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Abstract

Motivated by the speaker-specificity and stationarity of subglot-

tal acoustics, this paper investigates the utility of subglottal cep-

stral coefficients (SGCCs) for speaker identification (SID) and

verification (SV). SGCCs can be computed using accelerom-

eter recordings of subglottal acoustics, but such an approach

is infeasible in real-world scenarios. To estimate SGCCs from

speech signals, we adopt the Bayesian minimum mean squared

error (MMSE) estimator proposed in the speech-to-articulatory

inversion literature. The joint distribution of SGCCs and speech

MFCCs is modeled using the WashU-UCLA corpus (containing

simultaneous recordings of speech and subglottal acoustics),

and the resulting model is used to obtain an MMSE estimate

of SGCCs from unseen (test) MFCCs. Cross-validation experi-

ments on the WashU-UCLA corpus show that the estimation ef-

ficacy, on average, is speaker dependent. A score-level fusion of

MFCC and SGCC systems outperforms the MFCC-only base-

line in both SID and SV tasks. On the TIMIT database (SID),

the relative reduction in identification error is 16, 40 and 51%

for G.712-filtered (300–3400 Hz), narrowband (0–4000 Hz) and

wideband (0–8000 Hz) speech, respectively. On the NIST 2008

database (SV), the relative reduction in equal error rate is 4 and

11% for 10 and 5 second utterances, respectively.

Index Terms: speaker recognition, subglottal acoustics, cep-

stral coefficients, score combination, MMSE estimation

1. Introduction

Speaker identification (SID) and verification (SV) are closely-

related problems; they are jointly referred to as speaker recogni-

tion. Mel-frequency cepstral coefficients (MFCCs), which cap-

ture the acoustics of the supraglottal vocal tract, have been

widely used for both tasks. They have been shown to provide

good performance with a number of modeling schemes such as

simple Gaussian mixture models (GMMs) [1], GMMs adapted

from universal background models (UBMs) [2], support vec-

tor machine (SVM) supervectors [3, 4], joint speaker and chan-

nel factors [5, 6], and total-variability i-vectors [7]. Other fea-

tures that have been proposed and used in conjunction with

MFCCs (via feature-level or score-level fusion) include those

based on voice-source parameters [8], spectro-temporal modu-

lation frequencies [9], prosody [10], word patterns and lexicon

[11], and articulatory parameters [12]. In this paper, we investi-

gate the utility of subglottal features (capturing the acoustics of

the tracheo-bronchial airways) for both SID and SV. The focus

is specifically on cepstral coefficients extracted from subglot-

tal acoustics (henceforth referred to as SGCCs) and their fusion

with MFCCs for improved speaker-recognition performance.

To record subglottal acoustics, a noninvasive device called

the accelerometer is generally used. In the past, we have stud-
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Figure 1: Vowel spectrograms comparing the within-speaker

variability of speech (top panel) and subglottal acoustics (bot-

tom panel). Data are sampled from the recordings of a female

speaker in the WashU-UCLA corpus.

ied the properties of subglottal resonances (SGRs)—by manu-

ally analyzing accelerometer recordings—and also developed

automatic algorithms to estimate SGRs from speech signals

[13]. Although we found speech-based SGR estimates to be ef-

fective for speaker height estimation and adaptation (especially

in limited-data conditions) [13, 14, 15], pilot experiments on

the TIMIT database showed that they were not discriminative

enough for speaker recognition. Therefore, in this paper, we em-

ploy more informative spectral features in the form of SGCCs—

they are computed just like MFCCs, except that they are based

on subglottal acoustics instead of speech.

We are interested in subglottal features for two reasons.

First, subglottal acoustics are speaker specific to some ex-

tent owing to their dependence on body height [16]. Second,

the spectral characteristics of subglottal acoustics (for a given

speaker) are much less variable than the spectral characteris-

tics of speech. Figure 1 exemplifies this using vowel spectro-

grams of speech and their corresponding recordings of subglot-

tal acoustics (data were obtained from the WashU-UCLA cor-

pus [17]). The stationary nature of subglottal acoustics can be

particularly beneficial when the amount of speech data (for en-

rollment and/or evaluation) is limited. One of the challenges,

however, is to be able to estimate subglottal features (SGCCs)

using speech, thus obviating the need for an accelerometer in

real-world scenarios.

