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Abstract
This paper describes the SPAPL system for the INTER-

SPEECH 2021 Challenge: Shared Task on Automatic Speech
Recognition for Non-Native Children’s Speech in German. ∼ 5
hours of transcribed data and ∼ 60 hours of untranscribed data
are provided to develop a German ASR system for children. For
the training of the transcribed data, we propose a non-speech
state discriminative loss (NSDL) to mitigate the influence of
long-duration non-speech segments within speech utterances.
In order to explore the use of the untranscribed data, various
approaches are implemented and combined together to incre-
mentally improve the system performance. First, bidirectional
autoregressive predictive coding (Bi-APC) is used to learn ini-
tial parameters for acoustic modelling using the provided un-
transcribed data. Second, incremental semi-supervised learn-
ing is further used to iteratively generate pseudo-transcribed
data. Third, different data augmentation schemes are used at
different training stages to increase the variability and size of
the training data. Finally, a recurrent neural network language
model (RNNLM) is used for rescoring. Our system achieves
a word error rate (WER) of 39.68% on the evaluation data, an
approximately 12% relative improvement over the official base-
line (45.21%).
Index Terms: Non-native Children’s ASR, Non-speech
State Discriminative Loss, Unsupervised pre-training, Semi-
supervised Learning

1. Introduction
Limited data, untranscribed data, non-native speech, and chil-
dren’s speech are the most difficult challenges for Automatic
Speech Recognition (ASR). The data for this Challenge (TLT-
2021 Shared Task), which is a continuation of the INTER-
SPEECH 2020 Challenge [1], pose all these difficulties.

State-of-the-art deep learning-based ASR systems require
sufficient training data to obtain a competitive result [2]. How-
ever, there are many low-resource tasks such as children’s ASR.
The lack of data affects recognition performance dramatically.
To deal with this problem, data augmentation, a common and
low-cost solution, was shown to be effective in training ro-
bust acoustic models and resulting in lower word error rates
(WER) [3–9]. Speed perturbation [4] and SpecAug [7] are two
widely-used augmentation techniques for ASR. Volume pertur-
bation and noise augmentation are selectively used according to
the quality of the data [9]. Particularly for child speech, Chen
et al. used pitch perturbation to increase the amount of training
data [9], while Yeung et al. proposed F0-based normalization
and data augmentation methods for child ASR to increase the
variability and amount of training data [6]. Data augmentation
methods are also applied to the same INTERSPEECH Chal-

lenge for English ASR last year and shown to be effective in
dealing with low-resource transcribed data [10–13].

Untranscribed data is easier to obtain from various sources.
Therefore, many studies investigated how to utilize large
amounts of untranscribed data to improve low-resource ASR
tasks [14, 15]. Unsupervised pre-training and semi-supervised
learning are two effective methods to deal with lack of tran-
scribed data. For unsupervised pre-training methods, the in-
put speech signal itself is regarded as a supervision so that the
model can either predict frames using their history dependen-
cies such as autoregressive predictive coding (APC) [16–19], or
using BERT pre-training logistics to reconstruct masked input
frames from unmasked frames [20, 21]. By pre-training the up-
stream task using untranscribed data, a model can learn general
speech representations and transfer the learned knowledge to
the down-stream task by a fine-tuning process. On the other
hand, semi-supervised learning in ASR also yields improve-
ments by leveraging untranscribed data [22–27]. After training
on the limited transcribed data, pseudo labels for untranscribed
data are generated to further train the system. For conventional
one-shot semi-supervised learning, different pseudo label types,
at the frame-level and sequence-level, are investigated, and re-
sulting in improved ASR system performance over the super-
vised system [28,29]. In [23,25], compared with one-shot semi-
supervised learning, incremental semi-supervised learning con-
sistently prevails, where unsupervised data’s pseudo labels are
generated iteratively from incrementally updated models.

