
An Improved Single Step Non-autoregressive Transformer for Automatic
Speech Recognition

Ruchao Fan1, Wei Chu2, Peng Chang2, Jing Xiao2, Abeer Alwan1

1Dept. of Electrical and Computer Engineering, University of California, Los Angeles, USA
2PAII Inc., USA

{fanruchao,alwan}@g.ucla.edu, {chuwei129,changpeng805, xiaojing661}@pingan.com.cn

Abstract
Non-autoregressive mechanisms can significantly decrease in-
ference time for speech transformers, especially when the sin-
gle step variant is applied. Previous work on CTC alignment-
based single step non-autoregressive transformer (CASS-NAT)
has shown a large real time factor (RTF) improvement over au-
toregressive transformers (AT). In this work, we propose sev-
eral methods to improve the accuracy of the end-to-end CASS-
NAT, followed by performance analyses. First, convolution
augmented self-attention blocks are applied to both the encoder
and decoder modules. Second, we propose to expand the trigger
mask (acoustic boundary) for each token to increase the robust-
ness of CTC alignments. In addition, iterated loss functions
are used to enhance the gradient update of low-layer parame-
ters. Without using an external language model, the WERs of
the improved CASS-NAT, when using the three methods, are
3.1%/7.2% on Librispeech test clean/other sets and the CER
is 5.4% on the Aishell1 test set, achieving a 7%∼21% rela-
tive WER/CER improvement. For the analyses, we plot atten-
tion weight distributions in the decoders to visualize the rela-
tionships between token-level acoustic embeddings. When the
acoustic embeddings are visualized, we find that they have a
similar behavior to word embeddings, which explains why the
improved CASS-NAT performs similarly to AT.
Index Terms: non-autoregressive transformer, CTC alignment,
token-level acoustic embedding, end-to-end ASR

1. Introduction
Transformers have been dominant in many sequence genera-
tion tasks, outperforming their recurrent neural network (RNN)
counterparts in terms of both accuracy and speed for end-to-end
systems [1–3]. However, the autoregressive (left-to-right) gen-
eration order slows down inference speed significantly. To ac-
celerate the inference, non-autoregressive transformers (NAT)
were proposed for the parallel generation of the output se-
quence. The idea is widely adopted in neural machine transla-
tion (NMT) [4–6], automatic speech recognition (ASR) [7–18],
text-to-speech (TTS) [19, 20] and speech translation [21].

Current NAT models for ASR can be categorized into: (i)
iterative NAT, and (ii) single step NAT, according to the number
of iterations for sequence generation. Essentially, autoregres-
sive models are also iterative-based since they use a left-to-right
generation order and take N iterations to generate a sequence of
length N. Hence, the idea of iterative NAT is to adopt a dif-
ferent generation order with less than N iterations to accelerate
the inference. Chen et al. regarded the transformer decoder as
a masked language model that first generates tokens with high
confidence [7], while Higuchi et al. applied the same idea but

This work was supported in part by the NSF.

based on the connectionist temporal classification (CTC) out-
put [11, 16]. In addition, Fujita et al. used the idea of the in-
sertion transformer from NMT to generate the output sequence
with an arbitrary order [12]. Another recent effective method
is using multiple decoders as refiners to do an iterative refine-
ment based on CTC alignments [14]. Theoretically, the iterative
NAT has a limited improvement of inference speed since multi-
ple iterations are still needed to obtain a competitive result. In
contrast, single step NAT, which attempts to generate the out-
put sequence with only one iteration, can have a better speed up
for inference. The idea is to substitute the word embedding in
autoregressive models with an acoustic representation for each
output token, assuming that language semantics can also be cap-
tured by acoustic representations [9, 10, 13].

