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Abstract
This paper presents a novel approach for reconstructing unre-
liable spectral components, which utilizes HMM-based miss-
ing feature algorithms, and applies them to noise robust
speech recognition. The proposed technique uses the forward-
backward algorithm to estimate corrupt spectrographic data
based on nearby reliable features, noisy observations, and on
an underlying statistical model. The estimation process can
be applied based on intra-channel information, intra-feature in-
formation, or a combination of both. The overall system is
shown to provide vast improvements for the Consonant Chal-
lenge Database [1], for both MFCCs and PLP features, when
using an oracle mask. Moreover, through downsampling of
statistical models [2], the required complexity of the system is
greatly reduced with negligible effects on results.
Index Terms: Automatic Speech Recognition, Noise Robust-
ness, Missing Features, Hidden Markov Models.

1. Introduction
Many applications within communications or signal processing
deal with the task of handling unreliable data. During the trans-
mission of digital data over an error-prone channel, packets may
become corrupt due to channel effects. When acoustic or image
signals are recorded, data may be corrupt due to environmental
noise. In each case, system performance can be improved by
reconstructing unreliable data prior to further processing.

In [3]-[4], estimation techniques are applied to recon-
struction of unreliable spectral coefficients of speech sampled
in noisy acoustic conditions for the purpose of noise robust
speech recognition. In [5], HMM-based methods are applied
to estimate corrupt packets for Distributed Speech Recognition
(DSR). Similarly, in [6], HMM-based methods are utilized to
reconstruct parameters for packet-based speech coding.

In this paper we present a novel approach for reconstruct-
ing unreliable spectral components using HMM-based decod-
ing. We develop estimation techniques utilizing intra-channel
data, intra-feature data, or a combination of both. Additionally,
using downsampling of statistical models previously proposed
in [2], we are able to reduce the required complexity by a factor
greater than 800. We apply the proposed techniques to the Con-
sonant Challenge Database [1] to illustrate their effectiveness.
Furthermore, we show the robustness of the presented spectral
estimation framework to pre- and post-processing by applying
it in series with proven noise robust algorithms.

Section 2 discusses the role of HMMs in the estimation pro-
cess and describes efficient downsampling of statistical models.
In Section 3, the proposed estimation techniques are applied
to noise robust speech recognition. Experimental results are

shown in Section 4. In Section 5, concluding remarks are given.

2. Estimation of Missing Features
2.1. The Role of HMMs in the Estimation Process

In speech communication or recognition systems, features are
extracted from input time waveforms for further analysis. Let
f (n) = [x1 (n) , x2 (n) , . . . , xM (n)]T represent the feature
vector processed at time n. Within many applications, such fea-
tures may become corrupt and thus unreliable, and estimation
can be used to reconstruct the comprising components. This
study explores the use of HMMs to model signals during the
estimation process.

Due to the discrete nature of HMM states, features must
be quantized, at least implicitly, prior to the estimation process.
Let the quantizer of xm be represented by Qm, and let the set
of corresponding centroids be referred to as

{
c1

m, c2
m, . . . , cN

m

}
,

where N is the number of centroids in Qm. In order to apply
estimation methods, separate HMMs are constructed for each
of the quantizers Qm, for 1 ≤ m ≤ M , to model the feature
trajectories.

Let the HMM applied to the output signal from Qm be
referred to as Λm=(Am, Bm, ~πm), where Am provides tran-
sitional statistics, Bm provides observation statistics, and ~πm

provides steady-state statistics [7]. The steady-state probabili-
ties of Λm can be determined empirically from training data:

~πm (i) =
no. of samples quantized to centroid ci

m

total no. of samples
. (1)

The transitional probabilities of Λm can similarly be deter-
mined from training data as:

Am (i, j) =
no. of samples transitioning from ci

m to cj
m

no. of samples quantized to ci
m

. (2)

Formulation of the components of Bm is dependent on the
specific application of the system. In general, observation statis-
tics are defined as:

bj,m (om (n)) = P
(
Qm{xm (n) + ηm (n)} = cj |om (n)

)
,

(3)
where ηm (n) is the hidden noise process. The derivation of

observation statistics for estimation of unreliable spectral com-
ponents will be further discussed in Section 3.

