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Abstract— In this letter we propose a novel algorithm for
reconstructing unreliable spectrographic data, a method ap-
plicable to missing feature-based automatic speech recognition
(ASR). We provide quantitative analysis illustrating the high
compressibility of spectrographic speech data. The existence of
sparse representations for spectrographic data motivates the
spectral reconstruction solution to be posed as an optimization
problem minimizing the `1-norm. When applied to the Aurora-
2 database, the proposed missing feature estimation algorithm
is shown to provide significant improvements in recognition
accuracy, relative to the baseline MFCC system. Even without an
oracle mask, performance approaches that of the ETSI advanced
front end (AFE) [1], with less complexity.

Index Terms— Spectral Reconstruction, Missing Features,
Compressibility, Noise Robust Automatic Speech Recognition.

I. INTRODUCTION

The missing feature (MF) approach to robust automatic
speech recognition (ASR) is effective in unfavorable acoustic
environments [5]. MF algorithms can be grouped into two
main categories; marginalization [2] and data imputation [3].
This letter focuses on data imputation techniques, which aim
to reconstruct unreliable spectrographic components prior to
recognition [3].

In this letter, we propose a novel missing feature data
imputation algorithm for noise robust ASR based on the notion
of compressibility. We provide quantitative analysis on the
compressibility of spectrographic speech data, which motivates
spectral reconstruction to be posed as an optimization problem
minimizing the `1-norm. The proposed missing feature algo-
rithm is shown to provide significant improvements in word-
accuracy rates, relative to the baseline system, when applied
to the Aurora-2 database [12]. Even without an oracle mask,
performance approaches that of the ETSI advanced front end
(AFE) [1].

II. THE COMPRESSIBILITY OF SPEECH

A. Signal Recovery from Incomplete Observations

Compressive sampling (CS) theory states that perfect recon-
struction of signals can be achieved with far fewer observations
than required by the traditional Nyquist sampling rate [6]-[7].
As discussed in [7], recovery of signals from an incomplete
set of observations is made possible by the sparsity of the
signal of interest, and by the incoherence of utilized sensing
functions. In this section, we present a brief introduction to
CS theory, specifically the notion of sparsity, and provide

motivation for the use of linear programming in the current
problem of missing feature estimation.

Let f ∈ RN represent a signal of interest, and let the set
φk ∈ RN , for k = 1, . . . , M , represent sensing functions used
to obtain M observations in y according to y = Φf, where
Φ is comprised of row vectors φk. The design of sensing
functions is an important aspect of many CS applications, such
as imaging [8], and involves the concept of minimizing the
coherence of bases (see [7] for details).

An underlying reason for the success of CS theory is that
many signals can be described efficiently when expressed
in terms of a proper basis. Let Ψ ∈ RN×N represent a
suitable orthonormal basis for f, such that f = Ψ∗v, where
the ∗ operator represents the conjugate transpose. Here, v is
the sparse representation of f, expanded in the basis Ψ, also
referred to as the representation basis. The compressible or
sparse nature of v states that it is comprised of only a few
large magnitude terms, and implies that discarding the small
terms will result in little or no distortion.

Define a signal as S-sparse if it contains at most S nonzero
terms. Furthermore, let vS be the vector comprised of the S
largest magnitude terms of v, with the remaining terms set
to zero. The recovered version of the original signal can be
expressed as fS=Ψ∗vS . If the original signal is truly S-sparse,
the reconstructed signal will be perfect. However, the original
signal may be compressible, so that the magnitude of terms in
v decreases quickly, which will result in a reconstructed signal
with little distortion.

The signal reconstruction fS can not generally be repro-
duced since it requires oracle information regarding the loca-
tions of large magnitude terms in v. However, the discussion
of sparsity motivates the use of the `1-norm during signal
recovery, since optimization problems which minimize the `1-
norm tend to solutions comprised of few nonzero terms [9].
In [6]-[7], the CS solution to the signal recovery problem is
given by f̃ = Ψ∗ṽ, where ṽ is determined by:

min
ṽ∈RN

‖ṽ‖`1 subject to: y = ΦΨ∗ṽ. (1)

Thus, the reconstructed signal f̃, given an incomplete set
of observations y, is the function which minimizes the `1-
norm of the sparse representation ṽ. Although the cost function
in Equation 1 is nonlinear, the problem statement can be
rearranged as a linear program, and thus be solved quite
efficiently [9].
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B. The Compressibility of Spectrographic Speech Data

Compressive sensing has been successfully applied to both
image compression and image denoising [7], [8]. At the heart
of these applications lies the fact that images typically have
sparse representations when expanded on certain transform
bases. In this section, we explore the compressibility of
spectrographic speech data. The discussion will motivate the
use of linear programming in the proposed missing feature
estimation algorithm.

