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Abstract— This paper presents a technique for determining
improved speech presence probabilities (SPPs), by exploiting the
temporal correlation present in spectral speech data. Based on
a set of traditional SPPs, we estimate the underlying speech
presence probability via statistical inference. Traditional SPPs are
assumed to be observations of channel-specific two-state Markov
models. Corresponding steady-state and transitional statistics are
set to capture the well-known temporal correlation of spectral
speech data, and observation statistics are modeled based on
the effect of additive acoustic noise on resulting SPPs. Once
underlying models have been parameterized, improved speech
presence probabilities can be estimated via traditional inference
techniques, such as the forward or forward-backward algorithms.
The 2-state configuration of underlying signal models enables
low complexity HMM-based processing, only slightly increasing
complexity relative to standard SPPs, and thereby making the
proposed framework attractive for resource-constrained scenar-
ios. Proposed SPP masks are shown to provide a significant
increase in accuracy relative to the state-of-the-art method of [12],
in terms of the mean pointwise Kullback-Leibler (KL) distance.
When applied to soft-decision speech enhancement, proposed
SPPs show improved results in terms of segmental SNRs. Closer
analysis reveals significantly decreased noise leakage, whereas
speech distortion is increased. When applied to automatic speech
recognition (ASR), the use of soft-decision enhancement with pro-
posed SPPs provides increased recognition performance, relative
to [12].

Index Terms— Speech Presence Probability, Noise Suppression,
Soft-Decision Speech Enhancement, Automatic Speech Recogni-
tion, Hidden Markov Models.

I. INTRODUCTION

Speech communication in adverse acoustic environments is
an inherently difficult problem due in part to the corruptive
effect of background noise. Whether for human-to-human
interaction, or for human to machine platforms, single channel
noise suppression of speech signals offers a computationally
efficient option for improving the effectiveness of commu-
nication in such environments. The issue of complexity is
especially important when designing mobile devices, which
tend to be resource-constrained. This paper addresses the
problem of single-channel noise suppression and proposes a
low complexity algorithm which is shown to be effective for
speech enhancement and ASR.

Spectral masks serve as pivotal tools in noise robust speech
processing systems, since they provide valuable information
regarding speech presence uncertainty throughout spectro-
temporal locations. Speech presence probability (SPP) val-
ues have been widely used to derive minimum mean-square

(MMSE) soft-decision spectral speech enhancement algo-
rithms ([1]-[3]), which can be utilized to improve perceptual
quality or noise robust automatic speech recognition (ASR)
rates. Additionally, statistical model-based voice activity de-
tection (VAD) algorithms typically utilize a theory related to
SPPs when determining active speech regions ([6],[17],[18]).

The calculation of traditional speech presence probabilities
builds upon statistical modeling of speech and noise spectral
components [19]. The framework for determining SPPs is
robust to the exact models used for speech and noise, and
various studies have explored the use of Gaussian distributions
([11-[3]), Laplacian distributions ([16],[20]), and others. A
drawback of traditional SPP masks is that they base probabil-
ities strictly on time-specific observations, and fail to exploit
the well-known temporal correlation of time-frequency speech
data.

Improvements to traditional SPPs for the task of speech
enhancement have been presented in [12] and [22]. In [12], the
authors explicitly determine separate speech presence proba-
bilities on local, global, and frame levels, and combine them in
a soft-decision manner. Similarly, in [22], the authors integrate
local and global information, after smoothing observed spectra
along the temporal and frequency axes.

In this paper, we propose a framework for determining
improved SPPs using statistical inference. We provide mo-
tivation for the assumption of standard SPPs as observa-
tions of channel-specific 2-state Markov models, wherein the
states represent active and inactive spectral speech regions,
respectively. Corresponding steady-state transitional statistics
are set to capture the well-known temporal correlation of
spectral speech data, and observation statistics can be modeled
based on the effect of additive acoustic noise on resulting
SPP values. Once underlying models have been parameter-
ized, improved speech presence probabilities can be estimated
via traditional HMM-based decoding techniques, such as the
forward and forward-backward algorithms [4]. The proposed
method is shown to significantly decrease the mean pointwise
KL distance between masks obtained from noisy speech, and
those obtained from corresponding “oracle” signals, relative
to methods in [2] and [12].

A well-known downside to HMM-based inference is the
induced computational load. This is especially problematic
for speech processing applications which may be resource-
constrained and/or delay-sensitive. However, the proposed
method for determining improved SPPs induces a small com-
putational load relative to standard SPPs, due to the underlying



model. That is, since the underlying channel-specific signal
models are comprised of only 2 states, HMM-based decoding
is quite efficient.

