands of distinct phrases in their lexicons

(Catch-pole and Slater, 2008). In our experience, the fre-

quencies at which individual bird song elements are

observed often resembles a Zipf–Mandelbrot distribution

(Silagadze, 1997; McCowan et al., 2005), where some

phrases are heard many times, while others are rare.

Communication in other species, including humans, show

similar disparity in word or other language unit usage; thus a

premium is placed on the ability of automated classifiers to

correctly classify bird song phrases using only a few training

samples per phrase. Further, the amount of training data

available may be limited by the logistics of bird song record-

ings in certain geographical locations of interest and by the

labor intensity of human experts to identify phrase types in

complex songs. The ability of an automated classifier to per-

form accurate phrase classification with limited data will

reduce the need for human experts to perform manual anno-

tation on new recordings.

a)Portions of this work were presented in “Evaluation of a sparse

representation-based classifier for bird phrase classification under limited

data conditions,” Proceedings of Interspeech, Portland, OR, Sept. 2012.
b)Author to whom correspondence should be addressed. Electronic mail:

tleengee.ee.ucla@gmail.com
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Since bird phrase classification is similar to automatic

speech recognition (ASR), techniques that were proposed for

ASR have been applied to bird songs. One example is

dynamic time warping (DTW) template-based techniques.

DTW has also been used for classifying birdsong elements

and achieves good classification performance in birdsong

elements (Anderson et al., 1996; Kogan and Margoliash,

1998; Kaewtip et al., 2013; Meliza et al., 2013) with a few

templates per class. Since a DTW classifier derives its class

decision from the template that is most similar to the test

sample after time warping, its performance degrades when

the individual templates are not able to cover within-class

variations found in the test set. Hidden Markov models

(HMMs) (Kogan and Margoliash, 1998; Chu and Blumstein,

2011) and neural networks (Ranjard and Ross, 2008) have

also been successfully applied to birdsong element recogni-

tion. The techniques can accumulate more information and

generalize better than template-based techniques, but they

generally require a large amount of data to appropriately

train model parameters. Support vector machines (SVM)

have also demonstrated good classification performance on

birdsongs (Fagerlund, 2007; Sasahara et al., 2012;

Tachibana et al., 2014) as well as in other domains with lim-

ited training data (Zhang et al., 2001). However, under very

limited training data conditions (with three or less training

samples per class), over-fitting tends to occur because almost

all the training samples are used to define the SVM’s maxi-

mum margin hyperplane. Besides the various classification

techniques, different features have also been used to repre-

sent birdsong segments (containing multiple syllables) or

individual birdsong elements. These include using the time-

frequency spectrogram explicitly (Anderson et al., 1996;

Kogan and Margoliash, 1998; Neal et al., 2011; Tan et al.,
2012; Kaewtip et al., 2013), frequency and energy trajecto-

ries (H€arm€a, 2003; Chen and Maher, 2006), Mel-frequency

cepstral coefficients (MFCCs) (Kogan and Margoliash,

1998; Trifa et al., 2008; Graciarena et al., 2011), and other

spectrographic image-based features (Lee et al., 2013).

In our previous work (Tan et al., 2012), we introduced

an exemplar-based sparse representation (SR) classification

technique for birdsong phrase classification. This relatively

new SR classification technique was first proposed for

human face recognition, where it achieves a high accuracy

with just seven facial images per individual (Yang et al.,
2007). Each exemplar is a feature vector extracted from a

training sample. The SR classifier seeks to represent the test

feature vector by a sparse linear combination of exemplars,

which is found by solving a l1 minimization problem. In Tan

et al. (2012), the features are explicitly derived from the

spectrogram of each phrase segment. A spectrogram with a

fixed number of time frames is generated for each phrase

segment by varying the inter-frame overlap (the shorter the

segment, the larger the amount of overlap). Since manual

phrase identification is performed via spectrogram inspec-

tion, we used features that are explicitly derived from spec-

trograms to avoid hand-crafting features that can

discriminate phrase classes with very similar dominant fre-

quency trajectories. Sparsity-based techniques that rely on

time-frequency acoustic energies in spectrograms as features

have reported good performance in speech applications

(Gemmeke et al., 2011; Yilmaz et al., 2013). The

spectrogram-based feature extraction framework in Tan

et al. (2012) also yields good classification performance on

manually segmented phrases from the same bird individuals.

In this paper, an improved classification algorithm that

combines DTW with a two-pass SR classification (abbrevi-

ated as DTW-SR-2pass) is proposed. Instead of varying the

amount of inter-frame overlap in spectrograms, the inter-

frame overlap is kept constant, and DTW is used to produce

time-warped training phrase spectrograms that have the

same number of frames as the test phrase spectrogram.

Spectrogram normalization and dimension reduction are per-

formed to obtain the feature vectors for SR classification.

This paper is organized as follows. The Cassin’s Vireo

(CAVI) database is described in Sec. II. Separate test sets

are formed to facilitate performance evaluation on manually

or automatically segmented phrases from bird individuals

present or absent in the training set. Section III presents tech-

nical details of the proposed DTW-SR-2pass classifier, while

Sec. IV describes the algorithms used for comparative pur-

poses. Finally, classification results, discussion, and conclu-

sion can be found in Secs. V–VII, respectively.

