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Abstract

In this paper, we propose a Correlation-Maximization denois-
ing filter which utilizes periodicity information to removeaddi-
tive noise in bird calls. We also developed a statistically-based
noise robust bird-call classification system which uses thede-
noising filter as a frontend. Enhanced bird calls which are the
output of the denoising filter are used for feature extraction.
Gaussian Mixture Models (GMM) and Hidden Markov Mod-
els (HMM) are used for classification. Experiments on a large
noisy corpus containing bird calls from 5 species have shown
that the Correlation-Maximization filter is more effectivethan
the Wiener filter in improving the classification error rate of bird
calls which have a quasi-periodic structure. This improvement
results in a 4.1% classification error rate which is better than
the system without a denoising frontend and a system with a
Wiener filter denoising frontend.
Index Terms: Correlation-Maximization filter, speech en-
hancement, bird call classification

1. Introduction
Bird songs are important in the communication between birds
of specific species. A bird can listen to other birds and clas-
sify them as conspecific or heterospecific, neighbor or stranger,
mate or non-mate, kin or non-kin [1]. It can also sing to other
birds for mate attraction, danger alert, or territory defense [2].
Behavioral and ecological studies could benefit from automat-
ically detecting and identifying species from acoustic record-
ings.

Researchers from the Ecology and Evolutionary Biology
department at UCLA recorded calls from 5 species of Antbirds
(Barred Antshrike, Dusky Antbird, Great Antshrike, Mexican
Antthrush, Dot-winged Antwren) in a Mexican rainforest [3].
Different kinds of background noises are observed in the record-
ings, such as other bird chirps, insect sounds, and instrument
noises. Pre-processing is needed to suppress the background
noise and enhance the target bird call before feature extraction.

A prevailing denoising filter is the Wiener filter which es-
timates the additive noise spectrum and adaptively updatesthe
frequency response of the filter [4].

Suppose that the clean signalx[n] and the noisy signaly[n]
are wide sense stationary, andx[n] and the additive noisev[n]
are uncorrelated. After minimizing the mean square error, we
have the relationship between the spectrum of estimated signal
x̂[n] and noisy signaly[n] denoted byX̂(f) andY (f):

|X̂(f)|2 = H(f)|Y (f)|2 (1)

Supported in part by NSF

whereH(f) denotes the frequency response of the filterh(n).
The estimate of the Signal-to-Noise Ratio (SNR) at frequency
f denoted bySbNR(f) can be expressed as:

SbNR(f) =
|X̂(f)|2

|V̂ (f)|2
(2)

whereV̂ (f) is the estimated spectrum of the noise signalv[n].
Note that|Y (f)|2 = |X̂(f)|2 + |V̂ (f)|2 assumingX̂(f) and
V̂ (f) are orthogonal, The estimated clean spectrum can be ex-
pressed as:

|X̂(f)|2 =
SbNR(f)

1 + SbNR(f)
|Y (f)|2 (3)

Therefore, the noncausal Wiener filter converts the denois-
ing problem into an SNR estimation problem [5].

According to our observation, the Wiener filter sometimes
fails to identify background chirps as noise and enhances both
the target and non-target chirps.

In order to suppress background chirps, we utilize the peri-
odicity of the chirps in the bird call to develop a denoising filter
which enhances the periodic structure of the target call. The co-
efficients of the filter are obtained through a gradient search ap-
proach which maximizes the value of a correlation based func-
tion. Therefore, we call it a Correlation-Maximization denois-
ing filter.

In the following sections, we analyze the characteristics of
some bird calls, design the Correlation-Maximization filter, and
develop a statistically-based bird call classification system. We
also discuss the advantage of the Correlation-Maximization fil-
ter over Wiener filtering in the bird call classification problem.

2. A Correlation-Maximization Filter
According to our observation, every Antbird call is quasi-
periodic in terms of the interval between chirps, and the inter-
vals slowly decrease with time. An example is shown in Figure
1.

In the following, we will discuss how to search an optimal
correlation based denoising filter which can enhance this peri-
odic structure.