In this paper, we develop a hidden markov model-deep
neural network (HMM-DNN) hybrid system using a bidirec-
tional long short-term memory (BLSTM) model for the TLT-
2021 German ASR Challenge for non-native children’s speech
and we propose several methods to improve the performance of
the system. The reason we choose BLSTM as our baseline is
that BLSTM outperforms time delay neural network (TDNN)
since BLSTM considers the information from both directions
in sequential data [19]. The challenge provides 5 hours of tran-
scribed data and 60 hours of untranscribed data. When training
an acoustic model with the 5 hours of transcribed data, we ob-
serve the dominance of the non-speech segments in each utter-
ance. In order to solve this problem, we propose a non-speech
state discriminative loss (NSDL) strategy to prevent overfitting
to non-speech states. In order to use the untranscribed data,
bidirectional autoregressive predicitve coding (Bi-APC) [19]
and incremental semi-supervised learning (SSL) [30] are com-
bined together to iteratively improve the system performance.
At each training stage, different data augmentation schemes
are considered to increase the variability of the training data.
We further train a recurrent neural network language model
(RNNLM) for rescoring. As a result, the system ranked third
for the German closed track and second for the open track.



The remainder of this paper is organized as follows: Sec-
tion 2 presents dataset description and the strategies used in our
system development along with the baseline settings. Experi-
mental results and discussion are given in Section 3. Section 4
concludes the paper.

2. Dataset and System Development
In this section, we first describe the dataset and the official base-
line system in the Kaldi toolkit [31]. We then describe our de-
veloped baseline using Pykaldi2 toolkit [32] and the proposed
methods for improving the system.

2.1. Dataset

The provided speech data [33] contain ∼5 hours of transcribed
training data from 296 pupils, about 1445 utterances, and ∼1
hour of transcribed development data from 72 pupils, about 339
utterances, and ∼60 hours of untranscribed training data from
124 pupils, about 10047 utterances. Two text sources are pro-
vided: (1) manual transcriptions for 5 hours of the training data,
and (2) written data extracted from the sentences written by the
pupils. Participants’ ages range from 9 to 16.

2.2. Official Baseline

The official baseline system is obtained based on a Kaldi recipe.
39-dimensional mel-frequency cepstral coefficients (MFCCs),
including first and second derivatives are used to train the gaus-
sian mixture model (GMM). The provided multi-lingual lexicon
is used to additionally model English and Italian words because
the mother tongue of the children is English or Italian. A 3-way
speed perturbation strategy is applied to the transcribed and un-
transcribed datasets with speed factors of 0.9, 1, and 1.1. The
acoustic model is based on TDNNs. The inputs to the TDNNs
comprise 40-dimensional high-resolution MFCCs, without us-
ing derivatives. A TDNN model is first trained with the 3-fold
transcribed data, and then fine-tuned with a weighted combina-
tion of 3-fold transcribed and 3-fold untranscribed data using
one-shot SSL. A 4-gram language model is trained using the
transcriptions of the training set.

2.3. Developed BLSTM Baseline

For the convenience of implementing unsupervised pre-training
and semi-supervised training algorithms, we use Pykaldi2, a
PyTorch-based toolkit, for system development. 80-dim log-
mel-filter bank features are first extracted every 10ms with a
25ms Hamming window. An additional frame of features af-
ter each frame is then appended to form a 160-dim input. The
model consists of 4 BLSTM blocks with 512 hidden units in
each direction, followed by a linear layer that transforms the
output of BLSTMs to HMM state spaces. In each BLSTM
block, batch normalization is used. The number of output
units is 2392 obtained from clustering all tri-phone states. The
dropout rate in the network is empirically set to 0.3.

Before training the baseline, we observed that there are
some non-speech utterances in the provided transcribed dataset.
Hence, 211 non-speech utterances out of 1445 utterances are
eliminated in the transcribed training data.

The model is first trained with a sequence-wise mechanism
where each utterance is fed into the model as one instance (1169
frames on average). However, as shown in Table 1, the vari-
ance of the duration in utterances are large, leading to many
unnecessary paddings. Moreover, BLSTM does not model sen-

Table 1: Statistic of non-speech and speech states in the 5-hour
transcribed data.

