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Abstract

Vocal Tract Length Normalization (VTLN) for standard filterbank-based Mel
Frequency Cepstral Coefficient (MFCC) features is usually implemented by warp-
ing the center frequencies of the Mel filterbank, and the warping factor is estimated
using the maximum likelihood score (MLS) criterion (Lee and Rose, 1998). A linear
transform (LT) equivalent for frequency warping (FW) would enable more efficient
MLS estimation (Umesh et al., 2005). We recently proposed a novel LT to perform
FW for VTLN and model adaptation with standard MFCC features (Panchapage-
san, 2006). In this paper, we present the mathematical derivation of the LT and give
a compact formula to calculate it for any FW function. We also show that our LT is
very closely related to previously proposed LTs for FW (McDonough, 2000; Pitz et
al., 2001; Umesh et al., 2005), and these LTs for FW are all found to be numerically
almost identical for the sine-log all-pass transform (SLAPT) warping functions. Our
formula for the transformation matrix is, however, computationally simpler and un-
like other previous linear transform approaches to VTLN with MFCC features (Pitz
and Ney, 2003; Umesh et al., 2005), no modification of the standard MFCC feature
extraction scheme is required. In VTLN and Speaker Adaptive Modeling (Welling et
al., 2002) experiments with the DARPA Resource Management (RM1) database, the
performance of the new LT was comparable to that of regular VTLN implemented
by warping the Mel filterbank, when the MLS criterion was used for FW estimation.
This demonstrates that the approximations involved do not lead to any performance
degradation. Performance comparable to front end VTLN was also obtained with
LT adaptation of HMM means in the back end, combined with mean bias and vari-
ance adaptation according to the Maximum Likelihood Linear Regression (MLLR)
framework. The FW methods performed significantly better than standard MLLR
for very limited adaptation data (1 utterance), and were equally effective with un-
supervised parameter estimation. We also performed Speaker Adaptive Training
(SAT) with feature space LT denoted CLTFW. Global CLTFW SAT gave results
comparable to SAM and VTLN. By estimating multiple CLTFW transforms using
a regression tree, and including an additive bias, we obtained significantly improved
results compared to VTLN, with increasing adaptation data.
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1 Introduction

Vocal Tract Length Normalization (VTLN) is a speaker normalization technique
widely used to improve the accuracy of speech recognition systems. In VTLN, spectral
mismatch caused by variation in vocal tract lengths of speakers is reduced by per-
forming spectral frequency warping (FW) or its equivalent, typically during feature
extraction. VTLN has proven to be particularly effective when only limited adap-
tation data from a test speaker is available, even in an unsupervised mode. The
estimation and implementation of frequency warping have received much attention in
recent years.

The parameters controlling the FW are commonly estimated by optimizing a maxi-
mum likelihood (ML) criterion over the adaptation data. The ML criterion could be
the ASR likelihood score of the recognizer over the adaptation data (Lee and Rose,
1998; Pitz et al., 2001; Pitz and Ney, 2003), the EM auxiliary function (Dempster
et al., 1977; McDonough, 2000; Loof et al., 2006), or likelihoods of Gaussian mixture
models (GMMs) trained specifically for FW parameter estimation (Wegmann et al.,
1996; Lee and Rose, 1998). Another FW estimation method is by alignment of for-
mants or formant-like spectral peaks between the test speaker and a reference speaker
from the training set (Gouvea and Stern, 1997; Claes et al., 1998; Cui and Alwan,
2006).

Maximizing the likelihood score is commonly performed using grid search over a set
of warping factors, when the FW is described by a single parameter that controls
the scaling of the frequency axis (Lee and Rose, 1998). More recently, optimization
methods based on the gradient and higher order derivatives of the objective function
have been used to estimate the FW function. This allows efficient estimation of mul-
tiple parameter FW functions like the All-Pass Transform (APT) FWs, which can
give better recognition performance than single parameter FWs (McDonough, 2000;
Panchapagesan and Alwan, 2006).

Frequency warping of the spectrum has been shown to correspond to a linear trans-
formation in the cepstral space (McDonough et al., 1998; Pitz et al., 2001). This
relationship confers some important advantages for speech recognition systems that
use cepstral features. Firstly, one can apply the linear transform to previously com-
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puted unwarped features and not have to recompute features with different warp
factors during VTLN estimation. This results in significant computational savings
(Umesh et al., 2005), which would be important in embedded and distributed speech
recognition (DSR) applications, where resources are limited. Given the recognition
alignment of an utterance obtained with baseline models without VTLN, it can be
shown by a rough calculation that parameter estimation for Regular VTLN is about
2.5 times as expensive as for LT VTLN, when the fixed alignment is used for VTLN
estimation with the MLS criterion, with single Gaussian mixture HMMs and a grid
search. The linear transform approach also has the advantage that one need not have
access to any of the intermediate stages in the feature extraction during VTLN esti-
mation. This aspect would have definite advantages in DSR, where feature extraction
is performed at the client and recognition is performed at the server. During VTLN
estimation using a grid search over warping factors, since it would be impractical
for the client to recompute and transmit features for each warping factor, warped
features would have to be computed at the server. With a linear transform, only
the cepstral transformation matrices for each warping factor need to be applied to
unwarped features to choose the best warping factor, while with VTLN by spectral
warping, the linear frequency spectrum needs to be reconstructed and the warped
features recomputed for each warping factor.

The linearity also enables one to take the expectation and thereby apply the linear
transformation to the means of HMM distributions (Claes et al., 1998; McDonough
and Byrne, 1999). Different transforms could then be estimated for different phonemes
or classes of HMM distributions, unlike VTLN where the same global transformation
is applied to all speech features (McDonough, 2000).

Mel frequency cepstral coefficients (MFCCs) computed using a filterbank and the
DCT (Davis and Mermelstein, 1980), are a very popular choice of features for speech
recognition. The equivalence of FW to linear transformation, though true also for
cepstral features which are based on Perceptual Linear Prediction (PLP) or by Mel
warping of the frequency axis (McDonough, 2000; Pitz and Ney, 2003), does not hold
exactly for standard MFCC features. In fact, for standard MFCC features, because of
the non-invertible filterbank with non-uniform filter widths, even with the assumption
of quefrency limitedness, the MFCC features after warping cannot even be expressed
as a function (linear or non-linear) of the unwarped MFCC features. i.e., for a given
warping of the linear frequency signal spectrum, there is not a single function (for all
possible cepstra) that will give the warped cepstra from the unwarped cepstra. Hence,
approximate linear transforms have been developed for FW with MFCC features
(Claes et al., 1998; Cui and Alwan, 2006; Umesh et al., 2005).

Claes et al. (1998) were the first to derive an approximate linear transform which was
used to perform model adaptation with some success. Cui and Alwan (2005, 2006)
derived a simpler linear transform that is essentially an “index mapping” on the Mel
filterbank outputs, i.e. one filterbank output is mapped to another. In fact, it may
be shown to be mathematically a special case of Claes et al.’s transform (see Section
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2) but was demonstrated to give better performance (Cui and Alwan, 2005). In both
Claes et al. (1998) and Cui and Alwan (2006), the FW was estimated by alignment
of formants or formant-like peaks in the linear frequency domain.

Umesh et al. (2005) showed that the formula for computing the linear transform for
ordinary cepstra, derived in Pitz et al. (2001), could be considerably simplified under
the assumption of quefrency limitedness of the cepstra, when the log spectrum can
be obtained from samples by sinc interpolation. They also developed non-standard
filterbank based MFCC features, to which the linear transformation was extended.
In their modified filterbank, the filter center frequencies were uniformly spaced in the
linear frequency domain but filter bandwidths were uniform in the Mel domain. Their
transformation formula (discussed further in Section 4) was, however, complicated by
the use of two different DCT matrices, one for warping purposes and the other for
computing the cepstra.

