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Abstract 
Recognizing speech under high levels of channel and/or noise 
degradation is challenging. Current state-of-the-art automatic 
speech recognition systems are sensitive to changing acoustic 
conditions, which can cause significant performance 
degradation. Noise-robust acoustic features can improve 
speech recognition performance under varying background 
conditions, where it is usually observed that robust modeling 
techniques and multiple system fusion can help to improve the 
performance even further. This work investigates a wide array 
of robust acoustic features that have been previously used to 
successfully improve speech recognition robustness. We use 
these features to train individual acoustic models, and we 
analyze their individual performance. We investigate and 
report results for simple feature combination, feature-map 
combination at the output of convolutional layers, and fusion 
of deep neural nets at the senone posterior level. We report 
results for speech recognition on a large-vocabulary, noise- 
and channel-degraded Levantine Arabic speech corpus 
distributed through the Defense Advance Research Projects 
Agency (DARPA) Robust Automatic Speech Transcription 
(RATS) program. In addition, we report keyword spotting 
results to demonstrate the effect of robust features and 
multiple levels of information fusion. 

Index Terms: noise-robust speech recognition, large-
vocabulary continuous speech recognition, time frequency 
convolution, feature-map fusion. 

1. Introduction 
Current large-vocabulary continuous speech recognition 
(LVCSR) systems demonstrate high levels of recognition 
accuracy under clean condition or at high signal-to-noise ratios 
(SNRs). However, these systems are very sensitive to 
environmental degradations such as background noise, channel 
mismatch, or distortion. Hence, enhancing robustness against 
noise and channel degradations has become an important 
research area for automatic speech recognition (ASR), 
keyword spotting (KWS), speech-activity detection, speaker 
identification, etc.  

Traditionally, ASR systems use mel-frequency cepstral 
coefficients (MFCCs) as the acoustic observation. However, 
MFCCs are susceptible to noise; as a consequence, their 

performance can degrade dramatically with increases in noise 
levels and channel degradations. To counter this vulnerability, 
researchers have actively explored alternative feature sets that 
are robust to background degradations. Research on noise-
robust acoustic features typically aims to generate a relatively 
invariant speech representation, such that background 
distortions minimally impact the features. To reduce the effect 
of noise, speech-enhancement-based approaches have been 
explored, where the noisy speech signal is enhanced by 
reducing noise corruption (e.g., spectral subtraction [1], 
computational auditory scene analysis [2], etc.). Noise-robust 
signal-processing approaches have also been explored, where 
noise-robust transforms and/or human-perception-based 
speech-analysis methodologies were investigated for acoustic-
feature generation, such as the ETSI [European 
Telecommunications Standards Institute] advanced [3] front-
end, power-normalized cepstral coefficients [PNCC] [4], 
modulation-based features [5-7], and many more. 

Recently, the introduction of deep learning techniques [8] 
enabled significant improvement in speech recognition 
performance [9]. In this vein, convolutional deep neural 
networks (CNNs) [10, 11] have proved to often perform better 
than fully connected deep neural networks (DNNs) [12, 13], 
specifically for features having spatial correlations across their 
dimensions. CNNs are also expected to be noise robust [11], 
especially when the noise or distortion is localized in the 
spectrum. Speaker-normalization techniques, such as vocal 
tract length normalization (VTLN) [14], have been found to 
have less impact on speech recognition accuracy for CNNs 
than for DNNs. With CNNs, the localized convolution filters 
across frequency tend to normalize the spectral variations in 
speech arising from vocal tract length differences, enabling 
CNNs to learn speaker-invariant data representations. Recent 
results [12-13] have also shown that CNNs are more robust to 
noise and channel degradations than DNNs. Typically for 
speech recognition, a single layer of convolution filters is used 
on the input contextualized feature space to create multiple 
feature maps that, in turn, are fed to fully connected DNNs.  

In [15, 16], convolution across time was applied over 
windows of acoustic frames that overlap in time to learn 
classes such as phone, speaker, and gender. In 1980s, the 
notion of weight sharing over time was first introduced 
through the time-delay neural network (TDNN) [17]. Recent 
DNN/CNN architectures use a hybrid topology, in which 
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DNN/CNNs produce subword unit posteriors, and a hidden 
Markov model (HMM) performs the final decoding. As the 
HMMs typically model time variations well, time convolution 
is usually ignored in current CNN architectures. However, 
with environmental degradation such as reverberation, the 
introduced distortion typically corrupts time-scale information. 
Recent work [18] has shown that employing temporal 
convolution along with spatial (frequency-scale) convolution 
using a time-frequency CNN (TFCNN) can add to the 
robustness of speech recognition systems. 