Although various NAT methods were proposed for ASR,
the WER performance still lags behind that of state-of-the-
art autoregressive models. Therefore, based on our previous
work [13], we propose several methods to improve the accuracy
of CTC alignment-based single step NAT (CASS-NAT) with
little inference speed loss. First, convolution augmented self-
attention blocks are applied to both the encoder and decoder
modules, while other work only considered using them in the
encoder [22]. The second method is to expand the trigger mask
(acoustic boundary) for each token to increase the robustness of
the CTC alignment. Third, considering the wide use of iterated
loss functions to train deep transformers [23–25], we apply iter-
ated loss to enhance the gradient update of low-layer parameters
for both the encoder and decoder modules. When no external
language model is used, large improvements are observed on
both the Librispeech [26] and Aishell1 [27] datasets in terms
of error rate, and the performance is close to the autoregressive
baseline. Additionally, we analyse the self-attention distribu-
tions and token-level acoustic embeddings in the decoders. We
find a similar behaviour between the token-level acoustic em-
bedding and word embedding, which explains why CASS-NAT
performs similarly to autoregressive models.

The remainder of the paper is organized as follows. Section
2 briefly reviews the CASS-NAT and describes the proposed
methods for improving the system. Section 3 describes the
recognition experimental setup, followed by results and anal-
yses in Section 4. Section 5 concludes the paper.

2. System Overview
2.1. Basic CASS-NAT Model

The CTC alignment-based single step non-autoregressive trans-
former (CASS-NAT) that we proposed in [13] is modified
based on the CTC/Attention hybrid architecture [28] to be non-
autoregressive. Fig.1 shows four major modules in the CASS-
NAT: encoder, token acoustic extractor (TAE), self-attention de-



Conv2D x 2

Bi-
Mask

Filter-bank

LayerNorm
Positional
Encoding

CTC Loss

Bi-
Mask

Token-level Acoustic Embedding

Linear + Softmax

CE Loss

Linear + Softmax

Alignment Z

Encoder

Trigger
Mask

Positional
Encoding

Token Acoustic
Extractor

Mixed-attn Decoder

Joint Training

Self-attn Decoder

X

Figure 1: An overview of the CASS-NAT architecture [13]

coder (SAD) and mixed-attention decoder (MAD).
Suppose the input sequence is X = {x1, ..., xt, ..., xT }

and ground truth is Y = {y1, ...yu, ..., yU}, the encoder ex-
tracts high level acoustic representations H from speech fea-
tures X , followed by a CTC loss function. The role of CTC
is to obtain an alignment over CTC output space to offer aux-
iliary information for the token acoustic extractor. Specifically,
given an alignment Z = {z1, ..., zt, ..., zT }, we can estimate
an acoustic segment for each token u as {ztu−1+1, ...ztu}, as
well as the number of tokens in Z. The segment is equivalent
to the trigger mask in Fig. 1, which is used for self-attention
computation. The information obtained from the CTC align-
ment is then used to extract token-level acoustic embeddings
that replace word embeddings existing in autoregressive trans-
formers (AT). The self-attention and mixed-attention decoders
are finally used to model the relationship between tokens, where
the MAD has access to the acoustic representations H , while
the SAD does not.

The framework is trained by jointly optimizing a CTC loss
function on the encoder side (LCTC ) and a cross entropy (CE)
loss function on the decoder side (Ldec) so that the final loss
function (Ljoint) is defined as:

Ljoint = λ·log
∑
Z∈q

T∏
i=1

P (zi|X) + log

U∏
u=1

P (yu|z∗tu−1+1:tu , X)

(1)
where P is the probability, λ is the task ratio of the CTC loss,
and q is a set of alignments that can be mapped to the ground
truth Y . Z∗ is the most probable alignment, obtained by forced
alignment over the CTC output space. Note that the second term
is a maximum approximation for the loss on the decoder side.

