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Abstract
Accurate automatic speech recognition (ASR) of kindergarten
speech is particularly important as this age group may benefit
the most from voice-based educational tools. Due to the lack
of young child speech data, kindergarten ASR systems often
are trained using older child or adult speech. This study pro-
poses a fundamental frequency (fo)-based normalization tech-
nique to reduce the spectral mismatch between kindergarten and
older child speech. The technique is based on the tonotopic
distances between formants and fo developed to model vowel
perception. This proposed procedure only relies on the com-
putation of median fo across an utterance. Tonotopic distances
for vowel perception were reformulated as a linear relationship
between formants and fo to provide an effective approach for
frequency normalization. This reformulation was verified by
examining the formants and fo of child vowel productions. A
208-word ASR experiment using older child speech for training
and kindergarten speech for testing was performed to examine
the effectiveness of the proposed technique against piecewise
vocal tract length, F3-based, and subglottal resonance normal-
ization techniques. Results suggest that the proposed technique
either has performance advantages or requires the computation
of fewer parameters.
Index Terms: child speech recognition, frequency normaliza-
tion, fundamental frequency

1. Introduction
Over the past several years, speech has become one of the
most desirable ways to interact with electronic devices. In fact,
speech may be one of the only methods that young children
have to interact with such devices as many children have not
yet learned to read, write, or type. Additionally, child auto-
matic speech recognition (ASR) can facilitate the development
of automated educational and assessment tools [1, 2, 3, 4, 5].
Yet, while adult ASR systems have demonstrated significant im-
provements over the past years, child ASR systems continue to
lag behind in performance.

A number of past studies has explored the performance of
child ASR systems [6, 7, 8]. Notably, a recent study by Kennedy
et al. explored the performance of child ASR in robotics appli-
cations [6]. The results revealed insufficient performance (15%-
20% error rates) for even basic digit recognition tasks. Another
study by Yeung and Alwan discovered the impact that a sin-
gle year age difference can have on child ASR performance us-
ing deep neural network (DNN) hidden Markov model (HMM)
ASR systems [7]. Those results highlighted the importance
of targeting a specific age group (especially the kindergarten
age group) when training and testing ASR systems, rather than
grouping several age groups together.

One of the major hurdles that child ASR still faces is the
scarcity of publicly-available child speech databases. As such,

ASR systems for young children are often trained on speech
from older children or adults. However, speech acoustics of
children change dramatically as they grow [9, 10, 11, 12, 13,
14]. For example, formant frequencies and the fundamental
frequency (fo) are known to depend on the age of the child
[9, 10, 11]. As the mismatch in age between training and testing
data becomes larger, ASR performance degrades rapidly [7].

Several child ASR training techniques have been dedicated
to reducing the acoustic mismatch between training and testing
data. Some of these studies used a range of ages along with dif-
ferent vocal tract length normalization (VTLN) and maximum
likelihood linear regression (MLLR) approaches with varying
degrees of success [15, 16, 17, 18, 19, 20]. Variations of VTLN
that replace the warping factor with acoustic parameters, such
as the third formant (F3) [21] or subglottal resonances (SGR)
[22], have also been shown to be effective for the normaliza-
tion of child-to-adult speech. Additionally, some studies have
shown success by using DNN architectures to learn from both
child and adult speech [23, 24].

fo has been used successfully in adult ASR. Several stud-
ies noted that the inclusion of fo or voicing parameters as fea-
tures resulted in increased performance for adult systems, even
in atonal languages [25, 26, 27]. Faria and Gelbart argued that
fo could be used to predict vocal tract size and VTLN warping
factors with a maximum-likelihood (ML) approach [28]. For
children, Shahnawazuddin et al. used fo to predict lifter sizes
when extracting cepstral features [29].

Turning to the field of human speech perception provides
additional insight into the usefulness of fo. The tonotopic dis-
tances between formants and fo, the distances between for-
mants and fo in some perceptual frequency scale, are a well-
known set of features used to effectively normalize formant-
based models of vowel perception [30, 31, 32]. The inclusion
of fo in the tonotopic distances suggests that fo serves as a
normalizing factor for formants, and consequently, the speech
frequency spectrum. This is further supported by studies that
show how fo affects both vowel perception and the perception
of voice naturalness when formants are fixed [33, 34].