II. THE CAVI DATABASE

The Cassin’s Vireo (CAVI) species is found commonly

in many coniferous and mixed-forest bird communities in far

western North America. Birdsong phrases for classification

were obtained from song recordings of male CAVIs because

only the males of this species give full songs. Their songs

have been described as “… a jerky series of burry phrases,

separated by pauses of �1 s. Each phrase is made up of 2 to

4 notes [syllables], with song often alternating between

ascending and descending phrases…” The “song [is]

repeated tirelessly, particularly when [the singing male is]

unpaired…” (Goguen and Curson, 2002). Figure 1 shows the

spectrogram of a CAVI song segment containing two differ-

ent phrases, each consisting of two syllables.

Manual phrase annotation was done by two human

expert annotators. Phrase identity and time boundaries of

each phrase in the song were annotated based on visual spec-

trogram inspection using the PRAAT software (Boersma and

Weenink, 2011). Phrase types were categorized based on

their frequency trajectories on spectrograms, and the label of

FIG. 1. A spectrogram of a Cassin’s Vireo song segment. The phrase boun-

daries are marked by black lines, while the syllable boundaries are marked

by white lines.
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the phrase was assigned to the subjectively matching spec-

trogram in the CAVI phrase catalogue. This phrase catalogue

was built up from scratch. Whenever a phase segment with a

subjectively different frequency trajectory from the existing

spectrograms was found, its spectrogram was added to the

catalogue, and a new phrase label was created.

The song recordings were conducted in a mixed conifer-

oak forest at approximately 800 m elevation (38�2900400N,

120�3800400W), near the city of Volcano in California. Songs

were recorded using a Marantz PMD 670 portable compact

flash audio recorder and a Sennheiser omni-directional micro-

phone with a Telinga parabolic reflector. Each sound file

(WAV-format, 16-bit, mono, 44.1 kHz sampling rate, with an

average file duration of 3.66 min) contained songs from a sin-

gle CAVI, with occasional songs/calls of other species in the

background. One or more files were recorded per CAVI indi-

vidual. Two separate data collections were performed. The

first collection was done between April and June 2010 when

two different males, denoted by CAVI1 and CAVI2, on adja-

cent territories were recorded. The second data collection was

done between April and August 2012, and song recordings

from four territorial males, denoted by CAVI3–CAVI6, were

used in this study. All recordings with some metadata, and the

phrase catalogue are available online at http://taylor0.biology.

ucla.edu/birdDBQuery/. Figures 2(a)–2(f) show the distribu-

tion of the phrases for each CAVI (the total recording du-

ration is noted in each subfigure header). Each phrase

spans between 0.12 and 1.25 s, with a mean duration of

0.36 s. Each individual CAVI has 10–55 unique phrase

types (which is dependent on the number of songs

recorded from the individual CAVI), and 101 unique

phrase classes are observed in the combined CAVI

dataset.

A. Training and test sets

CAVI3, CAVI4, and CAVI5 in the 2012 collection

are selected as the “training CAVIs” for their variety of

phrase classes, so that a larger number of phrase classes

is available to train the classifier. The remaining

CAVIs—CAVI1, CAVI2, and CAVI6—are the “test

CAVIs.” The training phrase segments are extracted based

on the manual annotations. Phrase classes with at least n
samples or tokens from the training CAVIs are used for

training. Let K be the total number of classes that satis-

fies this condition. To evaluate classification performance

on manually/human-segmented and automatically/machine-

segmented phrases from the training and test CAVIs, four

separate test sets are formed. Test sets A1 and A2 con-

tain human-segmented and machine-segmented phrases (in

the K classes) from the training CAVIs, respectively, that

are not used for training. Test sets B1 and B2 contain

human- and machine-segmented phrases (in the K classes)

from the test CAVIs, respectively. Table I shows the

value of K and the number of phrase samples in the

training or test sets for each value of n¼ 1, 2, …, 5. Note

that the number of training phrase samples is equal to

n� K.

The automatic phrase segmentation algorithm described

in H€arm€a (2003) is used to obtain the machine-segmented test

phrases in test sets A2 and B2. This time-frequency energy-

based bird syllable detection and segmentation algorithm is

also used in Lee et al. (2006) and Chen and Li (2013). An

online MATLAB code (Lindermuth, 2010) of this algorithm is

modified so that more than 90% of human-segmented phrase

segments are detected, and most of the detected time bounda-

ries fall within 100 ms of the human-segmented ones. The

global and local energy input parameters to the MATLAB code

are both set to 15 dB. This detects every segment with a local-

maximum spectrographic amplitude Lm that is greater than

Gm� 15 dB. Gm ¼ maxf ;t10 log10kSðf ; tÞk
2

is the global-

maximum time-frequency value of input power spectrogram

kSðf ; tÞk2
, where f and t denote the frequency and frame indi-

ces, respectively. Each detected segment’s frame boundaries

are the last consecutive frames (prior and beyond the frame

containing Lm) with spectrographic amplitudes that are at

least Lm � 15 dB.

FIG. 2. (Color online) Number of samples observed in each phrase class

from each of the six CAVI individuals.

TABLE I. The total number of phrase samples in the training and test sets

as the training samples per class n varies from 1 to 5. These samples belong

to one of the K phrase classes that has at least n samples from the training

CAVIs. “Training” refers to the training set. Tests A1 and B1 contain

human-segmented phrases from the training and test CAVIs, respectively.

Tests A2 and B2 contain machine-segmented phrases from the training and

test CAVIs, respectively.

No. of phrase samples in

n K Training Test A1 Test B1 Test A2 Test B2

1 81 81 419 1269 396 1218

2 67 134 352 1208 336 1159

3 61 183 291 1138 277 1049

4 50 200 241 1061 228 1021

5 43 215 198 821 190 788
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The algorithm is run separately for every 10-s segment

of each sound file to improve detection and segmentation ac-

curacy of this algorithm in the presence of energy variations

across the sound file. Two successive detected syllables are

merged into a single detected segment if the in-between

pause is less than 0.5 s and also less than the sum of these

two syllables’ durations. Only segments of duration between

0.1 and 1.5 s that have time overlap with a human-

segmented phrase are used to form test sets A2 and B2.