2.2. Convolution Augmented Self-attention Block

Self-attention is the most basic layer in speech transformers,
and is formulated as:

Attn(Q,K, V,M) = Softmax(
QKT

√
dk

)⊗M · V (2)

where Q ∈ Rnq×dq , K ∈ Rnk×dk , V ∈ Rnv×dv , and
M ∈ Rnq×nk are the queries, keys, values and mask ma-
trix, respectively. From the equation, it can be seen that self-
attention considers global information across the sequence, but

ignores local details. To alleviate this problem, convolution
augmented self-attention blocks are proposed to emphasise the
modelling of local dependencies of the input sequence in the en-
coder [22,29]. Different from previous work, we apply the con-
volution augmented self-attention blocks in the mixed-attention
decoder as well as the encoder. Specifically, the feed-forward
layer is decomposed into two sub-layers to be placed at the be-
ginning and the end of the block. A convolution layer similar to
that in [22] is inserted after the self-attention layer except that
we empirically use layer normalization instead of batch normal-
ization. The final computation in the ith MAD can be formu-
lated as:

ŝi = si +
1

2
FFN(si) (3)

s
′
i = ŝi + LN(Attn(ŝi, ŝi, ŝi,BiMask)) (4)

s
′′
i = s

′
i + Conv(s

′
i) (5)

s
′′′
i = s

′′
i + LN(Attn(s

′′
i , H,H,BiMask)) (6)

oi = LN(s
′′′
i +

1

2
FFN(s

′′′
i )) (7)

where LN indicates layer normalization and FFN is the feed-
forward layer. BiMask stands for a bidirectional mask.

In addition, different from the usage of relative positional
encoding in [22,30], we consider a maximum length of relative
position k as in [31]. Therefore, 2k+1 position embedding are
learned to represent the relative position between [−k, k].

2.3. Trigger Mask Expansion

The quality of token-level acoustic embedding relies on the ac-
curacy of the trigger mask, which is mapped from the CTC
alignment. Although the CTC loss function is used to optimize
the alignment, there are still errors when doing forced alignment
over CTC output space, leading to an inaccurate trigger mask.
In order to compensate the inaccuracy of token-level acoustic
embedding extraction, we expand the trigger mask to include
contextual frames for each token. For example, suppose the
contextual frame size is one, the acoustic boundary of token U
becomes {ztu−1 , ..., ztu+1}. The trigger mask will then be ex-
panded by one in the subsequent acoustic embedding extraction.

2.4. Iterated Loss

Deep transformers always suffer from gradient vanishing, es-
pecially for parameters that are distant from the output layers.
Iterated loss are proposed to add additional loss functions af-
ter each layer to boost the gradient update [23, 32]. Recent
work proposed iterated CTC loss to improve the performance
of CTC [25]. In [24], iterated CE loss is used for training deep
transformer-based acoustic models. Since CTC and CE loss
functions are jointly optimized in the CASS-NAT framework,
we integrate iterated CTC and CE loss functions into Eq.1 so
that the parameters in different layers can be updated at the same
scale. We find this strategy to be more effective for CASS-NAT
than AT models. Let Ldec = log

∏U
u=1 P (yu|z∗tu−1+1:tu , X)

and LCTC = log
∑

Z∈q
∏T

i=1 P (zi|X), the objective function
is re-written as:

Ljoint = λCEL
final
dec + (1− λCE)L

middle
dec

+ λCTCL
final
CTC + (1− λCTC)L

middle
CTC

(8)

where λCE and λCTC are task ratios. Middle and final indicate
the layer position of the inserted loss functions.



Table 1: WERs of the proposed methods for improving CASS-
NAT on Librispeech. No external language model is used.
SpecAug is used in all configurations. WERR is the incremental
relative WER improvement on the test-other data.

