
AN EFFICIENT APPROXIMATION OF THE FORWARD-BACKWARD ALGORITHM TO
DEAL WITH PACKET LOSS, WITH APPLICATIONS TO REMOTE SPEECH RECOGNITION

Bengt J. Borgström and Abeer Alwan∗

Department of Electrical Engineering,
University of California, Los Angeles

jonas, alwan@ee.ucla.edu

ABSTRACT

This paper proposes an efficient approximation of the forward-
backward (FB) algorithm, for the purpose of estimating miss-
ing features, based on downsampling statistical models. The
paper discusses the role of Hidden Markov Models (HMMs)
in the estimation process, and presents an approximation to
the FB method by developing HMMs based on lower reso-
lution quantizers, which are obtained through a tree-structure
mapping of quantizer centroids. To illustrate the effective-
ness of the proposed method, we apply it to the problem of
error concealment in remote speech recognition, using the
Aurora-2 database. The FB approximation provides compara-
ble word recognition accuracy results relative to the standard
FB method, while reducing the computational load by a large
factor (> 250 in this case).

Index Terms— Forward-Backward Algorithm, Missing
Features, Error Concealment, Remote Speech Recognition.

1. INTRODUCTION

Statistical modeling of Markov sources has been extensively
studied due to their elegant theoretical framework and appli-
cations in signal processing, communications, and other fields
[1]. HMMs are used to implement efficient and accurate esti-
mation and recognition systems, and can provide a framework
for estimating missing features or corrupted data. The Viterbi
and forward-backward (FB) algorithms have been applied to
various tasks within automatic speech recognition [1].

Although it has been widely shown to be effective in the
estimation of lost features based on an HMM framework, and
to outperform the Viterbi algorithm [2], the FB can be restric-
tive due to its computational load. This constraint is espe-
cially true in speech recognition applications, where clients
may be distributed and applications may be delay-sensitive.

We propose an efficient approximation of the FB algo-
rithm for the task of missing feature estimation, by means of
HMM downsampling. Utilizing a tree-structured quantizer in
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the estimation process, HMMs can be downsampled, and cor-
responding statistical parameters can be determined accord-
ingly. Note that HMM downsampling does not refer to deci-
mating the speech signal (i.e. x (Mn)), but instead operates
on the parametric centroids of the HMM. We apply the pro-
posed FB approximation to error concealment (EC) in packet-
based Remote Speech Recognition (RSR). The proposed al-
gorithm is shown to greatly reduce the required computational
complexity, while providing system performance comparable
to the original FB algorithm.

The application of HMMs to missing feature estimation
is discussed in Section 2. The proposed approximation to the
FB algorithm is presented in Section 3. Section 4 provides
experimental results for error concealment in remote speech
recognition. Conclusions are given in Section 5.

2. HMMS AND MISSING FEATURE ESTIMATION

Missing features occur when data become missing or cor-
rupted. Examples include the loss of packets in the trans-
mission of data, such as speech, due to channel noise or chan-
nel congestion [4], and unreliable spectral coefficients due to
acoustic noise [5]. In general, lost features can be approxi-
mated either by interpolation or estimation. Interpolation in-
volves calculating unreliable features as a function of past and
future reliable data.

Estimation determines lost features based on a model of
the underlying signal, as well as on correctly received fea-
tures. A common method to model the features is with an
HMM [3]. Let the quantizer of feature m be represented by
Qm, and let the set of corresponding centroids be referred to
as

{
c1
m, c2

m, . . . , cN
m

}
, where N is the number of centroids in

Qm. In order to apply estimation methods, separate HMMs
are constructed for each of the quantizers Qm, for 1 ≤ m ≤
M , to model the feature trajectories [3].

Let the HMM applied to the output signal from quantizer
Qm be referred to as Λm=(Am, Bm, ~πm), where Am provides
transitional statistics, Bm provides observation statistics, and
~πm provides steady-state statistics [1]. The steady-state prob-
abilities can be determined empirically from training data as:



~πm (i) =
no. of samples quantized to centroid ci

m

total no. of samples
, (1)

and transitional probabilities of Λm are then:

Am (i, j) =
no. of samples transitioning from ci

m to cj
m

no. of samples quantized to ci
m

.

(2)
Formulation of the components of Bm is dependent on

the specific application of the system. For example, in the
case of transmission of data across a noisy channel, bi (o) may
represent the probability that a transmitted binary codeword
representing ci

m is detected as a different codeword o, and the
probability distribution can be formulated from theory of a
Binary Symmetric Channel (BSC) [2]. In the case of noisy
spectrogram data, bi (o) may represent the probability that a
clean feature element quantized to ci

m is corrupted by acoustic
noise to become o, [5]. Without loss of generality, we will
refer to the observation probabilities as bi (o).