In Panchapagesan (2006), we introduced a novel linear transform for MFCCs that
required no modification of the standard MFCC feature extraction scheme. The main
idea was to directly warp the continuous log filterbank output obtained by cosine in-
terpolation with the IDCT. This approach can be viewed as using the idea of spectral
interpolation of Umesh et al. (2005), to perform a continuous warping of the log fil-
terbank outputs instead of the discrete mapping in Cui and Alwan (2006). However, a
single warped IDCT matrix was used to perform both the interpolation and warping,
thus resulting in a simpler mathematical formula for computing the transform com-
pared to Umesh et al. (2005). Also, the warping in the IDCT matrix is parametrized
and the parameter can be estimated directly by optimizing an objective criterion,
without using the intermediate linear frequency spectrum as in the Peak Alignment
method of Cui and Alwan (2006). As mentioned above, this would be advantageous in
distributed speech recognition, where intermediate variables in the feature extraction
have to be reconstructed at the recognizer. Also, with a smooth parametrization of
the FW, it is possible to estimate the FW parameters by faster optimization tech-
niques as in McDonough (2000) and Panchapagesan and Alwan (2006) instead of the
commonly used grid search, and also perform simultaneous optimization of several
parameters.

In Panchapagesan (2006), we validated the technique on connected digit recognition
of children’s speech, and showed that for that task, it performed favorably compared
to regular VTLN by warping the filterbank. We also compared the method in the back
end with the Peak Alignment method (Cui and Alwan, 2006), and showed comparable
and slightly better results.

In this paper, the mathematical derivation of our Linear Transform (LT) is presented
in more detail, and the final formula for computing the LT for any given frequency
warping function and parameter is expressed in a simple and compact form. We
validate the LT further by demonstrating its effectiveness in continuous speech recog-
nition using the DARPA Resource Management (RM1) database. These include ex-
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Fig. 1. Standard MFCC computation.

periments with front end VTLN and back end adaptation of HMM means, as well
as speaker adaptive modeling and training using the LT (Welling et al., 2002; Anas-
tasakos et al., 1996). We show that in all cases, LT VTLN can give results comparable
to those of regular VTLN by warping the Mel filterbank center frequencies. We also
discuss optimization of the EM auxiliary function for LT estimation, and show that
by estimating multiple transforms using a regression tree, results better than global
VTLN can be obtained. Finally, we present the results of unsupervised VTLN and
adaptation with the LT.

The rest of this paper is organized as follows. In Section 2 we consider the problem
of deriving a linear transformation for FW of MFCCs, review previous work, and
motivate the development of our new linear transform. The matrix for the new linear
transformation is derived in Section 3, and the proposed transform is compared with
previous approaches in Section 4. We then consider the estimation of FWs using MLS
and EM auxiliary function as objective critera in Section 5, and also derive formulae
for convex optimization of the EM auxiliary function for multiple FW parameters.
Experimental results are presented in Section 6, and summary and conclusions in
Section 7.

2 FW as Linear Transformation of Standard MFCC - Review of Previous

Work

Standard MFCCs are computed as shown in Figure 1, and the Mel filterbank is shown
in Figure 2. The filters are assumed to be triangular and half overlapping, with center
frequencies spaced equally apart on the Mel scale.

During feature extraction, the speech signal is pre-emphasized and divided into frames
and each frame is first windowed using the Hamming window. The short-time power
spectrum vector S is obtained from the squared magnitude of the FFT of the win-
dowed frame.

The log of the filterbank outputs is obtained as:

L = log(H · S) (1)

where H is the Mel filterbank matrix. Here, we use the notation that the log of a
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Fig. 2. The shape of the Mel filter bank shown for the case when fs is 8kHz and the number
of filters is 15.

vector is the log applied to each component.

The MFCCs are then given by

c=C · L (2)

=C · log(H · S) (3)

where C is the DCT matrix.

FW for VTLN can be applied to the linear frequency spectrum S, or to the center
frequencies of the filterbank (Lee and Rose, 1998), which is computationally more
efficient since the warping only has to be performed once on the filterbank and not
repeatedly for each frame of speech. For this theoretical discussion, we consider direct
frequency warping of S. SinceH and C result in significant reduction of dimensionality
and are non-invertible, S can only be approximately recovered from the Mel cepstrum
c:

S ≈ H−1 · exp(C−1c)

where H−1 and C−1 are approximate inverses of H and C respectively. A (partial)
IDCT matrix is a natural choice for C−1, while different choices have been proposed
for H−1 by Claes et al. (1998) and Cui and Alwan (2006), as discussed below.

Between the two approximate inverse operations, the application of C−1 is less severe
since it only corresponds to a smoothing of the log filterbank output by cosine inter-
polation. Since the spectrum is already smoothed and warped by the Mel filterbank
operation, the cepstral truncation and application of C−1 would result in the recov-
ery of a reasonable Mel-warped log spectrum which can be used for further VTLN
warping. The FFT spectrum recovered using an approximate filterbank inverse H−1,
however, would probably only be a gross approximation of the original FFT spectrum
since there is large dimensionality reduction due to application of H (256× 26 in our
case). However, the use of a particular choice of H−1 to perform VTLN warping can
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be empirically justified by the improvement in recognition results.

By applying a warping W to the approximate linear spectrum S and recomputing
Mel cepstra, a non-linear FW transform for MFCCs may therefore be derived as in
Claes et al. (1998):

ĉ = C · log{H ·W ·H−1 · exp(C−1c)} (4)

Claes et al. (1998) also showed that for small frequency scaling factors, the non-linear
cepstral transformation of Equation 4 may be approximately linearized to:

ĉ ≈ (CB̄C−1) · c + Cd (5)

where B̄ is the matrix obtained from B = H ·W · H−1 by normalizing each row of
B so that the sum of the elements in each row is 1: B̄(i, j) = B(i, j)/

∑
j B(i, j), and

d(i) = log
∑

j B(i, j). For the choice of H−1, Claes et al. (1998) used a special matrix
M that satisfied HM = I, and which was found to give better results than just using
the pseudo-inverse of H.

Cui and Alwan (2006) obtained a transform that has a simpler form than that in
Equation 5, and was shown to give even better results, by approximating H, W
and H−1 in Equation 4 by carefully chosen index mapping (IM) matrices, which are
matrices in which each row contains only one nonzero element which is 1. Then,
B = H ·W · H−1 is also an IM matrix, and the exponential and the logarithm in
Equation 4 cancel each other out (Cui and Alwan, 2006). The cepstral transformation
then becomes linear:

ĉ = (CHWH−1C−1) · c (6)

In fact, when B is an IM matrix, B̄ = B and d = 0 in Equation 5, and Equation 5 also
reduces to Equation 6. Cui and Alwan’s linear transform is therefore mathematically
a special case of Claes et al’s transform.

We can rewrite Equation 6 as
ĉ = C · L̂ (7)

where
L̂ = HWH−1 · L = B · L (8)

with
L ≈ C−1c (9)

Considered from the point of view of the log Mel filterbank output L, since B is an
IM matrix, we can see from Equation 8 that Cui and Alwan’s transform therefore
amounts to an index mapping.

In Cui and Alwan (2006), the warping W was estimated by alignment of formant-
like peaks in the linear frequency spectrum S, and the cepstral linear transform was
demonstrated to give excellent results when used for model adaptation. This raises the
possibility of obtaining the same success by estimating and applying warping directly
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on the log Mel spectrum L without reconstructing the linear frequency spectrum
S using an approximate inverse of the filterbank. Also, the discrete nature of the
frequency mappings of Cui and Alwan is not conducive to estimation by efficient
optimization of objective functions like maximum likelihood or discriminative criteria,
which can give improved recognition accuracy, and also have other advantages over
peak alignment as discussed in Section 4.

We will next discuss how to implement and estimate continuous warping on L, the log
Mel filterbank output, and show that it naturally results in a linear transformation
on the MFCCs.

3 Derivation of the Novel LT by Warping the Log Mel Filterbank Output

3.1 Linearity of the Cepstral Transformation

Equation 9 describes how the smoothed log filterbank output may be approximately
recovered from the truncated cepstra using the IDCT. We use a unitary type-II DCT
matrix, for which we have C−1 = CT , with

C =

[
αk cos

(
π(2m− 1)k)

2M

)]

0≤k≤N−1
1≤m≤M

(10)

where M is the number of filters in the filterbank, N is the number of cepstra used
in the features, and

αk =





√
1
M
, k = 0√

2
M
, k = 1, 2, . . . , N − 1

(11)

is a factor that ensures that the DCT is unitary. Similar expressions are valid for
C and C−1 with a non-unitary type-II DCT matrix, but then C−1 6= CT and two
different sets of factors αk and βk would be required. Note that typically N < M in
practice.