2.1. Search Chirp Interval Using a Correlation Function

Suppose a bird callx[n] is corrupted by an additive noisev[n].
The noisy acoustic signaly[n] is the input to an FIR filterh[n]
of L taps. The output of the filter is the estimation ofx[n]:

x̂[n] =

L
X

k=1

h[k]y[n − k] (4)



Figure 1: The waveform of a Great Antshrike (GAS) call

y[n] is decomposed intoM frames with a frame step size of∆
and a frame length ofN , and we assume thaty[n] andx[n] are
wide sense stationary in each frame. Since the spectral distri-
butions of different frames in a bird call are similar, a single h

is assumed for each bird call. Therefore at framem, the cross
correlation function of̂x[n] at lagk denoted byφm

x [0, k] can be
expressed as:

φm
x̂ [0, k] =

m∆+N−1−k
X

n=m∆

x̂[n]x̂[n + k] (5)

=

L
X

p=1

h[p]

L
X

q=1

h[q]

m∆+N−1−k
X

n=m∆

y[n − p]y[n + k − q].

Note that the lagk hasK possible values,k = k0, k1, ...kK−1.
We can define anL × L cross correlation function matrix
Φ

m
y [0, k] for framem at lagk. The element ofΦm

y [0, k] in
row p and columnq is expressed as:

Φ
m
y [0, k]pq =

m∆+N−1−k
X

n=m∆

y[n − p]y[n + k − q]. (6)

Therefore we have

φm
x̂ [0, k] = h

T
Φ

m
y [0, k]h (7)

whereh = [h[0], h[1], · · · , h[L]]T denotes the coefficients of
the FIR filter. To confine the dynamic range ofφm

x̂ [0, k], the
normalized cross correlation function̄φm

x̂ [0, k] is used as fol-
lows:

φ̄m
x̂ [0, k] =

φm
x [0, k]

p

φm
x [0, 0]φm

x [k, k]
(8)

Note thatφ̄m
x̂ [0, k] ∈ [−1, 1].

It is possible to find the chirp interval in each frame over
the denoised signal̂x[n]. Dynamic programming can be used
to minimize the distortion induced by background noise in the
chirp interval search [6]. Because the objective of the dynamic
programming is to search the path which has a minimum ac-
cumulative cost. The local cost of framem at lagk is defined
as−φ̄m

x̂ [0, k]. Since the chirp interval is gradually decreasing
over time, the cost of transitioning from lagki to kj denoted by
d(ki, kj)is defined as follows:

d(ki, kj) = eα|ki−δ−kj| − 1 i, j = 0, · · · , K − 1 (9)

whereα andδ are pre-set empirically.α is a scaling factor, and
δ is an estimate of how fast the chirp interval changes per sec-
ond. This exponential function can impose more penalty than

its linear counterpart on the transition cost in order to prevent
chirp intervals from greatly varying between two consecutive
frames. Note that whenkj = ki − δ, d(ki, kj) = 0.

Then, a trellis structure ofK × M for dynamic program-
ming is built, whereM is the number of total frames,K is
the number of the possible candidates at each frame.s =
[s1, s2, · · · , sM ] is used to denote an arbitrary valid path in the
trellis.

2.2. Search The Optimal Denoising Filter

Usually in matched filtering [7], the optimal linear filter is
obtained by maximizing the SNR in the presence of additive
noise. We search the filter coefficients in a grid by minimizing
a correlation-based cost function.

It can be assumed that an optimal filterh can enhance the
periodic structure of the target bird call and remove the additive
noise so that the minimum accumulative cost is achieved in the
chirp interval search over the denoised signal. This assumption
can be expressed as:

h
∗ = arg min

h

F(h, s) (10)

whereh∗ denotes the optimal denoising filter, the accumulative
costF(h, s) which is summation the accumulative local and
transition costs is expressed as:

F(h, s) =
M

X

m=1

−φ̄m
x̂ [0, sm] +

M−1
X

m=1

d(sm, sm+1). (11)

The gradients ofF(h, s) w.r.t. h can be expressed as:

∇hF(h, s) (12)

= ∇h{−
M

X

m=1

h
T
Φ

m
y [0, sm]h

p

hT Φm
y [0, 0]h

p

hT Φm
y [sm, sm]h

} + 0

= −

M
X

m=1

1
p

hT Φm
y [0, 0]h · hT Φm

y [sm, sm]h
·

ˆΦ
m
y [0, sm] + Φ

m
y [0, sm]T

hT Φm
y [0, sm]h

−
1

2

Φ
m
y [0, 0] + Φ

m
y [0, 0]T

hT Φm
y [0, 0]h

−
1

2

Φ
m
y [sm, sm] + Φ

m
y [sm, sm]T

hT Φm
y [sm, sm]h

˜

h

Therefore, the gradient descent method can be used to
search the optimal filterh∗(s) for a paths. The minimum cost
is achieved when∇hF(h, s) = 0. Note thats is independent
of h. The final optimal filterh∗ can be searched using a brute-
force method:

Algorithm 2.1: BRUTE-FORCEFILTER SEARCH (h)

Set the iteration time =I , the iteration stopping threshold =ǫ.
for all valid s

do
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Initialize h0(s) = [1, 0, · · · , 0]T .
for i = 0 to I

do
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>
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>

:

hi+1(s) = hi(s) − ti∇hF(hi(s), s),
whereti is the step size;
if ||hi+1(s) − hi(s)||/||hi(s)|| < ǫ

then h
∗(s) = hi(s), break .

if i == I
then h

∗(s) = hI(s).
The optimal paths∗ = arg min

s

F(h∗(s), s)

The optimal filterh∗ = h
∗(s∗), exit .



2.3. Speed Up The Search: N-best Search

Instead of a grid search, we propose to search through a trellis
similar to the N-best search in ASR.

There areKM possible paths in aK × M trellis. Sup-
pose the average iteration time of the gradient search isĪ, this
brute-force approach needsKM × Ī iterations which is compu-
tationally unacceptable.

If the gradient search stopped at iterationi, the optimal path
among all the valid paths denoted bys

∗
i can be expressed as:

s
∗
i = arg min

s

F(hi(s), s). (13)

Sinces
∗
i may not be equal tos∗, we need to search through

all possible paths; however, we can assume thats
∗ is within

a path subset during each iteration. The subset is composed
of the top N-best paths which are the output of the dynamic
programming on the trellis. That means the gradient descent
search only needs to be applied to the N-best paths, not all the
paths at each iteration. Then the brute-force search approach
can be improved into an N-best search:

Algorithm 2.2: N-BEST FILTER SEARCH(h)

Set the iteration time =I , the iteration stopping threshold =ǫ;
Set the N-best path number =J .
for j = 0 to J

do Initialize an N-best (J) filter list hj
0 = [1, 0, · · · , 0]T .

for i = 0 to I

do
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for j = 1 to J

do
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Useh
j
i to buildjth trellis by calculatingφ̄m

x̂ [k].
Search N-best (J) paths injth trellis.
for k = 1 to J

do

8

<

:

Selectkth best path denoted bys(j,k)
i ,

h
(j,k)
i+1 = h

j
i − ti∇hF(hj

i , s
(j,k)
i ),

whereti is the step size.
Sorth(j,k)

i+1 , j, k = 1, · · · , J , according to values of
F(h

(j,k)
i+1 , s

(j,k)
i ) in ascending order to obtain

a sorted filter list denoted bỹhl
i+1, l = 1, · · · , J2

for j = 1 to J

do h
j
i+1 = h̃

j
i+1.

if max
j=1...J

||hj
i+1 − h

j
i ||

||hj
i ||

< ǫ

then h
∗ = h

1
i , exit .

if i == I
then h

∗ = h
1
I , exit .

AlthoughJ × Ī trellis building and dynamic programming
operations are newly introduced in this N-best search approach,
the total average gradient search iterations is reduced toJ2 × Ī
compared to theKM × Ī iterations in the brute-force search
approach when theM is large. Typically, for Antbird calls,K
= 49, 1≤ M ≤ 50,J = 20.

3. Experiments
The Antbird call corpus contains 3366 bird calls from 5 species.
We split the corpus into a training and testing set with a ratio of
2:1 as shown in Table 1. The training set is 85 minutes long and
the testing set is 42 minutes long. The calls are 0.5 - 5.0 seconds
long.

Table 1: Number of bird calls in the training and test
sets. BAS: Barred Antshrike; DAB: Dusky Antbird; GAS:
Great Antshrike; MAT: Mexican Antthrush; DWA: Dot-winged
Antwren.

BAS DAB GAS MAT DWA Total

Training 240 888 350 609 159 2246
Testing 120 444 175 304 77 1120

Table 2: Classification error rate (%) on the test set.W+/CM+ :
feature extraction using the output of the Wiener/Correlation-
Maximization based denoising filter

GMM HMM

MFCC 8.7 5.4
W+MFCC 5.9 4.9
CM+MFCC 5.3 4.6
CM+W+MFCC 4.7 4.1

The original single-channel acoustic signal is collected at
a sampling rate of 44.1 kHz. The frequency range of the bird
calls is from 500 to 6000 Hz. Thus, we use a band-pass filter
with cutoff frequencies between 360 Hz and 6500 Hz to remove
irrelevant frequency components. The signal is then downsam-
pled to 16 kHz.

