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Abstract

In this paper, an MLLR-like adaptation approach is proposed
whereby the transformation of the means is performed deter-
ministically based on linearization of VTLN. Biases and adap-
tation of the variances are estimated statistically by the EM al-
gorithm. In the discrete frequency domain, we show that un-
der certain approximations, frequency warping with Mel-£lter-
bank-based MFCCs equals a linear transformation in the cep-
stral domain. Utilizing the deduced linear relationship, the
transformation matrix is generated by formant-like peak align-
ment. Experimental results using children’s speech show im-
provements over traditional MLLR and VTLN. The improve-
ments occur even with limited amounts of adaptation data.

1. Introduction
Vocal tract length normalization (VTLN) [1][2] has been ex-
tensively used in speaker adaptation to reduce the spectral mis-
match via frequency warping. Recently, the relationship be-
tween the front-end feature domain and the back-end model do-
main, in terms of VTLN, has drawn increasing attention [3][4].
In [3], a linear relationship is investigated in the Z space in the
form of an all-pass transformation. In [4], the authors prove,
in the continuous frequency ω space, that frequency warping
equals a linear transform in the cepstral domain. However, since
invertiblity is required, the MFCC features studied in [4] are
computed by Mel-scaling instead of Mel-scaled £lter banks. In
this paper, we investigate the above-mentioned relationships in
the discrete frequency space. We show that for MFCCs com-
puted with Mel-scaled triangular £lter banks, a linear relation-
ship can be obtained if certain approximations are made. Uti-
lizing that relationship as a special case of MLLR, an adap-
tation approach based on formant-like peak alignment is pro-
posed where the transformation of the means is performed de-
terministically based on the linearization of VTLN. Biases and
adaptation of the variances are estimated statistically by the EM
algorithm.

The remainder of the paper is organized as follows: in Sec-
tion 2, the linearization conditions of VTLN in the discrete fre-
quency domain are discussed; in Section 3, spectral peak align-
ment by piece-wise linear functions is described; the adaptation
scheme is described in Section 4; experimental results are pre-
sented in Section 5; and conclusions are made in Section 6.

2. Linearization of VTLN
MFCCs are the most widely-used speech features for recogni-
tion. Fig.1 illustrates how MFCCs are computed with a uni-
formly spaced triangular Mel-scale £lter bank. Let S l denote
a linear spectrum magnitude and Sc the corresponding MFCC

|DFT|
Mel filter

bank Log DCT
speech MFCC

Figure 1: Diagram of MFCC feature extraction.

features. According to the scheme shown in Fig. 1, we have:

S
c = C · log(M · Sl) (1)

where C is the DCT matrix, log is the component-wise loga-
rithm function applied to a matrix.

M =











θ1,1 · · · θ1,K1

θ2,1 · · · θ2,K2

...
...

...
...

...
θN,1 · · · θN,KN











N×L

is the matrix form of the Mel £lter bank where L and N are the
number of samples in the linear and Mel-frequency domains,
respectively. θi,j is the jth weight of the ith triangular £lter and
Ki represents the number of non-zero coef£cients in each £lter.
In other words, each row represents the components in one £lter
bin. In M, all elements other than θi,j are zeros. Typically, N
is much smaller than L.

Suppose there exists a warping function in the discrete lin-
ear frequency domain k = φ(l), where k and l are the discrete
frequency sample indices. This can be represented as a fre-
quency warping matrix RL×L whose components are de£ned
as:

rij =

{

1, if i = round(φ(j))
0, otherwise.

(2)

LetX be a cepstral feature vector andY be the cepstral feature
vector after applying the linear frequency warping, then the re-
lationship betweenX andY can be described by:

Y = C · log
(

T · exp
(

C
−1 ·X

))

(3)

where C and C−1 are the DCT and inverse DCT matrices,
respectively, and log(·) and exp(·) are component-wise loga-
rithm and exponential functions of a matrix. T =M ·R ·M∗

whereM∗ is the matrix that transforms features from the Mel-
frequency domain to the linear frequency domain. Eq.3 is
equivalent to the one presented in [2].

Before we discuss the properties of the transform in Eq.3,
let us £rst de£ne an index mapping (IM) matrix. A matrix is
called an index mapping matrix if there is one and only one “1”
in each row and all the other components are zeros. Obviously,
the product of IM matrices is still an IM matrix. It is easy to
show that the frequency warping matrixR is an IM matrix.