Histograms of the time boundary difference between the

machine- and human-segmented phrases (machine-seg-

mented time boundary minus human-segmented time bound-

ary) are plotted in Fig. 3. Figures 3(a) and 3(b) show the

histograms of time differences observed at the left/starting

and right/ending time boundaries, respectively. The histo-

grams are roughly Gaussian in shape, with 35%–50% of the

time differences falling within 60.025 s (see the bars centered

at the time difference of 0 s), and about 5% of the phrase seg-

ments has a time boundary difference exceeding 0.2 s.

B. Spectrographic representations of some phrase
classes

Figure 4 shows the linear frequency spectrograms of 9

CAVI phrase classes. It can be observed that the acoustic

signatures of some classes are very similar to each other. For

example, the first two classes in the first row resemble each

other except at the beginning and end of the phrases. Phrase

classes in the last row also have very similar ascending and

descending frequency signatures. Some phrases have a long

pause between syllables, which can be observed in the spec-

trograms plotted in the second row of Fig. 4. Figure 5 shows

the Mel-frequency (Mel) spectrogram representation of the

same phrases plotted in Fig. 4. Mel-spectrograms are used in

the DTW-SR-2pass classification algorithm described in

Sec. III.

Birdsong phrase classification is challenging because

acoustic signatures of samples from the same class are not

identical. This intra-class differences can be due to individ-

ual bird differences (Mennill, 2011), different sound propa-

gation properties in the forest (Richards and Wiley, 1980;

Nemeth et al., 2006), and phrase segmentation errors. Each

column in Fig. 6 shows the spectrographic differences that

can be present between two human-segmented phrase sam-

ples from the same class. Differences in segmentation boun-

daries and phrase energy variations across time are evident.

Small segmentation errors or differences can exist in human-

segmented phrases due to subjectiveness, especially in deter-

mining the end points. For example, the human-annotated

time boundary at the end of the phrase in Fig. 6(b-i) is

marked earlier than that in Fig. 6(b-ii) because the phrase

energy reaches a human-determined intensity threshold at

that point. Segmentation errors tend to be larger with an

FIG. 3. Histograms of time boundary differences between machine-segmented

and human-segmented phrases. (a) and (b) show the histograms of left and right

boundary time differences, respectively.

FIG. 4. Linear frequency spectrograms of 9 different phrase classes.

FIG. 5. Mel-spectrograms of the 9 phrase classes of Fig. 4.

FIG. 6. Mel-spectrograms to show differences between phrase samples from

the same class. Each of the three columns contains two samples from one

particular phrase class.
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automated segmentation algorithm because energies can

vary greatly for different birds and recording environments.

III. PROPOSED DTW-SR-2PASS CLASSIFICATION
ALGORITHM

The flow chart in Fig. 7 summarizes the proposed bird

phrase classification algorithm, abbreviated DTW-SR-2pass.

The algorithm applies DTW on the training Mel-spectrograms,

followed by a two-pass SR classification. Mel-spectrogram

generation and the signal processing performed in each stage

are described in the following subsections.

A. Mel-spectrogram generation

A Mel-spectrogram is computed for each phrase seg-

ment in both the training and testing sets. Figure 8(a) shows

the various steps involved in generating each Mel-

spectrogram. The segment is first downsampled from 44.1 to

20 kHz because little phrase energy is found above 10 kHz.

It is then split into multiple 20 ms frames with 50% overlap

(10 ms shift). A Hamming window is applied to each frame,

followed by a 512-point FFT to obtain the power spectrum

of each frame. The Mel-spectrogram is generated by apply-

ing a Mel-filter bank [shown in the Fig. 8(b)] that covers the

1.5–6.5 kHz frequency range in which most of the CAVI

phrase energy falls within. A different frequency range can

be used when classifying phrases from other bird species.

When energies in multiple linear frequency bins are com-

bined to form each Mel component of coarser frequency re-

solution, energy transitions across frequency are smoother

(compare the spectrograms in Figs. 4 and 5). This leads to

smaller intra-class component-wise distances, thus the Mel-

spectrogram is chosen over its linear counterpart.

B. DTW of the training phrases using
Mel-spectrograms

DTW is applied on each training Mel-spectrogram to

yield a time-warped version that is more similar to and has

the same number of frames as that in the test Mel-

spectrogram (the phrase class of which is to be determined).

This is done by computing the optimal path through a similar-

ity matrix H, where each Hði; jÞ is a cosine similarity measure

[see Eq. (1)] that emphasizes the similarity in spectral shape,

instead of energy values, between vectors si and rj in the ith
frame of the test Mel-spectrogram and the jth frame of the

training Mel-spectrogram, respectively. k•k2 in Eq. (1) repre-

sents the l2 vector norm. Cosine similarity is computed on the

linear power scale Mel-spectrogram, which is also used in

Kaewtip et al. (2013) and Meliza et al. (2013),

H i; jð Þ ¼ sT
i rj

ksik2krjk2

¼ si

ksik2

� �T rj

krik2

� �
: (1)

Figure 9 illustrates the type I local path constraints

imposed (Myers et al., 1980) that limit the minimum and

maximum scale of time-warping to 0.5 and 2, respectively.

