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ABSTRACT

There are numerous models of varying complexities which seek to
efficiently represent the voice source signal. These models are typi-
cally based on data and observations which can come from air-flow
masks, electroglottographs, mechanical systems, and the inverse-
filtering of speech signals. The first part of this study examines ob-
servations from the high-speed imaging of the larynx and proposes a
new source model, which is shown to provide a better fit for the ob-
served data than existing models. The proposed source model is then
used in an automatic source estimation application, based on meth-
ods introduced in an earlier study [1]. Results, on average, show
that the proposed model provides a more accurate estimation of the
source signal compared with the Liljencrants-Fant model.

Index Terms— source estimation, voice source, speech analysis

1. INTRODUCTION

The voice source signal is an essential part of the speech produc-
tion process, containing a vast amount of non-lexical information.
This information can convey, for example, prosodic events, emo-
tional status, as well as cues pertaining to the uniqueness of the
speaker’s voice. In medical applications, analysis of the voice source
can be used to diagnose diseases of the vocal cords. Generally, the
acoustic source signal (i.e. glottal flow) is thought to be the result
of non-linear interactions between the lung pressure and the glottal
area function [2]. However, a recent study [3] found that the differ-
ences between the acoustic source pulse shapes and the glottal area
waveforms were small relative to the larger differences across the
area waveforms.

To effectively study the properties of the voice source, accu-
rate source models are needed. Many source models with vary-
ing complexities have been proposed, such as the Rosenberg [4],
Liljencrants-Fant (LF) [5], and the Fujisaki-Ljungqvist [6] models.
A more detailed comparison between these and several other source
models can be found in [7]. The motivations for such a wide range
of models are mainly due to the different types of data and observa-
tions on which the models are built upon. These observations can
come from air-flow masks, electroglottographs (EGG), mechanical
systems, and inverse-filtering of speech signals based on the linear
speech production model [8]. The first part of this study presents
a new source model which is derived using glottal area waveforms
from the high-speed imaging of the larynx.

The second part of this study applies the proposed source model
to the automatic estimation of voice source waveforms from acoustic
speech signals. Estimation of the source signal is a non-trivial task
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and is typically obtained using two main methods. The first method,
as used in [9] and [10], involves estimating the vocal tract trans-
fer function (VTTF) and inverse-filtering the original speech signal
to obtain a residual signal, which is then fitted to a source model.
The second method relies on a joint-estimation approach ([11], [12],
[13], and [14]) in which the source parameters and the VTTF are es-
timated together in a global approach. The basic assumption in both
of these methods is that speech can be approximated by a linear pro-
cess in which a source function is filtered by the VTTF to produce
the desired output. However, it is well known that during speech pro-
duction, source-tract coupling occurs which can result in non-linear
effects. In the first method, these non-linearities usually appear in
the residual signal, which is then used for source-model fitting. In
the joint-estimation method, the non-linearities may be incorporated
into both the source parameters and the VTTF. Calibration of the
algorithms in these methods are often performed with analysis-by-
synthesis results or EGG signals, which are an indirect observation
of the glottis that has inherent difficulties with extracting the “true”
source signal.

In our earlier study [1], a new method was proposed in which the
LF source signal was used effectively in inverse-filtering, resulting in
a residual signal which was used to fit to the parameters of the VTTF.
By reversing the roles of the source model and the VTTF, it was
hoped that the non-linear effects and other noises could be mapped
onto the parameters of the VTTF, providing a more accurate source
estimate. In that study, the estimation of the open quotient (OQ)
from the acoustic signals were compared with the measured values
of OQ from high-speed imaging of the larynx. Inconsistencies in
some of the results suggested that some modifications to the LF-
model may be required to accurately model the observed vibration
patterns in the glottis. In this study, the proposed source model is
used to estimate the source signal based on the method in [1]. Results
are calibrated with observations from the high-speed imaging.

2. DATA

The data used in this study is similar to that used in [1]; a summary of
the data-collection process is presented here. Audio and high-speed
video (3000 frames/second) were recorded synchronously from sub-
jects who were asked to produce the vowel /i/ with different voice
qualities (pressed, normal and breathy) and different F0 (low, nor-
mal and high). In addition to the original 4 subjects, 2 more subjects
were recorded for a total of 6 subjects (3 females, denoted by FM1–
3, and 3 males, denoted by M1–3). For each recording, one second
samples of audio and video were retained from the most stable sec-
tions for analysis.

Image segmentation was performed on the first 150 frames of



each high-speed video sample to extract the open glottal area. This
process was done manually to ensure accuracy. Each cycle of glottal
vibration was then marked by recording, where it existed, the first in-
stances of glottal opening. In samples where there were no complete
glottal closures, the minimum glottal opening points were recorded.
These points allowed the measurements of the open glottal areas to
be averaged across the glottal cycles and produce a waveform which
is representative of the source signal for the 150 analyzed frames
for that utterance. Hence, there were 9 representative glottal area
waveforms (3 F0 types each with 3 phonation types) per subject.

