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Abstract

In speaker verification (SV), the acoustic mismatch be-
tween children’s and adults’ speech leads to suboptimal per-
formance when adult-trained SV systems are applied to chil-
dren’s speaker verification (C-SV). While domain adaptation
techniques can enhance performance on C-SV tasks, they often
do so at the expense of significant degradation in performance
on adults’ SV (A-SV) tasks. In this study, we propose an Age
Agnostic Speaker Verification (AASV) system that achieves ro-
bust performance across both C-SV and A-SV tasks. Our ap-
proach employs a domain classifier to disentangle age-related
attributes from speech and subsequently expands the embed-
ding space using the extracted domain information, forming a
unified speaker representation that is robust and highly discrim-
inative across age groups. Experiments on the OGI and Vox-
Celeb datasets demonstrate the effectiveness of our approach in
bridging SV performance disparities, laying the foundation for
inclusive and age-adaptive SV systems.

Index Terms: Speaker Verification, Children’s Speech, Do-
main Adaption, Inclusive Speech Technology

1. Introduction

Inclusiveness is important in speaker verification (SV) systems.
Research shows that with the advancement of speech technol-
ogy, 94% of children in the United States have used one or
more voice assistants such as Siri and Google Assistant [1, 2].
Beyond their traditional applications in security, SV systems
hold great potential for enhancing children’s interactions with
technology, enabling seamless and user-friendly personaliza-
tion. However, due to the acoustic mismatch between children’s
and adults’ speech [3, 4, 5], state-of-the-art SV systems [6, 7, 8]
which perform exceptionally well on benchmark adults’ speech
datasets often struggle with children’s speech. To meet the di-
verse needs of users across different age groups, it is crucial
to develop an inclusive SV system that delivers robust perfor-
mance in both adults’ SV (A-SV) and children’s SV (C-SV)
tasks, addressing the challenges posed by age-related acoustic
variability.

To address the domain mismatch problem arising from the
acoustic differences between children’s and adults’ speech, var-
ious approaches have been proposed in the context of C-SV
[9, 10, 11]. For instance, ChildAugment [10] mitigates this mis-
match by transforming adults’ speech to acoustically resemble
children’s speech. This is achieved by modifying vocal tract pa-
rameters such as formant frequencies and bandwidths, thereby
enhancing model adaptation in zero-resource settings. Another
prominent data augmentation technique involves voice conver-
sion using a cycle-consistent GAN [12], which modifies adults’
speech to mimic children’s spectral and prosodic characteris-

tics, effectively reducing the acoustic mismatch [13].

In addition to data augmentation methods [10, 13, 14, 15],
other domain adaptation methods have also been explored
[16, 17, 18, 19]. For example, CORAL++ extends CORAL
by integrating deep neural networks to learn nonlinear trans-
formations, effectively reducing the distribution mismatch be-
tween the source and target domain speech data [18]. How-
ever, a common limitation of these approaches is the signifi-
cant performance trade-off between domains, as most of these
methods compromise performance in the source domain while
optimizing for the target domain. This issue is particularly pro-
nounced in age-based domain mismatches, where the perfor-
mance degradation in SV systems is more severe than in other
cross-domain settings, such as cross-device [20], cross-distance
[20], and cross-dialect [20, 19, 21] scenarios.

In this paper, we propose an Age Agnostic Speaker Ver-
ification (AASV) system that achieves strong generalization
across both C-SV and A-SV tasks. The AASV system dy-
namically expands the embedding space and integrates comple-
mentary information from both adults and children SV mod-
els. Given the strong correlation between speaker embeddings
and age [22], we first employ ECAPA-TDNN [6] as the fea-
ture encoder to suppress linguistic information and obtain high-
level speaker embeddings. A domain classifier is then opti-
mized to disentangle age-related information and infer whether
the speaker belongs to the adults or children domain, providing
domain information for integration into the speaker embedding
space. This information is subsequently employed to merge
speaker representations, yielding an age agnostic speaker rep-
resentation that is both robust and highly discriminative. To the
best of our knowledge, despite existing research in the cross-
domain SV [20, 19], our work is the first to simultaneously re-
port results for both C-SV and A-SV, establishing a new bench-
mark in the field.

2. System Overview
2.1. Domain-Specific Speaker Embedding Network

We consider a neural network trained on adults’ speech to map
input speech signals to speaker embeddings for speaker veri-
fication (SV) tasks. This process optimizes a speaker embed-
ding network, parameterized by 6,, and a classification head
with parameters ¢,. To enhance inter-class separability in
the speaker embedding space, Additive Angular Margin loss
(AAM-softmax) is employed to increase the angular margin be-
tween different speaker classes during the optimization of both
components. The resulting speaker embedding network with
parameters 6, specializes in extracting domain-specific speaker
embeddings F, tailored to adults’ speech.