Traditional statistical noise suppression rules for speech
operate under the assumption of speech presence through-
out spectro-temporal locations. However, this assumption is
not valid both for time periods of inactive speech, and for
frequency channels corresponding to harmonic valleys or
vocal tract zeros. Instead, utilizing speech presence probability
during noise suppression takes into account speech presence
uncertainty, and leads to minimum mean-square error (MMSE)
soft-decision speech enhancement ([1]-[3],[12],[14],[20]). The
proposed decoding technique is applied to soft-decision speech
enhancement to illustrate its effectiveness. HMM-based decod-
ing is shown to improve soft-decision speech enhancement
relative to the state-of-the-art method in [12], in terms of
segmental SNR (SSNR). Closer analysis reveals reduced noise
leakage while maintaining low speech distortion. Additionally,
proposed masks provide increased performance for automatic
speech recognition (ASR). Complexity analysis reveals that
proposed framework in this paper to be less complex than
those in [12].

This paper is organized as follows: the standard frame-
work for determining speech presence probabilities, which
utilizes channel-specific generalized likelihood ratios (GLRs),
is reviewed in Section II. Improved SPPs using HMM-based
inference are presented in Section III. Section IV provides
experimental results for SPP mask accuracy as well as soft-
decision speech enhancement and ASR. Conclusions are pre-
sented in Section V.

II. SPEECH PRESENCE PROBABILITIES

In this section, we review the standard framework for deter-
mining speech presence probabilities, which utilizes channel-
specific generalized likelihood ratios (GLRs). Throughout this
study, we assume an additive noisy speech model. Using a
stochastic approach, this can be expressed in the spectral
domain as:

E [Jom (n) 1] = E [|sm (n) 7] + E [ldm () P], (D)

where x,, (n) is the observed spectral data, d,, (n) is the
corruptive noise, S, (n) is the underlying clean speech, m
denotes frequency channel index, and n denotes time index.
During SPP mask estimation, we have access to the observed
spectral data as well as an estimate of the local noise variance,
Ad,m (n). We define the a priori and a posteriori SNRs, &, (n)
and ~,, (n) respectively, as in [1]:
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Furthermore, the decision-directed (DD) approach is used to
approximate &, (n) [2].

In deriving SPP masks, we assume that spectral masks are
observations of channel-specific 2-state information sources.

That is, for a given time index, the spectral coefficient cor-
responding to frequency channel m is either produced during
an inactive speech region, denoted by H?, or by an active
speech region, denoted by H! :
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for 1 <m < N,,,

where N,, is the number of channels used during spectral
analysis. Note that in the current model, information sources
are channel-specific, and thus separate channels can simultane-
ously occupy different states, i.e. HY (n) and H} (n) fori # j.
The occurrence of individual inactive speech channels during
temporal regions of active speech is due to such effects of
speech production as harmonic valleys, and zeros of the vocal
tract transfer function.

In determining speech presence probabilities, we are inter-
ested in calculating the posterior probability of active speech
given a current observed speech spectral coefficient:

P (H}n\xm (n)) . (5)

Using a Bayesian approach, this value can be expressed as:
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where:
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The term A,, (n) is often referred to as the general-
ized likelihood ratio (GLR). The conditional probabilities
p (zm (n) |H.,) can be derived from statistical distributions
of speech and noise spectral coefficients. In [1], the authors
derive GLRs for the case of complex Gaussian noise spectral
coefficients, and deterministic speech signals. In [2], the
authors utilize complex Gaussian models for both speech and
noise components, while in [20] results for the Laplacian case
are presented.

The decoding method in this paper is robust with any
statistical model. However, in this study we provide results
for the method proposed in [2], arising from Gaussian models,
due to its computational efficiency.

If independent complex Gaussian distributions are assumed
for both noise and speech components, the GLR can be
expressed as [2]:

P(Hy,) 1
P(HY) 1+&m(n)

Em (1)

exp Ym (1) ).
(1 +&m (n) ( )>
®)
Substitution of Eq. 8 into Eqs. 6-7 reveals the probability
of active speech for each time-frequency location.