Here, we present speech recognition and keyword spotting 
(KWS) results for acoustic models trained on highly channel-
degraded speech data collected as part of the U.S. Defense 
Advanced Research Agency’s (DARPA’s) Robust Automatic 
Transcription of Speech (RATS) program. State-of-the-art 
KWS systems [19-21, 29] mostly focus on training multiple 
KWS systems and then fusing their outputs to generate a 
highly accurate final KWS result. Fusion of multiple systems 
is usually observed to provide better KWS performance than 
that of the individual systems. Studies [22] have explored 
feature-combination approaches and demonstrated that they 
can improve KWS system accuracy. In this work, we show 
gains from feature-level combination, feature-map-level 
fusion, and system-level fusion, and we investigate if such 
techniques result in better KWS performance. This paper 
focuses on a Levantine Arabic (LAR) KWS task.  

The DARPA RATS program aims to develop robust 
speech-processing techniques for highly degraded speech 
signals with emphasis on four broad tasks: (1) speech activity 
detection (SAD); (2) language identification (LID); (3) key 
word spotting (KWS); and (4) Speaker Identification (SID). 
The data was collected by the Linguistic Data Consortium 
(LDC) by retransmitting conversational telephone speech 
through eight different communication channels [23]. Note 
that RATS rebroadcasted data is unique in the sense that the 
noise and channel degradations were not artificially introduced 
by performing simple mathematical operations on the speech 
signal, but rather by transmitting clean source signals through 
different radio channels [23], where variations among the 
different channels introduced an array of distortion modes. 
The data also contained distortions, such as frequency shifting, 
speech modulated noise, non-linear artifacts, no transmission 
bursts, etc., which made robust signal-processing approaches 
even more challenging compared to those for the traditional 
noisy corpora available in the literature. 

2. Dataset and Task 
The speech dataset used in our experiments was collected 

by the Linguistic Data Consortium (LDC) under DARPA’s 
RATS program, which focused on speech in noisy or heavily 
distorted channels in two languages: LAR and Farsi. The data 
was collected by retransmitting telephone speech through eight 
communication channels [23], each of which had a range of 
associated distortions. The DARPA RATS dataset is unique in 
that noise and channel degradations were not artificially 
introduced by performing mathematical operations on the 
clean speech signal; instead, the signals were rebroadcast 
through a channel- and noise-degraded ambience and then 
rerecorded. Consequently, the data contained several unusual 
artifacts, such as nonlinearity, frequency shifts, modulated 
noise, and intermittent bursts—conditions under which 
traditional noise-robust approaches developed in the context of 
additive noise may not have worked so well. 

For LAR acoustic model (AM) training, we used 
approximately 250 hours of retransmitted conversational 
speech (LDC2011E111 and LDC2011E93); for language 
model (LM) training we used various sources: 1.3M words 
from the LDC’s EARS (Effective, Affordable, Reusable 
Speech-to-Text) data collection (LDC2006S29, 
LDC2006T07); 437K words from Levantine Fisher 
(LDC2011E111 and LDC2011E93); 53K words from the 
RATS data collection (LDC2011E111); 342K words from the 
GALE (Global Autonomous Language Exploitation) 
Levantine broadcast shows (LDC2012E79); and 942K words 
from web data in dialectal Arabic (LDC2010E17). We used a 
held out set for LM tuning, which was selected from the Fisher 
data collection containing about 46K words. To evaluate KWS 
performance for LAR, we used two test sets—referred to as 
dev-1 and dev-2. Each set consisted of 10 hrs of held-out 
conversational speech. A set of 200 keywords was pre-
specified for the LAR test set, with each keyword composed of 
up to three words and at least three syllables, and appearing at 
least three times on average in the test set. 

2.1. Acoustic features 
We used several different acoustic features to parameterize 
speech. We briefly outline the features explored in this section.  
 