To adapt the network for children’s speech, we initiate a
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Figure 1: Workflow of the Age Agnostic Speaker Verification
(AASV) system. Speaker embeddings Eq and E. from A-SV and
C-SV subsystems are fused with age-domain information from
the domain classifier to generate robust speaker embeddings.

fine-tuning phase, initializing the network with the optimized
parameters ¢, and adapting it to child speech yielding updated
parameters 6.. A new classification head ¢ is introduced and
optimized to align with the adapted feature space. Rather than
training a single cross-domain speaker embedding network on a
mixed dataset, maintaining separate networks for different do-
mains offers two key advantages: (1) Feature-level adaptation
is more efficient than data-level mixing, as it facilitates knowl-
edge transfer across domains without requiring the relearning of
shared representations, and (2) In low-resource scenarios like
C-SV, data imbalance caused by domain mixing can bias the
model towards adults’ speech, thereby undermining the perfor-
mance on C-SV tasks.

2.2. Age Representation Disentanglement

To extract age-related information from speech, as shown in
Figure 1, we design a domain classifier to learn domain la-
bels. Considering the linguistic differences between children’s
and adults’ speech datasets, the domain classifier may strug-
gle to learn age-related speaker characteristics, potentially lead-
ing to misclassification based on content-related variations. To
mitigate this issue, we used the ECAPA-TDNN' model pre-
trained on SV tasks as an encoder to transform speech sam-
ples of varying durations into fixed-length speaker embeddings.
Figure 2 presents t-SNE visualizations of the extracted embed-
dings, where children’s and adults’ speech are treated as dis-
tinct domains. Specifically, Figure 2a illustrates the cluster-
ing results when defining younger children’s speech (K00-K06
age groups in the OGI dataset [23]) as a separate domain, with
adults’ speech drawn from VoxCeleb2 [24]. In contrast, Fig-
ure 2b illustrates the distribution when older children’s speech
(K07-K10 age groups in the OGI dataset) is considered instead.
The results indicate that embeddings from younger children’s
speech exhibit greater divergence from embeddings drawn from
adults’ speech, forming two well-separated and compact clus-
ters in Figure 2a. Leveraging this divergence, we train the do-
main classifier using speech samples from younger children and
adults, thereby enhancing its ability to distinguish between do-
mains effectively.

2.3. Multi-space Embedding Integration

We employ a multi-space embedding integration approach that
ensures the formation of robust speaker embeddings. Specifi-
cally, we extract two sets of speaker embeddings: E, € R, ob-
tained from the speaker embedding network trained on adults’

Uhttps://huggingface.co/speechbrain/spkrec-ecapa-voxceleb

speech, and E. € R? from the speaker embedding network
fine-tuned on children’s speech, where d represents the dimen-
sionality of the speaker embeddings. To integrate these em-
beddings, we leverage the softmax output of the domain classi-
fier, which provides a probabilistic estimation of domain affili-
ation. Let the domain classifier output be p = [p¢, pa], Where
p € R?, and, p.. and p, are scalars representing the probability
the input audio belongs to the children’s and adults’ domains,
respectively. These domain scores act as dynamic fusion coef-
ficients, guiding the weighted combination of the two embed-
dings within the expanded embedding space. We concatenate
the weighted embeddings along the feature dimension, expand-
ing the embedding space and forming a robust representation:

Er = [pcEc; paEq] € R*. (1)

The resulting representation Er captures speaker character-
istics across both age domains. When the speakers age domain
is uncertain, the domain classifier balances the contributions of
both embedding networks, mitigating errors caused by incorrect
domain classification.

(a) (b)

Figure 2: t-SNE visualization of speaker embeddings. Blue and
red points denote children’s speech from OGI and adult speech
Jfrom VoxCeleb, respectively. (a) t-SNE plot of younger chil-
dren’s group (K00-K06) vs. adults’ speech. (b) t-SNE plot
of older children’s group (K07-K10) vs. adults’ speech. The
clear separation between domains highlights that speaker em-
beddings inherently capture age-related information.

