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Abstract 
Speaker verification in real-world applications sometimes 
deals with limited duration of enrollment and/or test data. 
MFCC-based i-vector systems have defined the state-of-the-art 
for speaker verification, but it is well known that they are less 
effective with short utterances. To address this issue, we 
propose a method to leverage the speaker specificity and 
stationarity of subglottal acoustics. First, we present a deep 
neural network (DNN) based approach to estimate subglottal 
features from speech signals. The approach involves training a 
DNN-regression model that maps the log filter-bank 
coefficients of a given speech signal to those of its 
corresponding subglottal signal. Cross-validation experiments 
on the WashU-UCLA corpus (which contains parallel 
recordings of speech and subglottal acoustics) show the 
effectiveness of our DNN-based estimation algorithm. The 
average correlation coefficient between the actual and 
estimated subglottal filter-bank coefficients is 0.9. A score-
level fusion of MFCC and subglottal-feature systems in the i-
vector PLDA framework yields statistically-significant 
improvements over the MFCC-only baseline. On the NIST 
SRE 08 truncated 10sec-10sec and 5sec-5sec core evaluation 
tasks, the relative reduction in equal error rate  ranges between 
6 and 14% for the conditions tested with both microphone and 
telephone speech.  
Index Terms: speaker verification, short utterances, subglottal 
acoustic features, deep neural networks.  

1. Introduction 
Factor analysis based i-vector framework has defined the 
state-of-the-art in speaker verification [1]. However, the 
performance degrades rapidly as the available amount of 
enrollment and/or testing speech decreases [2, 3]. The 
significant amount of speech data required for speaker 
enrollment and verification is a limitation for everyday 
applications. To address this issue, several approaches have 
been studied. In [4], the authors used a method to quantify the 
uncertainty associated with the i-vector extraction process and 
propagated it to a probabilistic linear discriminant analysis 
(PLDA) classifier. In [5], the effect of short utterance i-vectors 
was analyzed, and it was found that duration variability can be 
modeled as additive noise in the i-vector space. In [6], several 
techniques to attenuate the effect of the short utterance 
variance were proposed.   
        While the majority of the techniques have focused on i-
vector compensation, not many studies have focused on the 
role of feature extraction. Previous research shows that 
significant variations of i-vectors can occur when the utterance 
lengths are varied because of changes in acoustic properties  
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of various sounds and number of unique phonemes [5, 6]. 
Standard speech features like MFCCs have large variations for 
different phonemes, but relatively stationary features may help 
reduce the variation of the i-vectors. Our previous research 
indicates that subglottal acoustics (capturing the acoustics of 
the tracheo-bronchial airways) are speaker specific and the 
spectral characteristics are much less variable than the spectral 
characteristics of the speech waveform [7, 8]. 
        To record this subglottal acoustic data, a noninvasive 
accelerometer is generally used [9]. In the past, we studied the 
properties and applications of subglottal acoustic features, 
including automatic estimation of the subglottal resonances 
(SGRs) for speaker height estimation and adaptation [10, 11, 
12] and estimating subglottal features from MFCCs for GMM-
based speaker recognition [13]. However, no research has 
been done to find a good representation of subglottal features 
for the state-of-the-art i-vector/PLDA framework and to show 
their effects on the standard speaker verification datasets. 
        Motivated by this, we investigate the utility of the 
subglottal acoustic features for i-vector speaker verification 
using short utterances. The focus is specifically on the 
estimation of subglottal acoustic features using a DNN-based 
spectral feature mapping model, and their ability to 
discriminate between speakers and improve the performance 
for standard short utterance speaker verification tasks.  
        In Section 2, we describe the proposed system. Section 3 
presents the estimation algorithm of the subglottal acoustic 
features and evaluation results. Section 4 describes the speaker 
verification experimental setup and results, and Section 5 
concludes the paper. 

