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ABSTRACT

This paper extends the expectation-maximization (EM)rtigm to
estimate not only optimal acoustic model parameters, laat ap-
timal center frequencies and bandwidths of the filter barédua
cepstral feature extraction for bird call classificatiotheTsearch is
done using the gradient ascent method. Filter bank and npadel
rameters are optimized iteratively. Experiments are cotetlion
a large noisy corpus containing Antbird calls from 5 specikss
shown that features extracted using the optimized filtek vasult
in a lower classification error rate than those extractedguaiMel-
scaled filter bank.

Index Terms— EM algorithm, filter bank, bird call classification

1. INTRODUCTION

In pattern recognition tasks, audio signals are compressadse-
guence of feature vectors. When the distribution of theufest is
quantitatively modeled, the expectation-maximizatioMjEalgo-
rithm can be used to estimate acoustic model parameteretay it
tively maximizing the expectation of the likelihood fromete fea-
tures [1].

To improve the discriminability of the features, the origlifiea-
ture space can be mapped to new subspaces by certain pogecti
Different criteria are employed to search for optimal petins.
Linear discriminant analysis (LDA) [2] computes the prajes by
maximizing the Fisher ratio value; heteroscedastic LDA QA [3]
and multiple LDA (MLDA) [4] learn the projection by maximizg
the likelihood from the transformed features; while fMPE §sti-
mates the projection by minimizing phone error rate.

Changing parameters in feature extraction can also inertes
discriminability of the features. The Mel-scaled filter kas of-
ten used for feature extraction in automatic speech retiogni
(ASR) [6]. Kamm et al. [7] searched a family of optimal wargin
scales for ASR through a brute-force data-driven apprcawthcon-
cluded that the Mel-scale is a member of the family. Graciaret
al [8] manually changed the frequency range, the numbertefdil
and the frequency scale type of the filter bank for bird soegiifi-
cation.

For bird song classification and recognition applicatiorss,
searchers also have spent effort in exploring machine ilegatech-
niques such as back propagation and multivariate statiffic dy-
namic time warping and hidden Markov models [10] [11], ands0
Denoising filters are also helpful for enhancing bird callg][
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Fig. 1. The frequency response of the filter bank used in feature
extraction.L is the number of filters. The letter on top of each filter
denotes the filter index.The gain of each filter is the same.

Inthis paper, the optimal center frequencies and bandwidftthe
filter bank are searched in an efficient statistically-baseproach.
Since the auxiliary function in the EM algorithm is extendedop-
timizing not only model parameters, but also parameterhefitter
bank used in feature extraction, the proposed algorithrallea the
filter bank EM (fbEM) algorithm. Note that statistically-4ed non-
uniform DFT analysis/synthesis filter banks are explorecdethice
spectral-domain distortion in speech coding [13].

The organization of the paper is as follows: in Section linto
filter bank and model parameters optimization using the flbdM
gorithm is presented; and in Section I, experimental itssan an
Antbird corpus are analyzed.

2. OPTIMIZING THE FILTER BANK IN FEATURE
EXTRACTION

The procedure and parameters of cepstral feature extnaateothe
same as the Mel-frequency cepstral coefficients (MFCCsaetxon
except for the parameters of the filter bank. In the new filerkb
shown in Fig. 1, it is assumed that the number of filters is fixed
as L, the shape of each filter is triangular, the gain of each figter
the same, and the center frequency of each filter is equakttoih
and high cut-off frequencies of its right and left filtersspectively.
a = [ao,---,ary1]” is used to represent the parameters of the fil-
ter bank, wherey;, I = 1-- - L, denotes the center frequency of filter
l, ap andar+1 denote the low and high cut-off frequencies of the
filter bank, respectively. Audio signals denotedsbjs compressed
to a sequence of column feature vectors denotel hwhich can be
represented aSy1, - - - ,yr}, whereT is the number of the frames.
The procedure of feature extraction can be viewed as a imde-
noted byf fromxtoY,i.e.Y = fo(x).
If the feature sequence is assumed to be independent artd iden
cally distributed within each class, Gaussian mixture nh¢@&1M)
can be used to model the distribution of the homogeneous data
The proposed fhEM algorithm is shown in Algorithm 1.