Let X (k, n) be the spectrographic representation of an
input speech signal, where n denotes frame number, and k
denotes frequency channel index. In this section we provide
compressibility analysis for Mel-filtered spectral data as an
illustrative example.

Let x represent the vector representation of X (k, n) formed
by lexicographic ordering. We assume the existence of an
orthonormal basis Ψ which reveals a concise representation
of x, namely v. Additionally, assuming oracle information re-
garding the location of large magnitude terms within v, we can
extract the S-sparse vector vS , and recover the approximation
of the original speech signal, xS . Let β be the portion of terms
within v retained, and be defined as β = Ns

N , where Ns is the
number of nonzero terms retained, and N is the total number
of elements. The quality of the recovered signal, as a function
of β, can be analyzed to assess the compressibility of the
original data.

In image processing, the mean-square error (MSE) distor-
tion provides a reliable metric for measuring the degradation of
a compressed image [10]. However, in speech processing, such
a distance metric applied to spectrographic speech data does
not directly reflect the quality of the underlying speech data,
and instead the performance of the overall speech processing
system must be analyzed. In automatic speech recognition
(ASR), one can study the effect of induced sparsity on the
resulting recognition accuracy rates.

Figure 1 shows an example of the sparsity of Mel-filtered
spectrographic speech data. Analysis was performed on the
word ”three” extracted from the Aurora-2 database. The top
panel shows the sparse representation of the input Mel-filtered
spectrographic data in vector form, utilizing the discrete Haar
transform (DHT) [10]. The DHT was chosen due to its
common usage in compressive sensing. Other transforms such
as the Discrete Cosine Transform (DCT) and the Karhunen-
Loeve Transform (KLT) were tested, but with less success.
The bottom panel shows the absolute value of the sparse
representation, sorted by magnitude. As can be concluded from
the rapidly decreasing values in the bottom panel, the input
spectrographic data is highly compressible.

Figure 2 provides quantitative analysis of the compress-
ibility of Mel-filtered spectrographic speech data, presenting
the time-average MSE, along with word-accuracies, as a
function of induced sparsity. The representation basis used was
again the discrete Haar kernel. Compressibility analysis was
performed on clean speech from the Aurora-2 database [12].
It can be concluded from Figure 2 that approximately 90%
(β=0.90) of terms in the sparse domain can be zeroed without
significantly affecting recognition results.
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Fig. 1. The Compressibility of Spectrographic Speech Data: Analysis was
performed on the clean word ”three” extracted from the Aurora-2 database
[12]. The top panel shows the sparse representation of the input spectrographic
data in vector form, utilizing the discrete Haar transform (DHT). The bottom
panel shows the absolute value of the sparse representation, sorted by
magnitude.
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Fig. 2. Quantitative Analysis of the Compressibility of Spectrographic Speech
Data: The top panel illustrates the MSE distortion resulting from induced
sparsity in xS , utilizing the discrete Haar transform (DHT). The bottom panel
represents the word-accuracies corresponding to the recovered Mel-filtered
spectra used in the top panel.

III. RECONSTRUCTION OF MISSING FEATURES FOR NOISE
SUPPRESSION IN SPEECH

In real world applications, speech signals will generally
suffer degradation due to acoustic noise, resulting in decreased
performance for recognition. In this section we present a
missing feature estimation method for noise suppression of
spectrographic speech data, which in turn is applicable to
automatic speech recognition.

A. The Proposed Missing Feature Estimation Algorithm

Assuming an additive noise model and assuming indepen-
dence of speech and noise components, an observed speech
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signal can be approximated in the spectral domain as:

X (k, n) = S (k, n) + D (k, n) , for 1 ≤ k ≤ N, (2)

where D (k, n) is the corrupting noise, and S (k, n) is the
underlying clean speech signal. Let Ψ ∈ RN×N be the
representation basis revealing a compressible representation
of x, namely v.