2. System description 
We first train a DNN model to map speech spectral features to 
their corresponding subglottal features and then use the trained 
DNN model as the feature extractor for a speaker verification 
experiment. A score-level method is used to fuse the 
information provided by MFCCs and estimated subglottal 
features under the i-vector/PLDA framework. Figure 1 shows 
the system overview and the implementation details are 
provided in Section 3 and 4.  
        The i-vector system aims at modeling the overall 
variability of the training data and compressing the speaker 
information to a low-dimensional vector. The main idea is that 
the speaker- and channel-dependent GMM supervector � can 
be modeled as: 
 
                                            � = � + ��                                        (1) 
 
where � is the UBM GMM mean supervector,  � is a low-
rank matrix representing the total variability space, and � is a 
random vector following a standard normal distribution. The i-
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vector is the MAP point estimate of  �, and  � is referred to as 
the i-vector extractor. Using the PLDA model, the log-
likelihood ratio can be computed for the hypothesis test on 
whether the two i-vectors are generated by the same speaker. 

3. Estimating subglottal acoustic features   
DNNs have been shown to be effective for feature mapping of 
speech signals [14, 15]. We adopt the approach here for 
subglottal feature estimation and evaluate it on the WashU-
UCLA corpus [8] (which contains time-synchronized 
recordings of speech and subglottal acoustics).  
        We train a DNN regression model to learn the spectral 
feature mapping from speech to subglottal acoustics. The 
objective function for optimization is based on the mean 
square error. Eq. (2) is the cost function for each training 
sample: 

 
ℒ(�, �; w) = ∑ 
�� − ��(�)


�
     �

���                   (2) 
 
where  �� and  ��(∙) are the desired and the actual output of 
the kth neuron in the output layer, respectively, and w denotes 
the weights to be learned during training.   
        The trained DNN regression model provides a mapping 
from a more variable speech spectral domain to the less-
variable subglottal spectral domain (viewed in some sense as a 
many-to-one mapping). 

3.1. Implementation details and evaluation setup 
The WashU-UCLA corpus consists of 35 monosyllables (14 
“hVd” and 21 “CVd” words, where V includes all the AE 
monophthongs and diphthongs) in a phonetically neutral 
carrier phrase (“I said a __ again”), with 10 repetitions of each 
word by each speaker. The corpus has simultaneous 
microphone and (subglottal) accelerometer recordings of 25 
adult male and 25 adult female speakers of American English, 
and in total 17500 individual microphone( and accelerometer) 
waveforms. To avoid redundancy and keep the phonetic 
balance in the data that is used to train the DNN regression 
model, only the vowel segments of the monosyllables are 
isolated and used. Another reason why we only extract the 
vowel segments is that the accelerometer signals show little 
information for consonants. Since we only have the DNN 
mapping for vowels, we need a way to deal with non-vowel 
segments while estimating subglottal acoustic features for the 
speaker verification experiment. Section 4 explains the 
specific method used.      
        We extract the 40 dimensional log Mel-filterbank 
coefficients for both speech and accelerometer segments, and 
use the filterbank feature vectors of the speech segments as 
input and their corresponding subglottal filterbank feature 

vectors as output for the DNN model. The input and output 
features are normalized using the L2 norm of the feature 
vector. The activation functions of both the hidden layers and 
the output layer are the tanh functions. Three hidden layers are 
used and each hidden layer has 256 neurons. We use 
backpropagation with mini-batch stochastic gradient descent 
to train the DNN model, and the optimization technique uses 
adaptive gradient descent along with a momentum term. The 
THEANO DNN toolkit is used for DNN training [16].  
        The DNN regression model is evaluated using 5 rounds 
of cross-validation. All available vowel segment pairs (17500 
in total) are split into a training set and a validation set. The 
training set has roughly 80% of the data and the rest is for 
validation.  All signals are down sampled to 8 kHz (from the 
original sampling rate of 48 kHz), which is consistent with the 
NIST SRE dataset. The log Mel-filterbank coefficients for 
both speech and subglottal acoustic signals are extracted at 
10ms intervals using a 20 ms Hamming window.   

3.2. Results 
To evaluate the performance of the DNN-based estimation 
model, we use two methods: (1) computing the correlation 
between actual and estimated log Mel-filterbank coefficients 
for each frame of subglottal recordings, and (2) comparing the 
actual and estimated subglottal features with regards to their 
ability to discriminate between speakers.  

Figure 2: Histogram of the correlation coefficient of 
the actual and estimated subglottal Mel-filterbank 
coefficients for each frame in the validation dataset. 