3. A NEW VOICE SOURCE MODEL

The results in [1] suggested that the LF-model may not accurately
describe some glottal area waveforms. This is not surprising given
that the LF-model was derived from a different set of data. In-
spections of the extracted waveforms revealed two limitations of the
model: (1) it was noticed that the opening phase can be shorter in
duration than the closing phase and (2), both the opening and clos-
ing phases of the LF-model are slow relative to the observed data,
which showed that the vocal folds can open and close very quickly.

The proposed model consists of 5 parameters: the fundamental
period (T0), open quotient (OQ), asymmetry coefficient (α), speed
of opening phase (Sop) and speed of closing phase (Scp). An ex-
ample of a model waveform is shown in Fig. 1. Using the nota-
tion from this figure, OQ = to+tc

T0
, α = to

to+tc
, Sop = toh

to
and

Scp = 1 − tch
tc

, where tch and toh are at 50% of the amplitude.
With the exception of T0, the four other parameters all range from
0 to 1. This model is a time-domain glottal flow model (i.e. not the
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Fig. 1. Example of the proposed model with OQ = 0.7, α = 0.6,
Sop = 0.5 and Scp = 0.7.

flow derivative) and utilizes a variant of the integrated first LF-model
equation, shown in Eq. 1 with the original notation from [5], for both
the opening and closing phases.

ug(t) =
E0

α2 + ω2

[
eαt(αsin(ωgt)− ωgcos(ωgt)) + ωg

]
(1)

The proposed model is defined as:

u(t) =





f(βot, λSop), 0 ≤ t ≤ αOQ · T0

f(βc(OQ · T0 − t), λScp), αOQ · T0 < t ≤ OQ · T0

0, OQ · T0 < t ≤ T0

where

f(x, λ∗) = A(λ∗)
[
eλ∗x(λ∗sin(πx)− πcos(πx)) + π

]

and

λ∗ = arg min
λ

∣∣∣∣
eλs(λsin(πs)− πcos(πs))

π(eλ + 1)
+

1

eλ + 1
− 1

2

∣∣∣∣

with A(λ∗) = (π(eλ∗ + 1))−1, s = Sop or Scp, βo = (αOQ ·
T0)

−1, and βc = ((1 − α)OQ · T0)
−1. λ∗ determines the slope

of f(x, λ∗) which can be calculated by simple optimization tech-
niques. A somewhat non-trivial closed-form solution for λ∗ also
exists involving the Lambert W -function. A(λ∗) is a normalizing
term so that max f(x, λ∗) = 1.

It is important to note that while phonations with incomplete
glottal closures (i.e. glottal gaps) could be modeled by adding a
“DC-offset” parameter, it was not done here because: (1) radiation
is often modeled by applying a derivative operation to the glottal
flow signal which would remove the effects of the DC-offset, and (2)
glottal gaps are perceived as turbulent noise, which is not modeled
here.

3.1. Model fitting performance

The average glottal area waveforms obtained in Sec. 2 were first nor-
malized to have a minimum value of 0 (i.e. DC-offset removed), a
maximum value of 1, and were resampled to a length of 100 samples.
For each subject, the proposed model was fitted to the normalized
source pulses by using a mean squared error (MSE) criterion. For
comparison purposes, the LF-model was also fitted to the normal-
ized pulses for each subject. The average MSE across all speakers
and utterances for the proposed model was 0.001 while for the LF-
model, the average MSE was 0.011. As expected, visual inspections
of the fitted model waveforms also showed that the proposed model
provides a more accurate fit of the glottal area waveform in all cases.
Fig. 2 shows two examples of the fitting results. Note the top panel
shows a source waveform with an opening phase duration which is
much smaller than the closing phase duration. This type of wave-
form was found consistently for all 6 subjects, especially during the
normal and breathy phonations. These results show that while the
LF-model does not fit the glottal area data well, it does provide a
good basis for the derivation of newer models.
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Fig. 2. Examples of fitting results for the proposed source model and
the LF-model. The top panel is from the low F0, normal phonation
of subject FM1 and the bottom panel is from the high F0, normal
phonation of subject M3.

4. APPLICATION TO SOURCE ESTIMATION

In this section, the proposed source model is used to create a code-
book for an automatic source signal estimation experiment.