The intermediate accumulative score Dði; jÞ is computed

recursively in Eq. (2), for i ¼ 0; 1; …;M – 1, and for

j ¼ –T; –T þ 1; …; –1; 0; 1; …;N þ T – 1, where M and N
denote the number of frames in the test and training seg-

ments, respectively. T is the additional number of frames

extended beyond the training segment boundaries that are

used to generate each training Mel-spectrogram. In Eq. (2),

the H values are weighted by 0.5 for path 1 so as not to dou-

ble count the similarity score with the same frame of the test

spectrogram, i.e., si. This makes d, the final accumulative

score of the optimal path (between the test spectrogram and

the current training spectrogram) computed in Eq. (3), com-

parable across all training spectrograms or samples,

D i;jð Þ¼max

D i – 1;j – 2ð Þþ1

2
H i;j – 1ð Þþ1

2
H i;jð Þ; path1

D i – 1;j – 1ð ÞþH i;jð Þ; path2

D i – 2;j – 1ÞþH i – 1;jð ÞþH i;jð Þ; path3;
�

8>>>><
>>>>:

(2)

d ¼ max
j2½N�T�1;…;NþT�1�

Dði ¼ M � 1; jÞ: (3)

FIG. 7. Flow chart of the proposed two-pass sparse representation classifica-

tion framework. OX is the class decision of classifier X, where X is either

DTW, SR (from 1st-pass SR) or SR2 (from 2nd-pass SR).

FIG. 8. (a) Block diagram on Mel-spectrogram generation. (b) Mel-filter

distribution in the frequency range of interest (1.5–6.5 kHz).

FIG. 9. The possible paths allowed to reach an arbitrary point ði; jÞ in the

DTW grid when searching for the optimal path. The frame indices of the

test and training Mel-spectrograms are denoted by i and j, respectively.
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For each training sample, d is computed such that the

optimal path is selected from all paths that stop within the

last 2T þ 1 frames of the extended training Mel-spectrogram

while covering all the test frames. The paths are allowed to

start at any frame within the first 2T þ 1 frames of the

extended training Mel-spectrogram. This flexibility (that

resulted from setting T > 0) improves classification accu-

racies when there is phrase position variation within the

segment due to inconsistently determined time boundaries.

Large phrase position variations can exist when an auto-

matic segmentation algorithm is used. The phrase class of

the training sample that yields the highest d, over all

training samples, is the classification decision of this

DTW classifier, ODTW. The DTW decision is used in a

subsequent step to decide if a second-pass of SR classifi-

cation is necessary.

To obtain the time-warped training spectrogram, ~R
¼ ½~r0;…; ~rM�1�, which has the same number of frames as the

test spectrogram for SR classification, the optimal path is back-

tracked as shown in Eq. (4). Figure 10 shows an example of a

training Mel-spectrogram before and after DTW to match the

test Mel-spectrogram.

If path 1; ~ri ¼
1

2
rj þ rj�1ð Þ;

If path 2; ~ri ¼ rj;

If path 3; ~ri ¼ ~ri�1 ¼ rj: (4)

C. Feature normalization prior first-pass SR
classification

To emphasize spectral shape similarity over spectral

amplitude similarity, all time-warped training Mel-

spectrograms and the test Mel-spectrogram are normalized

to have an Euclidean norm of 1 for every frame prior to am-

plitude log-compression. The Euclidean norm of 1 is chosen

for simplicity. This normalization is implicitly done in com-

puting DTW’s cosine similarity measure [see Eq. (1)]. This

frame-based energy normalization reduces within-class dis-

similarity between phrases that have different energy varia-

tions across time as observed in the phrases shown in Figs.

6(c-i) and 6(c-ii).

D. Dimension reduction and SR classification

After frame normalization and log-compression, the

frames of each Mel-spectrogram are concatenated to form a

single feature vector per sample. The dimension of the fea-

ture vector is then reduced to p ¼ minðm;PÞ by performing

a principal component analysis (PCA) on the feature vectors

from all m ¼ Kn training Mel-spectrograms matrix, where P
is a user-specified dimension. K is the total number of phrase

classes in the training set, and n is the number of training

samples per class, as defined in Sec. II A. The final p-by-1

feature vector is obtained by normalizing the dimensionally

reduced vector to unit length (this is done in both training

and test sets). The rationale for performing dimension reduc-

tion and unit length normalization is related to the l1 minimi-

zation expression used in the SR classification algorithm,

which is explained in the following paragraph.

The SR classification algorithm summarized in Eqs.

(5)–(8), follows “Algorithm 1” described in Yang et al.
(2007) for a 100-subject face recognition application. It is

also known as exemplar-based sparse classification because

each representation is an exemplar—a feature vector

extracted from each individual training sample rather than

learned dictionary representations derived from a large pool

of training samples. The SR classifier finds a sparse linear

combination of training feature vectors that best represents

the test feature vector, b. This linear combination is found by

solving for a sparse vector x ¼ ½x½1�; x½2�;…; x½m��T 2 Rm�1

via the l1 minimization convex optimization problem defined

in Eq. (5), where k • k1 represents the l1 vector norm

minkxk1 subject to kAx� bk2 � e: (5)

Each column, ai 2 Rp�1, in dictionary matrix A ¼ ½a1;
a2;…; am� 2 Rp�m contains one exemplar or feature vector

from the training set. Reducing the feature dimension, p, to

the smaller value of two m and P values ensures that Eq.

(5) is not an over-determined linear system of equations

such that a solution x can always be found. The exemplars

in the dictionary matrix are generally normalized to unit

length (Wright et al., 2009; Gemmeke et al., 2011) so as

not to bias toward the selection of exemplars with larger

feature values when the l1 solver tries to minimize kxk1.