Model w/o LM dev- dev- test- test- WERRclean other clean other
Conformer AT 2.7 7.2 3.0 7.0
CASS-NAT 3.7 9.2 3.8 9.1 -
+ Conv-aug Enc. 3.1 7.9 3.3 7.9 13.2%
+ Conv-aug Dec. 3.0 7.8 3.1 7.6 3.8%
+ Tri. Mask Exp. 3.0 7.6 3.1 7.5 1.3%
+ Iterated CTC 2.8 7.3 3.1 7.3 2.7%
+ Iterated CE 2.8 7.3 3.1 7.2 1.4%

3. Experimental Setup
The experiments were conducted on three datasets: the 960-
hour LibriSpeech English corpus [26], the 178-hour Aishell1
Mandarin corpus [27] and the 50-hour OGI Kids corpus (En-
glish) [33]. All experiments used 80-dim Mel-filter bank fea-
tures, computed every 10ms with a 25ms Hamming window.
Features of every 3 consecutive frames were concatenated to
form a 240-dim feature vector as the input. The sets of output
labels consist of 5k word pieces obtained by the SentencePiece
method [34] for Librispeech and OGI. 4230 Chinese characters
were obtained from the training set for the Aishell1 dataset.

A CTC/Attention AT baseline was first trained with the
architecture (Ne = 10, Nd = 5, dff = 2048, nh = 8,
datt = 512) for Librispeech, (Ne = 12, Nd = 6, dff = 2048,
nh = 4, datt = 256) for the Aishell1 and (Ne = 8, Nd = 4,
dff = 2048, nh = 4, datt = 256) for the OGI. When train-
ing the CASS-NAT, the encoder was initialized with the AT en-
coder for faster convergence as in [35]. The decoder in the AT
baseline was replaced by 1-block token-level acoustic extractor,
3-block self-attention decoder and 4-block mixed-attention de-
coder. The maximum length of relative position k was set to 20
in the encoder and 8 in the decoder for the English tasks and 4
in the decoder for the Aishell1 data. The contextual frame of the
trigger mask expansion was 1. The iterated loss functions were
inserted in the middle layer of the encoder and mixed-attention
decoder with λCE of 0.9 and λCTC of 0.5. The inserted projec-
tion layers were not used during inference. These settings were
empirically chosen based on many experiments.

Each of the two convolution layers in Fig.1 has 64 filters
with a kernel size of 3 and a stride of 2, leading to a 4x frame-
rate reduction. The same learning schedule in [13] was adopted.
Layer normalization, dropout with rate of 0.1 and label smooth-
ing with a penalty of 0.1 were all applied as the common strate-
gies for training a transformer. We also applied SpecAug [36]
for fair comparisons with results in previous literature. We addi-
tionally applied speed-perturbation for the Aishell1 dataset for
fair comparisons with previously published results. We used de-
velopment sets for early stopping and model averaging for final
evaluation. Most of the experiments ended within 90 epochs.
During AT decoding, the beam size is set to 20 for Librispeech,
and it is set to 10 for the Aishel1 and OGI. The evaluation of the
real time factor (RTF) was conducted using an NVIDIA Tesla
V100 GPU with batch size of one.

A transformer-based language model was trained with the
provided text in Librispeech for shallow fusion during AT base-
line decoding. The language model was also used for ranking
alignments and beam search during CASS-NAT decoding.

Table 2: A comparison of error rates and RTFs with previously
published results. RTFs of previous work are missing because
the authors did not report them, or the machines used to test
RTFs are different. †: use SpecAug. ?: use speed perturbation.

Librispeech (WER) LM test test RTF
clean other test-other

Previous work (NAT)
A-FMLM [7] † w/o 6.6 12.2 -
Imputer [8] w/o 4.0 11.1 -
Align-refine [14] † w/o 3.6 9.0 -
CASS-NAT [13] † w/o 3.8 9.1 0.010