Our approach to estimating SGCCs from MFCCs is in-

spired by previous studies on speech-to-articulatory inversion

[18, 19, 12]. The method proposed in these studies was to train

joint statistical models from simultaneously-recorded speech

and articulatory data, and then use those models to estimate ar-

ticulatory trajectories from unseen utterances. Our approach to

SGCC estimation is similar, except that we use simultaneous

recordings of speech and subglottal acoustics.

In [12], articulatory parameters (estimated from speech sig-
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Figure 2: Block diagram of the proposed SID/SV framework. The arrows in black correspond to training (enrollment) and the arrows

in red correspond to evaluation. Subscripts M and S denote MFCCs and SGCCs, respectively. The λs denote speaker models and the

ℓs denote acoustic model scores (for test data).

nals) were combined with MFCCs in an SV task. Using the

classical UBM-GMM setup, it was shown that the combined

system improved verification performance by 9–14% relative to

the MFCC-only baseline. This study uses a feature-combination

approach like [12], but with two important differences. (1) The

production-based features used here (SGCCs) are those of the

subglottal, not supraglottal, system. (2) In [12], a subset of the

Wisconsin X-Ray Microbeam (XRMB) database (46 speakers)

was used for SV experiments. Here, we evaluate our approach

on databases that are larger and also more commonly used for

speaker recognition. Using the TIMIT database for SID and the

NIST 2008 database for SV, we show that SGCCs offer com-

plementary information to the MFCC-only system.

2. Proposed framework

We propose a score-level framework to fuse the information

provided by MFCCs and SGCCs (it will be explained later why

feature concatenation is difficult). An overview of the proposed

framework is presented here (see Figure 2) and the implemen-

tation details are provided in Section 4.

Let the number of speakers to be enrolled for SID or SV be

N . Enrollment data are used to train two sets of acoustic mod-

els: {λ
(1)
M , ..., λ

(N)
M } for MFCCs, and {λ

(1)
S , ..., λ

(N)
S } for esti-

mated SGCCs (details about the SGCC estimator are provided

in Section 3). Given an unseen test utterance, MFCC and SGCC

scores ({ℓ(1)M , ..., ℓ
(N)
M }, {ℓ(1)S , ..., ℓ

(N)
S }) are computed with re-

spect to the pre-trained models and then combined in a weighted

fashion. The combined scores {ℓ(1), ..., ℓ(N)} are used to make

a decision (binary for SV, and 1-of-N for SID).

3. Estimating SGCCs using MFCCs

In [18], a Bayesian minimum mean squared error (MMSE) esti-

mator was proposed for estimating articulatory parameters from

speech acoustics. We adopt that approach here for SGCC esti-

mation and evaluate it using the WashU-UCLA corpus (which

contains time-synchronized recordings of speech and subglottal

acoustics). The basic mathematical framework for MMSE es-

timation is provided below (see [18] for a detailed derivation)

and the implementation details are deferred to Section 3.1.

Let X = [X1,X2, ...,XM ]⊤ and Y = [Y1,Y2, ...,YS]
⊤

be M - and S-dimensional random vectors denoting MFCCs and

the corresponding time-synchronized SGCCs, respectively. Let

Z = [X⊤Y⊤]⊤ denote the joint random vector. Since the dis-

tribution of Z is usually unknown, the simplest way to model it

would be via a K-component GMM λ(Z):

p(z|λ(Z)) =
K
∑

k=1

ν
(Z)
k N (z;µ

(Z)
k ,Σ

(Z)
k ), (1)

where νkN (·;µk,Σk) denotes the probability density function

of the kth mixture component, with mean µk , covariance Σk and

weight νk. Once λ(Z) is available (from joint training data), the

marginal and joint statistics of X and Y can be obtained using

Eq. (2). Note that Z must be modeled using full covariances in

order to extract the joint statistics of X and Y.

µ
(Z)
k =

[

µ
(X)
k

µ
(Y)
k

]

, Σ
(Z)
k =

[

Σ
(XX)
k Σ

(XY)
k

Σ
(YX)
k Σ

(YY)
k

]

(2)

Given an unseen test utterance, a sequence of MFCC vec-

tors {x1,x2, ...,xT } is first extracted from it. Then, for a given

MFCC vector xt (1 ≤ t ≤ T ), the SGCC vector is computed

as the conditional mean (or MMSE estimate) of Y:

ŷt = E[Y|xt] =

K
∑

k=1

P (k|xt, λ
(Z))ζ

(Y)
k,t , (3)

where E[·] denotes the expectation operator, and P (k|xt, λ
(Z))

and ζ
(Y)
k,t are defined as in Eqs. (4) and (5), respectively.