3. Experimental Setup
3.1. Datasets

We use the VoxCeleb dataset as the adults’ speech dataset
[25, 24]. VoxCeleb is a large-scale corpus of speech collected
from YouTube, comprising two subsets, VoxCelebl and Vox-
Celeb2, and contains audio samples collected from a range of
acoustic conditions. The OGI dataset [23] is used as the chil-
dren’s speech dataset. The OGI corpus includes both sponta-
neous and scripted speech data from approximately 1,100 chil-
dren, spanning ages from kindergarten (K00) to grade 10 (K10).
Each age group contains about 100 speakers. In our experi-
ments, we utilize only the scripted speech portion of the OGI
dataset.

We employ different train-eval splits across various datasets
for our experiments. For A-SV tasks, models pre-trained on the
VoxCelebl training set and the VoxCeleb2 development set are
evaluated solely on the VoxCeleb1-O (Original) test set. Models
trained on the VoxCeleb2 set are evaluated on the VoxCeleb1-0O,
VoxCelebl-E (Extended), and VoxCeleb1-H (Hard) test sets for
a more comprehensive assessment. For C-SV tasks, we utilize
the train-eval splits of the OGI dataset in [26]. The training set,
drawn from grades KOO to K10 age groups, comprises data from
866 speakers, totaling approximately 24 hours of speech. Ad-
ditionally, the domain classifier is trained using a subset of the



Table 1: Accuracy of domain classifiers trained on mixed
datasets with varying proportions of children’s and adults’
speech. The model is evaluated on separate children’s and
adults’ test sets, simulating the domain classifier’s application
in SV tasks. The children’s test set is a mixture of K0O0-K10 OGI
test sets and the adults’ test set is VoxCelebl-O.

# Utterances Accuracy
Adults  Children Adults  Children
1:1 20,000 20,000  42.1%  100.0%
2:1 40,000 20,000  70.6% 99.9%
3:1 60,000 20,000  87.5% 99.9%
4:1 80,000 20,000  89.7% 99.7%
5:1 100,000 20,000  95.0% 99.6%

OGI training set, specifically grades KOO to K06 as discussed
in Section 2.2, alongside the VoxCeleb2 development set. The
OGI test set consists of 4,000 evaluation trials per age group,
with 2,000 positive and 2,000 negative trials each, resulting in
44,000 SV trials from 225 speakers.

3.2. Speaker Verification Systems

We employ two configurations of the ECAPA-TDNN [6] model
for SV tasks, with convolutional frame layers using 512 or 1024
channels to provide a comprehensive evaluation. All experi-
ments are conducted in the SpeechBrain framework [27]. The
first ECAPA-TDNN model uses 512 channels per convolutional
frame layer, resulting in approximately 6.2M parameters. This
model was pre-trained on VoxCeleb2 development set and is
referred to as A-SV-Small. Then we fine-tune A-SV-Small on
the OGI dataset to obtain C-SV-Small. As the smaller ECAPA-
TDNN is only pre-trained on VoxCeleb2, we report results on
VoxCeleb1-O, VoxCelebl-H, and VoxCelebl-E.

We also employ a second ECAPA-TDNN configuration
with 1024 channels per convolutional frame layer, resulting in
approximately 20.8M parameters. This model was pre-trained
on the VoxCeleb] training set and VoxCeleb2 development set,
and we refer to it as A-SV-Large. This model is fine-tuned on
the OGI dataset to obtain C-SV-Large. Since A-SV-Large was
pre-trained on both VoxCelebl and VoxCeleb2, we only use
VoxCeleb1-O as the test set for A-SV to ensure data separation.

3.3. Training Details and Evaluation Metric

During fine-tuning of the pretrained ECAPA-TDNN model on
the OGI dataset, which includes speakers from the KOO to K10
age groups, the following configuration is employed: The net-
work is optimized using the Adam optimizer with a weight de-
cay of 2 x 107%. The learning rate is set to 0.001, with a
cyclic annealing schedule, where the base learning rate is set to
1x107® and the maximum learning rate is 0.001. Fine-tuning is
conducted for 15 epochs, with a batch size of 16. The input fea-
tures consisted of 80-dimensional filter bank coefficients, com-
puted every 10 ms with a 25 ms window. The audio duration for
each utterance is 2 seconds in the training set. To improve the
robustness, we applied four data augmentation techniques: ad-
ditive noise, reverberation with room impulse responses (RIR),
frequency masking, and time masking.

For the A-SV systems, we directly utilize the open-source
ECAPA-TDNN models pre-trained on the Voxceleb dataset,

AASV-Large’ and AASV-Small’>. The domain classifier is
trained using the cross-entropy loss function, achieving 99%
overall accuracy and an F1 score of 0.99. Additionally, data
augmentation is also applied during the training of the domain
classifier, where one of the four augmentations mentioned ear-
lier is randomly selected per iteration. Equal Error Rate (EER)
is used to evaluate the performance of the SV systems.