In MF-based noise robust ASR systems, spectral recon-
struction algorithms must be preceded by mask estimation.
We utilize two types of binary masks, oracle masks and ones
based on speech presence probability (SPP), which classify
each term in x as reliable, corresponding to strong speech
signal presence relative to noise, or unreliable, corresponding
to a high level of corruption due to noise. In this study,
oracle masks were determined via a simple SNR compar-
ison between the observed spectrum and a noise spectrum
obtained from linear spectral subtraction. A hard threshold
of 0 dB was then used to differentiate between reliable and
unreliable components. On the other hand, SPP-based masks
were determined by calculating speech presence probabilities
[11] throughout spectro-temporal locations, and using a hard
probability threshold of 0.4 to determine a binary mask.
Thresholds were optimized empirically.

A spectral reliability mask can be expressed analytically via
the selection matrix AR ∈ RM×N , corresponding to the M
reliable components of x. AR is defined as follows:

AR (i, j) =
{

1, if x (j) is the ith reliable term in x
0, otherwise . (3)

The goal of signal reconstruction can be restated as estimat-
ing the components of the sparse representation v, given the
incomplete reliable observations (ARx). Motivated by the dis-
cussions on CS from Section II-A, and on the compressibility
of speech from Section II-B, the missing feature estimation
task can be posed as an optimization problem minimizing the
`1-norm:

min
ṽ∈RN

‖ṽ‖`1 subject to: ARx = ARΨ∗ṽ (4)

Utilizing Equation 4, the sparse representation of the es-
timated underlying speech spectrum can be determined. The
reconstructed clean speech spectrum can be found as s̃ = Ψ∗ṽ.

The spectral reconstruction solution expressed in Equation
4 does not take into account any information specific to
spectrographic speech data. Basic properties of spectral signals
can be integrated as constraints in the optimization problem
of Equation 4 to better estimate the underlying clean speech
spectrum. First, spectral coefficients are inherently nonneg-
ative. Also, following the additive model from Equation 2,
it can be concluded that clean speech components must be
less than or equal to observed spectral components. Thus, the
optimization from Equation 4 becomes:

min
ṽ∈RN

‖ṽ‖`1 subject to: ARx = ARΨ∗ṽ (5)

Ψ∗ṽ ≥ 0
Ψ∗ṽ ≤ x

The additional constraints of Equation 5 provide boundaries
for the solution ṽ, specific to Mel-filtered spectral data, which
may not exist for other types of spectrographic data. These
constraints were found to result in more accurate solutions
than cases with no such constraints.

As stated previously, the optimization in Equation 5 can
be carried out efficiently by posing the problem as a linear
program (LP) [9]. In this study, the primal-dual LP method
was used during optimization. Also, the algorithm is able to
run in real-time by processing one spectral frame (25 ms with
a 10 ms overlap) at a time.

It is interesting to note that the subspace approach to noise
suppression [13] also exploits the sparsity of speech for noise-
robust processing. Such techniques explicitly construct the
sparse design of speech signals given predetermined thresh-
old(s). In the proposed algorithm, however, the sparse design
is determined implicitly during the minimization of the `1-
norm of the sparse representation ṽ.

B. Comparisons with Compressive Sensing

As can be interpreted from Equations 1 and 4, great sim-
ilarity exists between compressive sensing and the proposed
missing feature estimation algorithm. Both techniques aim to
reconstruct signals from an incomplete set of observations.
Additionally, both techniques rely on the notion of compress-
ibility, and specifically each method minimizes the `1-norm of
the given signal in a sparse domain. However, the concept of
sensing is quite different in each case.

In CS applications, such as imaging [8], signals are sampled
at low rates by utilizing sensing functions. Sensing functions
are designed to comprise an orthonormal basis, Φ, which
minimizes the coherence measure with the representation
basis, Ψ. (See [7] for a detailed discussion.)

In the proposed missing feature estimation algorithm, ob-
servations are not sampled in the same sense as in CS appli-
cations, but their origins are instead decided by the reliability
of terms in the mask estimation domain. The sensing matrix,
which for the proposed algorithm can be written as Φ=AR,
is defined entirely by the corruptive effect of noise on the
input speech signal. Thus, sensing functions cannot be actively
designed, and the notion of coherence does not play a role.

