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ABSTRACT frames for which
In this paper, we propose an FO Frame Error (FFE) metric which
combines Gross Pitch Error (GPE) and Voicing Decision Error |F0i,estimated —1 > 6% 3)
(VDE) to objectively evaluate the performance of fundarakfre- FO; reference ¢

quency (FO) tracking methods. A GPE-VDE curve is then dexedo
to show the trade-off between GPE and VDE. In addition, weoint
duce a model-based Unvoiced/Voiced (U/V) classificatiamtiend
which can be used by any FO tracking algorithm. In the U/Vsilas
fication, we train speaker independent U/V models, and tlapta
them to speaker dependent models in an unsupervised faskien
U/V classification result is taken as a mask for FO trackingpet-
iments using the KEELE corpus with additive noise show that o
statistically-based U/V classifier can reduce VDE and FHEtie
pitch tracker TEMPO [1] in both white and babble noise candk,
and that minimizing FFE instead of VDE results in a reductioar-
ror rates for a number of FO tracking algorithms, especiallyabble
noise.

wherei is the frame number, antlis a threshold which is typically
20.

It is desirable for an FO tracking algorithm to reduce the VDE
and GPE at the same time. The error of an FO tracking method is
ususally presented as an error pair: (GPE, VDE). But some- alg
rithms have low GPE, but higher VDE compared to other algors.

We propose an error metric called the FO Frame Error (FFEghvhi
takes both GPE and VDE into consideration. We plot the GPEEVD
curve as a Receiver Operating Characteristics (ROC) corghdw

the trade-off between GPE and VDE. With the help of the FFE and
the GPE-VDE curve, we can compare the performance of FO-track
ers in a unified framework.

Index Terms— Fundamental Frequency, Pitch Tracking, Noise Several FO tracking packages: Ga [4], Praat [5], TEMPO [1],
Robustness, Evaluation Metrics, Unvoiced/Voiced Clasatifdn and YIN [6] estimate FO tracks reliablely when processinganl
speech or speech with clear U/V boundaries [7]. When speech i
processed over a noisy channel or in an office environmentgber
we are not guaranteed ideal clean conditions, let alonarobtaa
reliable U/V mask.

Most FO-tracking algorithms make U/V decisions based on the

1. INTRODUCTION

Accurate fundamental frequency (FO) tracking in quiet andaise

1S |mporFant for speech_ gpphcatlons, such as speech caaliaysis, values of energy-based or harmonic-based features excpaslitain
synthesis, and recognltlon.. .. thresholds or not. Under different noisy conditions, onetieeadjust
.TWO type; .Of error metrics arfe commonly used [2]. The first 'Sthese thresholds carefully in order to avoid performancgatiation.
Voicing Decision Error (VDE) [3]: To improve the accuracy and overcome the instability oféHds/
detection methods that rely on thresholds, we introduce deino
Nyv_v + Ny_v based U/V classification frontend whose output can be takeama
~ x 100% (1) UV mask for any FO tracker. With the help of the model-based
method, parameters are automatically learned and adjdsteag

model training and unsupervised adaptation. Reliable Whidary
where N is the number of the frames in the utterance. The seconghformation results in improved FO tracking.
is FO value estimation error which is called the Gross PitotoriE

VDE =

(GPE):
2. FFE AND GPE-VDE CURVE
Nror Consider FO tracking on an utteranceéfframes shown in Fig. 1
PE = 1 2
¢ Nvv x 100% 2) where the FO values are set to be 0 Hz. When the tracked FOuronto

is compared to the ground truth, there can only exist 3 plesgipes

where Ny is the number of frames which both the FO trackerOf error in any frame:

and the ground truth consider to be voicédor is the number of e U—V Error: an unvoiced frame is classified as a voiced frame;

Supported in part by NSF e V—U Error: a voiced frame is classified as an unvoiced frame;



Table 1. Phonemes and Sounds to U and V Dictionary

Fig. 1. FO Tracking Contour over Time for an utterance\doframes

e FO Value Estimation Error:

|Foi,estimated/Foi,reference - 1| > 6%

In Fig. 1, the FO tracker made-WV errors overN, frames, FO
value estimation errors ovey, frames, and V-U errors overNg
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Fig. 2. U/V Classification Frontend for FO Trackers

There have been several model-based techniques for Voice Ac
tivity Detection (VAD) [8] [9] [10], but they primarily dighguish
voiced frames from unvoiced frames.

The flowchart of the proposed U/V classifier and its relatidms
to the subsequent FO tracker are shown in Fig. 2.

frames. We propose an FO Frame Error (FFE) metric which sums The structure of our U/V classifier is similar to the commoni Hi

the three types of errors mentioned above:

# of error frames

FFE = # of total frames>< 100%
(4)
_ Ny_v + Nv_u + Nroe % 100%.
N
FFE is also a combination of GPE and VDE:
FrE = NEOE 009 4 W x 100%.
(%)
Nyv

x GPE+VDE

Therefore, FFE takes both GPE and VDE into consideratiorimgak
the comparison of different FO trackers possible.
A GPE-VDE curve is effective in showing the relationship be-

den Markov Model (HMM) based phone recognizer in the maximum
likelihood based model training and Viterbi decoding. Tké#irg
and performance of the classifier will be presented in theexen-

tal section. In the following, we introduce the acoustic oty of

the U/V models and unsupervised speaker adaptation.