4. Results and Discussion
4.1. Influence of the domain classifier

Table 1 presents results from training the domain classifier with
varying amounts of adult speech, while keeping children’s data
fixed at 20,000 utterances. As the adult-to-child ratio increases
from 1:1 to 5:1, accuracy on the adult test set rises from 42.1%
to 95.0%, with minimal change on the children’s set. No fur-
ther improvement is observed beyond a 5:1 ratio. The need for
a higher proportion of adults’ speech data in the training set is
likely due to the larger size and greater diversity of the Vox-
Celeb dataset compared to the OGI dataset. VoxCeleb includes
a broader range of accents, speaker ages, and acoustic condi-
tions, which likely contributes to the need for a larger sample to
ensure effective domain classification.

Since the domain classifier was initialized with the ECAPA-
TDNN encoder pre-trained on VoxCelebl and VoxCeleb2 (ex-
cluding VoxCeleb1-O), we did not report the results of the
AASV-Large and AASV-Small systems on VoxCelebl-E and
VoxCeleb-H to avoid potential bias. Additionally, we noticed
that although misclassification occurred with the domain clas-
sifier, their impact on the EER in SV tasks was smaller than
the misclassification rate itself. Specifically, although the do-
main classifier achieved 95% accuracy on VoxCelebl, the re-
maining 5% error rate led to only a 1.09% absolute increase in
EER for the AASV-Large system compared to the A-SV-Large
system and a 1.06% absolute increase for the AASV-Small sys-
tem compared to the A-SV-Small system as shown in Table 2.
This is likely because some cross-speaker test pairs were mis-
classified into different domains, which amplified embedding
differences and reduced cosine similarity, without causing veri-
fication errors.

4.2. Performance on Children’s and Adults’ Speech
4.2.1. The performance of A-SV and C-SV systems

Table 2 shows the EER performance of different SV systems
across various test sets. The A-SV-Large system (row 1) ex-
hibits a general decrease in EER as the age of speakers in the
test sets increases, with EER dropping from 30.65% on the KOO
test set to 6.15% on the K10 set, and further to 0.8% on the
VoxCeleb1-O test set. In contrast, the C-SV-Large system (row
2) achieves lower EERs on the OGI year-wise test sets, decreas-
ing from 8.9% on K00 to 3.2% on K10; however, its EER on the
VoxCeleb1-O test set increases to 7.01%, reflecting an absolute
increase of 6.21% compared to A-SV-Large. A similar trend
is observed when comparing A-SV-Small and C-SV-Small sys-
tems (rows 5 and 6). Overall, A-SV systems perform well on
the VoxCeleb test sets but struggle on the OGI year-wise test
sets due to domain mismatch. Conversely, C-SV systems sig-
nificantly reduce EER on the OGI year-wise test sets; but this
improvement comes at the cost of catastrophic forgetting of the
source-domain knowledge.

Zhttps://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
3https://huggingface.co/yangwang825/ecapa-tdnn-vox2



Table 2: EER (%) comparison of verification systems. KOO-KI10 represent increasing age groups. A-SV and C-SV denote Adults’
and Children’s verification systems, respectively, while AASV is our proposed Age Agnostic Speaker Verification system. WSE refers
to the Weight Space Ensemble (WSE) model. Systems labeled ”-Large” (20.8M parameters) were trained on VoxCelebl and are not
evaluated on VoxCelebl-E and VoxCelebl-H (indicated by -’). Systems labeled ”-Small” (6.2M parameters) are trained on VoxCeleb?2.
DC denotes the domain classifier, PreEmbed represents pre-trained speaker embeddings. All C-SV systems used the same OGI training
set. Rows 4 and 9 show that our methods maintain balanced performance on both child and adult test sets.