Given an HMM-based framework, various decoding tech-
niques exist. One such technique is the forward-backward (FB)



algorithm, which determines the optimal feature vector estimate
f (n) given the first and last reliable features at temporal in-
dices n − k1 and n + k2, and given the series of observations
om (n− k1 + 1) , . . . , om (n + k2). The estimate of compo-
nent xm (n), using the FB algorithm, is determined as [7]:

x̂m (n) =

N∑
i=1

ci
mγi

m (n) , (4)

where:

γi
m (n) =

αi
m (n) βi

m (n)∑N
j=1 αj

m (n) βj
m (n)

. (5)

The set of values γi
m represents the distribution of xm (n),

conditioned on reliable features, as well as on noisy observa-
tions:

γi
m (n) = P (xm (n) =ci|xm (n− k1) , xm (n + k2) , (6)

om (n− k1 + 1) , . . . , om (n + k2)).

The values αi
m (n) and βi

m (n), known as the forward
and backward variables, respectively, can be determined recur-
sively:

αi
m (n) =

[
N∑

j=1

Am (j, i) αj
m (n− 1)

]
bj,m (om (n)) , (7)

βi
m (n) =

N∑
j=1

Am (i, j) βj
m (n + 1) bj,m (om (n + 1)) . (8)

The HMM-based estimation techniques discussed thus far
have previously been applied to channel mitigation for re-
mote speech recognition [5] and speech communication [6].
The computational load induced by such approaches (see Sec-
tion 3.3), may prove them to be too complex for resource-
constrained or delay-sensitive applications.

2.2. Downsampling of Statistical Models

In [2], we propose a framework for efficient HMM-based miss-
ing feature estimation based on downsampling of underlying
statistical models. In this paper, we use quantizers with less
resolution to configure statistical models. We implement a tree-
structure mapping of centroids to allow downsampling of the
discrete HMMs by factors of 2, with N=2R.

Let QR
m represent a R-bit quantizer for component m, with

centroids
{

cR,1
m , cR,2

m , . . . , cR,2R

m

}
. Using tree-structure quan-

tization, centroids can be mapped according to:

c8,i
m ⇒ cR,j

m , for 1 ≤ R < 8, where j =

⌊
i

28−R

⌋
. (9)

In this manner, centroids can easily be regrouped as clus-
ters without requiring expensive retraining of the quantization
codebook.

The signal model, now referred to as ΛR
m, has statistical

parameters
(
AR

m, BR
m, ~πR

m

)
. The steady-state and transitional

statistics can be approximated according to:

~πR
m (i) =

2τ−1∑

k=0

~πR+τ
m (2τ i− k) , (10)

and:

AR
m (i, j) =

1

2τ

[
2τ−1∑

k=0

2τ−1∑

l=0

AR+τ
m (2τ i− k, 2τ j − l)

]
,

(11)

where τ is chosen as τ=8-R.
The observation statistics of ΛR

m, denoted as bR
i,m (om), are

application-specific, and thus an explicit general formula can
not be derived.

3. 1D and 2D HMM-Based Spectral
Reconstruction

In this paper, we develop a novel framework for HMM-based
estimation for reconstruction of unreliable spectral components
of speech degraded by noise, in order to provide improvements
for noise robust speech recognition. An interesting aspect of re-
constructing unreliable spectral components is the possibility of
utilizing statistics across two dimensions during the estimation
process. In many similar applications, such as speech commu-
nication and remote speech recognition, unreliable data results
from corrupt or dropped packets [5], [6], and thus correlation
along the frequency axis is not available. In the current study,
we apply HMM-based estimation utilizing intra-channel and/or
intra-feature data to reconstruct corrupt spectral coefficients.

It is important to note that reconstruction is carried out in
the spectral or Mel-filtered spectral domain, since this allows for
further transformation into the cepstral domain without propa-
gation of unreliable information. Additionally, it has previously
been shown that recognition of cepstral features outperforms
that of spectral features [8].

Traditionally, missing feature analysis for robust speech
recognition has required two separate tasks, namely mask es-
timation and feature estimation. Mask estimation determines
the reliability of each spectral component of an utterance based
on the characteristics of current speech and noise signals, and
supplies the recognizer with either hard decisions or soft relia-
bility metrics [3],[4]. Feature estimation then reconstructs those
components deemed unreliable, based on neighboring reliable
features, and based on an underlying signal model. This paper
will focus on the latter component, and will thus assume the
availability of an ”oracle mask” [4].

3.1. Utilizing Correlation Across Feature Vectors

Following the notation from Sections 2.1 and 2.2 , let f (n) =
[x1 (n) , x2 (n) , . . . , xM ]T represent the feature extracted from
an utterance at time n, so that xi (n) represents the component
corresponding to the ith channel. A spectrographic representa-
tion can then expressed as:

S (n, i) = [f (1) , f (2) , · · · , f (T )] (12)

=




x1 (1) x1 (2) · · · x1 (T )
...