HMM States Total Avg (Utt) Std (Utt)

Non-speech 11x105 817 875
Speech 5x105 352 519

tences over 3,000 frames well. To mitigate the gradient vanish-
ing problem in BLSTMs for modelling long-duration utterances
and accelerate the training, the model is then trained in chunk-
wise mechanism where one instance is a segment consist of 300
frames with 10 appended neighboring frames. The appended
frames are only used in training for accumulating the BLSTM
hidden states.

2.4. Data Augmentation Schemes

To mitigate the low resource issue for the dataset and to increase
robustness of the model, data augmentation methods are used in
different stages of the training recipe. Pitch perturbation, vol-
ume perturbation, speed perturbation, noise augmentation, and
vocal tract length perturbation (VTLP) are considered for the
transcribed data. Speed perturbation and noise augmentation
are used for the untranscribed dataset. For noise augmentation,
the removed non-speech utterances are used as foreground and
background noise to augment the original audio with various
random SNRs. Speed perturbation uses a conventional method
with 3-way warping factor of 0.9, 1, and 1.1. Volume perturba-
tion, pitch perturbation, and VTLP are implemented using Kaldi
scripts with random warping factors. We also tried SpecAug
for our experiments, but the technique does not improve perfor-
mance. We will detail the data augmentation schemes for each
training stage in Section 3.

2.5. Non-speech State Discriminative Loss (NSDL)

The provided dataset in this Challenge contains many long-
duration non-speech segments within speech utterances. The
statistic of non-speech and speech states, obtained using forced
alignment from a GMM model, are shown in Table 1. The table
shows that the number of non-speech states is more than twice
the number of the speech states, which may result in more dele-
tion errors because of overfitting to the non-speech states. In or-
der to balance the data for acoustic model training and to effec-
tively discriminate between non-speech and speech states, we
decompose the probability distribution over all pdf-ids into two
parts and propose a NSDL function (LNSDL), replacing cross
entropy loss during training.

The schematic diagram of NSDL is shown in Figure 1. Sup-
pose the sets of non-speech states and speech states are S1 and
S2, respectively. The original acoustic model outputs a prob-
ability distribution over all states in S1 ∪ S2. Instead of do-
ing a single classification task among all HMM states, the last
BLSTM layer output is fed into two separate fully connected
layers to obtain two probability distributions p1 and p2 over
states in S3 = {S1, speech} and S2, respectively. The symbol
speech is a placeholder reserved to represent a general speech
state, regardless of specific phoneme states. The probability of
a state belong to speech state is denoted as Pspeech. We can
also obtain Pnon-speech by summing up all non-speech states in
S1. The two probabilities are used to construct a speech/non-
speech binary classifier, and is shown in the left path of Fig-
ure 1. The output probability distributions p1 and p2 are com-



Figure 1: A Schematic Diagram of NSDL

bined to construct the original HMM states classification prob-
lem as plotted in the right path of Figure 1. Let X be the input
sequence and Y = {y1, ..., yt, ..., yT } represents the results
from forced alignment, the ground truth for binary classifica-
tion is bt = 1(yt ∈ S2). The original acoustic model training
is reformulated into a multi-task training as:

P (non-speech|X) =
∑
s∈S1

p1(s|X) (1)

L1 = −
T∑

t=1

(1(bt == 1) log(p1(speech|X))+

1(bt == 0) log(P (non-speech|X)))

(2)

P (s|X) =

{
p1(s|X) s ∈ S1

p1(speech|X)p2(s|X) s ∈ S2

(3)

L2 = −
T∑

t=1

log(P (s = yt|X)) (4)

LNSDL = L1 + λL2 (5)

where L1 is the loss function for the binary classifier for non-
speech and speech states, and L2 is the cross entropy loss for
the classifier among all HMM states. λ denotes the task ratio
for L2, which is empirically set to 1.

In addition, we apply weights to the loss with respect to
non-speech/speech classes inL2 to further alleviate the problem
that the model is more likely to classify frames as non-speech.
The weights of non-speech states and speech states are set to be
0.9 and 1. Hence, the model will assign a larger penalty when it
mis-classifies a speech frame as a non-speech frame.