        Figure 2 shows the histogram of the correlation 
coefficients for all frames in the validation dataset. The 
average value of the correlation coefficients for all 5 rounds of 

Figure 1: Block diagram of the proposed framework.  
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cross-validation is 0.9, which indicates the sufficiency of 
DNN-based estimation model.  
        To compare the actual and estimated subglottal filterbank 
features in terms of speaker discriminability, the J-Ratio [17], 
which measures class separation, is used. Before calculating 
the J-Ratio, we compute DCT of the log Mel-filterbank 
coefficients, since it will decorrelate the filterbank features and 
be consistent with MFCC features. We refer to the subglottal 
features after taking DCT on the log Mel-filterbank 
coefficients as subglottal cepstral coefficients, which is 
denoted as SGCCs. The zeroth cepstral coefficient is discarded 
and the first 20 coefficients are used for both MFCCs and 
SGCCs. Given feature vectors for N speakers, the J-Ratio can 
be computed using Eqs. (3), (4) and (5): 

�� = �

�
∑ ��

�
���                                    (3) 

�� = �

�
∑ (�� − ��)(�� − ��)��

���               (4) 

� = trace{(�� + ��)����}                       (5) 

where �� is the within-class scatter matrix, �� is the between-
class scatter matrix, �� is the mean vector for the �th speaker, 
�� is the mean of all ��s, and �� is the covariance matrix for 
the i th speaker (note that a higher J-Ratio means better 
separation).  

 
Feature sets J-Ratio 

MFCCs(��-���) 4.92 
Actual SGCCs(��-���) 5.48 

Estimated SGCCs(��-���) 5.47 

Table 1: J-ratio, a measure of class separation for 
different features. Features were extracted from 
isolated vowel recordings of speech and subglottal 
acoustics, for all the 50 speakers in the WashU-UCLA 
corpus. 

        Table 1 shows the J-Ratio value for different feature sets. 
The results show that: (1) SGCCs offer better separation 
compared with MFCCs, which is partly attributable to the 
stationarity of subglottal acoustics and the low within-class 
variance that results from it, and (2) the estimated SGCCs are 
similar in performance to actual SGCCs, which is due to the 
great effectiveness of the DNN-based feature mapping model. 

4. Speaker verification experiments  
4.1. Task description and experimental settings 
We evaluate our features and proposed system on the NIST 
SRE dataset under the state-of-the-art i-vector/PLDA 
framework. 
        The NIST SRE 2004, 2005, 2006 and Switchboard II 
datasets are used as development dataset. Gender dependent 
universal background models (UBM) with 2048 Gaussians are 
trained using a subset of the development dataset, which  only 
has utterances from male speakers. The total variability 
subspace for i-vector extractor, channel compensation 
technique LDA and speaker variability subspace for PLDA are 
trained using all the male speakers from the development 
dataset. The Kaldi toolkit [18] is used to build the system.  
        MFCCs using first 20 coefficients (discarding the zeroth 
coefficient) with appended first and second order derivatives 

are extracted from the detected speech segments after voice 
activity detection. A 20 ms Hamming window, a 10 ms frame 
shift, and a 23-channel Mel-filterbank are used for baseline 
MFCC feature extraction. A total variability matrix T of 400 
factors is used and the dimension is reduced to 200 using LDA 
before the PLDA modeling. Length normalization of the i-
vectors is also used.  
        For SGCC feature extraction, non-vowel speech frames 
must be discarded since the DNN feature extractor is trained 
only on isolated vowels. A normalized autocorrelation peak 
value of 0.7 is used as a threshold to detect the strongly-voiced 
vowel frames. A 20 ms Hamming window and 10 ms frame 
shift are used to extract 40-channel Mel-filterbank coefficients 
from the voiced frames. Then, the filterbank coefficients are 
fed into the trained DNN feature extractor to extract the 
estimated subglottal features. The first 20 coefficients 
(excluding the zeroth coefficient) with appended first order 
derivatives are selected after taking the DCT on the estimated 
subglottal Mel-filterbank coefficients. A total variability 
subspace of 150 dimensions is used and the same number of 
latent components is adopted for PLDA modeling. Length 
normalization is also done here. 
        The NIST SRE 2008 core task [19], which has both 
microphone and telephone speech and channel matched and 
mismatched conditions, was used for the experiments. The 
enrollment and testing dataset are truncated to 10 seconds and 
5 seconds for each utterance for our short-utterance speaker 
verification tasks. The core task contains 1993 female and 
1270 male speakers. Only the male speakers with 39433 test 
trials are used here for evaluation.    
        Given an utterance, MFCCs and SGCCs are computed as 
described above. Each feature set will generate a set of scores 
for test trials. Scores from the two speaker verification systems 
were normalized to the range (0, 1) and are fused in a linear 
weighted fashion such that the weights sum up to 1. The fused 
scores are used to make decision. 