...
. . .

...
xM (1) xM (2) · · · xM (T )


 .

The effect of noise on spectrographic data of speech varies
vastly with respect to the spectral characteristics of the noise. A
simple yet often unrealistic method to modeling additive noise



is to assume a flat spectral distribution [7]. In deriving observa-
tion statistics for the current application, we use a similar sim-
plified approach since it leads to Gaussian random variables.
However, we apply it on a component-by-component basis, thus
not requiring the strict constraint of spectral flatness across all
channels. Assume the additive noise corrupting channel m can
be locally or globally modeled by a Gaussian random process
with mean µm and variance σ2

m. If the observed data feature is
om (n), the corresponding observation probability distribution
is given by:

bR
i,m (om (n)) =P

(
cR,i

m |om (n)
)

(13)

=

∫ z2

z1

1√
2πσ2

m

e
− (ηm+µm−om(n))2

2σ2
m dηm,

where z1 and z2 represent the upper and lower boundaries
of centroid cR,i. Also, ηm is the hidden noise process. Note
that previous techniques in [4] do not exploit information within
noisy observation data, as does the proposed framework.

Once observation statistics have been determined, the ap-
proximated HMM-based techniques derived in Section 2.2 can
be applied along the time axis to reconstruct unreliable compo-
nents of S according to Equations 4-7 [5], [6]. In this applica-
tion, the probabilities γi

m (n) refer to the distribution of spectral
component xm (n) conditioned on past and future reliable com-
ponents within channel i, as well as on noisy spectrographic
data within channel i. This technique is referred to as FBT.

3.2. Utilizing Correlation Across Frequency Channels

We wish to exploit the strong inter-channel correlation present
within speech during spectral reconstruction. It is interesting to
note that [9] also noticed cross-correlation among frequencies,
which was exploited for formant tracking. When performing
estimation along the frequency axis, the stationarity assumed
by the steady-state and transitional statistics of ~πR

m and AR
m,

respectively, do not hold. It is therefore necessary to introduce
the probabilities:

P i:j
m:n = P

(
Qm{xm + ηm} = ci

m|Qn{xn + ηn} = cj
n

)
,

(14)
which define the intra-feature transitional statistics of spec-

trographic data across channels. Note that in Equation 14,
|m − n|=1 must hold in order for P i:j

m:n to be valid. Modi-
fied forward and backward variables can be expressed for the
estimation of missing data along the frequency axis:

δR,i
m (n) =

[
N∑

j=1

P i:j
m:m−1δ

R,j
m (n− 1)

]
bR
i,m (om (n)) , (15)

εR,i
m (n) =

N∑
j=1

P j:i
m:m+1ε

R,j
m (n + 1) bR

j,m (om (n + 1)) .

(16)

In this application, referred to as FBF, γR,i
m (n) represents

the distribution of xm (n) conditioned on reliable components
and noisy observations from feature vector f (n), which is anal-
ogous to Equation 6. The corresponding expression is given by:

γR,i
m (n) =

δR,i
m (n) εR,i

m (n)∑N
j=1 δR,j

m (n) εR,j
m (n)

. (17)

Table 1: Operations Required by Proposed Spectrogram Recon-
struction Techniques, as a Function of Model Resolution: FBT

refers to intra-channel HMM-based estimation, FBF refers to
intra-feature estimation, and FB2D refers to the combination
of both.

Operation multiplications additions
FBT 3.387× 107 3.353× 107

R=8 FBF 4.432× 107 4.392× 107

FB2D 7.818× 107 7.745× 107

FBT 40, 224 29, 960
R=3 FBF 51, 888 38, 920

FB2D 92, 112 68, 880

Additionally, we propose the estimation of unreliable spec-
tral components utilizing statistics along both the time and fre-
quency axes, referred to as FB2D. In this scenario, γR,i

m (n)
is the distribution of xm (n) conditioned on data contained in
both channel i and feature vector f (n):

γR,i
m (n) =

αR,i
m (n) βR,i

m (n) δR,i
m (n) εR,i

m (n)∑N
j=1 αR,j

m (n) βR,j
m (n) δR,j

m (n) εR,j
m (n)

. (18)

For the conditional distributions given by Equations 17
and 18, the corresponding estimates x̂m (n) are determined via
Equation 4.