P (k|xt, λ
(Z)) =

ν
(Z)
k N (xt;µ

(X)
k ,Σ

(XX)
k )

∑K

k′=1 ν
(Z)
k′ N (xt;µ

(X)
k′ ,Σ

(XX)
k′ )

(4)

ζ
(Y)
k,t = µ

(Y)
k +Σ

(YX)
k Σ

(XX)
k

−1
(xt − µ

(X)
k ) (5)

In the present study, the MMSE estimator of Eq. (3) pro-

vides a mapping from the more-variable MFCC space to the

less-variable SGCC space (can be viewed in some sense as a

many-to-one mapping). On the other hand, in [18], the same

MMSE estimator provides a one-to-many mapping from speech

acoustics to articulatory parameters.

3.1. Implementation details and evaluation setup

The databases used by studies on speech-to-articulatory inver-

sion consist of read speech utterances (and time-synchronized

articulatory trajectories) with good phonetic and lexical cov-

erage. The WashU-UCLA corpus, in contrast, consists only of

short phrases of the form “I said a h[V]d again,” where [V] is

one of 9 monophthongs, 4 diphthongs, or [r] (the corpus has

10 repetitions of each phrase from 50 adult speakers of Amer-

ican English—25 male and 25 female). To avoid redundancy

in the training data that are used to estimate λ(Z) (note that all

phrases have the same content except for the vowel [V]), only

the vowel segments are isolated and used. However, since vow-

els form only a part of the speakers’ phonetic space, we need a

way to deal with non-vowel segments while estimating SGCCs

for speaker recognition. Section 4 explains how this is done.

The MMSE estimator (described in Section 3) is evalu-

ated using 5-fold cross validation. The available vowel samples

(7000 in total: 50 speakers, 14 vowels, 10 repetitions) are split

into 5 sets such that the data from any given speaker belong to

exactly one set. All signals are down sampled to 8 kHz (from

their original sampling rate of 48 kHz). MFCCs and SGCCs are

extracted at 5 ms intervals using a 20 ms Hamming window and

a 26-channel Mel filter bank. The zeroth cepstral coefficient is
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Figure 3: (a) Means (circles) and standard deviations (error bars) of the segment-level correlations (segment = vowel token) between

actual and estimated SGCCs. Results from all 50 speakers in the WashU-UCLA corpus are pooled together. (b) Distribution of speaker-

level correlation (i.e., average segment-level correlation on a per-speaker basis) for three different cepstral coefficients (y1, y14, y22).

Feature set J-Ratio

MFCCs (x1–x25) 5.32

Actual SGCCs (y1–y25) 5.89

Estimated SGCCs 5.79

MFCCs + actual SGCCs 9.04

MFCCs + estimated SGCCs 8.79

Table 1: J-ratio, a measure of class separation (class = speaker),

for different features (+ denotes concatenation). Features were

extracted from isolated vowel recordings of speech and subglot-

tal acoustics, for all 50 speakers in the WashU-UCLA corpus.

discarded; MFCCs x1–x25 and SGCCs y1–y25 are used to train

λ(Z). The number of components K is set to 16—roughly one

component per vowel (we did not observe any significant im-

provements in performance by increasing K beyond 16).

3.2. Results

SGCC estimates from all 5 test sets are pooled together for anal-

ysis. The utility of the estimates (for speaker recognition) is as-

sessed in two ways: (1) by computing the correlation between

actual and estimated SGCCs on a per-segment basis (i.e., corre-

lations between actual and estimated time trajectories), and (2)

by comparing actual and estimated SGCCs with regard to their

ability to discriminate between speakers.

Figure 3(a) shows the average segment-level correlations

(with error bars) for SGCCs y1 to y25—the values lie between

0.12 and 0.55, and are comparable to the correlations achieved

for speech-to-articulatory inversion [19]. An important observa-

tion from Figure 3(a) is that the error bars are significantly large,

suggesting a high degree of speaker variability in the estimator’s

performance. Figure 3(b) verifies this further via distributions

of the speaker-level correlation (i.e., average segment-level cor-

relation on a per-speaker basis). In essence, we can attribute

the discriminatory power of estimated SGCCs, in part, to the

speaker-dependent nature of the MMSE estimator.