Algorithm 1. fbEM: joint filter bank and model parameter
optimization using EM algorithm

Step 1: Initialization: initialize the filter bank parametess, ex-
tract featureY, i.e. fo (x) from acoustic signalx; train an initial
model M fromY using the conventional EM algorithm.

Step 2: Constrained Filter bank optimization without updating
the modelM:

& = argmax Q({a, M}, {&, M})
s.t. < ap Q)
& is solved as follows: initializex to becr, andY to be f,, (x), then
updatea:

Omin - < O_CL+1 S Omax

Q({a, M}, {a, M})

oo

a«—oa—+n

wheren denotes the step siz@({a, M}, {&, M}) is an auxil-
iary function defined in Eq. 5. Extra using the updatedt, i.e.
Y = fa(x), repeat until the increment @@ ({a, M}, {&, M})
falls below a certain threshold. Then et=a, Y = Y.

Step 3: Estimate model parameters without updating the filter

banké and featuréY , i.e. fa (x):

M = arg max Q({&7M}7{OA‘7M}) ()
M
which is the same as the conventional EM algorithm [1].
Step 4: Convergence or keep iterating: if
|Q{a, M} {&, M}) — Q({ar, M}, {a, MY)| 3)

1Q({a, M}, {ar, M})]

wheree denotes the threshold, then= &, M = M, go to Step 2;

else stop and exit.

As shown in Algorithm 1, the auxiliary function
O({a, M}, {&, M}) of the fbEM algorithm has both feature
extraction and model parameters as variables. In conveltio
EM algorithm, the auxiliary function only has model paraerst
as variables. In fbEM algorithm, sinc®({a, M}, {cx, M})
< Q{a, M}, {a, M}) < Q({a, M}, {&, M}), which is
illustrated in Step 2 and 3, the increase of the auxiliarycfiom is
guaranteed.

The details of the Algorithm 1 are shown in the following.

2.1. Filter bank o and model M initialization

In Step 1, it is important to choose a good initial guess tosiie
lution for an iterative method like the EM algorithm. Graena et
al [8] showed that a Mel-scaled filter bank results in a higbied
call verification accuracy compared to the linear-scalathterpart.
In this paper, the parameters of a Mel-scaled filter bank seel as
the initial guess forx.

Note that the parameters of the initial GMMs are trained ftben
MFCC features using the conventional EM algorithm [1].

2.2. Compute the auxiliary function Q({a, M}, {&, M})

Because there is no closed-form solutiondoin Eq. 1, the gradient
ascent method is employed in Step 2.

Let yﬁ") denote the features extracted using the filter bandt
framet. The currentx is either initialized in Step 1, or obtained from

Step 2 of the previous iteration. The probabilityyﬁf) belonging to
mixturem of classr denoted byy<’")( t) can be calculated as:

W' Ny (T);M(T) E(T))
St @ N (i) B00)
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where M denotes the number of Gaussians in each GMM,),
ui;), and={") are the weight, mean, and covariance matrix of the
Gaussian mixturen of classr, obtained from the initialization or
Step 3 of the previous iteratioA/(-) means Gaussian distribution.
Assuming that the discrete cosine transform (DCT) in feaax-
traction eliminates the dependencies among features fiffiemesht
dimensions, the covariance matrix of each Gaussian is aiig

matrix. Suppose statia), derivative ), and acceleratiomj cep-

stral features are extracted, il = [y; v¢ y¢ |7

In Step 2, the auxiliary function can be expressed as:

Q({er, M}, {a, M})
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where R denotes the number of classe®(” denotes the
number of frames in class, /5" 151" 152 denotes the

whole/static/derivative/acceleration features at fraragtracted us-
ing the filter banka, C denotes a term that is invariantdo
2.3. ComputedQ({a, M}, {&, M})/0a

By using the chain rule, we have

(r)
0Q({o, M}, {a, M}) _ R =
o DRI I IE’
g€{s,d,a} r=1m=1 t=1
(r)
oy? —1() () %
s T TS (6)

At framet, let&;, denote the energy out of tlig filter, ande, =
[e¢, - - - €, ] denote the energy output of the filter bank. Wiseris
taken as input, the static cepstral coefficigtitis the output of the
three cascaded feature extraction sub-procedures: flogarDCT
and cepstral liftering:

yi = MgERLFTMgCT log &; @)
whereMcep.rr is aD x D diagonal matrix:
d—1 . d—1
[Mcepirr], = 1+ —5—sin %, d=1---D (8)

whered denotes the diagonal indeR, denotes the dimension of the
static features)N denotes the cepstral liftering coefficiedpcr is
anL x D matrix:

2 1—0.5)(d—-1

2 gy 1L 05)(d = 1)

L

[Moct]; 4
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wherel denotes the row index] denotes the column indeX; de-
notes the number of the filters.
Re-applying the chain rul@ly; /0a can be expressed as:

dyi _ e, dloge,
da ~ da 0e;

MbpctMcepLFr (10)

0e./0a is solved as follows. Lefd;[f] denote the frequency
response of the triangular filtéiin the filter bank shown in Fig. 1,

we have:
Lf_ﬁ a1 < f<a
o — -1
Hl[f] = f_Oél+1 & < f < O_él+1 (11)
Qp — Q41 - )
0 otherwise

where f denotes the frequency. Lé&%[f] denote the power spec-
trum at framet, the energy output ofy, filter can be expressed

S Hlf1S:1f], whereF, is the sampling frequency.

as:é;, =
dloge;/de; in Eq. 10 is anL x L diagonal matrix:

[alogét (12)

1
= —, I=1---L
oe, ] . e’
wherel denotes the diagonal inde¥e;/da in Eq. 10 is an(L +
2) x L band matrix:

ag f —q
S =1
f=a; 1 (O_‘l 1 _O‘l)Q t[f] b
Qpq1 f — Ayl
9, /= (@ = auga)? =l+1
[%} e T I e W PR
" fear_, (u—a-1)?
Qpq1 f —ay
S =[1+2
f=a (g1 — a)? U] P
0 otherwise
p=1---L+2 [I=1---L (13)
wherep denotes the row index,denotes the column index.
Since the derivative features are calculated as:
A4 o(v oS
_ — y Yi—
y;i — ZG 1 ( t+0 t (9) (14)
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3. EXPERIMENTS

The Antbird call corpus contains 3366 bird calls from 5
species: Barred Antshrike (BAS), Dusky Antbird (DAB), Grea
Antshrike (GAS), Mexican Antthrush (MAT), Dot-winged Anten
(DWA) [11]. The training set is 85 minutes long and the tegtet

is 42 minutes long. The calls are 0.5 - 5.0 seconds long. Ebemp
of bird calls are shown in [11]. The frequency range of the baills

is from 500 to 6000 Hz. The signal is downsampled from 44.1 kHz
to 16 kHz. The low and high cut-off frequencies of the filtenka
Qamin @aNdamax, are set to 360 and 6500 Hz, respectively, to remove
irrelevant frequency components for bird call classifima{il2].

Two feature extraction methods are compared: the standard
MFCC extraction with a Mel-scaled filter bank, and the imgdv
MFCC extraction with an optimized filter bank obtained froris A
gorithm 1. The number of filters in the filter bank, is set to 26.
The cepstral liftering coefficienty, is set to 22. The dimension of
the static, derivative, and acceleration featuiesjs set to 13. The
coefficients for computing the derivative and accelerafeatures,
©4 and ©,, are both set to 2. The frame step size is 10 ms, and
the frame length is 25 ms. In the GMM classifier, the number of
Gaussians in each species’ mod#l, is set to 256. In the filter bank
optimization, the convergence threshaldis set to10~3.

The baseline system using MFCC features has a classification
ror rate of 8.7%. By using the new features extracted usia@{ti-
mal filter bank obtained from Algorithm 1, the error rate idueed
to 6.2%. The p-value of significance test is 0.024, which reean
that the proposed method is statistically significant fagaificance
level of 0.05. The optimization converges at the 6-th iiergtwhile
the lowest classification error rate is achieved at the 4etfation.
Model overfitting can be the explanation.

The confusion matrix of results obtained by using Mel-s¢aed
optimized filter bank are shown in Table 1. The calls of BAS, WA
and DWA are less likely to be misclassified as other species co
pared to those of DAB and GAS. The optimized filter bank effec-
tively reduced the DAB and GAS classification errors by 1.0%d a
0.4%, respectively.