3.3. Complexity Analysis

The methods developed of Section 2.2 can greatly reduce the
required complexity of the proposed estimation system. Note
that the order of complexity for the forward-backward decod-
ing algorithm is O

(
2N

)
, where N=2R is the number of states

comprising each underlying statistical model. The proposed es-
timation techniques were applied to a sample utterance, and the
number of required operations are provided in Table 1. The
sample utterance was 1.2 seconds in duration, and was degraded
by 8-talker babble noise at −2 dB.

As can be concluded from Table 1, the computational load
induced by the proposed techniques is vastly reduced as the res-
olution R is decreased. When the resolution is set to R=3, the
order of complexity is reduced by a factor of >800, relative to
the standard of R=8.

4. Experimental Results
The algorithms developed in Section 3 were applied to the Con-
sonant Challenge Database [1] to illustrate their effectiveness.
The database consists of vowel-consonant-vowel (VCV) utter-
ances degraded by 6 noise types. Word-accuracy results ob-
tained using HMM-based spectral reconstruction are provided
in Table 2. MFCC refers to the baseline system with no spectral
reconstruction. If the resolution is not specified in parentheses,
then R=3. As can be concluded from rows 2 and 3, downsam-
pling results in negligible effects on system performance.

The proposed spectral estimation framework is robust to
the feature type. To illustrate this, we apply it in series with
known noise robust feature extraction algorithms. In Table 2,
PLPCC refers to perceptual linear predictive cepstral coeffi-
cients [11], which is a feature extraction technique applied to



Table 2: Word-Accuracy Results for HMM-Based Estimation Techniques, Obtained on the Consonant Challenge Database [1]. Bold-
faced entries refer to the best results obtained for each test and for each noise condition. In each case, training was performed on clean
data, representing a mismatched condition.

competing 8-talker speech- factory mod. spch- 3-talker
Estimation clean talker babble shaped noise shaped babble Average Relative
Algorithm (baseline) (-6 dB) (-2 dB) (-6 dB) (0 dB) (-6 dB) (-3 dB) (2-7) Increase
MFCC 87.24 8.59 6.25 7.03 4.95 11.98 7.29 7.68 N/A

FBT (R=3) 87.24 22.14 17.19 16.41 12.76 21.35 14.58 17.41 126.63
FBT (R=8) 87.24 20.05 16.41 17.97 13.54 18.49 14.06 16.75 118.14

FBF 87.24 20.83 20.83 21.88 14.89 19.27 19.01 19.44 153.13
FB2D 87.24 20.83 19.27 19.53 16.41 21.88 16.67 19.09 148.57

PLPCC 83.85 9.11 10.68 9.38 5.21 16.67 10.68 10.29 33.98
FBT 83.85 27.34 40.10 7.03 17.19 31.25 37.76 26.78 248.68
FBF 83.85 22.40 34.90 7.55 31.77 26.30 24.22 24.52 219.21
FB2D 83.85 24.22 38.02 5.47 16.67 27.08 29.69 23.53 206.32

PLPCC + PK-ISO 80.99 11.46 9.11 7.81 7.81 14.84 8.07 9.85 28.26
FBT 80.99 33.33 39.32 9.11 17.19 33.59 36.72 28.21 267.32
FBF 80.99 24.48 44.53 8.59 47.92 29.69 31.77 31.16 305.73
FB2D 80.99 29.17 40.89 6.51 21.09 32.29 33.33 27.21 254.30

the input speech signal prior to reconstruction. The proposed
framework is robust to post-processing techniques as well. PK-
ISO refers to peak isolation [10], which is performed in the cep-
stral domain after spectral estimation.

Each proposed spectral reconstruction technique provides
significant improvements in word-accuracy, for the variety of
baseline systems tested. Reconstruction of MFCC coefficients
produces better results when estimation exploits intra-feature
data relative to intra-channel data. However, reconstruction of
PLPCC coefficients produces better results when estimation is
applied along the time axis. This could be due to the well known
temporally smooth characteristics of LPC-type features, which
are often utilized for speech coding. Analysis of transitional
probabilities A8

m (i, j) resulted in an average conditional tran-
sition entropy rate of 4.32 bits for PLPCC features, and an av-
erage conditional transition entropy rate of 5.77 bits for MFCC
features. This result supports the above claim.

5. Conclusions
In this paper we present a framework for HMM-based es-
timation of unreliable spectral components for noise robust
speech recognition. The proposed techniques are able to uti-
lize intra-feature and/or intra-channel correlation. Additionally,
when model downsampling is applied, the computational load
is greatly reduced. The proposed methods are shown to provide
significant improvements for MFCCs and PLPCCs, when ap-
plied to the Consonant Challenge Database [1], with and with-
out post-processing. Future work will consider other databases
to find out the generalization of results.
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