Ap (n) =



III. IMPROVED SPEECH PRESENCE PROBABILITIES

Traditional SPPs (as described in Section II) are based
solely on the current frame, and do not exploit the well-
known temporal correlation present in spectral speech data.
In this section, we present a novel algorithm for determining
improved SPPs. The algorithm can operate in two modes: uti-
lizing past and present observations, or utilizing past, present,
and future observations, to fully take advantage of inter-frame
correlation.

A. Interpreting SPPs as Observations of Channel-Specific 2-
State Models

SPP masks derived from speech in favorable acoustic en-
vironments reveal reliable speech components which tend to
occur in salient segments, which is due in part to the well-
known temporal correlation of time-frequency speech data.
Additionally, in favorable acoustic environments, SPPs tend
towards binary masks, i.e. SPPs assume either P (Hﬁn) or
1. This can be shown by examining Equations 6 and 7
for extreme values of the a priori SNR. When the speech
component is zero, and the additive noise is very small,
&m (n)=0. Furthermore:

P (H,,)

P (HY,)
=P (H,ln|a:m (n)) |5m(n):0 =P (Hrln) .

Am (n) ‘ém(n):o = (9)

Conversely, when the magnitude of the spectral speech
component is much larger than that of the additive noise, then
&m (n) — oo. In this case:

Am (n)|§m(n)ﬁoo =0 (10)

=P (H;l\acm (n ) ‘Em(n)—wo =1.

Thus, in the presence of very low background noise, SPP
masks can be assumed binary. Furthermore, it is this binary
mask that we interpret to contain “true” speech presence
probabilities. However, the low noise case represents oracle
information, and is not accessible in realistic speech process-
ing systems; instead speech signals tend to be corrupted by
higher levels of background noise. Therefore, in determining
improved SPPs, we wish to estimate the underlying state, i.e.
P (H 1) or 1, of each spectro-temporal location given ’noisy”
standard SPP observations. Note that in order to simplify
notation, we will refer to posterior probabilities obtained from
traditional SPP methods as 7, (n):

Tm (n) = P (H}, |z (n)) . (11)

By interpreting standard SPP masks as observations of
channel-specific 2-state models, true binary masks can be esti-
mated via traditional inference techniques. One such family of
methods involves HMM-based decoding of noisy information

[4].

B. HMM-Based Mask Decoding

Hidden Markov Models (HMMs) are characterized by
steady-state, transitional, and observation statistics. In order to
apply HMM-based inference techniques, these statistical pa-
rameters must be determined for each hidden two-state model,
H! . Transitional statistics are set to capture the temporal
correlation present in spectral speech data. In this study, a’/
will denote the probability of transition between H! and H7,,
for i,5 € {0,1}, 1 < m < N,,. The steady-state probability
of state H!, can be obtained from transitional statistics as:

L 3
Zj:O,j;éi ap,
1 1 h*
22g=0 2h=0,h£g U

Characterizing observation statistics for speech activity
models HY, involves studying the effect of acoustic noise on
corresponding speech presence probabilities. The distribution
of observed reliability measures conditioned on underlying
speech activity states is defined as:

P (H,,) =

(12)

bl (T (n)) = p (Tm (n) |Hin) , for 0 < 7, (0) < 1. (13)

The relationship between additive acoustic noise in the spectral
domain and the resulting inaccuracy of SPPs is difficult to
express in closed form. Instead, we must rely on statistical
tools to model the distribution of noisy SPPs about their
underlying binary values, as a function of estimated additive
acoustic noise.

It follows intuitively that the distribution of SPPs should
reveal a global peak at the true binary value, and should dis-
play a monotonically decreasing probability density function
(pdf) directly related to the distance from the underlying value.
Considering these constraints, and due to their mathematical
efficiency, we propose to model state-conditional observation
distributions as raised cosine distributions:

by, (Tm (n)) = (14)

1 ; 7 (T (n) = P (H},))
(=r) (”‘%“’S( =P} ))

bin (Tm (n)) =

(r=rm) (oo (7))
for p (H,,) < T (n) < 1.

As can be observed from the expressions in Equation 14,
the parameter ¢!, € [0, 1] controls the effect of the sinusoidal
component on the overall observation statistics. It follows
intuitively that ¢! should be set to capture the estimated
accuracy of observed channel-specific SPPs. That is, for clean
spectro-temporal components, SPPs are determined with a
high degree of accuracy, and thus observed close to their
corresponding underlying binary states, i.e. P (H}n) or 1. In
this case, ¢!, should be set close to 1. Conversely, for noisy
spectro-temporal components, a higher degree of confusability
is introduced into the estimation of SPPs, and observed SPPs
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Fig. 1. Example probability distribution functions b2, (7m (n)) and
by, (Tim (n)) for various values of &m (n). For this example, P (H.},)=0.2,
and ~'=1.0.

may vary from their underlying binary states. In this case, ¢¢,
should be set close to 0.