In this study, we propose an fo-based normalization proce-
dure inspired by the tonotopic distances. Kindergarten is chosen
as the target age group due to its relevance for educational and
human-robot interface (HRI) applications [6], as well as its poor
ASR performance [7]. We show that the tonotopic distances
can be reformulated and generalized to motivate an fo-based
frequency normalization approach for the entire speech spec-
trum. Furthermore, this normalization technique is applied to a
mismatched-grade ASR experiment using kindergarten speech
as testing data and older grades as training data to simulate a
scenario where kindergarten training data are not readily acces-
sible.

The remainder of the paper is organized as follows. Section
2 reformulates the tonotopic distances and verifies the model-
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Figure 1: F1 vs. fo (blue), F2 vs. fo (red), and F3 vs. fo (purple) for /i/ (top-left), /I/ (top-right), /2/ (bottom-left), and /A/ (bottom-
right) from corresponding hVd words of children between the ages of 6 and 18 years. Also shown are the least-squares linear regression
lines, fixed to have a slope of 1. The data seem to follow the linear relationship implied by the reformulation of the tonotopic distances.

ing accuracy of the reformulation on child vowel productions.
Section 3 describes the database and experimental setup of the
mismatched-grade ASR experiment. Section 4 presents and dis-
cusses the results of the experiment. Section 5 concludes the
paper with a brief summary and plans for future work.

2. Vowel Perception and Production
2.1. Tonotopic Distances for Vowel Perception

A number of past studies revealed that when using the bark
scale, the tonotopic distances between formants (F (x+1)−Fx
for x ∈ {1, 2, 3, ...}), along with the tonotopic distance be-
tween the first formant and fo (F1− fo), are effective features
for modeling human vowel perception [30, 31, 32]. An equiva-
lent set of features can be derived as the difference, in the bark
scale, between formants and fo (Fx− fo for x ∈ {1, 2, 3...}).
This implies a linear relationship between formants and fo in
the bark scale. The formulation also implies that the linear rela-
tionship has a slope of 1. As the Mel scale is highly correlated
with the bark scale, an equivalent relationship holds in the Mel
domain, and we will use the Mel scale throughout this paper for
consistency with Mel-frequency cepstral coefficients (MFCCs).
The next section evaluates this reformulation for child vowel
productions.

2.2. Child Vowel Production

To verify the relationship between formants and fo for child
vowel productions, we measured fo, F1, F2, and F3 from the
vowels of 4 hVd words in the WashU-UCLA Child Subglottal
Resonances Database [35], which includes 43 children between
the ages of 6 and 18 years. Two tense vowels, /i/ and /A/, and
two lax vowels, /I/ and /2/, were chosen for analysis. The least-
squares linear regression lines for predicting F1, F2, and F3
from fo were examined.

For all 12 linear regressions, the slopes of the least-squares
regression lines were between 0.75 and 1.20. All slopes signifi-
cantly contributed to the model (p < 0.001). The Pearson’s cor-
relation coefficients were always greater than r > 0.51. Figure
1 displays the data for the vowels, along with the least-squares
regression lines, fixed to have a slope of 1. The linear relation-
ships between the formants and fo are visually obvious.

3. Database and Experimental Setup
3.1. Database

The OGI Kids’ Speech Corpus [36] was used in this study. This
corpus contains approximately 100 speakers per educational
grade level, from kindergarten to 10th grade. Both scripted and
spontaneous styles of speech were recorded from each speaker.
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Utterances were recorded with a sampling rate of 16 kHz. In
this study, only single-word scripted utterances were used as
data for a word recognition task to avoid the usage of a child
language model.

Each utterance contained one of 208 possible words. These
words ranged from easy words such as “chair” to difficult words
such as “organization.” As some of the utterances did not con-
tain the child saying the target word or were noisy, we only used
files labeled as “1” in the OGI Kids’ Speech Corpus verification
files. This label indicated that the sound file both contained the
child saying the word properly and had limited noise. Addi-
tionally, as the number of utterances of the words “push” and
“spoons” was much larger than the other words, we only used
a random subset of these words to remove a potential bias. To
ensure a fair comparison between grades, a total of 1,654 word
utterances were randomly chosen from each grade (K-10) as
training or testing data.