We use the J-Ratio [20], a popular measure of class sepa-

ration, to compare the actual and estimated SGCCs in terms of

speaker discriminability. Given feature vectors for N speakers,

the J-Ratio can be computed using Eqs. (6) and (7):

Sw =
1

N

N
∑

i=1

Ri Sb =
1

N

N
∑

i=1

(Mi−Mo)(Mi−Mo)
⊤

(6)

J = trace{(Sb + Sw)
−1

Sb}, (7)

where Sw is the within-class scatter matrix, Sb is the between-

class scatter matrix, Mi is the mean vector for the ith speaker,

Mo is the mean of all Mis, and Ri is the covariance matrix

for the ith speaker (a higher J-Ratio means better separation).

Table 1 shows the J-Ratio for different feature sets; it leads us

to two important observations. (1) SGCCs offer better separa-

tion than MFCCs. This is partly attributable to the stationarity

of subglottal acoustics and the low within-class scatter that re-

sults from it. Despite the moderate correlations achieved by the

MMSE estimator (Figure 3(a)), estimated SGCCs are compara-

ble in performance to actual SGCCs. This suggests again that

the discriminatory power of estimated SGCCs is partly due to

the speaker-dependent nature of the estimator (Figure 3(b)). (2)

SGCCs are complementary to MFCCs, as reflected by the sig-

nificantly higher J-Ratios for the combined feature sets. Note

that SGCCs are simply concatenated with MFCCs for this anal-

ysis; for speaker recognition experiments, we follow the score-

combination framework described in Section 2.

4. Speaker recognition experiments

The acoustic models for SID and SV are simple GMMs (as in

[1]) and UBM-adapted GMMs (as in [2]), respectively. Given

enrollment data, speech segments are first detected using the al-

gorithm proposed in [21]. MFCCs x0–x25 are extracted from

the detected speech segments using a 20 ms Hamming window,

a 10 ms frame shift, and a 26-channel Mel filter bank. Non-

vowel speech frames must be discarded for SGCC estimation

since the MMSE estimator is trained on isolated vowels only.

Instead of using a vowel detector, we simply retain all speech

frames that are strongly voiced. A normalized autocorrelation

peak value of 0.6 is used as the threshold to detect strongly-

voiced frames. Using MFCCs x1–x25, SGCCs y1–y25 are esti-

mated and used to train the GMMs of the SGCC system. To train

the MFCC GMMs, we use x0–x12 and their first- and second-

order derivatives. Note that feature concatenation is not possi-

ble here—MFCCs are computed for all speech frames whereas

SGCCs are computed for strongly-voiced frames, only.

Given a test utterance, MFCCs and SGCCs are computed as

described above. The features are scored with their respective

models to obtain two sets of scores (see Figure 2). The scores

are log likelihoods for SID and log likelihood ratios for SV.

Each set of scores is normalized to the range [0,1]; this is essen-

tial before score combination since MFCC and SGCC scores are

generally observed to have different dynamic ranges. The scores

from the two systems are combined in a weighted fashion such

that the weights (non-negative) sum to 1. The combined scores

are used to make a decision. Note that the score-combination

procedure is not rigorously optimized using separate develop-

ment and evaluation sets; our focus is more on answering the

question as to whether or not SGCCs are beneficial to SID and

SV. The results reported in this paper could therefore be a little

more optimistic than what we would observe in practice.
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Figure 4: Percent identification error (Ie) as a function of SGCC

weight (0 weight = MFCCs only) for the TIMIT database.

Data
Baseline Best combined Best SGCC

system system weight

16 kHz 3.09 1.51 (51.1%) 0.25

8 kHz 15.56 9.37 (37.8%) 0.55

8 kHz; G.712 19.21 16.19 (15.7%) 0.30

Table 2: Percent identification errors for the TIMIT database in

three different conditions, for the baseline (MFCC-only) and the

best combined systems (relative reductions in paranthesis).

4.1. Speaker identification: TIMIT database

TIMIT consists of data (sampled at 16 kHz) from 630 speakers.

Each speaker has 10 utterances: 2 “shibboleth” sa sentences, 5

phonetically-compact sx sentences, and 3 phonetically-diverse

si sentences [22]. The average utterance length is around 3 sec-

onds. The sa sentences are used individually as test trials and

the remaining 8 sentences are used for acoustic modeling (as

in [1]). MFCCs are modeled with 32-component GMMs and

SGCCs are modeled with 16-component GMMs.