Conformer AT†
w/o 3.0 7.0 0.499
w/ 2.3 5.2 0.568

Improved CASS-NAT † w/o 3.1 7.2 0.014
w/ 2.8 6.5 0.188

Aishell1 (CER) LM dev test RTF test
Previous work (NAT)
ST-NAT [10] † w/o 6.9 7.7 -
A-FMLM [7] ? w/o 6.2 6.7 -
Insertion-NAT [12] † w/o 6.1 6.7 -
Enhanced-NAT [15] †? w/o 5.3 5.9 -
BERT-LASO [18] †? w/o 5.2 5.8 -
CASS-NAT [13] †? w/o 5.3 5.8 0.011
Conformer AT †? w/o 4.8 5.2 0.200
Improved CASS-NAT †? w/o 4.9 5.4 0.023

4. Results and Analyses
4.1. Results on Librispeech and Aishell1

Experiments are first conducted on the Librispeech corpus by
incrementally adding the proposed methods based on the origi-
nal CASS-NAT [13] as shown in Table 1. First, when convolu-
tion augmented self-attention blocks are applied to the encoder,
the WER on the test-other set has a 13.2% relative improve-
ment compared to the CASS-NAT baseline. When the convolu-
tion augmented blocks are also applied to the decoder, the WER
drops further by a 3.8% relative improvement. An 1.3% relative
WER improvement is observed for the trigger mask expansion
method. When using the iterated loss function to both the en-
coder and decoder, we obtain an incremental 2.7% and 1.4%
WER improvements, respectively. The final result has less than
a 3% increase in relative WER compared to the AT baseline,
which used a conformer structure. In the next sub-section, we
will explain why the improved CASS-NAT can achieve a per-
formance that is close to its autoregressive counterpart.

The proposed three methods are also used to train an im-
proved CASS-NAT on the Aishell dataset. The final WER and
real time factor (RTF) comparisons with previously published
results are shown in Table 2, including both the Librispeech and
Aishell1 data. Using the Librispeech dataset, the WER on test-
other for the proposed methods has a 21% relative improvement
over the original CASS-NAT with little RTF degradation (from
0.010 to 0.014). This RTF still has a 36x speed up compared
to the AT baseline when no external LM is used. When using
an external LM during inference, CASS-NAT does not benefit
from LM as much as the AT baseline does, which was also re-
ported in [13]. Using the Aishell1 dataset, the RTF speed up is
not as large as in Lirbispeech. The reason may be that the speed
up of NAT benefits longer utterances; however, there are more
short utterances in Aishell1. In addition, we use AT baseline
for ranking alignments, which may increase the computational
cost. Although we do not carefully tune the hyper-parameters
on Aishell1, the character error rate (CER) on the test set still
improves from 5.8% to 5.4%, which is close to the AT baseline.



0 25
Token position

0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

(a) SAD head 5

0 25
Token position

0

20

40To
ke

n 
po

sit
io

n
0.00

0.25

0.50

0.75

(b) SAD head 6

0 25
Token position

0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

(c) SAD head 7

0 25
Token position

0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

(d) SAD head 8

0 25
Token position

0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

(e) MAD head 5

0 25
Token position

0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

(f) MAD head 6

0 25
Token position

0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

(g) MAD head 7

0 25
Token position

0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

(h) MAD head 8

Figure 2: Attention weight distributions of the last four heads
in multi-head self-attention of the last block in the self-attention
decoder (SAD) and mixed-attention decoder (MAD) for the first
utterance in the Lirispeech train-clean-100 subset. The matri-
ces Q,K, V in Eq.2 are split into nh sub-spaces and then they
are used for self-attention computation separately. Each sub-
space is referred to as a head. nh is set to 8 for this dataset.

300 200 100 0 100 200 300 400 500
300

200

100

0

100

200

300

400

500

ROME

ROSEFRANCE ROMAN

CLIFF

CLAY
CLOUD

PATH

COMMUNICAT
EDUCAT

CONCLUD

IMITAT

ROME
CLIFF
COMMUNICAT

300 200 100 0 100 200 300 400 500
400

300

200

100

0

100

200

300

400
FAULT

FALSE
FATE

FOLLY

SHALLSHOULDMAYMUST

ADMIRABLE

FORMIDABLE

DESIRABLE
REMARKABLE

FAULT
SHALL
ADMIRABLE

Figure 3: Visualization of token-level acoustic embedding for
six word pieces using the first two dimensions after PCA.