The difference tolerance, e is usually set to a small value to

allow small differences between the test feature vector and

the one reconstructed using a sparse linear combination of

the training feature vectors. Normalizing the test feature

vector to unit length enables e to be fixed to a constant

value instead of varying it proportionally to the Euclidean

FIG. 10. An example to illustrate the effect of DTW on the training Mel-

spectrogram. (a) and (b) show the training Mel-spectrograms before and af-

ter DTW, respectively, to match the test Mel-spectrogram shown in (c).

Amplitude log-compression has been applied to give a clearer visual display

of the spectrograms in this figure.
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norm of each test vector. The spg_bpdn function in the

SPGL1 MATLAB toolbox (van den Berg and Friedlander,

2007, 2008) is used to solve Eq. (5). After the solution, x, is

found, the residual vector rk between b and AdkðxÞ is com-

puted in Eq. (6). The dkðxÞ function outputs a vector, y, the

coefficients of which y½i� ¼ x½i�, if ai is a training feature

vector from class k. All other coefficients in y are set to

zero, as shown in Eq. (7),

rk ¼ b� AdkðxÞ; for k ¼ 1; 2;…; K; (6)

dkðxÞ ¼ y; where y½i� ¼
x½i�; if ai 2 class k

0 ; otherwise:

(
(7)

The class that yields the minimum residual norm krkk2

is the output decision of the SR classifier OSR as shown in

Eq. (8). This decision of the SR classifier is compared with

ODTW that is computed during DTW. If they are the same, it

is the final class decision of the proposed algorithm,

OSR ¼ arg min
k
krkk2: (8)

Figure 11 shows an example of a sparse solution x com-

puted using Eq. (5), for a test phrase that is correctly classi-

fied. Figure 11(a) shows the Mel-spectrogram of this test

phrase segment, and Fig. 11(b) plots the sparse x computed

with the test feature vector extracted from this Mel-

spectrogram. Figures 11(c) and 11(d) plot the training Mel-

spectrograms that correspond to the two largest x coefficients

in Fig. 11(b). These spectrograms are of the same phrase

class as the test Mel-spectrogram.

E. Second-pass of SR classification

If ODTW 6¼ OSR, a second (2nd)-pass of SR classification

is activated. This SR classification is performed using only

the training samples from the two conflicting phrase classes

and with a modification to the feature normalization step.

Instead of frame normalization, frequency bin normalization

is performed on the time-warped training Mel-spectrograms

and the original test Mel-spectrogram, such that the

Euclidean norm of the values in each frequency bin is equal

to one. This provides a different perspective of the features

to the SR classifier in the 2nd-pass. Subsequent steps after

feature normalization, follow the same procedure as that

used in the 1st-pass, which include log-compression, dimen-

sion reduction, and sparse vector computation. The class

with the smaller residual norm of the two classes in the 2nd-

pass, is the final class decision of the proposed algorithm.

Note that the computation time required to perform the l1-

minimization optimization in the 2nd-pass is much less than

that used in the 1st-pass because the dictionary matrix

involved is significantly smaller.

The parameters of the proposed DTW-SR-2pass algo-

rithm are tuned using the set of values listed in Table II.

Classification results of the optimal parameters are shown in

Sec. V, while performance variations with different parame-

ter values are presented in Sec. VI B.

IV. COMPARATIVE ALGORITHMS

A. Sparse representation (SR) classifier

This SR classifier is similar to our previous work in Tan

et al. (2012), in which no DTW is involved. A 64-frame Mel-

spectrogram is computed using a phrase-duration-dependent

frame shift on each phrase segment, followed by the same

frame normalization, log-compression, dimension reduction,

and 1st-pass SR classification framework described in

Secs. III C and III D. The output of the 1st-pass SR classifica-

tion is the decision of this SR classifier.

B. Support vector machine (SVM) classifier

The multi-class SVM classifier is implemented using a

popular software library known as LIBSVM (Chang and

Lin, 2011). Like the SR classifier described in Sec. IV A,

this SVM classifier does not use DTW, and a 64-frame Mel-

spectrogram is computed. The input feature vector to the

SVM is the frame-concatenated vector of this Mel-

spectrogram. Dimension reduction is omitted, and the linear

kernel is used because experiments show that this configura-

tion yields better classification performance under the lim-

ited training data condition compared to using dimension

reduction or the Gaussian radial basis function (RBF) kernel.

The innate multi-class SVM classifier in LIBSVM uses an

one-against-one decomposition scheme. However, this one-

against-one decomposition scheme breaks down when there

are less than three samples per class to train the SVM. Hence

an one-against-all decomposition strategy is implemented

FIG. 11. (a) Example of a test Mel-spectrogram that is correctly classified in

the first pass of SR classification. (b) The sparse solution x computed with

the test feature vector extracted from the Mel-spectrogram in (a). The train-

ing Mel-spectrograms corresponding to the two largest coefficients in x, are

shown in (c) and (d).

TABLE II. The various values used for parameter optimization of the

proposed algorithm.

Parameter Values

PCA dimension, P 32, 64, 128

Difference tolerance, e 0.025, 0.05, 0.1, 0.2

DTW frame extension, T 0, 5, 10, 20, 30, 40
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via a code modification. The optimal regularization factor

(also known as soft margin parameter), C, that gives the

highest classification accuracy on the training samples is

selected from the set f2�1; 20; …; 23g.

C. Dynamic time warping (DTW) classifier

The DTW-based classifier used for performance com-

parison is the same as the one described in Sec. III B. The

classification accuracy is calculated based on the decision of

the DTW classifier, ODTW.