SID performance is evaluated in three different conditions:

(1) wideband (16 kHz sampling rate), (2) narrowband (8 kHz

sampling rate), and (3) filtered narrowband (8 kHz sampling

rate; data are band-pass filtered using the ITU-T G.712 charac-

teristic [23], which has a flat frequency response from 300 to

3400 Hz). Note that for the filtered narrowband condition, the

MMSE estimator is retrained after applying the G.712 charac-

teristic to the vowel segments in the WashU-UCLA corpus.

Figure 4 shows the percent identification error (Ie) as a

function of the weight assigned to SGCCs, for the three evalua-

tion conditions described above. Table 2 summarizes the results

for the best combined systems along with the Ie reductions rel-

ative to their respective baselines. SGCCs are clearly effective

and complementary (the optimal SGCC weight is less than 0.5,

on average) to MFCCs, and one of the reasons for this is the

short duration of the test utterances.

4.2. Speaker verification: NIST 2008 database

NIST 2008 data (used widely for evaluating SV algorithms) are

similar to the filtered narrowband speech of TIMIT, but with

significantly higher speaker and channel variability [24]. Seg-

ments from the “10-sec” condition (which has 10 second utter-

ances from 1336 speakers) are used for this experiment. Data

from 892 speakers (having just one utterance each) are used for

UBM training. Data from the remaining 444 speakers (having

at least two utterances each) are used for enrollment (one utter-

ance) and evaluation (one utterance). The test trials are set up

such that each test segment is claimed to belong to each of the

444 speakers, with only one of them being the target speaker.
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SGCC weight = 0.35

SGCC weight = 0.0

Figure 5: Detection error tradeoff (DET) curves corresponding

to different SGCC weights (0 weight = MFCCs only) for the 5

second test trials in the NIST 2008 database.

Hence, there are 197136 trials in total. A 128-component UBM

is trained for both MFCC and SGCC systems, and speaker mod-

els are obtained via maximum a posteriori (MAP) adaptation

of the UBMs. A relevance factor of 10 is chosen to adapt the

means, covariances and component weights. The MSR Identity

Toolbox is used for all experiments [25].

Note that the above experimental setup is not a standard

one. Typically, UBMs are trained on other corpora (Switch-

board, Fisher, NIST 2006, etc.), and NIST 2008 data are used

for enrollment and evaluation [5, 6, 7]. Nevertheless, our frame-

work serves as a proof-of-concept to demonstrate the efficacy of

SGCCs in the presence of speaker and channel variability.

Equal error rate (EER) is used as the performance met-

ric. Evaluation on the 10 second test utterances results in a 4.3%

EER reduction for the best combined system (SGCC weight =

0.35), relative to the MFCC-only baseline of 10.59%. The ef-

fect of SGCCs is stronger when the test utterances are truncated

to 5 seconds each: the best combined system (SGCC weight =

0.35) shows a 10.5% reduction relative to the baseline EER of

12.84%. Detection error tradeoff (DET) curves for the 5 second

test trials are shown in Figure 5.

4.3. Discussion

In both SID and SV tasks, the proposed system performs worse

than the baseline as the SGCC weight tends to 1. However, the J-

Ratio analysis of Sec. 3.2 shows that estimated SGCCs by them-

selves can provide better speaker separation than MFCCs. This

discrepancy could be due to (1) acoustic mismatch between the

WashU-UCLA corpus and the speaker recognition corpora, or

(2) our simplistic approach to selecting vowel-like frames for

SGCC estimation. The above hypotheses could possibly be ver-

ified via experiments on a large, phonetically-balanced database

(like TIMIT) of speech and subglottal acoustics.

5. Conclusion

We have shown in this paper that SGCCs, estimated in regions

of voiced speech activity via a Bayesian MMSE approach, can

provide improved speaker-recognition performance when com-

bined with conventional MFCC features at the score level. SID

(TIMIT data) and SV experiments (NIST 2008 data) demon-

strate the efficacy of SGCCs in different bandwidth conditions

and in the presence of speaker and channel variability. The ef-

fect of SGCCs is stronger for shorter test utterances.

The results reported here are based on GMMs and UBM-

adapted GMMs. Further experiments are required to verify the

utility of SGCCs in state-of-the-art i-vector systems.
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