Once the underlying signals have been modeled by the
set {Λ1, . . . ,ΛM}, lost features can be approximated by the
means of the estimates. As was previously stated, the forward-
backward algorithm provides an accurate algorithm for esti-
mating missing or ambiguous data within an HMM frame-
work. Let f (n) = [x1 (n) , x2 (n) , . . . , xM (n)]T be the input
feature vector at frame n. The estimate of component xm (n),
using the FB algorithm, is determined as [1]:

x̂m (n) =
N∑

i=1

ci
mγi

m (n) , (3)

where:

γi
m (n) =

αi
m (n) βi

m (n)∑N
j=1 αj

m (n)βj
m (n)

. (4)

The values αi
m (n) and βi

m (n) can be determined as:

αi
m (n) =

 N∑
j=1

Am (j, i) αj
m (n− 1)

 bi (on) , (5)

βi
m (n) =

N∑
j=1

Am (i, j) βj
m (n + 1) bj (on+1) . (6)

The first and last reliable features are known as αi
m=βi

m=1.
The computational load introduced by the FB algorithm

is of order O
(
N2T

)
, where T is the length of the unreliable

region in terms of feature vectors [1]. This could create prob-
lems for constrained servers or delay-sensitive applications.

3. EFFICIENT APPROXIMATION OF THE
FORWARD-BACKWARD ALGORITHM

We propose an efficient approximation of the forward-backward
algorithm based on downsampling of the underlying statisti-
cal models. Instead of using the original quantizer centroids
to model the signal during feature reconstruction, we use a
quantizer with less resolution to build the statistical model.
We implement a tree-structure mapping of centroids to allow
downsampling of the discrete HMMs by factors of 2, with
N=2R. Note, however, that training of the statistical models
is still carried out at the original R-bit resolution.

Let QR
m represent a R-bit quantizer for component m,

with centroids
{

cR,1
m , cR,2

m , . . . , cR,2R

m

}
. (Note that typically

the original quantizer is allocated 8 bits, and thus Q8
m=Qm.)

The signal model, now referred to as ΛR
m, has statistical pa-

rameters
(

AR
m, BR

m, ~πR
m

)
. Using tree-structure quantization,

centroids can be mapped according to:

c8,i
m ⇒ cR,j

m , for 1 ≤ R < 8, where j =
⌊

i

28−R

⌋
. (7)

The steady-state and transitional statistics can be approx-
imated according to:

~πR
m (i) =

2τ−1∑
k=0

~πR+τ
m (2τ i− k) , (8)

AR
m (i, j) =

1
2τ

[
2τ−1∑
k=0

2τ−1∑
l=0

AR+τ
m (2τ i− k, 2τ j − l)

]
, (9)

where τ is chosen as τ=8-R.
Regarding the observation statistics of ΛR

m, denoted as
bR
i (o), the following approximation needs to hold in order

for the downsampling to be accurate:

bR
i (o) ≈ bi (o) . (10)

This approximation holds naturally for many applications.
For example, for the noisy spectrogram scenario described in
[5], the approximation holds due to the continuous nature of
the downsampled centroids. However, for the scenario in-
volving the transmission of digital information across noisy
channels, special attention must be paid to guarantee Equation
10. In this case, bi (o) corresponds to the probability that the
binary codeword representing ci

m is corrupted by noise and
decoded as o, and bR

i (o) corresponds to the probability that
the binary codeword representing cR,i

m is detected as o. Thus,
the Hamming distance between the codeword representing ci

m

and that representing cR,i
m must be small.

The estimate of component xm (n) using the approxima-
tion of the FB algorithm with R bits of resolution becomes:



Table 1. Orders of Complexity Required as a Function of R:
T refers to the length of the unreliable data in samples.

R Complexity
1 O (4 · T )
2 O (16 · T )
3 O (64 · T )
4 O (256 · T )
5 O (1, 024 · T )
6 O (4, 096 · T )
7 O (16, 384 · T )
8 O (65, 536 · T )

x̂R
m (n) =

2R∑
i=1

cR,i
m γR,i

m (n) , (11)

where:

γR,i
m (n) =

αR,i
m (n) βR,i

m (n)∑2R

j=1 αR,j
m (n) βR,j

m (n)
. (12)

The values αR,i
m (n) and βR,i

m (n) can be determined as:

αR,i
m (n) =

 2R∑
j=1

AR
m (j, i)αR,j

m (n− 1)

 bR
i (on) , (13)

βR,i
m (n) =

2R∑
j=1

AR
m (i, j) βR,j

m (n + 1) bR
j (on+1) . (14)

Thus, the computational complexity required for the esti-
mation of a series of unreliable features of length T using the
proposed FB approximation method is of order O

(
22RT

)
.

Table 1 gives the specific orders of complexity involved with
the proposed approximated FB algorithm. For example, if a
series of 10 unreliable features is estimated with the standard
FB method, it would require 587, 775 additions and 592, 641
multiplications. However, if a series of unreliable features of
the same length is estimated with the proposed method with a
resolution of R=4 bits, it would only require 2, 175 additions
and 2, 481 multiplications.

4. RESULTS FOR REMOTE SPEECH
RECOGNITION

Remote speech recognition (RSR) provides distributed clients
with the ability to transmit speech to a central server for the
purpose of automatic speech recognition (ASR), thus forward-
ing the computational load involved with the recognition pro-
cess. This, however, requires transmission of speech over
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Fig. 1. Overview of the Remote Speech Recognition System

Table 2. Testing Channel Conditions: d refers to the average
duration in state 1, and ”ave. loss’ refers to the percentage of
frames in the lossy state (state 1).