Next, we show that if the matrixT in Eq.3 is an IM matrix,
then X and Y are related by a linear transformation. Since



T is an IM matrix, it only re-maps the index order of vector
components and does not alter the value of it. Hence, we can
exchange the order of T and log(·):

Y = C · log
(

T · exp
(

C
−1 ·X

))

= C ·T ·
(

log · exp
(

C
−1 ·X

))

= C ·T ·C−1 ·X

= A ·X (4)

where

A = C ·T ·C−1 = C ·M ·R ·M∗ ·C−1 (5)

Consequently, the means ofX andY also satisfy the same lin-
ear relation:

µY = E{Y} = E{A ·X} = A · E{X} = A · µX (6)

In most cases, speech features employed in automatic speech
recognizers are a concatenation of static MFCCs with their £rst
(delta) and second (delta-delta) order derivatives. In this paper,
the derivatives are computed using £rst order difference:

4Xt = Xt −Xt−1 , 42
Xt = 4Xt −4Xt−1 (7)

It is straightforward that if Eq.4 holds, then we have:

µ4Y = A · µ4X , µ42Y = A · µ42X (8)

The Mel £lter bank computation of MFCCs involves the sum-
mation of spectra samples within the frequency range of each
triangular £lter. Therefore, M is not an IM matrix. So T is
generally not an IM matrix either and Eq.3 can not be expressed
as a linear transformation. However, suppose we substitute the
output of each triangular £lter in the £lterbank with the value of
the center frequency sample (peak) of that £lter, we are able to
approximateM with an IM matrix M̃:

M̃ =











θ̃1,1 · · · θ̃1,K1

θ̃2,1 θ̃2,K2

...
...

...
...

...
θ̃N,1 · · · θ̃N,KN











N×L

where

θ̃ij =

{

1, if θij is the central frequency of the ith £lter
0, otherwise.

Similarly,M∗ which maps samples from the Mel-frequency do-
main to the linear frequency domain can be created by setting
the output of each triangular £lter on the Mel-frequency axis as
the sample value of the corresponding center frequency on the
linear frequency axis. The other frequency samples in the lin-
ear frequency domain are interpolated by repeating neighboring
center frequencies that have already been generated as shown in
Eq.9:

M
∗ =



















1 0 0 · · · 0
0 1 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 1



















L×N

(9)

Thus, M̃, M∗ and R are all IM matrices. T ≈ M̃ · R ·M∗

is also an IM matrix. In this way, a linear transformation of µY

and µX is guaranteed. That is,

µY ≈ A · µX (10)

where
A = C · M̃ ·R ·M∗ ·C−1 (11)

The advantage of using matrices in the discrete frequency do-
main is that it can avoid complicated calculus computation
when determining matrix components in the continuous fre-
quency domain as shown in [4]. Since triangular Mel £lter
banks are not invertible, the approximated linear relationship is
dif£cult to obtain from the continuous frequency domain. Eq.
10 could be considered as a special case of maximum likelihood
linear regression (MLLR), and Eq. 11 gives the £ve matrices to
construct the transformation matrixA. Among the matrices,R
is the discretized form of a frequency warping function which
could be chosen carefully, as shown in the next section, to re-
duce the spectral mismatch in speaker adaptation.

To investigate the effects of the linearization approxima-
tion, Fig. 2 demonstrates two MFCC features (C1 - C13) with
and without linearization approximation. The approximation
only results in slight differences between the two feature sets.
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Figure 2: MFCC features with (solid line) and without (dashed
line) linearization approximation. The dimensions are from C1
to C13 of an /uw/ sound.

3. Peak Alignment
Vocal tract variation, which results in spectral mismatch, is a
major source for performance degradation of speech recogniz-
ers with different speakers. Fig.3 shows two /uw/ (from the digit
“two”) spectra of a 25ms frame from an adult male and a boy
(about 10 years old). Obvious pitch and formant differences
can be observed. If we can re-shape the two spectra by aligning
the corresponding formants, then the spectral mismatch can be
mitigated. In this paper, formant-like peaks are estimated us-
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Figure 3: Spectra of the steady part of the sound /uw/ in the
digit “two” from an adult male (left) and a boy (right).

ing Gaussian mixtures via the EM algorithm as proposed in [5].
In this algorithm, the magnitude of a spectrum in each frame
is considered as a probability density function, and a Gaussian
mixture model is used to £t it iteratively. Estimated means, vari-
ances and mixture weights of the Gaussians correspond to the



locations, bandwidths and amplitudes of the formants. Since
the peaks found in this way are not necessarily the formants,
they are called “formant-like” peaks.