OGI (Children’s Speech)

VoxCeleb (Adults’ Speech)

#  Systems
K00  KO1 K02 K03 K04  KO5 K07 KO8 K09 KI0 VoxCelebl-O VoxCelebl-E  VoxCelebl-H
1 A-SV-Large 30.65 30.55 3175 2685 2390 1255 1310 9.15 615 580 6.15 0.80 - -
2 C-SV-Large 890 10.10 855 640 645 3.60 255 240 160 3.20 7.01 - -
3 ChildAugment [10] 29.30  29.65 2995 2455 2355 1230 13.15 8.9 6.10 565 575 1.19 1.49 2.98
4 AASV-Large (Ours) 890 1020 855 640 645  3.60 255 230 170 4.00 1.89 - -
5  A-SV-Small 3195 3440 3230 29.85 2880 1540 1490 11.60 10.10 9.15 9.60 1.19 1.31 2.48
6  C-SV-Small 950 950 845 660 560 3.80 2.80 250 1.80 3.00 10.21 9.55 13.38
7  Stable Learning [16] 8.55 9.6 8.4 6.55 635  4.00 2.8 2.15 1.6 315 10.26 9.55 13.38
8  WSE[19] 17.25 1840 16.05 1430 1395 7.25 4.35 3.15 355 3.5 1.92 2.13 3.44
9  AASV-Small (Ours) 9.50 9.60 8.45 6.65 5.55 3.80 2.80 2.40 1.90 3.80 2.25 - -
w/o DC 16.65 17.60 16.35 13.80 1395 8.00 475 445 330 475 1.85 2.13 3.63
w/o DC + PreEmbed 19.80 2215 21.10 1945 19.65 10.20 6.00 575 490 5.10 2.43 2.66 4.56
10  AASV-Small + PreEmbed  11.7 1445 1254 11.00 1145 8.40 500 435 395 515 1.95 - -

4.2.2. The performance of the proposed AASV systems

The proposed AASV-Large and AASV-Small systems achieve
competitive performance across both children’s and adults’ test
sets. As illustrated in Figure 3, the absolute increase in EER
for the AASV-Small system compared to the C-SV-Small sys-
tem across the K00-K09 age groups is within 0.1%. For the
K10 test set, the absolute increase in EER is 0.8%. Meanwhile,
the AASV-Small system exhibits an absolute increase of 1.06%
in EER compared to the A-SV-Small system on the Voxcelebl-
O test set, substantially lower than the 9.02% absolute rise in
EER observed for the C-SV-Small system on the Voxcelebl-
O test set. We also compare our approach with three exist-
ing methods: ChildAugment [10], Stable Learning [16], and
Weight Space Ensemble (WSE) [19]. As shown in Table 2,
out-of-domain data augmentation method ChildAugment yields
limited improvements on C-SV test sets while maintaining sta-
ble performance on A-SV test sets. In contrast, Stable Learning
method improves C-SV but degrades A-SV performance sig-
nificantly. Rows 8 and 9 of Table 2 compare our approach with
WSE, AASV-Small system outperforms the WSE-based model
on 10 out of 11 OGI year-wise test sets, demonstrating bet-
ter generalization across child age groups. The WSE method
achieves slightly better results on the K10 and VoxCeleb1-O
test sets, with EERs of 3.5% and 1.92%, respectively.

4.3. Ablation study on embedding integration strategies

To demonstrate the importance of the domain classifier in the
AASYV systems, we present the EER data without the domain
classifier (w/o DC) in the Table 2. We note that directly inte-
grating the speaker embeddings of the C-SV and A-SV sub-
systems without the domain classifier results in a significant
performance drop on the OGI year-wise test sets and a slight
performance improvement on Voxceleb1-O testset. Inspired by
the findings in [28] regarding the utility of pre-trained speaker
embeddings in providing useful information across tasks differ-
ent from pre-training, as well as their robustness when applied
to target-domain tasks, we also explored incorporating speaker
embeddings from the adults’ speech pre-trained SV model dur-
ing C-SV model fine-tuning (+ PreEmbed in Table 2), but this
approach did not yield satisfactory results in our case.

EER Comparison of Speaker Verification(SV) Systems
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Figure 3: Performance of the A-SV-Small, C-SV-Small, and pro-
posed AASV-Small systems across year-wise OGI test sets and
the VoxCeleb] test set.

5. Conclusion

In this paper, we propose the Age Agnostic Speaker Verifica-
tion (AASV) system, which aims to enhance the inclusiveness
of speaker verification systems by achieving competitive per-
formance across both children’s and adults’ verification tasks.
We first employ the domain classifier to obtain domain infor-
mation, then integrate the speaker-related information extracted
from both the children’s and adults’ speaker verification sys-
tems with age-related information. This fusion ultimately leads
to the formation of a robust speaker embedding that is adapt-
able to both domains. Experimental results on the OGI and
VoxCeleb datasets demonstrate that the AASV system achieves
competitive results across different age groups. Future work
will focus on more effective extraction of age features from
speech and narrowing the performance gap between children’s
and adults’ verification tasks.
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