Equation 9 therefore becomes L = C−1c = CTc (the approximation being understood
implicitly) and may be written in expanded form as

L(m) =
N−1∑

k=0

c(k)αk cos

(
π(2m− 1)k

2M

)
, m = 1, 2, . . . ,M (12)

where c(k), k = 0, 1, . . . , N − 1, are the MFCCs.

Using the idea of cosine interpolation one can consider the IDCT approximation of
Equation 12 to describe a continuous log Mel spectrum L(u), where u is a continuous
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(scaled) Mel frequency variable:

L(u) =
N−1∑

k=0

c(k)αk cos

(
π(2u− 1)k

2M

)
(13)

with

L(m) = L(u)|u=m,m = 1, 2, . . . ,M (14)

We can now apply continuous warping to u. Let us take the inverse of the warping
function to be applied, to be ψ(u). The warped continuous log Mel spectrum is then:

L̂(u) = L(ψ(u)) (15)

The warped discrete log filterbank output is obtained by sampling L̂(u):

L̂(m) = L̂(u)|u=m, m = 1, 2, . . . ,M (16)

=L(ψ(u))|u=m, m = 1, 2, . . . ,M (17)

=
N−1∑

k=0

c(k)αk cos

(
π(2ψ(m) − 1)k

2M

)
, m = 1, 2, . . . ,M (18)

by Equations 15 and 13.

Therefore, in vector form,

L̂ = C̃ · c (19)

where C̃ is the warped IDCT matrix:

C̃ =

[
αk cos

(
π(2ψ(m) − 1)k

2M

)]

1≤m≤M
0≤k≤N−1

(20)

The transformed MFCCs are given by

ĉ=C L̂ = (CC̃) c

=T c (21)

Hence, the MFCCs corresponding to the warped log Mel spectrum are naturally
obtained by a linear transformation of the original MFCCs, and the transformation
matrix is given by

T = CC̃ (22)

where C̃ is the warped IDCT matrix given in Equation 20.
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3.2 Computation of the Transform Matrix

In the above derivation, one needs to specify the warping ψ(u) before the transform
matrix can be computed from Equations 10, 20 and 22. The first detail is the range
of values that u can take. L(u) as described in Equation 13 above is periodic with a

period of 2M , and is symmetric about the points u =
1

2
and u = M +

1

2
. Therefore,

the range of u to be be warped is
1

2
≤ u ≤M +

1

2
.

Frequency warping functions on u may be obtained through the use of a normalized
frequency variable λ with 0 ≤ λ ≤ 1. We can pass from the continuous Mel domain u
to the normalized frequency domain λ, and vice versa, by the affine transformations:

u→λ =
u− 1/2

M
,

1

2
≤ u ≤M +

1

2
(23)

λ→u =
1

2
+ λM, 0 ≤ λ ≤ 1 (24)

Let θp(λ) be a normalized FW function controlled by parameter(s) p (see Equations
30, 31 and 32 for examples). The only practical constraint required for θp(λ) to be
usable is that 0 ≤ θp(λ) ≤ 1 for 0 ≤ λ ≤ 1. Then we can obtain a warping ψ(u) =
ψp(u) on u, using

ψp(u) =
1

2
+M · θp

(
u− 1/2

M

)
(25)

Note that if λ = 0 and λ = 1 are fixed points of θp(λ) (i.e. θp(0) = 0 and θp(1) = 1),

then u =
1

2
and u = M +

1

2
are fixed points of ψp(u).

By Equation 25,
2ψp(u) − 1

2M
= θp

(
2u− 1

2M

)
(26)

and the warped IDCT matrix of Equation 20 can be rewritten as:

C̃p =
[
αk cos

(
πk θp

(
2m− 1

2M

))]

1≤m≤M
0≤k≤N−1

(27)

Comparing Equations 21 and 22 with Equation 6, we see that the warping of the log
Mel spectrum has been embedded into the IDCT matrix. In fact, if we let λm = 2m−1

2M

for 1 ≤ m ≤M , then Equations 10 and 27 may be rewritten as:

CT = [ αk cos (πk λm) ] 1≤m≤M
0≤k≤N−1

(28)

C̃p = [ αk cos (πk θp (λm)) ] 1≤m≤M
0≤k≤N−1

(29)
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This last equation shows clearly the simplest way of computing the warped IDCT
matrix for a given normalized warping function θp(λ) and warping parameter p. We
next look at some examples for θp(λ).

Examples of Normalized Frequency Warping Functions:

(1) Piecewise Linear: These are the type of FW functions that are commonly used
in VTLN (Wegmann et al., 1996; Pitz et al., 2001).

θp(λ) =




pλ, 0 ≤ λ ≤ λ0

pλ0 +
(

1−pλ0

1−λ0

)
(λ− λ0), λ0 < λ ≤ 1

(30)

where λ0 is a fixed reference frequency, around 0.7 in our experiments.
(2) Linear: This FW can be used for adaptation from adult models to children’s

models, where the original models have more spectral information than necessary
for children’s speech (Cui and Alwan, 2006; Panchapagesan, 2006).

For p ≤ 1,

θp(λ) = pλ, 0 ≤ λ ≤ 1 (31)

(3) Sine-Log Allpass Transforms (SLAPT): SLAPT frequency warping functions in-
troduced in McDonough (2000), are capable of approximating any 1-1 arbitrary
frequency warping function, and are therefore suitable for multi-class adaptation
or the adaptation of individual distributions. The K-parameter SLAPT, denoted
SLAPT-K, is given by:

θp(λ) =λ+
K∑

k=1

pk sin(πkλ) (32)

3.3 Transformation of Features and HMM means

The final feature vector x consists of the MFCCs and their first and second time
derivatives. The transform on the time derivatives of the cepstral features will also
be linear (Claes et al., 1998; McDonough and Byrne, 1999; Cui and Alwan, 2006):

∆̂c=Tp ∆c (33)

∆̂2c=Tp ∆2c (34)
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Therefore, the feature vector x =




c

∆c

∆2c




may be transformed as:

xp = Ap x, where Ap =




Tp 0 0

0 Tp 0

0 0 Tp




(35)

where the transformed feature vector xp is now a function of the FW parameters, p.
Taking the expectation, the mean µ of a given HMM distribution may be transformed
as (Claes et al., 1998; McDonough and Byrne, 1999; Cui and Alwan, 2006):

µ̂ = Ap µ (36)

3.3.1 Combination with MLLR Bias and Variance Adaptation

After estimating the LT (see Section 5 below), a bias vector b and an unconstrained
variance transform matrixH may be estimated according to the Maximum Likelihood
Linear Regression (MLLR) technique (Leggetter and Woodland, 1995; Gales, 1996).
The adapted mean and covariance matrix {µ̂, Σ̂} of a Gaussian distribution {µ,Σ}
are given by:

µ̂=Ap µ+ b (37)

Σ̂ =BTHB (38)

where Σ = CCT and B = C−1.

The MLLR formulae for estimating the bias and variance transforms are (Gales, 1996;
McDonough, 2000; Cui and Alwan, 2006):

b =

(∑

g

∑

u

∑

t

γgutΣ
−1
g

)−1 (∑

g

∑

u

∑

t

γgutΣ
−1
g (xut − Apµg)

)
(39)

H =

∑
g C

T
g

[∑
u

∑
t γgut(xut − µg)(xut − µg)

T
]
Cg

∑
g

∑
u

∑
t γgut

(40)

In the above equations, g is summed over the Gaussian distributions that are being
transformed together, u is summed over the set of adaptation utterances and t is the
time index over a given adaptation utterance u. γgut is the posterior probability that
a speech frame xut was produced by Gaussian g, for the given transcription of the
adaptation data. In the case of diagonal covariance matrices, the off-diagonal elements
of H from Equation 40 above are simply ignored and zeroed out.
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4 Comparison and relationships with previous transforms

As discussed in Section 1, several cepstral linear transforms have earlier been derived
in the literature as equivalents of frequency warping for use in speaker normalization
and adaptation. Some of them were derived for plain or PLP cepstra (McDonough et
al., 1998; Pitz et al., 2001) and extended to non-standard MFCC features (Pitz and
Ney, 2003; Umesh et al., 2005). Although our LT was derived for standard MFCCs by
warping the log filterbank output, motivated by the work of Cui and Alwan (2006),
it is closely related to the earlier transforms for cepstral features.