3.1. Unvoiced/Voiced Acoustic Modeling

Two acoustic models were trained, one for unvoiced sounjisu(d
the other for voiced sounds (V). The mapping from sounds todJ a
V is shown in Table 1. The phone symbols appeared in the table a
used in the TIMIT phone level transcription. 'pau’ is a pausei’

is an epenthetic silence, 'h# is the begin/end marker (seeech
events).

The U/V models are left-to-right HMMs with 3 emitting states
and 256 Gaussian components per mixture model. A word net con
taining unvoiced and voiced nodes with a bigram languageairatd
tached to the directed arcs between the nodes was constrddie
U/V decision can be adjusted by tuning the language modelexo
ample, increasind’(voiced) or P(voiced|unvoiced) would make
the decoder prone to making more voiced hypotheses.

tween GPE and VDE. When tweaking the parameters of the FO

tracker, we can obtain a set of (GPE, VDE) pai(&PE;, VDE;)

is a minimum point if and only if there exists npthat satisfies
GPE; < GPE and VDE; < VDE; at the same time. When plotting
all the minimum points, we can obtain a GPE-VDE curve.

3. UNVOICED/VOICED CLASSIFICATION

Since VDE is part of the FFE, in this section, we focus on dgviely
a robust model-based U/V classification frontend in ordeethice
the VDE.

3.2. Unsupervised Speaker Adaptation

It is difficult for the speaker independent (SI) models tegiron
American English corpus (TIMIT) to accurately depict thetdi
bution of unseen data - the test set (KEELE) composed ofrdifte
British English speakers. Therefore, we apply offline uesvised
Maximum Likelihood Linear Regression (MLLR) speaker adapt
tion to adapt the initial SI models to speaker dependent (8&4-
els [11]. In SD model adaptation for speakera global transfor-
mation style can apply a linear transformatiévi; to all the mean
vectors of the Gaussiang; = W, us. Aregression class tree based



GPE-VDE Curve (White Noise, SNR = 0 dB)
T

Table 2. VDE of the U/V Classifier Using the KEELE Corpus 8 : : : : :
(SNR = 0 dB,SI: speaker independent modeGSD/RSD global e e
style/regression tree style adapted modelIBCC andETSI are the T e —e—TEMPO |1
features used in the classifier) —— WTEMPY
VDE White Noise Babble Noise o
MFCC | ETSI MFCC | ETSI sl
Sl 11.57% | 10.84% || 30.70% | 26.27% S
GSD || 10.98% | 9.81% || 27.61% | 22.48% w4
RSD || 10.18% | 9.14% | 27.23% | 23.54% © .
A
transformation style uses a binary regression tree to degftther i
u' of nodei should be adapted by a separate transformafidfis
or a same global transformatid¥ . In the U/V classification task, % 10 12 14 16 18 20 22 2
the regression tree is composed of a base node connected to tv VDE (%)
leaves which are unvoiced and voiced nodes. For a spealtbe GPE-VDE Gurve (Babble Noise, SNR = 0 dB)
global style adaptation uses all the data to train a globakfiorma- 35 : : - :
tion W, Regression tree based adaptation needs to use the decodi \ o oacc
results to attach the data to leaf nagdand then use the attached data 30t — IET”EBPO

to train a transformatioW? for the leaf node.
25

4. EXPERIMENTS

r

In this section, we compare the FFE, GPE-VDE curve and thie-tra
tional (GPE, VDE) pair using the KEELE corpus [12]. The capu 51
contains a simultaneous recording of speech and laryngbgig-
nals for a phonetically-balanced text which was read by %eraad 10
5 female speakers. The total length of the recoding is 5 mia. 37

The SI U/V models are trained from the TIMIT training corpus 5r
(approximately 4 hours). For feature extraction, both Megquency
Cepstral Coefficients (MFCCs) and the ETSI [13] frontenduesed. % pr P e m 5
ETSI features are more noise robust for the Aurora 2 tasktfatj VDE (%)

MFCCs.

