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Abstract
We propose a novel packetization and variable bitrate com-

pression scheme for DSR source coding, based on the Group
of Pictures concept from video coding. The proposed algorithm
simultaneously packetizes and further compresses source coded
features using the high interframe correlation of speech, and is
compatible with a variety of VQ-based DSR source coders. The
algorithm approximates vector quantizers as Markov Chains,
and empirically trains the corresponding probability parame-
ters. Feature frames are then compressed as I-frames, P-frames,
or B-frames, using Huffman tables. The proposed scheme can
perform lossless compression, but is also robust to lossy com-
pression through VQ pruning or frame puncturing. To illustrate
its effectiveness, we applied the proposed algorithm to the ETSI
DSR source coder. The algorithm provided compression rates
of up to 31.60% with negligible recognition accuracy degrada-
tion, and rates of up to 71.15% with performance degradation
under 1.0%.
Index Terms: distributed speech recognition, speech coding,
VQ

1. Introduction
Speech recognition systems involving separated clients and
servers have become popular due to the reduced computational
load at the client and the ease of model updating at the server.
However, such systems, referred to as distributed speech recog-
nition (DSR) systems, introduce the need for additional com-
munication between the clients and server, either over wireless
channels or over IP networks.

Thus, bandwidth restrictions immediately become an issue
for DSR systems, since multiple clients must simultaneously
communicate with a server over a single channel or over a sin-
gle network. Therefore, efficient compression of transmitted
speech recognition features is an important topic of research.

Many DSR compression algorithms involve vector quanti-
zation techniques to compress speech features prior to trans-
mission. This paper introduces a compression and packeti-
zation scheme, based on the GOP concept from video cod-
ing [1], that further compresses the source coded features.
The algorithm organizes speech feature frames into Groups of
Frames (GOF) structures, comprised of intra-coded I-frames,
predictively-coded P-frames, or bidirectionally predictively-
coded B-frames. The algorithm then applies frame dependent
Huffman coding to compress the individual feature frames. Fur-
thermore, the proposed scheme is compatible with a variety of
VQ-based DSR source coding algorithms.

Existing packetization schemes do not aim to compress sig-
nals, but rather to organize information prior to transmission.

For example, the ETSI standard [2] packetization scheme sim-
ply concatenates 2 adjacent 44-bit source coded frames, and
transmits the resulting signal along with header information.
The proposed algorithm performs further compression using
interframe correlation. The high time correlation present in
speech has previously been studied for speech coding [3] and
DSR coding [4].

The proposed algorithm allows for lossless compression of
the quantized speech features. However, the algorithm is also
robust to various degrees of lossy compression, either through
VQ pruning or frame puncturing. VQ pruning refers to ex-
clusion of low probability VQ codebook labels prior to Huff-
man coding, and thus excludes longer Huffman codewords,
and frame puncturing refers to the non-transmission of certain
frames, which drastically reduces the final bitrate.

2. Vector Quantizer-Based Source Coding
for Distributed Speech Recognition

There exists a variety of source coding techniques that have
been presented and analyzed for DSR applications, many of
which involve traditional speech processing features. For exam-
ple, the ETSI standard [2] uses a subset of the Mel-Frequency
Cepstral Coefficients (MFCCs), as does [5]. In [6], the authors
provide performance analysis for various subsets of the Linear
Prediction Cepstral Coefficients (LPCCs) and the Line Spectral
Pairs (LSPs).

Due to the inherent bandwidth-restrictive nature of DSR
systems, quantization of speech features is a major issue. It
has been shown in [4] and [7] that speech features such as those
previously discussed display high correlation both across time
and across coefficients. Thus VQ techniques offer the ability to
efficiently reduce the bitrate of such speech features.

Though optimal quantization of vectors is generally ob-
tained through quantization of the entire vector, as the dimen-
sion increases, the computational load and required memory of
such an algorithm becomes costly [8], which is especially prob-
lematic on distributed devices. Thus, suboptimal VQ techniques
such as Split VQ (SVQ) or Multi-Stage VQ (MSVQ) algorithms
have been proposed for various speech coding applications [8].

The output of a general VQ-based DSR source coding al-
gorithm can thus be given as:

f = SC (s) , (1)

where SC (·) represents the source coding function. Also
s = [s1, . . . , sNsc ]

T is the original unquantized speech feature
vector, where the si are the subvectors of s chosen for subopti-
mal vector quantization and Nsc is the number of subvectors.