Considering the relationship between additive noise and the
statistical parameter ¢ , we propose the parameter to be a
function of the a priori SNR, &,,, of the given spectro-temporal
component. Specifically, we propose ¢!, to be determined in

time as:

&m () )2. (15)

Here, s’ is an empirically tuned parameter. Figure 1 pro-
vides example probability distribution functions b7, (7., (n))
and bl (7,, (n)) for various values of &,, (n). For this exam-
ple, p (H},)=0.2. As can be interpreted, when the a priori
SNR is high (e.g. &,,=20 dB), the corresponding distribution
decays rapidly. However, when the a priori SNR is low (e.g.
£=—10 dB), the corresponding distribution decreases slowly,
similar to a uniform pdf.

In this paper, we propose improved speech presence
probabilities, 7, (n), based on the set of traditional SPPs,
{Tm (1),...,7m (n)}, by exploiting the temporal correlation
present in spectral speech data. Once underlying channel-
specific models are parameterized, HMM-based decoding can
be utilized to determine the minimum mean-square error
(MMSE) estimate of the true binary SPP mask. The decoded
SPP corresponding to the observed probability 7,, (n) is
determined via the forward algorithm as [4]:

T (n) = P (H}, (n) |1 (1),...
o)
ad, (n) +af, (n)

T (n)) (16)

where o, (n) is the forward variable for channel m, corre-
sponding to state ¢, at time index n. Forward variables convey
the probability of the current observation occupying state ¢,
given past observations:

ol (n) =P (H), (n)|zm (1),....zm (n). (A7)

The forward variables o, (n) and can be determined recur-
sively as:

|30 a¥ad, (n = 1) b, (7 ()
ifn>1 (8

1, else

Thus, Equation 16 provides improved speech presence prob-
abilities, given current and past standard SPPs.

C. Incorporating Future Observations

For applications in which slight delays are acceptable,
improved SPPs can be determined by incorporating future
observations via the forward-backward algorithm [4]. In this
case, similar to Eq. 16, the decoded speech presence proba-
bility is:

Tm (n) =P (H}n (n) |t (1) .oy T (R + NLA))
_ ol (n) L, (1. 0)
ad, (n) B, (n,0) + af, (n) 5% (n,0)

where Ny 4 is the total number of look-ahead frames utilized.
Here, 3¢, (n, k), the backward variable, differs from traditional
notation in that it is a function of two parameters. This is
due to the generally time-sensitive nature of tasks such as
speech enhancement, which forces the recursive calculation
of backward variables to be re-initialized for each time index
n. The backward variable 3! (n,k) conveys the probability
of channel m occupying state ¢ at time index n + k, during
recursive calculations ultimately required for time index n:

19)

B (1, k) (20)
=P (H), (n+k)|zm(n+k),....zm(n+Npa)).

The backward variable (3

i (n,k) and can be determined
recursively as:

B (n, k) = 21)
S0 @B, (n,k + 1) b, (1 (0 + k4 1)),
if k< Npa
1, else

In this way, future observations can be exploited to improve
the estimation of standard SPPs.

D. Complexity Analysis

A well known downside to HMM-based processing is the
induced computational load. This is especially problematic
for speech applications, which can be delay-sensitive and/or
resource constrained. However, due to the small size of the
underlying model used during estimation of improved SPPs,
the induced complexity is relatively small.



Table I provides operations required by the proposed al-
gorithms for determining SPPs. The traditional method from
[2], and the improved method from [12] are included for
reference. It can be observed from Table I that the additional
number of operations required, as compared to [2], is relatively
low, making it an attractive option for resource-constrained
applications. Furthermore, methods proposed in this paper
induce a significantly smaller computational load than that of
[12]. In Table I, number of operations is given per frame and
per frequency channel. Note that the induced load of the fast
Fourier transform (FFT) is not included, but is known to be
of order O (N, log (Ny,)).

1V. EXPERIMENTAL RESULTS
A. The Database for Speech with Additive Noise

As previously discussed, robust algorithms in this study are
designed for the additive noise case. During the experimental
procedure, 20 randomly selected sentences from the TIMIT
database were used. Along with stationary white noise, 2 non-
stationary noise types were studied, namely restaurant and
babble. Speech and noise signals were mixed according to
the FANT algorithm [9] at SNRs between 20 and 0 dB.