Fig. 4 illustrates the spectrograms with peaks estimated us-
ing Gaussian mixtures. The speakers and utterances are the
same as in Fig. 3. It is observed that typically in the 4 kHz
frequency range, adult speakers have four formants while child
speakers have only three. Hence, four Gaussian mixtures are
used for adult males and three Gaussian mixtures for kids in
the estimation of the experiments in this paper. Based on

Time

Fr
eq

ue
nc

y

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

500

1000

1500

2000

2500

3000

3500

4000

Time

Fr
eq

ue
nc

y

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

500

1000

1500

2000

2500

3000

3500

4000

Figure 4: Formant-like peaks estimated (white circles) using
Gaussian mixtures for the sound /uw/ in digit “two” from an
adult male (left) and a boy (right).

the estimated peaks, we align them using a piece-wise linear
function. Suppose we have M − 1 peaks to align, they are
{ωc

1, . . . , ω
c
M−1} for the child speaker, and {ωa

1 , . . . , ω
a
M−1}

for the adult speaker. Also, we de£ne ωc
0 = ωa

0 = 1. Since
{ωc

1, . . . , ω
c
M−1} and {ωa

1 , . . . , ω
a
M−1} are estimated Gaussian

mixture means, they are real numbers, not necessarily integers.
The piece-wise linear function is described in Eq.12.

φ(l) =































ωc
i +

ωc
i+1−ωc

i

ωa
i+1

−ωa
i
· (l − ωa

i )

for l ∈ (ωa
i , ω

a
i+1) and i = 0, . . . ,M − 2.

ωc
M−2 +

ωc
M−1−ωc

M−2

ωa
M−1

−ωa
M−2

· (l − ωa
M−2)

for l ∈ (ωa
M−1, ω

a
M ).

(12)
Note that we require ωc

0 = ωa
0 but there is no requirement that

ωc
M = ωa

M . This is because children usually have higher for-
mants than adults. and therefore, in the same frequency range,
have fewer formants than adults. By not requiring that ωc

M

equals ωa
M , it is possible for the extra formants in adult spectra

to disappear after alignment. The left panel of Fig. 5 shows the
piece-wise linear function computed according to Eq.12 align-
ing the £rst and the third formant-like peaks in Fig. 4. Since
formants gradually change from frame to frame, the median
value for each peak is used. In the right panel of Fig. 5, the
original spectrum of the child’s speech (solid line) and the re-
shaped spectrum (dotted line) of the adult’s speech from Fig. 3
are illustrated. Compared with the spectra in Fig. 3, the mis-
match between the two spectra is greatly reduced. On the basis
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Figure 5: Piece-wise linear function (left) and reshaped adult’s
spectrum after peak alignment (right).

of the frequency warping function φ(l),R could be created and
eventuallyA could be obtained by Eq.11.

4. Adaptation Scheme
We adapt the means and variances of the acoustic models sep-
arately in an unconstrained fashion. The means of Gaussian
mixtures of HMMs are transformed as:

µ
new = A µ+ b (13)

where the transformation matrix A is generated deterministi-
cally using Eq.11 after obtaining R based on peak alignment
described in Section 3. The estimation of the bias vector b from
the adaptation data is carried out under the maximum likelihood
criterion, which can be accomplished using the EM algorithm
[6].

Suppose the biases are tied into Q classes :
{ω1, · · · , ωq, · · · , ωQ}. For a speci£c class ωq , the bias
bq is shared across all the Gaussian mixtures N (ot;µik,Σik)
with (i, k) ∈ ωq and is given by:

bq =





U
∑

u=1

∑

(i,k)∈ωq

T u
∑

t=1

γ
u
t (i, k) ·Σ−1

ik





−1

· (14)





U
∑

u=1

∑

(i,k)∈ωq

T u
∑

t=1

γ
u
t (i, k) ·Σ−1

ik · (o
u
t −Aµik)





where U is the number of utterances in the adaptation data
and Tu is the number of frames in the uth utterance. i ∈
{1, 2, · · · , N} and k ∈ {1, 2, · · · ,M} are the indices of state
and mixture sets, respectively. γu

t (i, k) = p(su
t = i, ξu

t =
k|Ou, λ) is the posterior probability of being at state i mixture
k at time t given the uth observation sequence. µik and Σik

are the mean vector and covariance matrix associated with it,
respectively. Typically, Σik is a diagonal covariance matrix so
that Eq.14 can be solved one dimension at a time.

Given the adapted Gaussian mixture means, the diagonal
covariance matrices are adapted as described in [7]:

Σ
new
ik = BT

ikHqBik (15)

where Hq is the linear covariance transformation shared by all
Gaussian mixtures in the class ωq , namely, (i, k) ∈ ωq . Bik is
the inverse of the Cholesky factorization ofΣ−1

ik . That is,

Σ
−1
ik = CikC

−1
ik and Bik = C−1

ik (16)

The maximum likelihood estimation of the covariance lin-
ear transformationHq is given by

∑

(i,k)∈ωq

C
T
ik[

U
∑

u=1

T u
∑

t=1

γ
u
t (i, k)(ou

t − µik)(ou
t − µik)T ]Cik

∑

(i,k)∈ωq

U
∑

u=1

T u
∑

t=1

γ
u
t (i, k)

(17)
By forcing theHq’s off-diagonal terms to zeros, a diagonal co-
variance matrixΣik is obtained after adaptation.