In the Correlation-Maximization denoising filter, the num-
ber of the filter taps (L) is 20. Since an analysis frame should
contain at least two chirps to extract the chirp interval, and the
bird chirp length ranges from 60 to 300 ms, the frame length is
600 ms, i.e. 9600 samples. The frame step size is 100 ms, and
the correlation lag step is 5 ms. The number of lags is (300 -
60)/5 + 1 = 49. The maximum number of iterations (I) in the
gradient search, and the number of N-best paths (J) are both
20. According to the experimental results, increasingL, I , orJ
does not boost the classification accuracy but does increasethe
computational cost.

A 39-dimension feature composed of the first 13 MFCCs
and first and second derivatives is computed every frame for
model training and testing.

In the GMM classifier, each species’ model is set to have
256 Gaussians. In the HMM-based classifier, each species’
model also has 256 Gaussians per state. The recognition net-
work is the same as the one used in isolated word recognition,
in which each species corresponds to a word node. Choosing
the correct state number may enable finer modeling of a bird
call. Since the number of chirps in a bird call varies and the
state numbers are the same for all 5 species, state number 6,
which is the minimum number of chirps in all the bird calls,
is used for each species model and it also results in the lowest
classification error rate among state numbers 1 to 9.

Classification results are shown in Table 2. The HMM-
based classifier results in better performance than the GMM
classifier when using the same features. After applying the
Correlation-Maximization denoising filter, classification error
rates of both GMM and HMM-based classifiers are lower than
their counterparts using the Wiener filer. Since the Correlation-
Maximization filter uses a long frame length to estimate the
slow-varying noise and to capture interval periodicity, and the
Wiener filter employs a relatively short frame length to track the
fast changing noise, it is possible that cascading the two filters
can further reduce error rates.

As shown in Table 3, the confusion matrix is used to ana-
lyze the classification errors. The calls of BAS, MAT, and DAB
are less likely to be misclassified as other species comparedto



Table 3: The confusion matrix of using CM+W+MFCC feature
and HMM based classifier on the test set;RE: the number of
errors divided by the total number of calls in the row;PE: the
number of errors in the row divided by the total number of calls.

BAS DAB GAS MAT DWA RE(%) PE (%)
BAS 120 0 0 0 0 0.0 0.0
DAB 1 430 7 5 1 3.2 1.2
GAS 6 3 149 17 0 14.9 2.3
MAT 0 0 0 304 0 0.0 0.0
DWA 0 4 2 0 71 7.8 0.5

those of GAS and DWA. The GAS→MAT errors (1.5%) ac-
counted for more than 35% in the total errors (4.1%).

Figure 2: A Great Antshrike (GAS) call: (a) original spectro-
gram; (b) spectrogram after Wiener filtering; (c) spectrogram
after Correlation-Maximization filtering; (d) spectrogram after
Wiener and Correlation-Maximization filtering.

A GAS bird call is used to illustrate the difference between
the Wiener and Correlation-Maximization filter. From Figure 2
(a), other bird chirps are observed from 0.6 to 1.6 seconds, and
background noise can act as adverse factors to the classifica-
tion task. As shown in Figure 2 (b), both target and non-target
bird chirps are enhanced after Wiener filtering. That is because
Wiener filter can not denoise discriminately. It can be seen from
Figure 2 (c) that the Correlation-Maximization filter can sup-
press the non-target chirps while enhancing the target chirps.
That is because the Correlation-Maximization filter is supposed
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Figure 3: The frequency response of the Correlation-
Maximization filter for a GAS call.

to only enhance the periodic structure of the target bird call. It
is also shown in Figure 2 (d) that both non-target bird call and
background noise are suppressed when cascading the Wiener
filter and the Correlation-Maximization filter.

The frequency response of the optimal Correlation-
Maximization denoising filter for this bird call is shown in Fig-
ure 3. The filter has a pass-band from 800 to 1750 Hz, which
can enhance the frequency components of the target bird call, a
stop-band from 2600 to 8000 Hz, and a dip around 2800 Hz can
minimize the interference introduced by background noise and
other bird chirps. Other filters were developed for other bird
calls.

4. Conclusions
For bird calls which have a quasi-periodic structure in the time
domain and a relatively invariant power spectral density across
frames, a Correlation-Maximization based denoising filteris ef-
fective in enhancing the target bird calls which results in are-
duction in classification error rate.

The advantage of the Correlation-Maximization based de-
noising filter over the Wiener filter is that it avoids estimating
the SNR. Instead, it uses the periodicity of the bird call to in-
struct the denoising.
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