4.2. Results and analysis  
The fused MFCCs+SGCCs system gives improvement for 
almost all conditions for the truncated core task. The gains are 
higher and more significant for the conditions that better 
match the characteristics of the WashU-UCLA corpus used for 
DNN training. Therefore, we show the results for conditions  
C2 (interview speech from the same microphone types for 
both training and testing), C7 (English telephone speech), and 
C8 (English telephone speech spoken by native U.S. English 
speakers) in Table 2. Both equal error rate (EER) and 
minimum detection cost function (DCF) are used for 
evaluation. 
        The combined system yields the biggest improvement 
under matched microphone speech (C2), with a relative 11.5% 
EER reduction for the 10sec-10sec task, and 14.3% for the 
5sec-5sec task. This may be due to the fact that the DNN 
feature extraction model is also trained under matched 
microphone speech. For English telephone speech, we can see 
that C8, which contains utterances spoken by Native American 
English speakers, gives relative better improvement compared 
with C7. This may also result from the fact that all the 
speakers in the WashU-UCLA dataset are native US speakers. 
The weights used for fusion are the same for both 10sec-10sec 
and 5sec-5sec tasks, which are 0.85 for MFCCs and 0.15 for 
SGCCs. 
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4.3. Discussion   
In order to show the relative stationarity property of subglottal 
acoustic features, we conduct an experiment to show 
performance degradation of the speaker verification 
experiments for both feature sets, when the length of the 
utterances for both enrollment and testing data were reduced 
from 30 to 10 seconds. 
        From Table 3, the average absolute EER increase for the 
selected conditions is 12.5% for MFCCs, and 3.5% for 
SGCCs, which indicates less variation of SGCCs and their 
robustness to short utterances.  

 Absolute EER change from 30sec-10sec 
MFCCs 12.5% 
SGCCs 3.5% 

Table 3: Absolute EER change between the 30-second 
condition and 10-second condition for MFCCs and 
SGCCs 

        While the J-Ratio analysis in Sec 3.2 shows that the 
estimated SGCCs can provide better speaker separation than 
MFCCs using the selected vowel segments, the SGCC-only 
system performs worse than the MFCC baseline on the NIST 
SRE dataset. This discrepancy could be due to (1) acoustic 
mismatch between the WashU-UCLA corpus and the speaker 
verification corpora, and (2) only the strongly-voiced vowel-
like frames are selected for SGCC estimation.   

5. Conclusion 
In this paper, a DNN-based regression model is proposed to 
estimate the subglottal acoustic features from the speech 
signals. The results on the evaluation dataset show the efficacy 
of the estimation algorithm. The estimated features can 
provide improved speaker-verification performance when 
combined with conventional MFCC features at the score level, 
using the NIST SRE dataset with short utterances.  
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Conditions Feature set 
C2 C7 C8 

EER DCF EER DCF EER DCF 

10sec-10sec 

MFCCs 8.12 0.0255 19.51 0.0739 21.08 0.0783 
MFCCs+SGCCs 7.20 0.0240 18.24 0.0726 19.29 0.0759 

Relative 
improvement 11.5%  6.5%  8.5%  

5sec-5sec 

MFCCs 14.11 0.0458 27.76 0.0955 27.83 0.0954 

MFCCs+SGCCs 12.10 0.0437 26.21 0.0945 26.07 0.0939 
Relative 

improvement 14.3%  5.6%  6.3%  

Table 2: EER and DCF for the MFCC baseline system and the proposed system on the NIST SRE 08 truncated 10sec-10sec 
and 5sec-5sec evaluation tasks. The relative improvement of EER is also shown. 
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