4.2. Attention and Embedding Visualizations

To analyse the modelling of token-level acoustic embeddings,
we choose the first utterance in the Librispeech train-clean-100
subset and plot the self-attention weights in the last block of the
self-attention and mixed-attention decoders. The weights of the
last 4 heads are shown in Fig.2. We can see from the figure
that most of the heads learn a monotonic alignment between
the token-level acoustic embeddings, indicating that each token
relies more on adjacent tokens, which is similar to the idea of
word embedding using continuous bag of words (CBOW) and
skip-gram [37]. The monotonic alignment also shows the use-
fulness of the relative positional encoding because distant to-
kens with close semantic similarity have low attention weights.

To further investigate how the token-level acoustic embed-
ding behaves, we extracted such embeddings from the first

3000 utterances in the train-clean-100 Librspeech subset. Each
acoustic embedding has its own word piece ground truth. For
each word piece, the embeddings are averaged to represent the
final acoustic embedding. Using the same idea of visualizing
word embedding, we randomly choose three word pieces and
find their four closest embeddings using the cosine similarity
distance. The 12 embeddings are reduced to a 2-dimensional
space using principal component analyses (PCA) and are then
plotted. Two examples are shown in Fig.3. The figure shows
that the token-level acoustic embedding can learn not only the
acoustic similarity, but also the word-piece level semantic simi-
larity. For example, for the word piece ROME, the closest to-
kens contain FRANCE representing cities and countries, and
ROSE which has a similar pronunciation. The same situation

can be seen in the lower part of the Fig.3 where each clus-
ter has the same part-of-speech words, such as MAY versus
SHOULD and REMARKABLE versus FORMIDABLE.

This behaviour of token-level acoustic embedding is very simi-
lar to word embedding, indicating that they can also be used to
capture semantics. This may explain why the improved CASS-
NAT has a similar performance to the AT baseline.

4.3. NAT for Child Speech

Table 3: WER for the development and test sets and RTF for
the test set using the scripted part of the OGI corpus. Both
experiments used SpecAug.

dev test RTF on test
Conformer AT 1.8 2.5 0.081
Improved CASS-NAT 2.2 2.6 0.018

In this section, we conduct experiments on the scripted part
of the OGI kids corpus with the data partition in [38] except
that 10% of the test set is chosen to be a development set for
early stopping. The results are shown in Table 3. Since the OGI
dataset has a fixed language pattern, the distributions of training
and test sets are close. Although we trained the model within 15
epochs, the WER remains very competitive. Nevertheless, the
conclusion of our improvements to CASS-NAT still holds and it
has an impressive speed up than autoregressive models, which
may be suitable for child ASR-based educational applications.

5. Summary and Conclusion
This paper presented three methods to improve the WER per-
formance of CTC alignment-based single step NAT (CASS-
NAT), followed by performance analyses. First, convolution
augmented self-attention blocks were applied to the encoder
and decoder modules. Second, the trigger mask was expanded
for each token to compensate for the inaccuracy of CTC align-
ments. Third, iterated loss functions were used to enhance
the gradient update of low-layer parameters. When using the
three methods without external language models, we achieved
a 7%∼21% relative WER/CER improvement over the original
CASS-NAT on the Librispeech and Aishell1 dataset with little
RTF degradation. The WER performance was worse within 5%,
in relative terms, than the autoregressive baseline, but main-
tained a 10∼40x speed up. Moreover, attention weights and
embedding visualization showed that the token-level acoustic
embedding had similar behaviors with word embedding, ex-
plaining why the CASS-NAT performed similarly to AT.