Cond. Pe p q d ave. loss
1 0.25 0.1071 0.2500 4.0 30.0 %
2 0.25 0.0833 0.1250 8.0 40.0 %
3 0.25 0.0625 0.0625 16.0 50.0 %

error-prone channels, introducing the need for error conceal-
ment (EC). Two types of RSR systems exist: Distributed Speech
Recognition (DSR) and Network Speech Recognition (NSR).
The former involves transmission of speech features strictly
for the purpose of recognition, thus allowing for low-bitrate
transmission. The latter involves the transmission of coded
speech, requiring larger bitrates than DSR, but allowing for
compatibility with existing speech communication systems.

We apply the proposed FB approximation algorithm to er-
ror concealment within a RSR system to examine whether or
not there is any degradation in performance. The RSR system,
shown in Figure 1, includes a client-based feature extraction
scheme that processes the first 13 Linear Predictive Cepstral
Coefficients (LPCCs), along with the log-spectral energy. The
choice of using LPCCs over MFCCs is for compatibility with
speech coders, which typically transmit Line Spectral Fre-
quencies (LSFs). Note that the source coding can stand alone,
as in Distributed Speech Recognition, or be embedded within
a speech coder, as in Network Speech Recognition. For the
packet-based channel, the observation probabilities of ΛR

m can
be determined as follows. Each packet is transmitted as a bit

pattern dR
m, and the received bit pattern, d̂

R

m, is either known
to be correctly received, so that:

P
(

d̂
R

m | dR
m

)
=

{
1, if d̂

R

m = dR
m

0, if d̂
R

m 6= dR
m

, (15)

or corrupted, so that d̂
R

m (i)=dR
m (i) with probability 1-Pe.

Detection of corrupt packets is assumed, but can be otherwise
implemented by means of error-detecting codes [2].

For the current application, the approximation given by
Equation 10 was guaranteed in the following way: First, the
centroids of the original quantizer Q8

m were ordered such that:
c8,i
m < c8,i+1

m . Secondly, prior to transmission, centroid in-



Table 3. Root-Mean-Square Distortion Measures of Estimated Features. Channel conditions are defined in Table 2.

Forward-Backward Approximation with Resolution R
Condition R=1 R=2 R=3 R=4 R=5 R=6 R=7 R=8

1 0.310 0.244 0.213 0.204 0.202 0.196 0.191 0.179
2 0.399 0.345 0.315 0.305 0.303 0.298 0.292 0.280
3 0.478 0.436 0.412 0.404 0.405 0.398 0.390 0.378

Table 4. Recognition Results for Remote Speech Recognition, Using Clean Speech from the Aurora-2 Database

Forward-Backward Approximation with Resolution R
Condition R=1 R=2 R=3 R=4 R=5 R=6 R=7 R=8

1 77.86 % 92.05 % 94.87 % 95.64 % 95.73 % 95.89 % 96.13 % 96.62 %
2 64.63 % 81.21 % 85.08 % 86.12 % 86.34 % 86.83 % 87.17 % 88.39 %
3 57.11 % 70.62 % 73.38 % 74.27 % 74.24 % 74.70 % 74.61 % 76.24 %

dices were mapped to binary codewords according to tradi-
tional binary representation.

The channel was modeled using a 2-state Gilbert-Elliot
model, in which state 1 induced a bit error probability of Pe.
The transitional probability from state 0 to state 1 is given by
p, and the transitional probability from state 1 to state 0 is
given by q. The proposed algorithm was applied to estimate
unreliable features, prior to recognition.

The system was tested using clean speech from the Aurora-
2 database [6]. The recognition engine used 16-state, 3-mixture
word models. The channel conditions used for testing are
summarized in Table 2. Table 3 provides the root-mean-square
(RMS) distortion measures of the estimated features, aver-
aged across feature elements. Word recognition accuracy re-
sults are provided for a range of resolutions in Table 4.

As can be concluded from Table 4, the complexity of the
FB algorithm can be greatly reduced via the proposed approx-
imation method with little performance degradation, when ap-
plied to the problem of error concealment in RSR. The word
recognition accuracy results obtained across a range of chan-
nel conditions show a small drop in performance for reso-
lution settings as low as R=4 and R=5, as compared to the
original algorithm with R=8. These settings correspond to
complexity reductions of 256 and 64 times, respectively.

5. CONCLUSIONS

This paper proposes an efficient approximation to the gen-
eral forward-backward algorithm based on HMM downsam-
pling, for the purpose of estimating lost features. We present
the FB approximation method by developing HMMs based on
quantizers of lower resolutions, which are obtained through a
tree-structure mapping of centroids. Statistical parameters of
lower-resolution HMMs are adapted as functions of the origi-

nal parameters. To illustrate the effectiveness of the proposed
method, we apply it to the problem of error concealment in re-
mote speech recognition. The FB approximation is shown to
provide comparable recognition accuracy results for packet-
based RSR relative to the standard FB algorithm, while re-
ducing the required computational load by a factor of over
250.
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