4.1. Method

The method used for automatic source estimation is based on the
harmonic magnitude matching technique described in [1]. The main
block diagram is shown in Fig. 3. In this method, a codebook of
source signals is used to implicitly inverse filter an input signal, leav-
ing the residual signal for the VTTF and other non-linear source-tract
interactions. Briefly, for an input signal, the harmonic magnitudes
of its spectrum are calculated and normalized to the first harmonic
magnitude; this is denoted by Sn (for the n–th normalized harmonic
magnitude) in Fig. 3. A similarly normalized source signal from
a given codebook, denoted by Uk

n for the k–th entry, is subtracted
from Sn resulting in a residual signal, Vn, which is then used in a
constrained optimization operation to find the vocal tract parameters;
as with the earlier study, a 3–formant VTTF was used. The source
which results in the lowest analysis-by-synthesis error is selected.
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Fig. 3. Block diagram showing the two iterations of the method
[1]; solid and dashed lines represent the first and second iteration,
respectively.

As in [1], two iterations of the algorithm were used to reduce the
overall processing time. In the first iteration of the algorithm, shown
with solid lines in Fig. 3, a smaller codebook was used to find the
approximate source parameters. The smaller codebook was gener-
ated by performing a grid search over the two parameters OQ and
α at the following resolutions: OQ from 0.4 to 1.0 at increments of
0.1, and α from 0.4 to 0.5 at increments of 0.1. Sop and Scp were
both set to a constant value of 0.5. This resulted in a codebook of
14 entries. The codebook entry selected at the end of the first it-
eration was used to find source candidates from a larger codebook
with finer parameter settings. Assuming that the OQ and α values
of the selected source entry were denoted by OQs and αs, sources
in the larger codebook with an OQ value within OQs±0.1 and an α
value within αs ± 0.05 were selected for the second iteration. This
larger codebook was generated with the following parameter reso-
lutions: OQ from 0.35 to 1.00 at increments of 0.01, α from 0.35
to 0.50 at increments of 0.05, Sop from 0.3 to 0.7 at increments of
0.2, and Scp from 0.3 to 0.7 at increments of 0.2. This produced a
codebook of size 2376 which was further reduced to 2179 entries by
performing a correlation analysis and removing entries which had
a cross-correlation coefficient of 0.999 or more. α was only given
half of its possible range due to the property of the Fourier trans-
form for time-reversed signals; e.g., for a signal h(t) with periodic-
ity T0, |F{h(t)}| = |F{h(T0 − t)}|, where F denotes the Fourier
transform, and a source with α = 0.4, Sop = 0.6 and Scp = 0.5
is a time-reversed version of a source with α = 0.6, Sop = 0.5
and Scp = 0.6 for any OQ value. While it is not yet clear what
perceptual difference, if any, can be noticed between a source and
its time-reversed variant, a simple analysis-by-synthesis test, in the
time-domain, was employed at the end of the main algorithm to de-

cide which version of the source should be selected.
It is important to note that while the proposed model is a flow

model, the derivatives of the source signals are used in the construc-
tion of the codebooks to account for the radiation effects of the lips.

The constrained optimization on Vn to determine the vocal tract
parameters require lower and upper bounds on the formant frequen-
cies and their respective bandwidths. In [1], the bounds for formant
frequencies were determined separately for male and female sub-
jects by using the mean values as determined by the Snack Sound
Toolkit [15]. However, the results were not consistent for two of
the four subjects in that experiment, which estimated the parameter
OQ. A possible explanation is the difficulty of estimating formant
frequencies for the wide range of F0 values, especially for phona-
tions with high pitch. This is especially true for the first formant
(F1) frequencies which were found to have a large variance due
to the well-known deficiencies of LPC-based formant trackers for
high F0 phonations. Since voice source characteristics are usually
manifested in the lower frequencies of the speech spectrum, an in-
accurate measurement of F1 can lead to erroneous estimates of the
source signal. In this study, two methods of determining formant fre-
quency bounds are tested. The first method uses the Snack-estimated
formant frequencies averaged across a subject’s phonations and the
second method uses formant frequencies which were manually ex-
tracted from the spectrum of a subject’s normal phonation with nor-
mal F0. Although the subjects were asked to produce the vowel /i/
for each recording, the end result was always different due to the
positioning of the laryngoscope. For 3 male and 2 female subjects,
the produced vowels are closer to an /ε/ vowel, while for the other
female subject, the resulting vowels are closer to the /æ/ vowel. Us-
ing the Snack-estimated and manually-extracted formant frequency
values, the lower and upper bounds for the constrained optimization
were set to ± 150 Hz from the Snack/manual F1 values, ± 250 Hz
from the Snack/manual F2 values, and ± 400 Hz for Snack/manual
F3 values. Table 1 shows the optimization constraints for the for-
mant frequencies in terms of each subject for both methods; e.g. the
Snack-estimated value for F1 for subject FM1 is 351 Hz, therefore
the lower optimization constraint is set to 201 Hz and the upper con-
straint set to 501 Hz. Bandwidth constraints are not shown here, but
were based on the formant-bandwidth mapping formula in [16].