2.1.1 Damped Oscillator Coefficients (DOC) 
DOCs use forced damped oscillators to model the hair cells 
found within the human ear [24]. DOC tracks the dynamics of 
the hair cell oscillations to auditory stimuli and uses that as the 
acoustic feature. In the human auditory system, the hair cells 
detect the motion of incoming sound waves and excite the 
neurons of the auditory nerves, which then transduce the 
relevant information to the brain. For our DOC processing, a 
bank of gammatone filters that produces 40 bandlimited 
subband signals analyzed the incoming speech signal. The 
gammatone filters were equally spaced on the equivalent 
rectangular bandwidth (ERB) scale. The outputs of the 
gammatone filters were used as the forcing functions to an 
array of 40 damped oscillators, whose response was then used 
as the acoustic feature. We analyzed the damped oscillator 
response by using a Hamming window of 26 ms with a frame 
rate of 10 ms. The power signal from the damped oscillator 
response was computed and then root compressed by using the 
15th root, resulting in the 40 dimensional features that 
comprised the DOC feature in our experiments. 
 

2.1.2 Normalized Modulation Coefficients (NMC) 
The NMC [6] feature captures and uses the amplitude 
modulation (AM) information from bandlimited speech 
signals. NMC is motivated by AMs of subband speech signals 
playing an important role in human speech perception and 
recognition. NMCs are obtained by using the approach 
outlined in [6], with which the features are generated from 
tracking the AM trajectories of subband speech signals in a 
time domain by using a Hamming window of 26 ms with a 
frame rate of 10 ms. For our processing, a time-domain 
gammatone filterbank with 40 channels equally spaced on the 
ERB scale was used to analyze the speech signal. We then 
processed the subband signals by using a modified version of 
the Discrete Energy Separation algorithm (DESA) that 
produced instantaneous estimates of AM signals. The powers 
of the AM signals were then root compressed by using the 
15th root. The resulting 40-dimensional feature vector was 
used as the NMC feature in our experiments. 
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2.1.3 Gammatone Filtebank energies (GFBs)  
Gammatone filters are a linear approximation of the auditory 
filterbank found in the human ear. For the GFBs, the power of 
the bandlimited time signals within an analysis window of 26 
ms was computed at a frame rate of 10 ms. The subband 
powers from 40 filters were root compressed using 15th  root. 
 

2.1.4 Log-Spectrally Enhanced Power Normalized Cepstral 
Coefficients (LSEN-PNCC) 
The LSEN feature was initially introduced in [25] for 
enhancement of the mel-spectrum with applications to noise-
robust speech recognition. It was adapted in [26] to enhance 
the gammatone power-normalized spectra of noisy speech 
obtained with the power-normalized cepstral coefficients 
(PNCC) features pipeline and renamed LSEN-PNCC. 

PNCC [4, 27] was developed with the goal of providing a 
computationally efficient representation of speech that 
attempts to emulate at least in crude form a number of 
physiological phenomena that are potentially relevant for 
speech processing. PNCC processing includes (1) traditional 
pre-emphasis and short-time Fourier transformation (STFT); 
(2) integration of the squared energy of the STFT outputs by 
using gammatone frequency weighting; (3) “medium-time” 
nonlinear processing in each channel that suppresses the 
effects of additive noise and room reverberation; (4) a power-
function nonlinearity with exponent 1/15; and (5) generation 
of cepstral-like coefficients by using a discrete cosine 
transform (DCT) and mean normalization.   

 

2.1.5 Gabor-MFCC  
The Gabor/Tandem posterior [28] features use a mel-
spectrogram convolved with spectro-temporal Gabor filters at 
different frequency channels. Here, we used a multi-layer 
perceptron (MLP) to predict monophone class posteriors of 
each frame, which were then Kurhunen-Loeve transformed to 
22 dimensions and appended with standard 39-dimensional 
MFCCs to yield 64 dimensional features. 

In addition to these methods, we used standard mel-
filterbank (MFBs) as the baseline feature set. 

3. Acoustic Modeling 
We pooled training data (multi-condition) from all eight noisy 
channels to train multi-channel acoustic models that used 
three-state, left-to-right HMMs to model crossword triphones. 
The training corpus was clustered into pseudo-speaker clusters 
by using unsupervised agglomerative clustering.  