D. DTW-SVM-2pass classifier

The DTW-SVM-2pass classifier is similar to the pro-

posed DTW-SR-2pass classifier. The SR classification stage

(including dimension reduction) in each pass is replaced by

the linear SVM classifier described in Sec. IV B. It enables

assessment of the performance difference between the two

classification techniques (SR and SVM) with the proposed

DTW framework.

E. DTW-SR-1pass classifier

This DTW-SR-1pass classifier is similar to our proposed

DTW-SR-2pass algorithm, but without the 2nd-pass of SR

classification. The decision, OSR (see Sec. III D), is used to

compute the classification accuracy of this DTW-SR-1pass

classifier. It enables assessment of the performance gain

obtained with the additional 2nd-pass of SR classification.

V. RESULTS

In this section, the classification accuracies (Acc.) of

each classifier are presented. In each experiment, n training

samples per phrase class from the training CAVIs are ran-

domly selected, and the average results of five such experi-

ments are computed for each parameter setting (using the

values in Table II) with each classification algorithm.

Section V A contains the results for human-segmented

phrases in Tests A1 and B1, while Sec. V B contains the

results for machine-segmented phrases in Tests A2 and B2.

A. Classification accuracy on human-segmented test
phrases

Figure 12 shows the accuracies on Tests A1 and B1

obtained by the comparative algorithms and the proposed

DTW-SR-2pass classifier at their optimal parameter settings.

Test A1 contains human-segmented test phrases from the

training CAVIs, while Test B1 contains human-segmented

test phrases from the test CAVIs. The values of P, e, and T
for the DTW-SR-based classifiers that give the best perform-

ance on this dataset are 128, 0.05, and 5, respectively. The

results of the DTW and DTW-SVM-2pass classifiers shown

are obtained with T set to 5 (which is also the best value for

each classifier). For the SR classifier, the best results shown

is obtained with P¼ 128 and e¼ 0.1.

The results in Fig. 12 show that the proposed DTW-

SR-2pass classifier outperforms other classification algo-

rithms in all cases. With n¼ 5 training samples per phrase

class, it achieves the highest classification accuracies of

98.6% and 94.3% on human-segmented phrases in Tests A1

and B1, respectively. The proposed classifier also has the

highest averaged classification accuracies of 92.4% and

90.6% (averaged Acc. over different n values) on Tests A1

and B1, respectively. Its performance gain over those algo-

rithms increases as n decreases. Both SVM and DTW-

SVM-2pass classifiers perform worse than their SR-based

counterparts. The averaged accuracies of the DTW-SR-

1pass and DTW-SR-2pass are also better than that of the

DTW classifier. It is also observed that the SR and SVM

classifiers without DTW perform worse than classifiers

with DTW. The performance differences in averaged Acc.

between classifiers with and without DTW are approxi-

mately 3% for Test A1 and 13% for Test B1. This shows

that DTW helps to reduce intra-class variations in human-

segmented phrases, especially when the phrases are

recorded from bird individuals not found in the training set.

Error analysis of Test B1 results for the case of n¼ 5

reveals that about 50% of the errors are misclassifications to

classes that have very similar dominant frequency trajectories,

and about 35% of the misclassified phrases are affected by noise

interferences from other birds and segmentation errors. For

example, the test phrase in Fig. 13(a) is misclassified to another

phrase class shown in Fig. 13(b) of similar acoustic signature,

while the noise-corrupted test phrase in Fig. 13(c) is misclassi-

fied to the phrase class shown in Fig. 13(d). Another reason for

the misclassifications is the presence of intra-class variations

that cannot be well-represented by a linear combination of

dynamically time-warped training samples of the same class.

B. Classification accuracy on machine-segmented test
phrases

Classification accuracies (Acc.) of the comparative algo-

rithms and the proposed DTW-SR-2pass on Tests A2 and B2

are tabulated in Fig. 14. Test A2 contains machine-

segmented test phrases from the training CAVIs, while Test

B2 contains machine-segmented test phrases from the test

CAVIs. The optimal values of P and e for the SR and DTW-

SR-based classifiers are the same as those for the human-

FIG. 12. Classification accuracies (%) of test sets A1 and B1 (n is the num-

ber of training samples per phrase class). (a) Test A1 contains human-

segmented test phrases from the training CAVIs, while (b) Test B1 contains

human-segmented test phrases from the test CAVIs. n refers to the number

of training samples per phrase class.
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segmented test phrases (in Sec. V A). For the DTW frame

extension parameter T it is found that increasing it from 5 to

30 frames improves the classification accuracy of the

machine-segmented bird phrases, which have larger segmen-

tation inconsistencies than human-segmented phrases. The

results of the DTW and DTW-SVM-2pass classifiers shown

are also obtained with T set to 30.

Classification accuracies on machine-segmented test

phrases in Fig. 14 show similar performance trends as

those observed in Fig. 12. The proposed DTW-SR-2pass clas-

sifier outperforms other algorithms in all cases, achieving

accuracies of 93.7% and 89.4% with n¼ 5 training samples

per phrase class and averaged accuracies of 84.2% and 82.4%

for Tests A2 and B2, respectively. DTW-SR-2pass classifier’s

performance gain over other algorithms also increases as n
decreases; this shows its robustness to very limited training

data. Performance differences in averaged accuracies between

classifiers with and without DTW are nearly 40% in both

Tests A2 and B2. This shows that DTW is essential for good

classification performance on machine-segmented phrases.