To summarize, the adaptation scheme investigated above
deterministically generates the transformation matrix A and
statistically estimates the bias b and variance transformationH.
Therefore, the number of parameters to be estimated is reduced
which can achieve better performance in case of limited adap-
tation data. Obviously, bias and variance adaptation can still
bene£t from large amounts of adaptation data.



5. Experimental Results and Discussion
Experiments are performed on connected digit strings from
the TIDIGITS database. Acoustic models are trained on adult
males and tested on children. Speech data from 55 male speak-
ers are used in training and data from 5 boys and 5 girls in test-
ing. Each speaker contributes 77 utterances with 1-7 digits for
each utterance. For each child, the adaptation utterances, which
consists of 4, 7, 10, 20 or 30 digits, are randomly chosen from
the test set and not used in the testing. The speech signals are
down-sampled from 20 to 8 kHz. Each speech frame is 25ms
long with a 10ms overlap. Feature vectors are of 39 dimensions:
13 static features plus their £rst- and second-order derivatives.
Acoustic HMMs are phoneme-based with a left-to-right topol-
ogy. There are 18 monophones plus silence and short pause
models. Monophones have 2 to 4 states with 6 Gaussian mix-
tures in each state. In adaptation, voiced segments are detected
from the speech signals via the cepstral peak analysis technique
[8]. Formant-like peaks are estimated from the voiced segments
by Gaussian mixtures [5]. For a speci£c speaker, the median of
peaks in each voiced segment is £rst obtained and the average
over all the medians serves as the estimate of the peaks and is
used in the alignment. The adult male who yields the high-
est likelihood in the training set is selected as the “standard”
adult speaker and used to represent the acoustic characteristics
of the entire adult training set. The £rst and the third formants
are then aligned. The Gaussian mixtures are initialized with
means uniformly located on the frequency axis with equal mix-
ture weights. For each frame, 20 EM iterations are performed.
The biases and variances are tied using a regression tree with 20
base classes.

Table 1 shows the performance of the proposed adaptation
approach (PA) compared to the traditional MLLR and VTLN
algorithm. The MLLR transformation matrices are 3-block di-
agonal and tied using the same regression tree as the biases and
variances. The VTLN is implemented utterance by utterance as
follows: HMMs £rst provide an initial hypothesis for each ut-
terance, and warping factors within [0.7, 1.1] are then applied
to the signal with a stepsize of 0.05. The optimal warping fac-
tor is chosen as the one which gives the highest likelihood score
based on forced alignment and is used to scale the frequency
axis in the feature extraction stage. For comparison, the perfor-
mance of linear approximation of VTLN studied in [2] is also
presented in the table and denoted LA VTLN. From the ta-

Number of adaptation digits
Algorithm 4 7 10 20 30

no adaptation 38.9 38.9 38.9 38.9 38.9
MLLR 60.2 72.5 76.6 89.9 92.0
VTLN 89.8 89.8 89.8 89.8 89.8

LA-VTLN 85.0 85.8 86.4 89.9 91.6
PA 90.1 91.1 91.0 93.5 95.1

Table 1: Recognition accuracy of children’s speech with MFCC
features (TIDIGITS).

ble, MLLR has poor performance when the adaptation data are
limited, which is due to unreliable parameter estimation. PA
and VTLN signi£cantly outperform MLLR under this condi-
tion because they utilize spectral information to reduce the mis-
match and have fewer parameters to estimate. As the amount of
adaptation data grows, MLLR performance improves. Hence,
MLLR has an advantage when large amounts of data are avail-
able while VTLN is advantageous for limited amounts of data.

In the proposed approach, transformation of means is £rst de-
terministically generated by aligning the formant-like peaks, on
the basis of which, statistical approaches such as tree-based tied
variance and bias adaptation are performed. In this way, the al-
gorithm can take advantage of both large and limited amounts
of adaptation data. Moreover, the linear approximation investi-
gated in this paper gives better performance than that studied in
[2], which may be because a relatively large scaling factor is re-
quired for children’s speech, while the Taylor expansion made
in [2] based on a small factor does not hold. Experiments using
adult female’s acoustic models also demonstrate a similar trend
although the baseline (no adaptation) performance is higher.

6. Conclusions
An MLLR-like adaptation approach is proposed where the
transformation of the means is performed deterministically
based on linearization of VTLN. Biases and adaptation of the
variances are estimated statistically by the EM algorithm. We
show that under certain approximations, frequency warping of
Mel-£lter-bank-based MFCCs equals a linear transformation in
the cepstral space. Based on that linear relationship, a formant-
like peak alignment algorithm to adapt adult acoustic models to
children’s speech is proposed. Performance improvements are
observed compared to traditional MLLR and VTLN. 1
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