We have trained DNN-, CNN-, and TFCNN-based 
acoustic models in our experiments. To generate the training-
data alignments necessary for training our acoustic models, we 
first trained a GMM-HMM model by using multi-condition 
training to produce senone labels. Altogether, the GMM-
HMM system produced ~5K context-dependent (CD) states. 
The input layer of the CNN and DNN systems was formed by 
using a context window of 15 frames (7 frames on either side 
of the current frame); for TFCNNs, the context window was 
17 frames.  

For the CNN acoustic models, 200 convolutional filters of 
size 8 were used in the convolutional layer, and the pooling 
size was set to 3 without overlap. The subsequent fully 
connected network had five hidden layers, with 2048 nodes 
per hidden layer, and the output layer included as many nodes 
as the number of CD states for the given dataset. The networks 

were trained by using an initial four iterations with a constant 
learning rate of 0.008, followed by learning-rate halving based 
on cross-validation error decrease. Training stopped when no 
further significant reduction in cross-validation error was 
noted or when cross-validation error started to increase. 
Backpropagation was performed by using stochastic gradient 
descent with a mini-batch of 256 training examples. For the 
DNN systems, we used six layers with 2048 neurons in each 
layer, with similar learning criteria as the CNNs. The TFCNN 
architecture was based on [18], where two parallel 
convolutional layers are used at the input, one performing 
convolution across time, and the other across the frequency 
scale of the input filterbank features. That work showed that 
the TFCNNs gave better performance compared to their CNN 
counterparts. Here, we used 75 filters to perform time 
convolution, and 200 filters to perform frequency convolution. 
For time and frequency convolution, eight bands were used. A 
max-pooling over three samples was used for frequency 
convolution, and a max-pooling over five samples was used 
for time convolution. The feature maps after both the 
convolution operations were concatenated and then fed to a 
fully connected neural net, which had 2048 nodes and five 
hidden layers. 

In this work, we present three types of information fusion 
in deep neural network architecture.  
(1) Feature-level fusion: a pair of acoustic feature was 
concatenated with each other and was used to train on a single 
network. 
(2) Feature-map-level fusion: two separate convolution layers 
were trained for two different feature sets and the ensuing 
feature maps were combined before training a fully connected 
network (fCNN), as shown in Figure 1. 
(3) Decision-level fusion: two CNNs were jointly trained 
sharing their output layer (pCNN), as shown in Figure 2. 

 
Figure 1. CNN feature-map-level fusion (fCNN). 

 
Figure 2. CNN decision-level fusion (pCNN). 

4. Results 
We trained the different DNN, CNN, and TFCNN acoustic 
models by using all the features described in section 2. We 
report speech recognition performance in terms of word error 
rates (WERs). First, we compared performance using the 
DNN system. Table 1 shows the WERs for the different 
features for clean, channel C and G from dev-1 individually 
and an averaged WER from dev-1 all channels. Note that our 
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experimental observations showed that channels G and C were 
the best and the worst out of the eight channels with respect to 
ASR performance; hence, we have selected these two 
channels to present our results.  
Table 1. WER from DNN models trained with different 
features, for dev-1 clean, channels C and G data and dev-1 all. 
 

Features Clean C G dev-1 
MFB 45.9 75.7 51.1 62.8 
GFB 45.8 76.0 51.5 63.3 
Gabor-MFCC 48.9 79.0 54.4 67.2 
LSEN-PNCC 45.4 76.3 51.0 63.1 
NMC 45.9 76.0 51.6 63.1 
DOC 45.3 75.6 50.5 62.3 

 

Table 1 demonstrates that the DOC robust feature helped to 
reduce the WER compared to the MFB and GFB baseline. 
Next, we investigated CNNs and TFCNNs, and report the 
results in Table 2. In table 2 we present the result for DOC 
which is one of the better-performing features; for the other 
features, the trend was similar as obtained from the DOCs. 
Note that the Gabor-MFCC features have their individual 
dimensions uncorrelated with respect to each other, and, as a 
consequence, using a convolution layer did not result in 
performance improvement for these features. 

Next, we explored feature combination, feature-map fusion 
(fCNN), and output layer fusion (pCNN) for DOC, LSEN-
PNCC, and NMC. We report the results in Table 3.  
  