It is also observed that the classification accuracies on

machine-segmented test phrases are lower than those

obtained for human-segmented test phrases. This decrease

is mainly due to segmentation errors present in the

machine-segmented phrase segments. A shorter segment

with missing portions of the test phrase results in misclassi-

fication to classes that are more similar to the detected sub-

segment. For example, the phrase shown in the top left cor-

ner of Fig. 5 may be classified to the phrase on its right if

some of its beginning and end portions are missing. Test

phrase segments with additional portions that contain sub-

stantial background noise also tend to be misclassified.

Note that human- instead of machine-segmented train-

ing phrases are used for the classification of machine-

segmented test phrases because the latter yields about 2%

lower classification accuracy (absolute difference) on aver-

age, for all classification algorithms evaluated, compared to

the case when human-segmented training phrases are used.

VI. DISCUSSION

A. On the importance of DTW

On the human-segmented test phrases, the SR and SVM

classifiers without DTW perform worse than a DTW classi-

fier. A larger performance degradation is observed on

phrases from test CAVIs in Test B1 than phrases from train-

ing CAVIs in Test A1. This shows the benefit of using DTW

to reduce the time mismatch between the phrases recorded

from different bird individuals. Error analysis reveals that

within-class time variations exists due to individual bird dif-

ferences in producing phrases from the same class, and the

subjective differences between human annotators in deter-

mining the phrase segment boundaries. Figure 15 shows an

example of a spectrographic feature mismatch between

human-segmented phrases of the same class when a phrase-

duration-dependent frame shift is used (to compute Mel-

spectrograms with a fixed number of frames), as done in

classifiers without DTW. The Mel-spectrograms in Figs.

15(a) and 15(b) are computed from the phrase segments pre-

viously shown in Figs. 6(b-i) and 6(b-ii), respectively.

The importance of DTW in reducing time boundary

mismatch is further exemplified on machine-segmented

bird phrases. The SR and SVM classifiers without DTW

FIG. 14. Classification accuracies (%) of test sets A2 and B2. (a) Test A2

contains machine-segmented test phrases from the training CAVIs, while (b)

Test B2 contains machine-segmented test phrases from the test CAVIs.

FIG. 15. Time mismatch observed between Mel-spectrograms computed

using a phrase-duration-dependent frame shift. These 64-frame Mel-spectro-

grams in (a) and (b) are computed from the two human-segmented phrases

shown in Figs. 6(b-i) and 6(b-ii), respectively. The arrows on the 64-frame

Mel-spectrograms in (a) and (b) note the time instances of the low frequency

regions in the phrase segments.

FIG. 13. Examples of human-segmented phrases that are misclassified. Test

phrase in (a) is misclassified to the phrase class in (b) of similar acoustic sig-

nature. Test phrase in (c) is misclassified to the phrase class in (d) due to

noise interference.
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suffer a large performance degradation on phrases from

both the training and test CAVIs (30%– 45% absolute dec-

rement in classification accuracy in contrast to the 5%–15%

decrement observed in classifiers with DTW) in compari-

son to their performance on human-segmented bird phrases.

This is because only those machine-segmented phrase seg-

ments with time boundaries that are very close to their

human-segmented counterparts are correctly classified by

classifiers without DTW.

B. On the performance gain of DTW-SR-2pass over
DTW-SR-1pass

When the results of DTW-SR-1pass classifier are com-

pared with those of the DTW-SR-2pass classifier, it is evi-

dent that the largest performance gain is observed in the

case when there is only n¼ 1 training sample per phrase

class. The 2nd-pass of the SR classification aims to resolve

the conflicting class decisions of DTW-SR-1pass and

DTW. The DTW classifier compares the test sample to ev-

ery training sample separately. It obtains the correct deci-

sion if there is a training sample in the correct class that has

the highest cosine similarity with the test sample. In con-

trast, the SR classifier generally classifies correctly if the

sparse solution in Eq. (5) is concentrated at the coefficients

corresponding to the correct phrase class. When there is

more than one training sample per class, the SR classifica-

tion framework has the advantage of using a linear combi-

nation of (all or a few) training samples from the correct

phrase class (together with some training samples from

other classes) to reconstruct a vector that resembles the test

feature vector. When there is only one training sample per

phrase class, the advantage of DTW-SR-1pass over DTW

with a linear combination framework is reduced. Even if

the single training sample from the correct class is closest

to the test sample, but not by a large margin compared to

other training samples, there is a larger possibility of find-

ing a sparse linear combination of training samples from

multiple classes that resembles the test sample in which the

coefficient corresponding to the correct class is not the larg-

est. Analysis reveals that among the conflicting class deci-

sions in which either DTW or DTW-SR-1pass is correct,

DTW-SR-1pass is correct for approximately 77% of them

in the case when n¼ 5, and this percentage decreases to

53% when n¼ 1. When only the two conflicting classes’

training feature vectors (obtained from frequency bin-

normalized Mel-spectrograms) are used in the 2nd-pass of

SR classification, the SR classifier is able to derive a correct

class decision for 70%–90% of these cases. Note that nor-

malizing by frequency bin in the 2nd-pass improves the

classification accuracy of the 1st-pass by more than 2%

(absolute difference when averaged over Acc. obtained for

all values of n), while using frame normalization in the

2nd-pass gives an improvement of less than 1%. The differ-

ence in classification performance between frequency

bin-based versus frame-based normalized features in the

2nd-pass is found to be statistically significant with a

p-value less than 0.01 via the McNemar test (McNemar,

1947). On the other hand, if frequency bin-based

normalized features were to be used in the 1st-pass, the

classification accuracy of DTW-SR-1pass would be less

than that obtained with just the DTW classifier.