Leta! /a; andBY / B, denote the center frequency and bandwidth
of I filter in the Mel-scaled/optimal filter bank, respectiveote
that in the triangular filter bank shown in Fig. 1, we have:

B =
B =

an
(18)

0 0
Q1 — Q1
Quy1 — Qi1

To show the percentages of the center frequencies and bdtidwi

where©, denotes the coefficient for computing the derivative fea-of optimal filter bank being shifted from the correspondimes in
tures, after calculatingy? /0, 9y /0a in Eq. 6 can be computed  the Mel-scaled filter bank, two difference measures regar fil-

as:
_d Q4 (55’§+9 _ 85’579)
% — o=1 o& o& (15)
oa 4 g2
220:1 9

Since the acceleration features are obtained from thealmevfea-
tures in the same way as obtaining the derivative featumra the
static featurespy¢ /0a in Eq. 6 is calculated as:

. 0. 9(3)’t+e B 8}7?,9)

8yt _ o=1 oa oa (16)
— oo

oa 250 07

ter denoted byA® and AP are defined as follows:

AY =
AP =

(du/of —1) x 100%
(B;/BY — 1) x 100%

(19)
(20)

In Mel-scaled filter bank, the distances of the center fraquef
Iin filter to its left and right counterparts asg — af_; andaf,; —
a?. The smaller the distances are, the higher frequency risolat
frequencies neax} is [6]. SinceB! = [af;; —af] + [of —af_,],
the bandwidth of the filter can be used as a measure of theeinegu
resolution at frequencies near the center frequency of ltee fihe
same conclusion can be drawn from the optimal filter bank.

A comparision of frequency parameters of the Mel-scaledomd

where®, denotes the coefficient for computing the acceleration featimal filter banks are shown in Table 2. In the optimal filtenka

tures.

the bandwidth sequend&Bo, - - - , Br.} is no longer monotonically



Table 1. The confusion matrix of the species classification resultstable 2. Center frequenciesyf andé;) and bandwidths B and
on the test set. The numbers without parentheses are adbtaine 3,y of the Mel-scaled and optimized filter bank, whére 1-- - L.
using Mel-scaled filter bank. The numbers in parenthesestden j _ og. A and AP are percentage change as defined in Egs. 19

the changes after using optimized filter bank. For exampRSG  and 20. The cut-off frequencies of the filter banks ar®:= o

was confused as MAT 32 times with Mel-scaled filter bank, bett 3g0 Hz,ad ; = dr41 = 6500 Hz.

confusion times reduced by 11 after the optimization.

Classified (#)
BAS DAB GAS MAT DWA
& [BAS| 118(+1) 0(0) 1(-1) 0(0) 1(+1)
¢ |DAB| 2(0) | 415(0) 13(-4) 13(-2) 1(+2)
2 |GAS  9(-5) 7(+2) | 127(+3) | 32(-11) | 0(0))
8 MAT|  0(0) 0(-2) 3(-1) | 301(+2) 0(0)
DWA| 1(+2) 9(-2) 3(-2) 2(0) 62(0)

increasing compared to the Mel-scaled filter bank. As meeticde-
fore, the shifting of the center frequencies and changirty@band-
widths compared to their counterparts in the Mel-scaledrfliank
cause the frequency resolutions at different frequendeshange.
In the fbEM algorithm, the maximum likelihood criterion ised
to raise or lower the frequency resolutions at certain feegies
such that more discriminative information for classifioatican be
extracted from spectra. Therefore, a lower classificativoreate
can be achieved.

The bandwidths of the filters in both filter banks are smalbat |
frequencies, which means more discriminative informatarclas-
sification resides at low frequencies. The bandwidths of 2isdl,
9th, 10th, and 15th filters in the optimal filter bank are smalh-
pared to other adjacent filters. The bandwidths of thesediliee
also significantly lessx 25%) than their counterparts in the Mel-
scaled filter bank. Thus, more discriminative informationélassi-
fication may reside between 360 - 532, 1176 - 1458, and 22232 25
Hz compared to other frequencies in the filter bank.

4. CONCLUSIONS

The fbEM algorithm offers an approach to jointly estimatiefibank
parameters in feature extraction, and model parameterig e
fbEM algorithm, the bird species classification accuracyadarge
noisy corpus is increased by optimizing the center fregiesnand
bandwidths of the filter bank used in cepstral feature etitiac In
the future, we will attempt to expand the work to speech raitmg.
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