Let a given VQ scheme be referred to as V Qk, and let the
corresponding vector of codebook labels, or states, be repre-
sented by:

ck =
[
ck
1 , ck

2 , . . . , ck
Nk

]T

, (2)

where Nk is the number of codebook labels. Also, let the
vector quantization of a given vector si by the given scheme
V Qk to the new vector corresponding to codebook label ck

j be
represented by:

ŝk
j = V Qk (si) . (3)

Furthermore, define the codebook label function CB (·),
which returns the codebook label of a given quantized vector,
as:

ck
j = CB

(
ŝk
j

)
. (4)

Since there is a one-to-one relationship between quantized
vectors and codebook labels within a given VQ scheme, there
exists an inverse codebook label function such that:

ŝk
j = CB−1

(
ck

j

)
. (5)

Since a VQ scheme represents a discrete group of codebook
labels between which a quantized signal transitions in time,
the VQ scheme can be interpreted as a discrete hidden markov
model (HMM). In this case, the given VQ scheme, say V Qk,
can be completely characterized by its corresponding state prob-
abilities, πk

i , and its corresponding transitional probabilities,
ak

ij , for 1 ≤ i, j ≤ Nk, where Nk represents the number of
codebook labels in V Qk [9]. The state probability vector,

→
πk,

and state transitional matrix, Pk, can be formed as:

→
πk=

[
πk

1 , πk
2 , . . . , πk

Nk

]
, (6)

and

Pk =

 ak
11 . . . ak

1Nk

...
. . .

...
ak

Nk1 . . . ak
NkNk

 . (7)

In order to parameterize V Qk, the probability vector,
→
πk,

and the transitional probability matrix, Pk, must be estimated.
Using training data, this can be done empirically [10]:

πk
i ≈

no. of samples quantized to ck
i

no. of total samples
, (8)

and

ak
ij ≈

no. of samples transitioning from ck
i to ck

j

no. of total samples quantized to ck
i

. (9)

3. Group of Frames (GOF) Packetization
The Group of Frames (GOF) packetization system introduced
in this paper is based on the Group of Pictures (GOP) con-
cept used for video coding [1]. The GOP concept categorizes
video frames as intra-coded frames (I-frames), predictively-
coded frames (P-frames), and bidirectionally predictively-
coded frames (B-frames). Within each GOP, the I-frame is
compressed as a sole image. P-frames are predicted based on
the I-frame and prior P-frames using block motion vectors, and

the error signal is compressed. Finally, B-frames are predicted
based on the I-frame, and both prior and future P-frames, and
the error signal is compressed. Various GOP structures allow
for various compression rates, but also induce certain decoding
delays and computational loads.

3.1. GOF Intra-Coded Frames

Similar to video coding utilizing GOP structure, GOF packe-
tized I-frames are coded as sole frames. Using the notation de-
rived in Section 2, Equation 1 can be expressed as:

f = [CB (V Q1 (s1)) , . . . , CB (V QNsc (sNsc))]
T (10)

=
[
c1

L1 , . . . , cNsc
LNsc

]T

.

The variable bitrate I-frame packetization of speech frame
f can then be performed by Huffman encoding [11] of each el-
ement cm separately, for 1 ≤ m ≤ Nsc. Distinct codeword
tables are created for each cm using the corresponding proba-
bility vectors:

hm
I = [πm

1 , πm
2 , . . . , πm

Nm
] . (11)

The Nsc chosen variable rate codewords created by the
Huffman algorithm are then concatenated to form the bitstream
representing the current intra-coded speech frame. Once the
transmitted bitstream is received at the server, Huffman decod-
ing is performed to extract the VQ codebook labels. The recon-
structed feature vector, s̃, can then be determined as:

s̃ =
[
CB−1 (

c1
L1

)
, CB−1 (

c2
L2

)
, . . . , CB−1

(
cNsc

LNsc

)]T

.

(12)

3.2. GOF Predictively-Coded Frames

GOF packetized P-frames are coded as predictions of the most
recent I-frame or P-frame. Therefore, the packetization of
speech frame fP is dependent on the transitional probabilities
defined in the matrices Pm, for 1 ≤ m ≤ Nsc. The packetiza-
tion is also dependent on the degree of separation between the
current P-frame and the frame on which it is being predicted.

The
(
ith, jth

)
element of Pm, given by [Pm]i,j , represents

the probability of transitioning from state i to state j within the
VQ scheme V Qm in 1 iteration. This relationship can be ex-
tended to the n iteration case: [Pm]ni,j represents the probability
of transitioning from state i to state j in n transitions, where
[Pm]n represents the nth power of the matrix Pm.

Just as in the I-frame case, P-frames are compressed using
separate Huffman codes for each vector quantized speech fea-
ture in the current frame. However, the Huffman probability
vector for V Qm in the P-frame case is given by:

hm
P =

[
[Pm]ni,1 , [Pm]ni,2 , . . . , [Pm]ni,Nm

]
, (13)

given that the previous I-frame or P-frame V Qm state was
state i, and that the current frame is separated from the depen-
dent frame by n iterations. Once again, the Huffman code-
words are concatenated to form the bitstream representing the
compressed P-frame. After Huffman decoding is performed to
extract the transmitted VQ codebook labels, the reconstructed
speech feature vector is determined using Equation 12.