6. References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 6000–6010.

[2] J. Li, Y. Wu, Y. Gaur, C. Wang, R. Zhao, and S. Liu, “On the
comparison of popular end-to-end models for large scale speech
recognition,” Proc. Interspeech 2020, pp. 1–5, 2020.

[3] S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang,
M. Someki, N. E. Y. Soplin, R. Yamamoto, X. Wang et al., “A
comparative study on transformer vs rnn in speech applications,”
in ASRU. IEEE, 2019, pp. 449–456.

[4] J. Gu, J. Bradbury, C. Xiong, V. O. Li, and R. Socher, “Non-
autoregressive neural machine translation,” in ICLR, 2018.

[5] J. Lee, E. Mansimov, and K. Cho, “Deterministic non-
autoregressive neural sequence modeling by iterative refinement,”
in 2018 EMNLP. Association for Computational Linguistics,
2020, pp. 1173–1182.

[6] C. Saharia, W. Chan, S. Saxena, and M. Norouzi, “Non-
autoregressive machine translation with latent alignments,” in
EMNLP, 2020, pp. 1098–1108.

[7] N. Chen, S. Watanabe, J. A. Villalba, P. Zelasko, and N. Dehak,
“Non-autoregressive transformer for speech recognition,” IEEE
Signal Processing Letters, 2020.

[8] W. Chan, C. Saharia, G. Hinton, M. Norouzi, and N. Jaitly,
“Imputer: Sequence modelling via imputation and dynamic pro-
gramming,” in International Conference on Machine Learning.
PMLR, 2020, pp. 1403–1413.

[9] Y. Bai, J. Yi, J. Tao, Z. Tian, Z. Wen, and S. Zhang, “Listen at-
tentively, and spell once: Whole sentence generation via a non-
autoregressive architecture for low-latency speech recognition,”
Proc. Interspeech 2020, pp. 3381–3385, 2020.

[10] Z. Tian, J. Yi, J. Tao, Y. Bai, S. Zhang, and Z. Wen, “Spike-
triggered non-autoregressive transformer for end-to-end speech
recognition,” Proc. Interspeech 2020, pp. 5026–5030, 2020.

[11] Y. Higuchi, S. Watanabe, N. Chen, T. Ogawa, and T. Kobayashi,
“Mask ctc: Non-autoregressive end-to-end asr with ctc and mask
predict,” Proc. Interspeech 2020, pp. 3655–3659, 2020.

[12] Y. Fujita, S. Watanabe, M. Omachi, and X. Chang, “Insertion-
based modeling for end-to-end automatic speech recognition,”
Proc. Interspeech 2020, pp. 3660–3664, 2020.

[13] R. Fan, W. Chu, P. Chang, and J. Xiao, “Cass-nat: Ctc
alignment-based single step non-autoregressive transformer for
speech recognition,” in ICASSP. IEEE, 2021, pp. 5889–5893.

[14] E. A. Chi, J. Salazar, and K. Kirchhoff, “Align-refine: Non-
autoregressive speech recognition via iterative realignment,”
arXiv preprint arXiv:2010.14233, 2020.

[15] X. Song, Z. Wu, Y. Huang, C. Weng, D. Su, and H. Meng, “Non-
autoregressive transformer asr with ctc-enhanced decoder input,”
in ICASSP. IEEE, 2021, pp. 5894–5898.

[16] Y. Higuchi, H. Inaguma, S. Watanabe, T. Ogawa, and
T. Kobayashi, “Improved mask-ctc for non-autoregressive end-to-
end asr,” in ICASSP. IEEE, 2021, pp. 8363–8367.

[17] Y. Fujita, S. Watanabe, and M. Omachi, “End-to-end asr and au-
dio segmentation with non-autoregressive insertion-based model,”
arXiv preprint arXiv:2012.10128, 2020.