3.2. Mel-Frequency Cepstral Coefficients

The default features were 13-dimensional MFCCs with a win-
dow size of 25 ms and a shift of 10 ms. MFCCs were extracted
with a 1024-point discrete Fourier transform (DFT). When ex-
tracting MFCCs, a bandwith of 5.2 kHz was chosen such that
F3 was contained in the signal for all children. The number
of filters used during MFCC extraction differed depending on
the normalization technique used and was based on preliminary
experimentation. When not using any normalization, 19 filters
were used. Cepstral mean normalization (CMN) was applied to
all MFCCs.

3.3. Mismatched-Grade ASR Experiments

For the mismatched-grade ASR experiments, the 1st-10th grade
data were used as training data. The data were separated by
grade for a total of 10 sets of training data. For each grade, all
1,654 word utterances were used to train a DNN-HMM ASR
system with 250 triphones. Various normalization strategies
applied to MFCCs were used as input features. After feature
extraction, a 7-frame linear discriminant analysis (LDA), along
with feature space MLLR (fMLLR), was applied for a final 40-
dimensional feature input. DNNs were trained on an additional
9-frame LDA, 2 hidden layers, and 2-norm non-linearities with
an input dimension of 500 and output dimension of 100 [37].
All ASR systems were trained with the Kaldi Speech Recogni-
tion Toolkit [38]. This setup is based on our previous investiga-
tion of child ASR [7]. Each system was tested using all 1,654
word utterances from the kindergarten speech data.

3.4. Fundamental Frequency-Based Normalization

The reformulation of the tonotopic distances in Section 2.1 sug-
gests that the formants of a vowel utterance can be normalized
by computing fo for the utterance and providing a default fo
value such that all speakers can be normalized to some default
representation. To avoid the extraction of formants for children,
which is generally unreliable, we simply warp the entire speech
spectrum based on fo. The DFT is warped as follows:

fnorm = forig − (fo,utt − fo,def ) (1)

where all parameters are in the Mel scale, fnorm is a normal-
ized frequency corresponding to some DFT index, forig is the
frequency from the original speech spectrum mapped to fnorm,
fo,utt is the child’s median fo over an utterance, and fo,def is
some chosen default value.

After initial testing for the value of fo,def , we chose
fo,def = 100 Hz or 150.49 Mels for this experiment. To com-
pute fo,utt, fo is computed per frame for each utterance using
multi-band summary correlogram-based (MBSC) pitch detec-
tion [39], and the median was chosen as fo,utt. For the utter-
ances used in this experiment, the median fo had a range of 78
Hz to 307 Hz. When using this fo-based normalization method,
the bandwidth of the MFCC extraction was chosen such that
MFCC computation did not use a frequency higher than 5.2
kHz. Additionally, 15 filters were used.

3.5. Other Warping Strategies

To evaluate the effectiveness of the fo-based normalization
method, we also evaluated other standard normalization strate-
gies on the mismatched-grade ASR task. These normalization
strategies included piecewise VTLN, F3-based normalization
[21], and SGR normalization [22]. Similar to the proposed fo-
based method, these methods were also applied at the utterance
level. When extracting MFCCs with these normalization strate-
gies, we used a bandwidth of 5.2 kHz with 19 filters. For the
F3-based and SGR normalization, F3 and SGRs were com-
puted as the median across the utterance.

4. Results and Discussion
The results of the mismatched-grade ASR experiment are dis-
played in Table 1. The first row shows word error rates (WERs)
of the baseline systems with no normalization. The second row
shows WERs of the systems trained using fo-based normaliza-
tion. The remaining three rows show the WERs of the systems
trained using VTLN, F3-based, and SGR normalization.

Of the systems used, the system with the lowest WER was
trained on 2nd grade speech with no normalization. For compar-
ison, we performed this same task on the Google Cloud appli-
cation programming interface (API) ASR with the 208 possible
words included in the speech context. We also evaluated WER
as whether the target word was contained in the resulting tran-
script (e.g., “athletes” contains “athlete”). However, the Google
Cloud API ASR had a WER of 25.33%, which is worse than
the system trained on 2nd grade speech. This demonstrates the
importance of developing ASR systems that accommodate chil-
dren with methods such as frequency normalization.