3.3. GOF Bidirectionally Predictively-Coded Frames

GOF packetized B-frames are coded as predictions of both the
most recent I-frame or P-frame and the nearest future P-frame.
The packetization of B-frames is therefore dependent on the
transitional probabilities defined in the matrices Pm, as well as
the degree of separation from the prior and the future dependent
frames.

Just as in the I-frame and P-frame case, Huffman codes are
created to encode each vector quantized feature separately. In
the B-frame case, the Huffman probability vector for V Qm is
given by:

hm
B =

[
[Pm]ni,1 · [Pm]q1,j , . . . , [Pm]ni,Nm

· [Pm]qNm,j

]
, (14)

given that the previous dependent frame was in state i with
a separation of n iterations, and the future dependent frame will
be in state j with a separation of q iterations. Finally, the chosen
codewords are concatenated to create the bitstream for the cur-
rent packetized B-frame. Similarly to the I- and P-frame case,
the codebook labels are extracted through Huffman decoding
of the bitstream, and the speech features are reconstructed via
Equation 12.

3.4. Lossy Compression Through VQ Pruning

The packetization scheme introduced in Sections 3.1 through
3.3 provides lossless compression of source coded features. In
general, for many information sources, lossless compression is
ideal and at times necessary. However, due to the inherent band-
width restrictions placed on DSR systems, lossy compression
may be acceptable if performance degradation is not signifi-
cant. Thus, we introduce an algorithm for lossy compression
based on the GOF packetization structure and VQ pruning.

The lossy GOF algorithm is identical to the lossless scheme
described in Section 3, except that certain codewords are ex-
cluded from each of the VQ schemes for each frame. A min-
imum probability, pmin, is chosen, which controls the amount
of pruning, and therefore determines the amount of compres-
sion and the resulting performance degradation.

It is important to note that pruning can only be done on
VQ tables that are not relied on for further compression. For
example, in a GOF structure involving I-, P-, and B-frames,
pruning can only be done on B-frames.

Pruning entails the exclusion from a VQ table of those en-
tries for which the corresponding Huffman probability does
not exceed the given minimum probability. For a given B-
frame to be packetized, a Huffman codebook is created for each
quantized feature using the probability vector hm

B , as shown in
Equation 14. The resulting quantized codebook label using the
pruned VQ table, given by Ṽ Qm, can then be determined by:

c̃m
i = min

j, s.t. hm
B (cm

j )>pmin

∣∣CB−1 (
cm

j

)
− CB−1 (cm

i )
∣∣2 , (15)

where cm
i represents the original quantized state. Note that:

hm
B (cm

i ) > pmin ⇔ c̃m
i = cm

i . (16)

Huffman encoding of the quantized elements of the current
frame is then performed on elements c̃m

i .

3.5. Lossy Compression Through Frame Puncturing

The results of the lossy compression and packetization algo-
rithm described earlier are highly dependent on the predeter-
mined value of the minimum probability pmin. As pmin is in-
creased, the compression rate increases, but the performance
of the system may degrade. We now introduce the concept of
frame puncturing, which can be interpreted as VQ pruning as
pmin → 1.0.

In a punctured frame, if the minimum probability pmin ap-
proaches 1.0, there will be only one remaining valid codebook
label for each suboptimal VQ scheme. Thus, there will be only
one valid Huffman codeword for every subvector within each
punctured frame. However, since it is known at the transmitter
and the receiver that the most likely Huffman codeword will be
chosen for every subvector, there is no need to transmit the ac-
tual bitstream for the punctured frames. Thus, the bitrate can be
drastically reduced.

Assume that B-frames where punctured, and thus for given
prior and future degrees of separation, the corresponding transi-
tional probability vector is given by hm

B , as shown in Equation
14. Then, the reconstructed speech feature, s̃, vector can be
determined as:

s̃ =
[
CB−1 (

c1
max

)
, . . . , CB−1

(
cNsc

max

)]T

, (17)

where

cm
max = max

i
hm

B (cm
i ) . (18)

3.6. Delay and Complexity Analysis

The majority of computations required for lossless compres-
sion and packetization of the proposed algorithm is a result of
creating frame dependent Huffman tables, which is of order
O (n log n) [11], where n is the number of codebook entries.
During lossy compression through VQ pruning, an additional
search step of order O (n) is required at the transmitter. Dur-
ing frame puncturing, however, the computational load is de-
creased, since the creation of the frame dependent Huffman ta-
bles is replaced by a simple maximization search of order O (n)
at the transmitter.