B. Accuracy of Improved SPPs

Figure 2 presents illustrative examples of SPP masks de-
termined by various methods. Panel (a) provides the clean
speech signal ”She had your dark suit in greasy wash water
all year” by a female speaker. Panel (b) shows the SPP mask
determined according to [12] from a corresponding signal
corrupted by airport noise at 15 dB SNR. Panels (¢) and (d)
provide proposed SPP masks according to Eq. 16 and Eq.
19 (N 4=2), respectively. As can be observed in panel (b),
the algorithm proposed in [12] results in a high false alarm
rate. The proposed mask in panel (c) significantly reduces the
false alarm rate, and manages to detect individual harmonics.
Incorporating future observations in (d) results in a smoothed
mask, wherein detected speech regions are presented in more
salient segments.

To grade the accuracy of SPPs', we utilize pointwise
Kullback-Leibler (KL) distances [S] between masks obtained
from noisy speech and those obtained from corresponding
“oracle” clean speech. The KL distance is suitable since it is
commonly used to compare statistical distributions, and time-
and frequency-specific SPPs are observations of individual
pdfs. The mean pointwise KL distance between masks is given
by:

D( orc”A) _ 1 i sz orc (n) lo Tv%rc (n)
i e NtNm n=1m=—1 Tm 8 7A-m (TL) ’
(22)

where 7°7¢ refers to the oracle mask, and N; denotes the
length of the given sound file in frames. Note that oracle masks

Application of algorithms described in III requires certain numerical
parameters, which are included in Table II

TABLE III
MEAN POINTWISE KULLBACK-LEIBLER (KL) DISTANCE FOR SPP
MASKS FROM ORACLE MASKS, IN BITS

SNR (dB)
SPP Method 20 | 15 | 10 | 5 | O
Non-stationary Restaurant Noise
from [12] 0.13 | 0.20 | 0.34 | 0.57 | 0.86
Eq. 16 0.10 | 0.17 | 0.28 | 0.42 | 0.54
Eq. 19 (Npa=2) || 0.09 | 0.17 | 0.29 | 0.44 | 0.60
Non-stationary Babble Noise
from [12] 0.13 | 0.23 | 0.41 | 0.67 | 0.95
Eq. 16 0.12 | 0.21 | 0.32 | 0.45 | 0.58
Eq. 19 (Npa=2) || 0.11 | 0.21 | 0.34 | 0.50 | 0.65
Stationary White Noise
from [12] 0.52 | 1.02 | 1.63 | 2.27 | 2.83
Eq. 16 0.33 | 0.50 | 0.66 | 0.79 | 0.89
Eq. 19 (N 4=2) || 0.34 | 0.56 | 0.78 | 0.96 | 1.10
Average
from [12] 0.26 | 0.48 | 0.79 | 1.17 | 1.54
Eq. 16 0.18 | 0.29 | 0.42 | 0.55 | 0.67
Eq. 19 (Npa=2) || 0.18 | 0.31 | 0.47 | 0.64 | 0.79

are determined by adding artificial white noise to clean speech
at = 40 dB, and following steps outlined in Section II.

Table III provides mean pointwise KL distances for SPP
masks obtained for non-stationary colored noise, from corre-
sponding oracle masks. As reference, results for SPPs from
[12] are included. Note that similar to the proposed method
in this paper, the work in [12] exploits past observations.
However, while [12] combines current and past observations
in a somewhat heuristic manner, the proposed method utilizes
a statistical framework to find the MMSE estimate given the
HMM framework. As can be concluded from Table III, the
proposed speech presence probabilities provide a significant
increase in mask accuracy in terms of the pointwise KL
distance. It should be noted that for certain cases, the KL
distance increases with the inclusion of look-ahead frames.
Using look-ahead frames tends to result in high SPPs occurring
in salient segments due to a higher degree of HMM-based
smoothing. It, in turn, provides lower missed detection rates,
while increasing false alarms.

C. Soft-Decision Speech Enhancement

We apply the proposed method for determining improved
SPPs to minimum mean-square error (MMSE) soft-decision
noise speech enhancement to further grade its performance.
Traditional statistical noise suppression rules for speech op-
erate under the assumption of speech presence throughout
spectro-temporal locations. However, this assumption is untrue
both for time periods of inactive speech, and for frequency
channels corresponding to harmonic valleys or vocal tract
zeros during active speech. Instead, utilizing speech presence
probability during noise suppression takes into account speech
presence uncertainty, and leads to soft-decision speech en-
hancement.