In fact, we have verified that for the SLAPT-1 warping function, the different cep-
stral LTs (McDonough’s, Umesh et al.’s and ours) are numerically identical except
in the first row, up to numerical accuracy in Matlab. Since this is not readily appar-
ent from their mathematical formulations, we now wish to clarify the relationships
between these different cepstral linear transforms for frequency warping. We first
briefly describe the assumptions and formulae involved in the calculation of the LTs
of McDonough, Pitz et al. and Umesh et. al., and then compare them with our LT.

4.1 McDonough’s LT

McDonough derived his LT using the strict definition of cepstra as Laurent series
coefficients of the log spectrum (see McDonough et al., 1998, , for example). With
this definition, the LT can be computed for analytic transformations that preserve the
unit circle in the complex plane, such as the rational and sine-log all-pass transforms
(RAPT and SLAPT). If Q(z) is the warping transformation, then the transformation
matrix is given by:

anm =





1 for n = 0,m = 0

2q(m)[0], for n = 0,m > 0

0, for n > 0,m = 0

q(m)[n] + q(m)[−n], for n > 0,m > 0

(41)

where q(m)[n] are obtained from q[n] using q(m)[n] = q(m−1)[n] ∗ q[n],m ≥ 1, with
q(0)[n] = δ[n], the unit sample sequence. This matrix differs in the first row from the
one given in McDonough et al. (1998), since that was for the causal minimum-phase
cepstra (x[n] in McDonough et al., 1998), while this is for the plain real cepstra (c[n]
in McDonough et al., 1998).

Since we will later compare the computations involved in our LT with that of Mc-
Donough’s, we now briefly list the steps involved in calculating McDonough’s LT. For
the K-parameter SLAPT FW,

Q(z) = zG(z) = z expF (z) (42)
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where

F (z) =
(
π

2

) K∑

k=1

αk(z
k − z−k) (43)

If f (m)[n] are defined using f [n], similar to q(m)[n] using q[n] above, then

g[n] =
∞∑

m=0

1

m!
f (m)[n] (44)

and
q[n] = g[n− 1], n = 0,±1,±2, . . . (45)

The transformation matrix can then be calculated as shown above in Equation 41.
The matrix is, in theory, doubly-infinite-dimensional.

4.2 Pitz et al.’s LT

Pitz et al. (2001) used the definition of cepstra as inverse discrete-time Fourier trans-
form (IDTFT) coefficients of the log power spectrum to derive their cepstral LT. The
transformation matrix was shown to be:

anm =
2

π

∫ π

0
cos(ωn) cos(φ(ω)m)dω (46)

where φ(ω) is a warping function on ω.

By comparing their derivation with that of McDonough’s, it becomes clear that the
derivations are equivalent except that in Pitz et al. (2001), all the complex integrals
have been performed on the unit circle, and the assumption is made that the original
unwarped cepstra are quefrency limited. For APT FW functions, Pitz et al.’s LT
would therefore be identical to McDonough’s LT. Note that this is theoretically true
even though it may not be possible to evaluate the above integral anlytically for the
APT FW function. It has been numerically verified as discussed below. Interestingly,
this has not been noted in the literature.

With Pitz et al.’s treatment of cepstra as the IDTFT of the log spectrum, non-analytic
FW functions like the popular piecewise-linear (PL) FW can also be used, while such
functions cannot be used with McDonough’s LT since they would not result in valid
cepstra according to his stricter definition of cepstra as Laurent series coefficients of
a function analytic in an annular region that includes the unit circle.

4.3 Umesh et al.’s LT

The integral involved in the computation of Pitz et al.’s LT (Equation 46) can be
analytically evaluated only for some simple cases such as the linear and PL FWs.
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Umesh et al. (2005) showed that a discrete approximation of the integral would be-
come exact under the assumption of quefrency limitedness of cepstra. In this case, we
can show that the LT matrix is given by

A = C1C̃1p (47)

where C1 is a type-I DCT matrix, C̃1p is a type-I warped IDCT matrix, and p are FW
parameters. Note that this specific expression was formulated by us and is equivalent
to the one given in Umesh et al. (2005) where IDFT and warped DFT matrices have
been used. From our formulation it is seen more clearly by comparing Equations 46
and 47 that Umesh et al.’s matrix is a discrete version of Pitz et al.’s.

Umesh et al.’s approach is still only an approximation since it involves the assumptions
of quefrency limitedness of both the unwarped and warped cepstra. This assumption
cannot be valid since it can be seen from McDonough’s and Pitz et al.’s derivation,
that even if the original cepstra were quefrency limited, the transformed cepstra would
not necessarily be. However, it is a very good approximation, and we have verified that
for the SLAPT-1 FW function, Umesh et al’s matrix (Equation 47) is numerically
identical to that of McDonough’s (Equation 41) up to numerical accuracy in Matlab.
This has also not been noted earlier in the literature.

Umesh et al. (2005) applied their LT derived for FW with plain cepstra, to a non-
standard MFCC feature extraction scheme with a modified filterbank whose filters
were uniformly spaced in the linear frequency domain, but of uniform bandwidth
in the Mel domain. Their formulae for computing Mel and VTLN warped cepstral
coefficients were complicated by the use of two different DCT matrices C1 and C2.
We can show that their warping transformation matrix for MFCCs is:

T = C2C1C̃1pC
−1
2 (48)

where C2 is a type-II DCT matrix.

4.4 Our LT

We have expressed the equation for our LT in Equation 22. To be clearer, we may
write it as:

T = C2C̃2p (49)

where C2 is a type-II DCT, C̃2p is a type-II warped IDCT matrix, and p are FW
parameters. We have given compact formulae for calculating C2 and C̃2p in Equations
28 and 29.

We now see that there is a close relationship between our LT and McDonough-Umesh’s
LT for plain cepstra. In fact, though different types of DCT matrices have been used
in our LT and Umesh’s LT, because of the combination of DCT and warped IDCT
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matrices in both, the final transform matrices are identical in all rows except the first.
This, however is only numerically true for values of M (the number of filters) that
are not small. In our experiments, we used a value of M = 26 for computing our LT
and M = 256 for computing Umesh et al.’s LT.

It therefore follows from the previous discussion of Umesh et al.’s transform, that
for the SLAPT-1 FW, except for the first row, our LT is also an approximation
of McDonough’s LT. Note that the version of McDonough’s LT for minimum-phase
cepstra is different from both Umesh’s LT and our LT in the first row.

Our approach has two advantages over McDonough’s and Umesh et al.’s:

• Our LT (and Umesh et al.’s LT) can be calculated using compact closed form ex-
pressions for any FW function as in Equations 22, 28 and 29, unlike McDonough’s
original LT which is more complicated to calculate since it requires approximate
summation of an infinite series and several iterations of discrete sequence convolu-
tion as in Equations 41 to 45. If the computation of derivatives during optimization
of the objective function is also considered, the closed-form formulae would be even
more convenient.

• By using a warped type-II IDCT, we have applied our LT directly to standard
MFCC features, without modifying the feature extraction like Umesh et al. (2005)
have done. Comparing our linear transform in Equation 49 with that of Umesh
et al. in Equation 48, it is clear that our linear transform matrix for MFCCs is
mathematically simpler and easier to calculate.