2.6. Bidirectional Autoregressive Predictive Coding

Since the provided dataset contains around 60 hours of untran-
scribed data, we apply Bi-APC [19] as an unsupervised pre-
training strategy to learn common knowledge from this dataset
and then transfer the learned knowledge into the down-stream
5-hour low-resource ASR task. The core mechanism of Bi-APC

is to predict a frame n steps after the current frame given all past
frames, and predict a frame n steps before the current frame
given all future frames in a bi-directional manner. In Bi-APC,
BLSTM is split into forward and backward paths, such that each
path cannot be supervised in reverse order to prevent equivalent
mapping. The model is pre-trained by optimizing the sum of the
mean absolute error from both directions. The n is set to 2 in
our experiments. We pre-trained the model for 20 epochs. Due
to the page limitation, please refer to [19] for more details.

2.7. Incremental Semi-Supervised Learning (SSL)

Instead of generating pseudo labels for all untranscribed data
in the official baseline, we apply SSL for several iterations and
train them incrementally. In each iteration, we decode the en-
tire untranscribed dataset with the best model at that moment
and filter out those utterances with low log-likelihood. The goal
is to secure the quality of the pseudo transcription. The cho-
sen data are appended to the transcribed data for the next iter-
ation. Log-likelihood thresholds are determined according to
the corresponding WER of the development set and the number
of available sentences remaining after filtering. We only apply
three iterations due to the time limitation and insignificant im-
provement in WERs of the development and evaluation datasets
after the third iteration.

2.8. RNN Language Model Rescoring

All the provided transcriptions and text from written data are
used to train a RNNLM [34, 35] for second-pass rescoring us-
ing the script in Kaldi. The model consists of two LSTM layers
with a hidden size of 128. The dimension of the word embed-
ding is 256. During rescoring, we make a grid search with lan-
guage model weights 0.25, 0.3, 0.35 and n-gram order 2 and 3.
The best settings for the development set in each experiment are
used to rescore the lattice of the evaluation set.

3. Experiments and Discussion
Experiments are conducted using Pykaldi2 for acoustic model
training and Kaldi for decoding. The results of the ASR exper-
iments using different methods are shown in Table 2.

3.1. Baselines

We first develop an HMM-DNN hybrid system with BLSTM
modelling as our baseline. In addition to sequence-wise model
training, we experiment with chunk-wise training using a chunk
size of 300 frames, and left and right context chunks of 10
frames each. The table shows that chunk-wise training im-
proves the performance over sequence-wise training mecha-
nism by 5.68% and 11.55% in relative WER for the develop-
ment and evaluation datasets, respectively. The official baseline
is also included in the table.

3.2. NSDL

When using our proposed NSDL method, we further achieve a
relative improvement of 5.07 % and 3.09 % on the development
and evaluation datasets, respectively, compared with the chunk-
wise training mechanism. A more fair baseline for NSDL is
using the default VAD in Kaldi to filter out the silence frames,
which has a WER of 54.33 % for the development set. The re-
sult is even worse than the model without VAD. The reason may
be that many non-speech states are not silence states, but laugh,
hesitation and noise. The proposed NSDL method is more suit-



Table 2: % Word Error Rate (WER) for different systems on the TLT-2021 development and evaluation sets, including chunk-wise
modelling, NSDL, Bi-APC, different iterations of SSL, and LM rescoring (in parentheses). The second and the third column represents
augmentation schemes for the transcribed and untranscribed datasets respectively. SP: speed perturbation, Pit.: pitch perturbation,
Vol.: volume perturbation, VTLP: vocal tract length perturbation, and Noise: noise perturbation. The last line (+dev) indicates that
the development data is included in the training for the open track case. Best performance in each case is bold-faced.