Speech presence probabilities can be integrated into noise
suppression techniques by deriving a MMSE estimate of
speech spectral coefficients [19]:



TABLE I
REQUIRED OPERATIONS FOR PROPOSED SPPS: NUMBERS OF OPERATIONS ARE GIVEN PER FRAME AND PER FREQUENCY CHANNEL. NOTE THAT THE
INDUCED LOAD OF THE FAST FOURIER TRANSFORM (FFT) IS NOT INCLUDED, BUT IS KNOWN TO BE OF ORDER O (Np, log (Ny,)).

SPP Method I + [ X [ + [ cos [ exp [ log
Traditional SPPs[2] 4 6 3 0 1 0
Improved SPPs from [12] 40 45 8 0 0 4
Proposed SPPs (Eq. 16) 12 20 5 2 1 0
Proposed SPPs (Eq. 19) 12+2Npa | 204+8Npa 5 2 1 0

TABLE II
NUMERICAL PARAMETERS FOR PROPOSED SPPS DESCRIBED IN SEC. III, FOR SPEECH ENHANCEMENT AND AUTOMATIC SPEECH RECOGNITION (ASR)

Parameter || Enhancement [ ASR | Description
N, 257 257 number of channels during spectral analysis
adl 0.05 0.20 | HMM transitional probability, HY, — H,.,
all 0.10 0.20 | HMM transitional probability, H}, — HJ,
0 1.0 1.0 | used by observation probability, b0, (7m (1))
K1 10.0 7.0 | used by observation probability, b, (T, (n))

Frequency
(0-4 kHz)

Frequency
(0-4 kHz)

Frequency
(0-4 kHz)

Frequency
(0-4 kHz)

Time (seconds)

Fig. 2. Tllustrative Examples of SPP Masks Determined by Various Methods: Panel (a) provides the clean speech signal “She had your dark suit in greasy
wash water all year” spoken by a female. Panel (b) shows the SPP mask determined according to [12] from a corresponding signal corrupted by airport noise
at 15 dB SNR. Panels (¢) and (d) provide proposed SPP masks according to Eq. 16 and Eq. 19 (N1 4=2), respectively.

where G (2., (n)) is generalized as:

$m (n) = Elsm (n) |2 (n)] (23) E [sm (n) |zm (n) ,H}n]
= Bls (n) e (n) , HOJP (HE i () Glont) == @
+ Blsm (n) [wm (n), Hy ]P (Hp |z (n)) - In this study, we utilize the optimally modified log-spectral

amplitude (OM-LSA) estimator proposed in [14] as an illus-
trative example. Additionally, noise estimation was performed
according to [12]. Code for the previously discussed algo-
rithms was obtained from [23]. It should be noted that the
numerous parameters defined by [12] were kept as in [23].
The performance of proposed SPP masks during speech
enhancement was tested by analyzing their ability to minimize
acoustic noise leakage (NL) while maintaining low speech
distortion. Similar to the experimental procedure in [22], we
Sm (n) =P (Hp,|zm (n) G (zm (n)) 2 (n), (25)  define noise leakage as the percentage of energy corresponding

It follows intuitively that the expected value of speech
coefficients, conditioned on an inactive speech state, is zero:

E[sm (n) |2 (n), H2] = 0. (24)

The MMSE noise suppression rule is derived by integrating
a gain factor in Equation 23 [1], [2], [3]:



to time-frequency bins deemed as inactive speech by the oracle
mask, which passes unsuppressed by SPP masks:

Ny N a orc
NL = 100 Zn:l m=1 Max [Tm (n) ~Tm (n) 70] |:L'm (Tl) ‘2
a Ny N orc 2
Zn:l m=1Max [1 —Tm (n) ) 0] |.’L'm (n) |
(27)

Conversely, we define speech distortion (SD) as the percentage
of energy corresponding to active speech bins, which is
distorted by SPP masks:

§D) — 100t Sy MAX [T (1) — i (1) 0] [ () |
Doty Sy max [rgre () , 0] e (n) |2 %

There exists a natural trade-off between NL and SD, i.e. as a
greater percentage of acoustic noise is suppressed, more dis-
tortion to the underlying speech signal is generally expected.