Table 2. WER from DNN, CNN, and TFCNN models trained 
with DOC features, for dev-1 clean channels C and G data and 
dev-1 all. 
 

 Clean C G dev-1 
DNN 45.3 75.6 50.5 62.3 
CNN 44.4 74.3 48.9 60.4 
TFCNN 44.1 74.2 48.7 60.2 

 

Table 3. WER from different fusion experiments using DOC, 
LSEN-PNCC, and NMC features, for dev-1 clean, channels C, 
G and dev-1 all data. 

 Model clean C G dev-1 
DOC-NMC DNN 46.0 76.2 51.1 63.3 

DOC-LSENPNCC DNN 46.1 76.5 51.3 63.3 
NMC-LSENPNCC DNN 46.5 76.7 51.6 64.1 

DOC-NMC pCNN 44.5 74.6 49.2 60.7 
DOC-LSENPNCC pCNN 44.0 74.7 49.2 60.5 
NMC-LSENPNCC pCNN 44.9 74.8 50.0 61.4 

DOC-NMC fCNN 44.2 74.1 49.1 60.3 
DOC-LSENPNCC fCNN 43.8 74.0 48.5 60.2 
NMC-LSENPNCC fCNN 44.2 74.5 49.3 60.6 

 

Table 3 shows that fusing the feature maps from the 
convolution layers was more effective than simple feature 
combination or fusion at the output layer. Next we performed 
KWS experiments where we evaluated performance by 
considering the average P(miss) over a P(FA) range of 0.0001 
and 0.0005. Note that the “misses” are instances where the 
hypothesis failed to detect a keyword and the “false alarms” 
(FA) are instances where the hypothesis falsely detected a 
keyword. We used the KWS setup described in [29] to 
perform our KWS tasks, and we report the results obtained in 
table 4 which gives the avg. P(miss) from baseline (MFB and 
GFB) systems, best single feature systems and top 3 multi-

feature systems, where both RATS LAR dev-1 and dev-2 data 
were used and dev-1 data was used for ranking and calibration. 
It should be noted that unlike our earlier reported system [29], 
this paper report results on a simple word-based KWS system 
without any rank-based score normalization or sub-word 
search. As shown before, rank-based normalization and the 
use of fuzzy keyword matching at the phonetic level can 
drastically improve performance, specifically in high-recall 
operating points. 
 

Table 4. Average P(miss) for P(FA) between 0.0001 and 
0.0005, obtained from baseline (MFB and GFB) systems, best 
single feature systems and best three fused feature systems 
based on dev-1 performance. 
 

Feature(s) Model Avg. Pmiss @  
(Pfa = 0.0001-0.0005) 

dev1 dev2 
MFB DNN 46.7 34.4 
GFB CNN 44.2 31.0 
DOC CNN 43.9 31.0 
DOC TFCNN 43.6 30.9 
DOC-NMC fCNN 42.8 30.6 
NMC-LSENPNCC fCNN 43.0 30.1 
DOC-NMC pCNN 43.5 30.3 

 

The NMC-LSENPNCC fCNN system gave the best result 
on dev-2, while the DOC-NMC fCNN system gave the best 
result on dev-1. Fusing features helped to improve the 
performance, but that gain was not significant with respect to 
the individual features. The WERs from the single and fused 
feature systems were quite similar, for example both DOC-
TFCNN and DOC-NMC fCNN system gave similar overall 
WER for dev-1, however the benefit of fused feature systems 
were apparent from the KWS results, where the fused feature 
systems gave better performance than individual feature 
systems.  

5. Conclusions 
In this work, we presented different robust features and 
demonstrated their performance for speech recognition and a 
KWS task using the Levantine Arabic KWS dataset distributed 
through the DARPA RATS program. Our results indicate that 
feature map fusion of robust acoustic features can reduce the 
WER by 4.1% relative with respect to the MFB-DNN 
baseline, however the performance from a single feature 
(DOC) TFCNN system was found to be equally good. The 
relative reduction of P(miss) at P(fa) between 0.0001 to 0.0005 
on dev-2 from the NMC-LSENPNCC fCNN system was 
found to be 12.5% compared to the MFB-DNN system. Our 
results indicate that feature fusion and fusion of DNN systems 
at the output layer can not only improve KWS performance 
but also improve robustness against heavily channel- and 
noise-degraded speech.  
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