Noise is artificially added to both TIMIT and KEELE corporad T Fig. 3. GPE-VDE Curve [i+: using U/V classifier output as a
test the robustness of the FO tracker under different naisditons,  mask)
the program FaNT [14] was used to employ white and babblesnois
segments from the NOISEX92 [15] corpus to corrupt the spéech
a Signal-to-Noise Ratio (SNR) of 0 dB. a )

Table 2 shows the VDE of the proposed model-based U/V classithe U/V mask by the model-based classifier. In white and kabbl
fier with different features before and after adaptationspervised ~ noise, the lowest GPE is achieved by Praat, and the lowest VDE
speaker adaptation is effective in minimizing the mismatetween by M+TEMPO. Note that minimizing the FFE results in a signifi-
training and test data. ETSI features are always bettertg@C ~ cant reduction in GPE. Take TEMPO in white noise for example,
features before and after adaptation. For the white noisescahe ~ When we shift our objective from minimizing the VDE to FFEeth
VDE of the regression class tree based adaptation (RSDisrlo VDE slightly increases from 14.52% to 14.69%, but the GPifiig
than that of global adaptation (GSD). In the babble noise ce  cantly decreases from 15.87% to 4.93%. That s also trueéerG,
GSD resulted in slightly better performance for ETSI feaurThis ~ Praat, and TEMPO in babble noise. Compared to TEMPO, the FFE
could be because babble noise is more correlated with trerlyimy ~ of M+TEMPO drops by 24.4% in white noise, and 27.6% in babble
speech signal than white noise is. noise. It could b.elln.ferr.ed that only minimizing the VDE caot n

The U/V classification result was then used as a mask for ERtra guarantee the minimization of the overall FFE, but redudibgE is

ers. Since GeEO and Praat do not have the option of directly usinghelpful for lowering the FFE. Note that the GPE for M+TEMPO is
an U/V mask, the effect of the mask is only tested on TEMPO. Theigher than TEMPO when minimizing the FFE.
U/V decoder using ETSI features and SD models is used for both In the GPE-VDE curve shown in Fig. 3, it can be observed that
noise conditions. To take advantage of the decoder thahledsw-  for every FO tracker without the U/V mask, GPE decreases when
est VDE, regression tree style adaptation is used undeewbise, VDE increases. As shown in Eq. 1 and 2, when the VDE increases,
but global style adaptation is used under babble noise. it may be due to an increase in the-\WJ errors resulting in a re-

For each FO tracking package, 500 - 1000 configurations arduction inNvv . Although theNy v decreases, th¥ror decreases
tested where different parameters are adjusted (e.g., dlrela- more, for it is easier to estimate the FO value over the reimgin
tion window length, voicing thresholds). The performanédh®  voiced frames with a higher SNR. Since the ratid\ofor to Ny v
FO tracker under each configuration corresponds to ceralires  decreases, the GPE decreases. Take TEMPO in white noise-for e
for GPE, VDE, and FFE as shown in Table 3. ’'M+’ denotes ample, when the VDE increases from 14.69% to 21.92%, the v

GPE (%)




Table 3. GPE, VDE and FFE for the KEELE Corpus (SNR = 0 dB+: U/V mask provided by model-based classifi@in VDE/FFE:

when VDE/FFE is minimized)

White Noise Babble Noise

GPE | VDE | FFE GPE | VDE | FFE
GetE0 min VDE 3.19% | 20.00% | 21.04% || 31.56% | 28.21% | 37.58%
min FFE 2.83% | 20.02% | 20.94% || 8.51% | 30.65% | 32.79%
Praat m@n VDE || 2.10% | 19.72% | 20.41% || 31.82% | 29.32% | 38.69%
min FFE 2.10% | 19.72% | 20.41% 5.31% 32.67% | 33.86%
TEMPO min VDE || 15.87% | 14.52% | 20.59% || 58.05% | 36.51% | 50.35%
min FFE 4.93% | 14.69% | 16.56% 8.11% | 40.16% | 41.24%
M+TEMPO m?n VDE 7.10% | 9.14% | 12.52% || 18.65% | 22.48% | 29.86%
min FFE 7.10% | 9.14% | 12.52% || 18.65% | 22.48% | 29.86%

error rate increases from to 27.05% to 41.60%, the\Werror rates

shift from 1.25% to 0.50%, and the GPE decreases from 4.93% to

0.76%. But for FO trackers with U/V masks, the VDE is more sta-

ble, and the GPE does not change much. Because the FO trasker h [4]

to estimate FO for every voiced frame indicated by the maghn e
if it is a frame with a low SNR. Take M+TEMPO in white noise

for example, when the VDE increases from 9.14% to 9.89%, the 5]

V —U error rate increases from to 8.60% to 10.63%, the\Werror
rate decrease from 9.73% to 9.08%, the GPE slightly decsdezm
7.10% to 6.87%.

It is also shown in Fig. 3 that integrating our model-basew U/
classifier into an FO-tracking algorithm can improve itsciag de-
cision accuracy. Take TEMPO and M+TEMPO in white noise for [7] A de Chevigne and H. Kawahara, “Comparative evaluatibn o
example, after applying the U/V mask, the minimum VDE desesa
from 14.52% to 9.14%.

The FO Frame Error (FFE) and GPE-VDE curve can be used to eval-[g]

5. CONCLUSIONS

uate the FO tracking algorithms in a unified framework. Theleto
based U/V classifier can output robust U/V masks for FO tnacke
under both white and babble noise conditions which is héljgiu
reducing the overall FFE. Minimizing the FFE is more effeetihan
minimizing the VDE alone. Future work will focus on ways of re
ducing both GPE and VDE for FO tracking algorithms.
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