4.5 Other LTs for standard MFCCs

Claes et al. (1998) and Cui and Alwan (2006) derived transforms for standard MFCCs
which were discussed in some detail in Section 2. As shown there, Cui and Alwan’s
transform is a special case of Claes et al.’s transform, but is mathematically simpler.
It was also found to give better recognition results in practice. In Section 2, we
motivated our proposal to perform continuous warping of the log filterbank output
based on the success of the transform in Cui and Alwan (2006) which was basically
a discrete mapping on the log filterbank outputs. In Cui and Alwan (2006), the FW
was estimated in the linear frequency domain by alignment of formant like peaks,
hence the name Peak Alignment (PA) for their method. In Section 6.3, we show that
when the MLS criterion is used to estimate the FW parameter, our LT gives better
performance than the LTs of Claes et al. and Cui and Alwan. This is an advantage
of our method since estimatation of FW parameters directly using an MLS or other
objective criterion would eliminate the need for access to the intermediate linear
frequency spectrum during feature extraction, and the estimation can be performed
entirely using just the previously extracted unwarped features.

Computationally, it is difficult to compare FW estimation using Peak Alignment with
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MLS estimation. The most expensive part of using the MLS criterion to estimate a
speaker specific warp factor, is the Viterbi forced alignment of frames and HMM
states for the adaptation data, which may be performed for each warp factor, or
once with unwarped features in the simplified criterion. Forced alignment with a
known transcription of the adaptation data can be performed much faster than ASR
decoding. Since the forced alignment and likelihood computation algorithms are part
of the ASR decoder, MLS does not require any programs other than those already
available, which may be useful in some applications. In PA, the EM algorithm is used
to fit Gaussian mixtures to the linear frequency DFT spectrum and the formant-like
peaks are estimated from these Gaussians for each frame of voiced speech. There,
it is necessary to detect voicing and to specify the number of peaks used to fit the
spectrum, which may depend on the age and gender of the test speaker and also the
bandwidth of the speech signal used in the recognizer. With the MLS criterion, these
considerations are not necessary and the FW estimation is automatic and robust for
any test speaker.

One possible criticism of our approach may be that it is necessary to justify the IDCT
approximation used to obtain the continuous log filterbank output that is warped.
The IDCT approximation is essentially equivalent to the assumption of quefrency
limitedness of the cepstra. However, this issue is common to all linear transform ap-
proaches to frequency warping when used in practice, since the linear transform needs
to be applied to the available cepstra, which are necessarily truncated for practical
purposes. The idea is to make the best use of the available spectral information in
the truncated cepstra to perform frequency warping and adaptation. Our approach
in developing the linear transform for truncated standard MFCCs by warping the
smoothed log Mel filterbank output, is also similar. Also, as argued in Umesh et al.
(2005), the smoothing performed by the filterbank also contributes towards quefrency
limitedness. The final justification of our approach would be the ease of use of the
resulting linear transform for standard MFCCs, and the successful results that are
obtained with the method, which will be demonstrated in Section 6.

5 Estimation of the FW function

5.1 MLS Objective Criterion

In our work, for VTLN estimation, we used the commonly used maximum likelihood
score (MLS) criterion (Lee and Rose, 1998; Pitz et al., 2001). For a feature space
transform, the MLS criterion to estimate the optimal FW parameters p̂ is:

p̂ = arg max
p

[logP (Xp,Θp|W,Λ) + T log |Ap|] (50)
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where p is(are) the FW parameter(s), xp = Apx is a normalized feature vector, |Ap|
is the determinant of Ap, Xp = {xp

1,x
p
2, . . . ,x

p
T} is the normalized adaptation data,

W is the word (or other unit) transcription, Λ are the corresponding HMMs, and
Θp is the ML HMM state sequence with which Xp are aligned to Λp by the Viterbi
algorithm during ASR decoding.

The determinant term in Equation 50 is required to properly normalize the likelihood
when the feature space is transformed. For regular VTLN by Mel bin center frequency
warping (Lee and Rose, 1998), the objective function only includes the first term in
Equation 50 since the second term is not defined. In our experiments with the Linear
Transformation, the determinant term was found to be important during training
with Speaker Adaptive Modeling (SAM, see Section 6.4), but was not used in testing,
since slightly better results were obtained without it.

Since the Viterbi re-alignment of utterances for each warping factor is computation-
ally expensive, the MLS criterion is usually simplified by obtaining a frame-state
alignment for the adaptation data once with unwarped features and then maximizing
the likelihood with a fixed alignment to estimate the warping parameters p (Zhan
and Waibel, 1997). The simplified MLS objective function is:

F(p) =
T∑

t=1

log

(
M∑

m=1

ctmN (xp
t ;µtm,Σtm)

)
+ T log |Ap| (51)

where
∑M

m=1 ctm = 1 for the mixture Gaussian state output distribution at time t. A
gradient search or quasi-Newton method may be used to optimize the simplified MLS
objective function for multiple FW parameters (Panchapagesan and Alwan, 2006).

The MLS criterion can also to be used to estimate LT FW to transform the means
of the HMMs in the back end as in Equation 36:

p̂ = arg max
p

[logP (X,Θp|W,Λp)] (52)

where the variables are as explained above for Equation 50 except that here it is not
the adaptation data but the HMMs Λ that are modified to Λp for FW parameters p.

5.2 The EM Auxiliary Function

The FW parameters can also be estimated by maximizing the EM auxiliary func-
tion over the adaptation data (McDonough, 2000; Loof et al., 2006). This objective
function is identical to the one used for MLLR and CMLLR (constrained MLLR,
Gales, 1998), except the linear transformation to be estimated is constrained by the
FW parametrization. Speaker Adaptive Training (SAT) also uses iterative maximiza-
tion of the EM auxiliary function to alternately estimate FW parameters and HMM
parameters (Anastasakos et al., 1996).
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Here we consider only estimation of a feature transform, which we denote CLTFW
similar to CMLLR. The basic auxiliary function to be minimized may be expressed
as:

F(p) =
1

2

∑

g

∑

t

γg(t)
[
(Apxt − µg)

T Σ−1
g (Apxt − µg) − log(|Ap|

2)
]

(53)

where g varies over the set of Gaussian distributions for which the transform is to
be estimated, t is time or frame index of the adaptation data, and γg(t) is the pos-
terior probability that feature frame xt was generated by Gaussian g for the given
transcription of the adaptation utterances.

For diagonal covariance models, this can be simplified to:

F(p) =
1

2

d∑

i=1

[
aiG

(i)aT
i − 2aik

(i)T
]
− β log(|Ap|) (54)

where d is the feature vector size, ai is the ith row of Ap, and

G(i) =
∑

g

1

σ2
gi

∑

t

γg(t)xtx
T
t (55)

k(i) =
∑

g

µ2
gi

σ2
gi

∑

t

γg(t)x
T
t (56)

β=
∑

g

∑

t

γg(t) (57)

The computations involved in this approach are mostly during the accumulation of the
statistics (i.e. computing G(j) and k(j)). Once the statistics have been accumulated,
the computational cost of optimizing the objective function is significantly smaller
since it is twice differentiable and typically convex, and a few iterations of Newton’s
method are found to be sufficient to optimize it for a reasonably small number of FW
parameters (10 or so). Different CLTFW transforms can also be estimated for different
classes of distributions similar to CMLLR, without much increase in computations,
since it is seen from Equation 54 that the accumulator values for a set of Gaussians
is the sum over the individual Gaussians. The accumulator method of optimizing the
EM auxiliary function for CLTFW may be extended in a very natural manner for the
estimation of an aditive bias on top of the CLTFW transform.

Loof et al. (2006) also discuss briefly how this accumulator based approach may be
extended to the case with a global feature space LDA/HLDA transform. The approach
can also be extended to the multi-class semi-tied covariance (STC, Gales, 1999) case,
as long as all the Gaussians considered for CLTFW estimation share the same STC
transformation.
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5.3 Optimizing the EM auxiliary function

For the estimation of multiple FW parameters like with the SLAPT FW using the
EM auxiliary function, it is efficient to use a convex optimization method. Newton’s
method can be used since the auxiliary function is twice differentiable (McDonough,
2000). We consider the diagonal covariance case and derive the formulae for calculat-
ing the first derivative of the objective function as follows.