[18] Y. Bai, J. Yi, J. Tao, Z. Tian, Z. Wen, and S. Zhang, “Fast
end-to-end speech recognition via non-autoregressive models and
cross-modal knowledge transferring from bert,” arXiv preprint
arXiv:2102.07594, 2021.

[19] K. Peng, W. Ping, Z. Song, and K. Zhao, “Non-autoregressive
neural text-to-speech,” in International Conference on Machine
Learning. PMLR, 2020, pp. 7586–7598.

[20] C. Miao, S. Liang, M. Chen, J. Ma, S. Wang, and J. Xiao, “Flow-
tts: A non-autoregressive network for text to speech based on
flow,” in ICASSP. IEEE, 2020, pp. 7209–7213.

[21] H. Inaguma, Y. Higuchi, K. Duh, T. Kawahara, and S. Watanabe,
“Orthros: Non-autoregressive end-to-end speech translation with
dual-decoder,” in ICASSP. IEEE, 2021, pp. 7503–7507.

[22] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented transformer for speech recognition,” Proc. Interspeech
2020, pp. 5036–5040, 2020.

[23] A. Tjandra, C. Liu, F. Zhang, X. Zhang, Y. Wang, G. Synnaeve,
S. Nakamura, and G. Zweig, “Deja-vu: Double feature presenta-
tion and iterated loss in deep transformer networks,” in ICASSP.
IEEE, 2020, pp. 6899–6903.

[24] Y. Wang, A. Mohamed, D. Le, C. Liu, A. Xiao, J. Mahadeokar,
H. Huang, A. Tjandra, X. Zhang, F. Zhang et al., “Transformer-
based acoustic modeling for hybrid speech recognition,” in
ICASSP. IEEE, 2020, pp. 6874–6878.

[25] J. Lee and S. Watanabe, “Intermediate loss regularization for ctc-
based speech recognition,” in ICASSP. IEEE, 2021, pp. 6224–
6228.

[26] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in ICASSP. IEEE, 2015, pp. 5206–5210.

[27] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “Aishell-1: An open-
source mandarin speech corpus and a speech recognition base-
line,” in 20th O-COCOSDA. IEEE, 2017, pp. 1–5.

[28] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hy-
brid ctc/attention architecture for end-to-end speech recognition,”
IEEE Journal of Selected Topics in Signal Processing, vol. 11,
no. 8, pp. 1240–1253, 2017.

[29] B. Yang, L. Wang, D. F. Wong, L. S. Chao, and Z. Tu, “Con-
volutional self-attention networks,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), Jun. 2019, pp. 4040–4045.

[30] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. Le, and R. Salakhut-
dinov, “Transformer-xl: Attentive language models beyond a
fixed-length context,” in Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, 2019, pp.
2978–2988.

[31] P. Zhou, R. Fan, W. Chen, and J. Jia, “Improving generaliza-
tion of transformer for speech recognition with parallel sched-
ule sampling and relative positional embedding,” arXiv preprint
arXiv:1911.00203, 2019.

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2015, pp. 1–9.

[33] K. Shobaki, J.-P. Hosom, and R. A. Cole, “The ogi kids’ speech
corpus and recognizers,” in Sixth International Conference on
Spoken Language Processing, 2000.

[34] T. Kudo and J. Richardson, “Sentencepiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neural
text processing,” EMNLP 2018, p. 66, 2018.

[35] R. Fan, P. Zhou, W. Chen, J. Jia, and G. Liu, “An online attention-
based model for speech recognition,” Proc. Interspeech 2019, pp.
4390–4394, 2019.

[36] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method
for automatic speech recognition,” Proc. Interspeech 2019, pp.
2613–2617, 2019.

[37] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[38] R. Fan, A. Afshan, and A. Alwan, “Bi-apc: Bidirectional autore-
gressive predictive coding for unsupervised pre-training and its
application to children’s asr,” in ICASSP. IEEE, 2021, pp. 7023–
7027.