Table IV provides results for speech distortion and noise
leakage for proposed SPP masks during soft-decision speech
enhancement. The state-of-the-art method from [12] is in-
cluded as reference. Proposed SPPs (Eq. 16) are shown to
provide low SD, while significantly decreasing the NL for
most conditions. Integrating future observations in proposed
SPPs (Eq. 19, Np4=1,2) generally results in a decrease in
both SD and NL. For non-stationary noise, particularly at low
SNRs, the speech distortion observed for the proposed mask
estimation technique is substantially greater than that observed
for [12]. This is most probably due to the dependency of the
proposed algorithm on the a priori SNR, which is difficult to
estimate in non-stationary conditions.

The performance of proposed SPP masks was also assessed
by traditional speech distortion metrics. Table V provides
improvements in segmental SNR (ASSNR) for enhanced sig-
nals using proposed SPPs. It can be concluded that proposed
method generally provides increased improvement over those
presented in [12], although these changes may not be generally
perceptually significant.

D. Noise Robust Automatic Speech Recognition

Soft-decision speech enhancement was applied as a front-
end noise robust technique for automatic speech recognition
to assess the quality of resulting signals. Front end feature
extraction included 13 MFCCs and log-energy, along with first
and second derivatives. The HMM-based recognizer utilized
16-state, 3-mixture word models. Test Sets A and B of the
Aurora-2 database, comprised of connected digit utterances,
were used during experimentation.

Enhanced speech spectral coefficients were determined by
MMSE estimation:

Sm (n) = E[sm (n) |xm (n)] (29)

= E[sy, (n) |zm (n), HY|P (HY |2m (n))

m m

N T (n) P (Hy,|zm (n)

That is, the gain function G (z,, (n)), from Eq. 25, was
excluded to avoid over-suppression of discriminative speech
information important for recognition. Table VI provides

TABLE V
IMPROVEMENTS IN SEGMENTAL SNR (ASSN R) FOR SOFT-DECISION
SPEECH ENHANCEMENT USING SPP MASKS

SNR (dB)
SPP Method 20 | 15 | 10 | 5 | O
Non-stationary Restaurant Noise
from [12] 3.12 | 3.99 | 473 | 5.33 | 5.83
Eq. 16 3.20 | 4.21 | 497 | 5.52 | 6.02
Eq. 19 (Npa=1) || 3.30 | 4.29 | 5.03 | 5.53 | 5.92
Non-stationary Babble Noise
from [12] 4.34 | 534 | 6.33 | 7.35 | 8.43
Eq. 16 4.34 | 547 | 6.51 | 7.59 | 8.60
Eq. 19 (Npa=1) || 451 | 5.61 | 6.59 | 7.60 | 8.57
Stationary White Noise
from [12] 3.96 | 5.12 | 6.39 | 7.66 | 8.79
Eq. 16 3.76 | 5.05 | 6.41 | 7.83 | 9.15
Eq. 19 (N1 4=1) || 4.07 | 5.32 | 6.66 | 8.03 | 9.31
Average
from [12] 3.81 | 482 | 582 | 6.78 | 7.68
Eq. 16 3.77 | 491 | 596 | 6.97 | 7.92
Eq. 19 (Np4=1) || 3.96 | 5.08 | 6.09 | 7.04 | 7.91
TABLE VI

WORD-ACCURACY RESULTS FOR ASR USING FRONT-END
SOFT-DECISION SPEECH ENHANCEMENT WITH SPP MASKS

Front-End SNR (dB)
Noise Suppression 20 | 15 | 10 | 5 | ©
Test Set A
None 97.32 | 91.70 | 69.00 | 37.50 | 15.39
OM-LSA [12] 95.44 | 91.58 | 82.86 | 66.65 | 42.38
Eq. 29 (N1, 4=2) 97.40 | 94.80 | 87.93 | 72.22 | 43.73
Test Set B
None 97.44 | 8891 | 61.73 | 31.72 | 14.59
OM-LSA [12] 94.47 | 89.34 | 80.48 | 63.93 | 39.77
Eq. 29 (N A=2) 96.80 | 92.57 | 83.91 | 65.38 | 35.54
Average
None 97.38 | 90.31 | 65.36 | 34.61 | 14.99
OM-LSA [12] 94.96 | 90.46 | 81.67 | 65.29 | 41.68
Eq. 29 (Npa=2) 97.10 | 93.69 | 85.92 | 68.80 | 39.64

word-accuracy results for ASR using front-end soft-decision
speech enhancement with SPP masks. As reference, results
for the OM-LSA speech enhancement system of [12] are
included, as well as results for the baseline system which
includes no front-end noise suppression. As can be observed
in Table VI, soft-decision enhancement using proposed SPP
masks provides improved ASR performance relative to the
system in [12].