VTLN showed significant improvement over the baseline
results when training on 9th and 10th grade speech. However, fo-
based normalization provided a significant improvement over
VTLN for these grades. Additionally, fo-based normalization
provided a significant improvement over F3-based normaliza-
tion when training on 2nd and 3rd grade speech. There was no
significant difference between the fo-based and SGR normal-
ization techniques.

When using VTLN in an ASR system, testing data must be
passed through the system multiple times to compute the ML
warping factor. However, ASR systems with fo-based normal-
ization only rely on the computation of fo and can perform de-
coding in a single pass. As VTLN performance is also signif-
icantly worse than fo-based normalization for the heavily mis-
matched systems (9th and 10th grade training data), the fo-based
technique should be used in favor of VTLN for kindergarten
ASR given that the system is capable of computing fo.

While the F3-based normalization only relies on a single
parameter, the system seems to perform poorly in the kinder-
garten ASR systems that are more closely matched. This could
be caused by a number of possible complications, such as dif-
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Table 1: Word error rates (WERs) (%) of DNN-HMM ASR systems for the mismatched-grade experiments. Each ASR system was
trained on a single grade level (1st-10th grade) and tested on kindergarten speech. MFCCs were extracted with no normalization,
fo-based normalization, VTLN, F3-based normalization, and SGR normalization. Features were extracted with a bandwidth of 5.2
kHz. All WERs that are not significantly different (p > 0.05) from the fo-based normalization are in bold.

Feature Training Grade
Normalization 1 2 3 4 5 6 7 8 9 10

None 23.58 22.49 25.03 25.03 26.42 30.17 33.43 37.91 41.05 47.28
fo 25.70 24.55 25.76 26.96 26.06 29.63 32.59 34.28 34.76 37.76

VTLN 24.43 26.60 27.45 25.94 25.09 29.32 31.38 36.15 38.27 41.72
F3 26.90 27.45 28.90 26.48 26.48 30.53 30.59 31.80 34.95 37.36

SGR 25.63 23.10 28.05 26.48 25.70 28.05 29.99 32.41 34.82 38.75

ficulties in estimating formants or problems with performing
frequency normalization when all F3 values are similar. As
such, the fo-based method performed significantly better than
the F3-based method for 2nd and 3rd grade training data and is
preferable for the kindergarten ASR system.

While fo-based and SGR normalization methods had simi-
lar performance, the fo-based method may have computational
benefits. The computation of SGRs requires estimation of for-
mants [22], which are difficult to estimate for young children
with high fo. Additionally, the SGR estimation algorithm may
further require an estimate of age [22]. The usage of fo-based
normalization may save kindergarten ASR systems computa-
tional resources, especially for systems that already compute fo
for other processes.

5. Conclusion
This study proposed an fo-based frequency normalization
method based on the tonotopic distances between formants and
fo, commonly used to model human vowel perception. The
tonotopic distances were reformulated to be represented as a
linear relationship (in the Mel scale) between fo and formants.
This reformulation was verified on child vowel productions. For
the vowels /i/, /I/, /2/, and /A/, least-squares regression lines be-
tween fo and formants were shown to have slopes close to 1,
and the data had a clear linear relationship.

The reformulation was further generalized by applying the
linear relationship with fo to the entire spectrum rather than just
the formant locations. As such, the normalization method relied
only on fo as an additional parameter when extracting MFCCs.
An ASR experiment with 1st-10th grade speech data for training
and kindergarten speech data for testing was performed to com-
pare the fo-based normalization method to VTLN, F3-based,
and SGR normalization. The fo-based method had advantages
in performance or computation over each of the other methods.

Several directions can be considered for future work. As
most studies verified the relationships between formants and fo
without considering within-speaker effects, an investigation of
speakers, both children and adults, producing vowels at vary-
ing fo values may prove interesting. An initial pilot study on 3
adults (2 males, 1 female) suggests that speakers follow this re-
lationship across several fo values. Additionally, we only used
the median fo value of an utterance in this study. A further
investigation of whether the tonotopic distances hold across a
single speaker’s range of fo values could lead to a more effec-
tive per-frame normalization method.

Finally, we plan to apply these more effective child ASR
systems to educational and clinical applications to investigate
how they perform in realistic conversational situations. This
may include the use of ASR to perform speech pathology as-

sessments, assist in the teaching of reading and language skills,
or identify social cues during interactions with children.
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