Differentiating F(p) in Equation 54 with respect to p, we have:

∂F(p)

∂pk

=
d∑

i,j=1

∂F(p)

∂aij

∂aij

∂pk

(58)

If we let

F(p) = F1(p) − β log(|Ap|) (59)

where

F1(p) =
1

2

d∑

i=1

[
aiG

(i)aT
i − 2aik

(i)T
]

(60)

then
∂F(p)

∂A
=
∂F1(p)

∂A
− β

∂ log(|Ap|)

∂A
(61)

where for a function f ,
∂f

∂A
denotes the matrix of partial derivatives

∂f

∂aij

. It can be

shown (for example McDonough, 2000, Section 5.1) that

∂ log(|A|)

∂A
= (A−1)T (62)

We have:
∂F1(p)

∂ai

= aiG
(i) − k(i) (63)

where
∂F1(p)

∂ai

is the vector of partial derivatives
∂F1(p)

∂aij

. Therefore
∂F(p)

∂A
, can be

computed from Equations 62, 61 and 63. We also need
∂Ap

∂pk

to compute
∂F(p)

∂pk

from

Equation 58. We have:

∂Ap

∂pk

=




∂Tp

∂pk
0 0

0 ∂Tp

∂pk
0

0 0 ∂Tp

∂pk




(64)

By Equation 22,

∂Tp

∂pk

= C ·
∂C̃p

∂pk

(65)
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To compute
∂C̃p

∂pk

, recall Equation 29 by which we have:

C̃p(i, j) = αj · cos [πj θp(λi)] (66)

for 1 ≤ i ≤M, 0 ≤ j ≤ N − 1, and where λi =
2i− 1

2M
. Then,

∂C̃p(i, j)

∂pk

= −αj · π · j · sin [πθp(λi)j] ·
∂θp(λi)

∂pk

(67)

For the frequency warping functions used (Equations 30 to 32), the derivative with
respect to the parameter is easily computed. For example, for the piecewise-linear
warping (Equation 30), we have:

∂θp(λ)

∂p
=




λ, 0 ≤ λ ≤ λ0

λ0 ·
1−λ
1−λ0

, λ0 < λ ≤ 1
(68)

The gradient of the objective function in Eq. 51 with respect to the FW parameters
p, ∇pF(p), can therefore be calculated using Equations 58 to 68.

Formulae for the Hessian matrix of second derivatives of the objective function with
respect to FW parameters were also derived, and used in Newton’s method for opti-
mizing F(p).

6 Experimental Results

We validated the LT by testing it on connected digit and continuous speech recogni-
tion tasks and comparing the performance with that of regular VTLN by warping the
filterbank center frequencies (hereafter referred to as Regular VTLN in this paper).
The main advantages of using the LT over Regular VTLN, as discussed in Section 1,
are computational savings and flexibility of implementation. The spectral information
available during LT parameter estimation consists only of a smoothed mel-warped log
spectrum, contained in the truncated cepstra in the pre-computed recognition features
and the corresponding HMM means. Considerably more spectral information is avail-
able to Regular VTLN, which has access to the linear frequency spectrum of each
speech analysis frame. In the results below, we therefore mainly aim to show that
VTLN and adaptation using the LT, while being computationally superior and work-
ing with less available information, can give recognition performance comparable to
that of Regular VTLN.
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6.1 Connected Digit Recognition Experiments

In Panchapagesan (2006), the effectiveness of both front end VTLN and back end
adaptation using the LT were demonstrated on connected digit recognition of chil-
dren’s speech using the TIDIGITS database. We wish to summarize the most im-
portant relevant conclusions here before presenting our experimental results with
continuous speech recognition.

The baseline system in Panchapagesan (2006) was the same as in Cui and Alwan
(2006), with phoneme models for connected digit recognition trained from 55 male
speakers in the TIDIGITS database. Testing was performed on 5 boys and 5 girls,
and results were obtained for adaptation with 1, 5 and 11 digits.

In the front end, LT VTLN outperformed Regular VTLN when an optimal speaker-
specific warp factor for the piecewise-linear FW was estimated from the adaptation
data. For the LT VTLN, the Jacobian normalization resulted in worse performance
and was therefore not used. Both VTLN methods outperformed MLLR for small
amounts of data (less than 11 adaptation digits).

The performance of the LT in back end adaptation of HMM Means was comparable
with that of the Peak Alignment (PA) approach of Cui and Alwan (2006), and with
front end LT VTLN. All these FW-based methods again outperformed MLLR for
small amounts of data (less than 11 adaptation digits). As explained in Section 4, our
LT may be seen as a smooth parametrization of the discrete mapping used in PA.
Both the MLS criterion and alignment of median F3 and other formants are robust
methods of estimating frequency warping. Therefore it is perhaps to be expected,
that the performance of our LT FW estimated using the MLS criterion is comparable
to that of PA when used for adaptation for HMM means. However, as we show in
Section 6.3, the PA LT does not perform as well as our LT when the MLS criterion
is used to estimate the FW. We have already described the main advantages of our
method over PA in Sections 1 and 4.

6.2 Continuous Speech Recognition Experiments

We also performed experiments on continuous speech recognition using the Resource
Management (RM1) database. The speech data was downsampled to 8000 Hz in our
experiments and context dependent triphone models were trained on speech from 72
adult speakers in the speaker independent training set. All triphone HMMs contained
3 emitting states and 6 Gaussian mixtures per state. The Mel filterbank contained 26
filters, and the features vectors consisted of the first 13 MFCCs with the corresponding
first and second derivatives. Cepstral Mean Subtraction (CMS) was also performed
on each utterance.

22



Recognition experiments were performed on 50 test utterances from each of 10 speak-
ers from the speaker dependent test data in the database. The baseline recognition
accuracy was 90.16 %.

VTLN and back-end adaptation were tested with varying amounts of adaptation data
to validate the effectiveness of the new linear transform in improving accuracy in con-
tinuous speech recognition. Experiments were performed with 1, 5 and 10 adaptation
utterances from each test speaker. For adaptation with a single utterance, the 10
utterances marked for rapid adaptation in the RM1 database were used. For more
than one adaptation utterance, ten different combinations of utterances were ran-
domly selected for each speaker and results were obtained for each combination of
adaptation utterances using each of the adaptation techniques. The results were then
averaged over the adaptation combinations and the speakers. The pool of adaptation
utterances was separate from the set of test utterances for each speaker.

Table 1 shows the results of VTLN experiments comparing LT VTLN with Regular
VTLN. A speaker-specific warp factor for the piecewise-linear (PL) FW was estimated
from the adaptation data for each test speaker, using a grid search to optimize the
MLS criterion of Section 5. The warping factor step size in the grid was 0.01. It
was again observed that slightly better results were obtained without the Jacobian
Normalization term in the MLS criterion during the estimation of the parameter for
LT VTLN and these are the results shown. With LT VTLN, the PL FW gave slightly
better results than the linear and the SLAPT-1 FWs.

The performance of LT VTLN is seen to be comparable to that of Regular VTLN.

No. of adaptation utterances

Algorithm 1 5 10

LT VTLN 91.46 91.59 91.54

Regular VTLN 91.42 91.60 91.66

Table 1
Recognition Accuracy in VTLN Experiments using the RM1 database. FW parameters were
estimated with the MLS criterion for both methods. Baseline Accuracy: 90.16 %

In Figure 3 sample discrete log filterbank outputs, before and after warping with LT
and Regular VTLN are shown. The speech frame is from the triphone ‘S-AH+B’ in
the word ‘sub’. The features of the utterance were normalized with the corresponding
estimated PL FW parameter for each VTLN method from the particular utterance.
The warped log filterbank outputs of the two VTLN methods are seen to be very
similar, which explains the very similar performance seen in Table 1. This seems to
imply that most of the spectral information required for VTLN is already contained
in the unwarped truncated cepstra, which is why LT VTLN may be as successful as
Regular VTLN.
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Fig. 3. Discrete log filterbank outputs, unwarped (dotted line) and warped, with LT VTLN
(thick solid line) and Regular VTLN (thin solid line). The speech frame is from the triphone
‘S-AH+B’ in the word ‘sub’.

We then performed VTLN estimation with the simplified MLS objective function as in
Equation 51 of Section 5.1, with fixed frame-state alignment obtained with unwarped
features. Again, the PL FW with a grid step size of 0.01 was used. The results are
shown in Table 2. As can be seen, both Regular and LT VTLN have comparable
results, with the results for both being slightly worse with the simplified objective
function, as compared to the results in Table 1.