Table 1. Optimization constraints for formant frequencies for each
subject.

Snack-based lower/upper bounds (Hz)
Subject F1 F2 F3

FM1 201/501 1466/1766 2116/2916
FM2 196/496 1331/1831 2437/3237
FM3 464/764 1454/1954 2550/3350
M1 287/587 1433/1933 2300/3100
M2 229/529 1310/1810 1999/2799
M3 176/476 1422/1922 2423/3223

Manual-based lower/upper bounds (Hz)
Subject F1 F2 F3

FM1 450/750 1430/1930 2115/2915
FM2 440/740 1650/2150 2350/3150
FM3 680/980 1620/2120 2550/3350
M1 380/680 1550/2050 2300/3100
M2 410/710 1350/1850 2000/2800
M3 380/680 1350/1850 1900/2700



4.2. Results and Discussion

Table 2 shows the results of the source estimation, for each phona-
tion and F0 type, in terms of the MSE averaged across the female
and male subjects for the formant constraints as determined by Snack
and manually. The MSE is calculated between the averaged source
waveforms measured from the high-speed imaging and those esti-
mated from the acoustic signals. In both cases, the averaged source
waveforms are time and amplitude normalized so that each wave-
form is 100 samples in duration, and has a minimum value of 0
and a maximum value of 1. It can be seen that, the average MSE
for most cases is lower for those sources which were estimated us-
ing manually-determined formant frequency constraints. Not sur-
prisingly, the cases with high F0 show the largest MSE difference
between the Snack-based and manual-based methods, highlighting
the inaccuracies of LPC-based formant estimators for high-pitched
voices. To compare with the results in [1], which used the LF-model,

Table 2. Results of the source signal estimation in terms of the MSE
averaged across female and male subjects for a particular phonation
and F0 type. Both methods of determining the formant constraints
are shown: Snack-based/manual-based.

Average MSE for female subjects (Snack/Manual)
low F0 normal F0 high F0

pressed .0783/.0113 .0173/.0945 .1276/.0277
normal .0228/.0172 .0762/.0292 .1676/.1024
breathy .0118/.0202 .0944/.0130 .1491/.0187

Average MSE for male subjects (Snack/Manual)
low F0 normal F0 high F0

pressed .0216/.0216 .0057/.0065 .0935/.0382
normal .0476/.0476 .0156/.0130 .0685/.0249
breathy .0275/.0278 .0314/.0335 .1419/.0405

Table 3 shows the correlation coefficients resulting from the OQ es-
timation. With the exception of subject FM1, the correlation coeffi-
cients for “Manual” were similar or greater than those in our previ-
ous study [1]. While it maybe impractical to use manually-derived
formant constraints in applications, a possible solution could be to
use average formant values for known vowels (/æ/ for subject FM3
and /ε/ for the other subjects), as listed in [17]. The OQ estimation
performance for these formant constraints is denoted by “Constant”
in Table 3.

Table 3. Cross correlation coefficients calculated between the es-
timated and measured OQ for each subject. “Previous” denotes
the results from [1], “Manual” denotes the method using manually-
based formant constraints and “Constant” denotes the formant con-
straints obtained from [17]. Note that only the first two female and
male subjects were studied in [1].

Correlation coefficient (r) for each subject
FM1 FM2 FM3 M1 M2 M3

Previous .971 .778 – .925 .723 –
Manual .913 .947 .865 .910 .919 .929

Constant .892 .939 .925 .920 .919 .929

Visual inspections of the estimated source signal with the mea-
sured source signal confirm the results in Tables 2 and 3. For
the manually-based formant constraints method, there are generally
good matches between the estimated and measured signals, although

outliers exist for a few cases. The Snack-based formant constraints
method has significantly more errors which suggests that while the
algorithm does not require precise formant estimates, the lower and
upper bounds must contain a reasonably accurate formant position
in order for the correct source to be selected from the codebook.

5. SUMMARY AND CONCLUSION

A new model for the voice source, based on observations from the
high-speed imaging of the glottis, is proposed. This model is de-
rived from the LF model by allowing greater flexibility in regards
to the opening and closing phase durations. Although the proposed
source model is able to closely match the glottal area waveforms as
measured from imaging, all time-domain models lack an effective
way of representing phonations with glottal gaps, i.e. DC-offsets.
Incorporation of a noise component into the model may be a way to
achieve this and forms the basis of future research.

The proposed source model is used in a source estimation algo-
rithm based on the methods described in an earlier study [1]. While
the results are quite promising, they show the importance of having
reasonable formant frequency estimates, which can be difficult to
obtain using LPC-based formant estimators. Sensitivity analysis of
this algorithm will be further explored in future studies.
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[14] J. Pérez and A. Bonafonte, “Towards robust glottal source modeling,”
in Interspeech, 2009, pp. 68–71.
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