C. Parameter sensitivity analysis of DTW-SR-2pass’s
classification performance

The proposed DTW-SR-2pass classification perform-

ance is relatively consistent compared to DTW-SR-1pass

across the different parameter values of P (PCA dimension)

and e (difference tolerance) investigated. Figures 16(a) and

16(b) plot the averaged accuracies (Acc. averaged across n)

achieved with different P values, while e and T (DTW frame

extension) are fixed at their optimal value, for human-

segmented phrases (in Test B1), and machine-segmented

phrases (in Test B2) from the test CAVIs, respectively.

Similarly, Figs. 16(c) and 16(d) plot the accuracy variations

with e (while P and T are fixed at their optimal value), for

human- and machine-segmented test CAVIs’ phrases,

respectively. The DTW classifier has a constant Acc. in Figs.

16(a)–16(d) because its algorithm is independent of P and e.
The Acc. range of DTW-SR-2pass is less than 2% in the

range of P and e evaluated, while the Acc. range of DTW-

SR-1pass is larger. There are also some values of P and e for

which DTW-SR-1pass performs worse than the DTW classi-

fier. The reduced Acc. variation observed for the proposed

DTW-SR-2pass classifier is mainly because the 2nd-pass

FIG. 16. Sensitivity analysis of the classification accuracy (Acc.) of DTW-

SR-2pass to different values of PCA dimension (P), difference tolerance (e),
and DTW frame extension (T). The averaged Acc. (averaged across n)

obtained by the DTW, DTW-SR-1pass, and DTW-SR-2pass classifiers on

human-segmented test CAVIs’ phrases in Test B1 with different values of P,
e, and T, are plotted in (a), (c), and (e), respectively. The classifiers’ averaged

Acc. on machine-segmented test CAVIs’ phrases in Test B2 as P, e, and T
vary, are plotted in (b), (d), and (f), respectively.
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takes into account of the DTW classifier’s decision, which is

independent of P and e.
Figures 16(e) and 16(f) plot the averaged accuracies

achieved by DTW, DTW-SR-1pass, and DTW-SR-2pass

with different T values (while P and e are fixed at their opti-

mal value) for human- and machine-segmented test CAVIs’

phrases, respectively. As T varies, the Acc. variations of

DTW, DTW-SR-1pass, and DTW-SR-2pass are similar

to one another. Comparing these figures, we conclude

that increasing T can result in performance degradation

(about 2%) for human-segmented phrases. For machine-

segmented phrases, on the other hand, increasing T beyond

0 is beneficial.

D. Computation time of DTW-SR-2pass

Table III shows the computation time of the proposed

DTW-SR-2pass classification algorithm (written in MATLAB)

on an Intel i7 2.67 GHz processor with 4 GB RAM (without

parallel-computing). It varies from 0.5 to 1.5 � real-time

(RT), depending on the parameter settings and the number of

training samples used. A computation time of 0.5�RT

means that the algorithm takes an average of 0.15 s to derive

the class decision of a bird phrase segment of duration 0.3 s.

In general, the computation time increases with T because

DTW is done on a larger number of frames. The computa-

tion time also increases as n and P increase because there

are more elements in the dictionary matrix A on which the

l1-minimization in Eq. (5) is performed. On the other hand,

the l1-minimization requires less computation time when a

larger tolerance e is used.

VII. SUMMARY AND CONCLUSION

A DTW-SR-2pass classification framework that com-

bines DTW with a two-pass SR classification is proposed for

limited data birdsong phrase classification. Mel-spectro-

grams of the training samples are dynamically time-warped

to the Mel-spectrogram of each test sample to obtain training

Mel-spectrograms with the same number of time frames as

the test Mel-spectrogram. This is followed by feature nor-

malization, which involves frame-based energy normaliza-

tion and amplitude log-compression. PCA dimension-

reduced feature vectors are used in the 1st-pass SR classifi-

cation. If the class decision of the 1st-pass SR classification

is different from the DTW classifier’s decision (computed as

a by product at the DTW stage), a 2nd-pass SR classification

is performed using the training samples solely from the two

conflicting classes. Frequency bin-based (instead of frame-

based) energy normalization is performed in the 2nd-pass.

The phrases used in this study are extracted from songs

of the Cassin’s Vireo. The training set contains a few train-

ing samples (n¼ 1–5) per phrase class from a few bird indi-

viduals, and the test data are divided into four sets to

evaluate classification performances on phrases recorded

from bird individuals present or absent in the training set,

and on human- or machine-segmented phrases separately.

Compared to the DTW, SVM-based, and SR (without DTW)

classifiers evaluated, the proposed DTW-SR2pass classifier

achieves the highest classification accuracies on all test con-

ditions. DTW is essential for achieving good classification

performances on machine-segmented phrases, and phrases

recorded from bird individuals that are not found in the train-

ing set. Performing the 2nd-pass SR classification (on

phrases with conflicting DTW and 1st-pass SR decisions)

leads to increasing performance gains over the comparative

algorithms as n decreases, and reduces the parameter sensi-

tivity of the algorithm’s performance.

Future work will include development of discriminative

and noise-robust feature extraction schemes to improve the

algorithm’s classification performance on phrase classes that

are very similar to each other in the presence of noise inter-

ferences (such as overlapping birdsongs). We plan to add the

in-set/out-of-set verification module developed in our previ-

ous paper (Tan et al., 2013) to the DTW-SR-2pass algorithm

to enable automated detection of new phrase classes that are

not found in the training set. We also intend to extend the

proposed framework to phrase classification of other bird

species, and species identification.
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