Model Transcribed Data. Untranscribed Data Dev(%) Eval(%)

Official Baseline 3x SP − 52.38 45.21

Proposed Systems

BLSTM Baseline 3x SP − 57.54 56.63
+ chunk 3x SP − 54.27 50.09

+ NSDL 3x SP − 51.52 48.54
+ Bi-APC 3x SP 3x SP 49.91 44.60

+ SSL iter1 (0.35) 2x Pit. 3x Vol. 2x VTLP 3x SP 3x SP 49.91 43.55
+ SSL iter2 (0.3) 2x Pit. 3x Vol. 2x VTLP 3x SP 3x SP 49.05 41.11

+ SSL iter3 (0.28)

2x Pit. 3x Vol. 2x VTLP 3x SP 3x SP 47.10(46.30) 41.23(41.05)
2x Pit. 3x Vol. 2x VTLP 3x SP 2x Noise 3x SP 47.79(46.99) 41.23(40.81)
2x Pit. 3x Vol. 2x Noise 3x SP 3x SP 47.22(46.59) 41.28(39.86)

2x Pit. 3x Vol. 2x VTLP 2x Noise 3x SP 3x SP 48.02(46.61) 40.87(39.68)

+ dev 2x Pit. 3x Vol. 2x VTLP 2x Noise 3x SP 3x SP − 39.92(38.85)

able in this case. Starting from Section 3.3, we use the untran-
scribed data to further improve the performance. The relative
WER will be in reference to the official baseline.

3.3. Bi-APC

The first method we used to train the 60 hours of untranscribed
data is Bi-APC. Using the same data augmentation strategy for
transcribed data, we apply 3-way speed perturbation to the un-
transcribed data. As shown in Table 2, a better performance
is obtained by using Bi-APC. Both WERs for the development
and evaluation data are further improved, and relative improve-
ments of 4.72% and 1.35%, respectively, are observed, com-
pared to the official baseline system.

3.4. Incremental SSL

Incremental SSL and various augmentation strategies are ap-
plied. As shown in Table 2, the first iteration of SSL chose 0.35
as the log-likelihood threshold, by applying a 10-fold (2 pitch +
3 volume + 2 VTLP + 3 speed) augmentation on the transcribed
data and 3-way speed perturbation on untranscribed data. The
WER does not improve significantly. The second iteration with
a 0.3 threshold, with the same augmentation strategies used in
the first iteration, results in a relative improvement of 6.36%
and 9.07% for the development and evaluation datasets, respec-
tively, compared to the official baseline. When applying a third
iteration with a threshold of 0.28 and the same augmentation
strategies, the performance is only improved for the develop-
ment data with the WER of 47.10%. Thus, we do not apply
another SSL iteration, but implement different augmentation
strategies at this stage. When we apply one iteration of SSL
to the BLSTM baseline, the performance still improves from
57.54% to 56.86% in WER for the development set.

Replacing 2-fold VTLP with 2-fold noise perturbation for
the transcribed data and keeping the untranscribed data augmen-
tation to be 3-fold speed perturbation results in a performance
degradation. Adding only 2-fold noise perturbation to the un-
transcribed dataset does not improve the performance. How-

ever, 12-fold (2 pitch + 3 volume + 2 VTLP + 2 Noise + 3 speed)
augmentation results in better performance for the evaluation
dataset, though slightly worse for the development dataset.

3.5. RNNLM Rescoring

RNNLM rescoring (in parentheses in Table 2) is applied to the
output of the third iteration of SSL, which results in a rela-
tive improvement of approximately 2% for both the develop-
ment and evaluation datasets. The best performance is achieved
with a 12-fold augmentation, resulting in a WER of 39.68 %,
a 12.23% relative improvement over the official baseline sys-
tem. If we use the development set in training, then the WER
for evaluation set improves to 38.85%.

4. Summary and Conclusion
In this paper, we describe the SPAPL ASR system for the
INTERSPEECH 2021 Challenge: Shared Task on Automatic
Speech Recognition for Non-Native Children’s Speech in Ger-
man (closed track). To compensate for long-duration non-
speech segments within speech utterances, we propose a novel
non-speech discriminative loss in the acoustic model training
phase to enable classification of the speech/non-speech states.
To explore the use of untranscribed data, Bi-APC pre-training
and incremental semi-supervised learning are combined to-
gether to iteratively improve the system performance. A RNN
language model is also trained for rescoring. The final system,
which incorporates all the methods mentioned above, achieves a
39.68% WER on the evaluation dataset which is the third place
in the closed track. If we include the development dataset in
training, the WER becomes 38.85%. In the future, we plan
to apply discriminative training using Maximum Mutual Infor-
mation (MMI) as an objective function, and further investigate
other language models for rescoring.
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