V. CONCLUSIONS

In this paper we have presented a framework for determin-
ing improved SPPs using HMM-based inference. We model
spectro-temporal data as observations from channel-specific
two-state models, and apply HMM-based decoding to estimate
true posterior probabilities.

We illustrate the effectiveness of the proposed framework
by applying it to soft-decision speech enhancement. The use of
proposed SPPs is shown to provide significant improvements
in mask accuracy over the state-of-the-art SPP method in [12]



TAB
SPEECH DISTORTION (SD) AND NOISE LEAKAGE (NL) RESULTS FOR P
PROPOSED TECHNIQUES SHOW LOW SD WHILE PROVIDING SIGNIFICA

LE IV
ROPOSED SPP MASKS DURING SOFT-DECISION SPEECH ENHANCEMENT:
NTLY REDUCED NL, RELATIVE TO [12], FOR MOST NOISE CONDITIONS.

20 dB 15 dB 10 dB 5dB 0 dB
SPP Method SD (%) NL (%) | SD (%) NL (%) | SD (%) NL (%) | SD (%) NL (%) | SD (%) NL (%)
[ Non-stationary Restaurant Noise ]
from [12] 0.04 84.09 0.10 74.89 0.37 62.97 1.08 51.41 3.03 42.57
Eq. 16 0.23 49.45 0.64 34.15 1.64 23.17 4.05 18.03 8.93 15.43
Eq. 19 (Npa=1) 0.16 50.16 0.48 33.71 1.30 20.58 3.45 14.76 8.01 12.37
Eq. 19 (Npa=2) 0.14 54.60 0.40 38.95 1.10 25.27 2.98 18.25 7.05 14.99
[ Non-stationary Babble Noise |
from [12] 0.05 83.62 0.23 72.98 0.87 60.38 2.25 49.05 5.42 41.05
Eq. 16 0.39 47.41 1.14 32.95 2.90 22.69 6.30 16.34 13.07 13.54
Eq. 19 (Npa=1) 0.29 47.57 0.92 32.01 2.52 19.75 5.61 13.07 12.07 10.23
Eq. 19 (Npa=2) 0.25 52.16 0.80 36.93 2.23 24.31 4.97 16.62 10.80 12.89
[ Stationary White Noise |
from [12] 0.14 44.27 0.52 26.81 1.54 14.80 4.33 6.76 11.19 2.75
Eq. 16 0.50 10.97 1.34 7.49 3.27 5.57 7.35 4.41 15.05 3.83
Eq. 19 (Npa=1) 0.38 6.36 1.08 3.14 2.78 1.76 6.57 1.09 14.09 0.83
Eq. 19 (Npa=2) 0.33 9.48 0.95 4.72 2.48 2.64 5.94 1.69 12.91 1.31
l Average l
from [12] 0.08 70.66 0.28 58.23 0.92 46.05 2.55 35.74 6.55 28.79
Eq. 16 0.38 35.94 1.04 24.86 2.60 17.00 5.90 12.93 12.35 10.93
Eq. 19 (Npa=1) 0.28 34.70 0.83 22.95 2.20 14.03 5.21 9.64 11.39 7.81
Eq. 19 (Npa=2) 0.24 38.74 0.72 26.87 1.94 17.41 4.63 12.18 10.25 9.73

in terms of the mean pointwise KL distance. When applied
to the task of soft-decision speech enhancement, proposed
method is shown to improve performance in terms of segmen-
tal SNR. Closer analysis of enhanced speech signals reveals a
significant decrease in noise leakage, while speech distortion is
observed to increase. For high SNRs, particularly in stationary
noise conditions, the increase in SD can be concluded to be
minimal. At lower SNRs, however, the SD is seen to increase
by fairly substantial amounts. When applied as a front-end
noise robust method for ASR, soft-decision enhancement
using proposed SPP masks provides improved recognition
performance relative to [12], for favorable acoustic conditions.
Furthermore, the 2-state configuration of underlying HMMs
results in a relatively small increase in complexity, making the
proposed method attractive for resource-constrained scenarios.

SPP masks serve as pivotal tools in noise robust speech
processing systems. Improved SPPs proposed in this paper
can be utilized in applications such as voice activity detection
(VAD) and pitch estimation/tracking. Such topics will be the
focus of future work.
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