The GOF structure requires a certain buffer, since recon-
struction of B-frames is dependent on future P-frames. Define
Np as the number of P-frames per packet, and define Nb as the
number of B-frames per P-frame. The required buffer for trans-
mission of the proposed compression and packetization scheme
is given by dGOF =(Nb + 1) frames.

4. Experimental Results
The algorithms developed in this paper were generalized to be
compatible with various VQ-based DSR source coders. How-
ever, for testing purposes, we used a source coding scheme sim-
ilar to the ETSI standard coder [2] [5]. We extracted the first 13
MFCCs along with the log-energy value, to form a 14-element
feature vector. The source coder used an SVQ algorithm that al-
located 8 bits to the log-energy and 0th MFCC coefficient pair,
and 6 bits to each consecutive pair. The speech windowing fre-
quency was set to fw = 100 Hz, resulting in a payload trans-
mission rate of 4.400 kbps as in [2].

For the ETSI front end, Nsc = 7, and each si corresponds
to a MFCC vector pair. Furthermore, Nk is either equal to 256
or 64, depending on the number of bits allocated to the corre-
sponding si. Lossy compression was achieved by VQ pruning



Table 1: Word Recognition Results for Various Compression Types Applied to the ETSI Front End [2] and Tested on the Aurora-2
Database: Results include compression rates (Rc), payload transmission rates, the SNR of the compressed speech features (SNRq),
word recognition accuracy (WAcc), and absolute difference in word recognition accuracy relative to the ETSI Standard (∆WAcc).
Note that the accuracy for unquantized features is 98.47 %

GOF ([Np, Nb]) Compression Type Rc Rate (kbps) SNRq (dB) WAcc ∆WAcc
ETSI Standard [2] None 0.00 % 4.400 ∞ 98.20 % 0.00 %

[3, 3] Lossless 21.83 % 3.440 ∞ 98.20 % 0.00 %
[3, 3] Pruning, pmin = 5 · 10−4 31.60 % 3.006 13.57 98.20 % 0.00 %
[3, 3] Pruning, pmin = 10−2 41.65 % 2.567 7.87 97.46 % −0.74 %
[3, 3] Punctured 71.15 % 1.270 7.69 97.36 % −0.84 %

and B-frame puncturing. Finally, the decoding delay for the
ETSI front end with the [3, 3] GOF structure is determined to
be dGOF = 40 ms. However, for GOF structures which include
B-frame puncturing, the induced decoding delay is dGOF = 0
ms.

The algorithms discussed in Section 3 were tested on the
Aurora-2 database, specifically 1000 training utterances and
500 testing utterances. The Aurora-2 database consists of digit
strings spoken by both males and females. The recognition en-
gine used word-level HMMs with 16 states and 3 mixtures per
state.

Table 1 shows the results obtained for various compres-
sion types. The results shown include compression rate (Rc),
payload transmission rate, the SNR of the compressed speech
features (SNRq) averaged over time and over SVQ channels,
the word recognition accuracy (WAcc), and the relative abso-
lute difference in word recognition accuracy (∆WAcc). As
can be concluded from Table 1, the proposed algorithm can
achieve lossless compression of up to 21.83%. Furthermore,
the proposed algorithms can achieve compression rates of up
to 31.60% with negligible effect on the recognition accuracy,
and can achieve compression rates of up to 71.15% with only
a 0.84% drop in recognition accuracy. Note that numerous
other rate-performance points can be acheived with the pro-
posed GOF scheme by varying the GOF structure, varying the
value of pmin, and using the option of frame puncturing. Fur-
thermore, it is the relative compression rate achieved, Rc, as
opposed to the absolute bitrate achieved, that serves as the most
accurate metric of success for the proposed scheme, since many
DSR source coders operate at various bitrates [4] [6].

5. Conclusions
This paper proposes a novel packetization and variable bitrate
compression algorithm compatible with VQ-based DSR source
coding schemes. The proposed algorithm organizes speech fea-
ture frames as Groups of Frames (GOFs) structures, and com-
presses corresponding frames. Huffman coding is utilized to
perform lossless compression of the VQ-based source coded
speech features. However, the proposed algorithm is robust to
various degrees of lossy compression through VQ pruning or
frame puncturing. When applied to the ETSI DSR source coder,
the GOF packetization and compression algorithm is shown
to provide lossless compression rates of up to 21.83%, and is
shown to provide lossy compression rates of up to 71.15% with
performance degradation of only 0.84% recognition accuracy.
Future work includes studying the proposed scheme in the pres-
ence of background noise and over a noisy channel.
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