IV. EXPERIMENTAL RESULTS

The proposed spectral reconstruction algorithm was applied
to Set A of the Aurora-2 database [12], with training per-
formed on clean data. The system extracted 39-dimensional
MFCCs (with first and second derivatives), and the recog-
nizer used 16-states, 3-mixture word models. The proposed
algorithm was run one frame at a time, and the Haar kernel
was used for analysis/reconstruction. Table I provides word-
accuracy rates for the proposed algorithm when combined
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TABLE I
Word-Accuracies for the Proposed Missing Feature Estimation Technique,

using oracle masks (ORC) and SPP-based masks (SPP). The baseline refers

to a standard MFCC front end. Results were obtained on Set A of the

Aurora-2 database [12].

SNR (dB) 20 15 10 5 0
Subway Noise

baseline 96.84 91.71 73.29 36.08 5.74
ORC 99.02 98.62 97.11 91.34 80.96
SPP 97.48 95.09 87.93 73.41 46.91

Babble
baseline 97.79 94.89 77.99 37.73 3.69

ORC 98.40 98.22 97.52 95.19 86.37
SPP 98.00 96.43 90.93 74.15 40.57

Vehicular Noise
baseline 97.49 92.04 68.95 22.37 0.89

ORC 98.54 98.48 97.05 93.02 81.39
SPP 97.70 96.39 89.56 73.13 45.15

Exhibition Hall
baseline 96.85 91.55 73.71 33.51 4.35

ORC 98.55 98.21 96.33 89.36 75.59
SPP 97.75 95.19 87.01 68.40 36.93

Average
baseline 97.24 92.55 73.49 32.42 3.67

ORC 98.65 98.38 97.00 92.23 81.08
SPP 97.73 95.77 88.86 72.27 42.39

with oracle reliability masks (ORC) [3] and masks based on
speech presence probability (SPP). In general, results obtained
utilizing oracle masks provide an upper performance bound
for missing feature methods. Results obtained through mask
estimation represent a more realistic scenario, since they utilize
information solely from the noisy input signal with no prior
knowledge. The proposed spectral reconstruction algorithm
is shown to provide a high upper performance bound when
combined with oracle reliability masks. Additionally, when
combined with SPP-based masks, the proposed algorithm pro-
vides significant improvements in word-accuracy rates, relative
to the baseline system which uses a standard MFCC front end.

The proposed spectral reconstruction framework is compat-
ible with various proven noise robust feature extraction and
post-processing techniques. Table II provides word-accuracy
results for the combination of the proposed spectral reconstruc-
tion algorithm with Peak Isolation (PK-ISO) post-processing
[4], averaged across all conditions included in Set A of
the Aurora-2 database. As can be concluded from Table
II, combining the proposed spectral reconstruction algorithm
with Peak Isolation provides further improvements in sys-
tem performance. For comparison, Table II includes results
obtained using solely Peak Isolation. Additionally, Table II
includes comparisons with the noise robust ETSI AFE front-
end [1]. Even without an oracle mask, the algorithm provides
performance similar to the ETSI AFE, with less complexity
with respect to processing time.

V. CONCLUSION

This letter presents a novel algorithm for the reconstruction
of unreliable spectral speech components based on the notion
of compressibility. We provide quantitative analysis on the
compressibility of spectrographic speech data, which motivates

TABLE II
Word-Accuracies for the Proposed Missing Feature Estimation Technique in

Combination with Peak Isolation [4] Post-Processing (PK-ISO). Results for

the ETSI AFE [1] are included for comparison. Results were averaged

across all conditions included in Set A of the Aurora-2 database.

SNR (dB) 20 15 10 5 0
MFCC (baseline) 97.24 92.55 73.49 32.42 3.67

MFCC (ORC) 98.65 98.38 97.00 92.23 81.08
MFCC + PK-ISO (ORC) 98.57 98.47 97.68 95.60 88.99

MFCC (SPP) 97.73 95.77 88.86 72.27 42.39
MFCC + PK-ISO (SPP) 97.98 96.25 91.44 78.54 51.10

PK-ISO 97.04 94.37 83.67 56.15 19.15
ETSI AFE 98.46 96.96 92.22 79.13 51.11

the use of minimization of the `1-norm in the proposed missing
feature estimation technique. The proposed spectral recon-
struction method is shown to provide significant improvements
in word-accuracy rates relative to the MFCC baseline system,
when applied to the Aurora-2 database.

Future work will focus on the design of spectral reliability
masks. Masks which better differentiate between reliable and
unreliable spectral components can be expected to perform
closer to the bound obtained by using oracle masks.
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