No. of adaptation utterances

Algorithm 1 5 10

LT VTLN 91.33 91.33 91.33

Regular VTLN 91.29 91.28 91.34

Table 2
Recognition Accuracy in VTLN Experiments with Fixed Frame-State Alignment. Baseline
Accuracy: 90.16 %

Table 3 shows the results of global speaker adaptation experiments on the RM1
database. The LT was used to adapt HMM Means as in Equation 36, and is combined
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No. of adaptation utterances

Algorithm 1 5 10

Back End LT FW
91.58 91.74 91.76

+ MLLR bias & var

MLLR 84.89 92.38 92.43

Table 3
Recognition Accuracy in Global Speaker Adaptation Experiments with limited data on the
RM1 database: LT Applied in the back-end and 3-block MLLR. Baseline Accuracy: 90.16
%

with MLLR mean bias and unconstrained variance transforms as described in Section
3.3.1. The results of standard MLLR with a 3-block mean transformation matrix and
unconstrained variance transformation are also shown for comparison. Comparing
Tables 3 and 1 we see that back end HMM mean adaptation with the LT combined
with unconstrained MLLR bias and variance adaptation, gives results comparable to
VTLN in the front end. The results confirm earlier observed trends (Cui and Alwan,
2006; McDonough, 2000) that FW based methods are definitely superior to MLLR
for very limited adaptation data (1 utterance), where MLLR actually gives worse
performance than the baseline. With increased adaptation data, MLLR gives better
performance.

6.3 Comparison with other LT approximations of VTLN for standard MFCCs

As discussed in Section 2, Claes et al. (1998) and Cui and Alwan (2005, 2006) have
earlier proposed linear transforms for approximating VTLN with standard MFCC
features. In Table 4 we show results comparing our LT with those of Cui and Alwan’s
Peak Alignment (PA) LT, and Claes et al’s LT. The recognition results shown are
on the RM database with VTLN estimated on 1 utterance, since it is desirable in
practice to estimate the VTLN parameter with limited data. The MLS criterion was
used to estimate the PL FW parameter for all methods. The results of Regular VTLN
are also shown.

It is seen that our LT performs as well as Regular VTLN, while the PA LT and Claes
et al.’s LT do not perform as well, when the FW parameter is estimated using the
MLS criterion with 1 utterance. The parametrization of the transform is therefore very
important since it determines the behavior of the objective function and performance
of the VTLN parameter estimated using the criterion.

As we have discussed in Section 4, our LT is numerically almost identical to Mc-
Donough’s and Umesh et al.’s LTs, except in the first row. Therefore, the performance
of these LTs was very similar to that of our LT.
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Algorithm Recognition
Accuracy, %

Baseline 90.16

Regular VTLN 91.42

Our LT VTLN 91.46

PA LT 90.82

Claes et al.’s LT 90.79

Table 4
Comparison of different LT approximations for VTLN with MFCC features, on the RM1
database. FW parameters were estimated on 1 utterance with the MLS criterion for all
methods.

6.4 Speaker Adaptive Modeling Experiments

It is well known that the effectiveness of VTLN is greatly improved when it is per-
formed also during training (McDonough, 2000; Welling et al., 2002). In this way,
the trained models capture more of the phonetic variability and less of the inter-
speaker variability in the training data. Speaker Adaptive Modeling (abbreviated as
SAM here, Welling et al., 2002) and Speaker-Adapted Training (SAT, Anastasakos
et al., 1996; McDonough, 2000) are two techniques for incorporating VTLN during
the training process.

We first performed VTLN during training along the SAM framework. The main fea-
ture of this technique is that the optimal warping factor for each training speaker is
selected iteratively using single Gaussian mixture HMMs and the MLS criterion. Ini-
tial models are trained without any warping, and then at each iteration the optimal
warping factor for each speaker in the training set is obtained by MLS over the train-
ing data from that speaker, and models are retrained with the new warping factors.
The use of single Gaussians mixtures during the iterative warp factor estimation is
important because that gives the best results. After a certain number of iterations or
when the warping factors converge, the final models are trained with the best warping
factor for each speaker, and with the desired number of Gaussians per mixture.

Ten iterations were performed during SAM VTLN parameter estimation with the
PL FW for both Regular and LT VTLN. One important observation was that when
the Jacobian Normalization (JN, see Section 5.1) term was not included in the MLS
objective function, the performance of the LT was very poor, even worse than with-
out any SAM. This was investigated and it was found that the warping factor did
not converge during the iterations, and the mean warping factor (which should pre-
sumably be close to 1, the initial value corresponding to no warping) continuously
decreased to around 0.93 in ten iterations without the JN term. After including the
JN term in the warping parameter estimation, the training speakers’ warping factors
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Fig. 4. Histograms of warping factors in Speaker Adaptive Modeling, for Regular and LT
VTLN.

were observed to converge, and the mean value at the end of ten iterations was around
0.99. However, during testing, it was again observed that slightly better results were
obtained without the JN term in the MLS estimation and these are the results that
are shown.

The histograms of estimated warping factors of the 72 training speakers for both
Regular VTLN and LT VTLN with the PL FW are shown in Figure 4. For each
VTLN method, ten bins over the corresponding ranges of warping factor were used
for calculating the histogram, but both histograms are plotted over the same range
of warping factors, from 0.85 to 1.25, for comparison. It is observed that the range of
the warping factors for LT VTLN is significantly smaller than that of Regular VTLN,
probably due to the fact that warping in LT VTLN is being performed on an already
Mel warped log spectrum.

The results of SAM VTLN experiments are shown in Table 5.

We first notice that when SAM is performed, the baseline accuracy is lower than
without SAM, but once the test speaker is normalized, the accuracy is significantly
better than without SAM.

The performances of the two VTLN methods are comparable when normalization is
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No. of adaptation utterances

Algorithm 0 1 5

Regular VTLN 86.82 92.81 93.07

LT VTLN 86.82 92.64 92.79

Back End LT FW
86.82 92.87 93.31

+ MLLR Bias & Var.

Table 5
Recognition Accuracy in SAM VTLN Experiments using the RM1 database. 10 iterations of
warping factor estimation were performed for each VTLN method for the training speakers
and testing was performed with the corresponding method. The baseline with SAM models
was the same (86.82 %) for both Regular and LT VTLN.

performed also during training. The important results here are those for adaptation
with 1 utterance, since MLLR would be preferred when more utterances of adaptation
data is available. Here, the difference in accuracies is small, around 0.17% absolute.
However, better results were obtained with back end LT FW combined with MLLR
bias and variance adaptation, tested on models trained with LT VTLN, which are
also shown in Table 5.

Therefore, in all cases, results comparable to Regular VTLN can be obtained with
the LT, by applying it in the back end instead of the front end.

We have also verified that with a global Semi-Tied Covariance (STC) matrix included,
the performance of LT VTLN SAM models tested with LT VTLN is still comparable
to that of Regular VTLN SAM models tested with Regular VTLN.

6.5 Speaker Adaptive Training Experiments

We also implemented SAT with feature space LT which we denoted CLTFW simi-
lar to CMLLR (constrained MLLR which is equivalent to feature space MLLR) and
tested it on the RM1 database. CLTFW parameters were estimated by optimizing
the EM auxiliary function as discussed in Sections 5.2 and 5.3. SAT uses the iterative
maximization of the EM auxiliary function to jointly estimate speaker transforms and
HMM parameters. Ten iterations of SAT were performed with global LT and the PL
FW on single mixture HMMs and the final single-mixture SAT speaker transforms
were used to retrain 6-mixture HMMs using the baseline models and single-pass re-
training. Multiple iterations of model re-estimation were then performed keeping the
transforms fixed.

We tested the CLTFW SAT models with CLTFW adaptation with 1, 5 and 10 utter-
ances, and the recognition results are shown in Table 6.
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No. of adaptation utterances

Train/Test Conditions 1 5 10

G-CLTFW PL SAT /
92.82 92.91 92.94

G-CLTFW PL

G-CLTFW PL SAT /
92.82* 93.03 93.31

RC CLTFW (SLAPT-5)

G-CLTFW PL SAT /
92.82* 93.30 94.07

RC CLTFW (SLAPT-5) +Bias

Table 6
Recognition Accuracy in Global (G-) CLTFW SAT Experiments with the PL FW using
the RM1 database. 10 iterations of SAT warping factor estimation were performed for the
training speakers. * indicates insufficient data to estimate further transforms.

It is seen that when the Global (G-) CLTFW SAT models were tested with G-CLTFW,
the performance was comparable to that obtained with VTLN SAM (refer Table 5),
and the performance saturates for larger number of utterances. However, improved
results for more adaptation data were obtained when multiple parameter SLAPT-5
CLTFW was estimated for multiple classes using a regression tree. A frame count
threshold of 400 for estimating a transform at a regression node was found to be
effective. During estimation, 5 iterations of CLTFW parameter estimation were per-
formed on a single utterance to first estimate a global PL CLTFW transform (similar
to VTLN estimation), and this global transform was used to obtain alignments for
two iterations of multi-class SLAPT-5 CLTFW estimation. It is seen that the perfor-
mance of multi-class CLTFW improves with more data. An additive bias was included
in the transform, and the performance improved significantly.

Therefore, multiple parameter SLAPT-5 CLTFW-Bias transforms estimated using the
EM auxiliary function and a regression tree, can give significantly better performance
than global VTLN, and improving performance with increasing data.

Since Regular VTLN is not a non-invertible operation on standard MFCCs, the Ja-
cobian determinant term required in the EM auxiliary function for SAT cannot be
computed (McDonough, 2000; Sankar and Lee, 1996). Also, even if the Jacobian de-
terminant term were neglected, the accumulator based approach (Gales, 1998) for
efficient optimization of the EM auxiliary function with CLTFW cannot be used with
Regular VTLN. For multiple class adaptation to be performed with Regular VTLN,
features would have to be recomputed with different warping factors for different dis-
tributions. As we have shown, recomputation of features is expensive and this is not
practical.

Experiments with multi-class CLTFW SAT and comparisons and combination with
HMM mean adaptation (MLLR for example) and LDA/STC would be the topic of
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No. of adaptation utterances

Algorithm 1 5

LT VTLN 92.63 92.86

Back End LT FW
92.75 93.16

+ MLLR Bias & Var.

Table 7
Recognition Accuracy in Unsupervised VTLN and Adaptation Experiments on the RM1
database using models trained with LT Speaker Adaptive Modeling. Baseline Recognition
Accuracy is 86.82 %

future work.

6.6 Unsupervised Adaptation

We have so far given the results of supervised adaptation experiments, where the
transcription of the adaptation data is known. Frequency warping methods are known
to be effective in adaptation in an unsupervised mode as well (McDonough, 2000; Cui
and Alwan, 2006). This was confirmed for VTLN and back end model adaptation using
our LT, for the case of the speaker adaptive models trained as discussed in the previous
section. The results are shown in Table 7. In these experiments, an initial recognition
pass was first performed over the adaptation data, and the resulting transcriptions
were then used to estimate the FW parameter using the MLS criterion and the MLLR
mean bias and variance transforms.

Comparing Tables 5 and 7, it is seen that the results of unsupervised LT VTLN are
not much different from those of supervised LT VTLN. In fact, the warping factors
estimated with supervised and unsupervised adaptation were only slightly different.
This is probably because of our already high baseline recognition accuracy where
the transcription produced by the initial recognition pass is close to the actual tran-
scription. With a worse baseline, one may have to use confidence measures calculated
from the likelihoods obtained with the initial recognition pass, to select a subset of the
adaptation data for warping factor estimation. However, since the VTLN parameter
estimated with very little data also performs well (as seen from our earlier results with
the TIDIGITS database), the LT would be very effective in unsupervised adaptation.

7 Summary and Conclusions

We have developed a novel linear transform (LT) to implement frequency warping for
standard filterbank based MFCC features. There are a few important advantages of
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using a linear transform for frequency warping: VTLN estimation by optimizing an
objective function is performed computationally more efficiently with a LT than with
regular VTLN by warping the center frequencies of the filterbank; the transform can
also be estimated and applied in the back end to HMM means; and one need not have
to access to or reconstruct intermediate variables like the linear frequency spectrum
in order to apply the FW, which would be useful in distributed speech recognition.

The main idea of our approach was to directly warp the smoothed log Mel spectrum
obtained by cosine interpolation of the log Mel filterbank output with the IDCT.
This results in a linear transformation in the Mel cepstral domain. The warping was
parametrized and embedded into a warped type-II IDCT matrix, which can be easily
calculated using a compact formula. Our LT for MFCCs was also shown to be closely
related to the plain cepstral LTs of McDonough, Pitz et al. and Umesh et al. In fact,
these LTs for FW are all found to be numerically almost identical for the sine-log
all-pass transform (SLAPT) warping functions. Our formula for the transformation
matrix is, however, computationally simpler and unlike other previous linear trans-
form approaches to VTLN with MFCC features (Pitz and Ney, 2003; Umesh et al.,
2005), no modification of the standard MFCC feature extraction scheme is required.
The parameters of the warping are easily estimated by maximum likelihood score
(MLS) or the EM auxiliary function, using the commonly used grid search or convex
optimization methods for multiple FW parameters. Formulae for calculating the gra-
dient of the EM auxiliary function with respect to the warping parameters were also
therefore derived.

The Linear Transform (LT) had previously been validated on connected digit recog-
nition of children’s speech with the TIDIGITS database (Panchapagesan, 2006). In
this paper, we have presented extensive results on continuous speech recognition with
the Resource Management (RM1) database. In VTLN and VTLN Speaker Adaptive
Modeling (SAM) experiments with the RM1 database, the performance of the new
LT VTLN was comparable to that of Regular VTLN. For the LT, the inclusion of the
Jacobian normalization term in the MLS criterion was found to be quite important
for convergence of the FW parameters during training using SAM. During testing,
however, better results were obtained without the Jacobian determinant term in the
MLS criterion. Our LT was also found to perform better than the earlier proposed
transforms of Cui and Alwan (2005, 2006) and Claes et al. (1998) for approximate
VTLN with MFCC features, when the MLS criterion was used to estimate the FW
parameter. LT adaptation of HMM means combined with MLLR mean bias and vari-
ance adaptation typically gave results that were comparable to the front end VTLN
methods. The FW based methods were found to be significantly better than MLLR
for limited adaptation data. We also performed Speaker Adaptive Training (SAT)
with feature space LT denoted CLTFW. Global PL CLTFW SAT models tested with
global PL CLTFW gave results comparable to SAM and VTLN, and the perfor-
mance saturates with increasing adaptation data. By estimating multiple parameter
SLAPT-5 CLTFW transforms using a regression tree, and including an additive bias,
we obtained significantly better performance than global VTLN, and improving re-
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sults with increasing adaptation data. Warping factors estimated in an unsupervised
mode were almost identical with those from supervised estimation, and therefore the
performance of unsupervised VTLN and model adaptation with the LT were almost
as good as with supervised VTLN and adaptation.

Our experimental results with LT VTLN are only comparable in performance to reg-
ular VTLN. Since our aim was to obtain a linear transform equivalent for VTLN
with standard MFCC features, it is important to demonstrate that the involved ap-
proximations do not lead to performance degradation. It is probably also not to be
expected that an approximation would perform better than the original method. By
estimating multiple transforms using the EM auxiliary function and a regression tree,
we have also shown that it is possible to obtain results better than global VTLN. It
would be the topic of future work to compare and/or combine multi-class CLTFW
with MLLR adaptation.

Though the computations required for VTLN implementation may be small compared
to the overall effort for training and testing, the computational advantage of LT VTLN
over regular VTLN discussed in Section 1 becomes significant when the VTLN param-
eter has to be estimated in real time. For example, in DSR, the computational savings
during FW parameter estimation, the ability to estimate and implement VTLN di-
rectly on the features without having access to the feature extraction modules and
the flexibility of application (front-end or back-end) would be a significant advantage
of LT over regular VTLN. We believe that the proposed linear transform would prove
very useful in practice in embedded and distributed speech recognition applications,
where resources are limited.
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