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ABSTRACT

The manner in which acoustic features contribute to per-

ceiving speaker identity remains unclear. In an attempt to

better understand speaker perception, we investigated human

and machine speaker discrimination with utterances shorter

than 2 seconds. Sixty-five listeners performed a same vs.

different task. Machine performance was estimated with i-

vector/PLDA-based automatic speaker verification systems,

one using mel-frequency cepstral coefficients (MFCCs) and

the other using voice quality features (VQual2) inspired by a

psychoacoustic model of voice quality. Machine performance

was measured in terms of the detection and log-likelihood-

ratio cost functions. Humans showed higher confidence

for correct target decisions compared to correct non-target

decisions, suggesting that they rely on different features

and/or decision making strategies when identifying a single

speaker compared to when distinguishing between speak-

ers. For non-target trials, responses were highly correlated

between humans and the VQual2-based system, especially

when speakers were perceptually marked. Fusing human re-

sponses with an MFCC-based system improved performance

over human-only or MFCC-only results, while fusing with

the VQual2-based system did not. The study is a step towards

understanding human speaker discrimination strategies and

suggests that automatic systems might be able to supplement

human decisions especially when speakers are marked.

Index Terms— Speaker perception, automatic speaker

verification, voice quality, speaker discrimination

1. INTRODUCTION

Humans have a notable ability to distinguish individuals by

their voices. Because perception studies suggest that distin-

guishing unfamiliar voices involves acoustic feature compar-

isons [1, 2, 3], we employed an unfamiliar speaker discrim-

ination task to identify such features. In this task, listeners

compared two speech samples to determine if they came from

one speaker or from two different speakers. For automatic
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systems, speaker discrimination can be thought of as a spe-

cial case of speaker verification where speakers are enrolled

with one utterance.

Performance comparison between humans and machines

on text-independent speaker discrimination tasks show that

machines outperform humans on long utterances in certain

conditions (e.g. [4, 5]). On very short utterances, how-

ever, machines seemingly perform worse than humans. For

example, a state-of-the-art automatic speaker verification

(ASV) system had an equal error rate of 22.31% with 2-sec-

long pairs [6], while human listeners showed 11.4% miss

and 19.7% false alarm rates for single sentence (≈ 2 sec)

pairs [7]. If humans are more accurate at this task, un-

derstanding perception might provide insights to improve

machine performance.

Studies also suggest that speaker perception involves

comparing voice tokens to stored prototypes in addition to

featural comparisons [7, 8]. In the prototype model, humans

encode the identity of a voice in terms of its deviations from

an internal representation of a prototype or average voice.

This model predicts that voices are more accurately identified

if they are similar to the prototype than if they are dissim-

ilar. Behavioral studies have provided evidence for such a

model [9, 10]. However, acoustic features that characterize

prototypes or the way in which they contribute to the model

is not yet clear.

Automatic speaker discrimination can be viewed as anal-

ogous to the prototype model in that standard ASV systems

build a universal background model (UBM, [11]) to represent

an average speaker model, and the identity of a speaker is

represented as a deviation from the UBM. Unlike perception

studies, researchers can design a feature set to better repre-

sent speaker identity. In this sense, a reverse engineering ap-

proach relating human and ASV decisions might help develop

a quantitative model for speaker perception.

Motivated by studies emphasizing the importance of voice

quality for speaker perception [12], a voice quality feature

set based on a psychoacoustic model [13, 14] was applied

to ASV in our previous studies [15, 16]. This improved

text-independent ASV system performance on very short-

utterances (≈ 2 sec). We then analyzed how humans and

machines performed on a text-independent, short-utterance

speaker discrimination task [17]. In that study, multidi-
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mensional scaling was used to infer speaker spaces from

the human and machine responses. Here, we further ana-

lyze the results of that study, focusing on the relationship

between human and machine responses. Neurological data

showed that speaker recognition and discrimination are sepa-

rate abilities [1]. Considering that, we assume that perceptual

strategies differ between target (same speaker pairs) and non-

target trials (different speaker pairs). In this context, we relate

responses by humans and machines for target and non-target

trials, separately.

2. DATABASES

2.1. UCLA Speaker Variability Database

The UCLA Speaker Variability Database [18, 19] includes

speech samples from 103 female and 105 male speakers, re-

flecting ordinary variations in voice quality due to multiple

recording sessions, phonetic content, speaking style, and af-

fect conditions. The speakers were recorded on 3 different

days in a sound-attenuated booth, with a sampling rate of 22

kHz and a fixed mouth-to-microphone distance.

This study chose read sentences among the speech tasks

in the database to represent the most stable and least vary-

ing type of continuous speech. Fifty female self-reported

native speakers of English were randomly selected from the

database. Post hoc listening by two linguists indicated that

utterances from 9 speakers were perceptually “marked” by

a non-American dialect (5 speakers), overly-precise articula-

tion, and/or unusual dysfluencies in reading (4 speakers). The

remaining 41 speakers lacked such personal idiosyncrasies,

and are referred to as “unmarked”.

2.2. NIST Speaker Recognition Evaluation Database

While the UCLA Speaker Variability Database provided

all the evaluation utterances for the present study, separate

speech databases were used to train the ASV systems tested

here. The speaker recognition evaluation (SRE) databases

developed by the National Institute of Standards and Tech-

nology (NIST) are often used to train a UBM and speaker

variability subspaces; we used the SRE04, 05, 06, and 08

databases for this purpose [20, 21, 22]. Since the evaluation

utterances were all from female speakers, only the recordings

from female speakers were used for training. In addition,

evaluation recordings were downsampled to an 8 kHz sam-

pling rate to match the bandwidth of the SRE databases.

3. METHOD

3.1. Perceptual Speaker Discrimination

For each speaker, three read sentences (< 2 sec each) were

selected from each of the 3 recording sessions. These stim-

uli were assembled into 50 pairs of speakers in which both

speech samples came from the same speaker and 1,225 pairs

where the two speakers were different, for a total of 1,275

pairs. Stimuli were always drawn from different recording

sessions, and two different sentences were used. Thus, this

task is always text- and recording session-mismatched.

To minimize listener fatigue, stimuli were divided at ran-

dom into 13 subsets. Thirteen groups of 5 normal-hearing

subjects listened to the pairs of stimuli at a comfortable lis-

tening level. Each pair could be played only once in each pre-

sentation order (AB/BA). The listeners were asked whether

the two speech samples were produced by the same speaker or

by two different speakers. They also reported their confidence

in their response on a 1–5 scale (1 = positive, 5 = wild guess).

They were not told how many speakers were represented in

the trials. The experiment was self-paced, and listeners were

encouraged to take breaks as needed. Total testing time was

less than one hour. For more details about the perceptual and

automatic speaker discrimination experiments, see [17].

3.2. Automatic Speaker Discrimination

An i-vector [23]/PLDA [24] based ASV system was used to

assess machine performance. The i-vector dimension was 600

and it was reduced to 200 after PLDA. The UBM was mod-

eled with 2,048 Gaussian mixtures. The same stimuli pre-

sented to the human listeners were given to the ASV system

to ensure a fair comparison.

Two feature sets were used in the experiments. The

first was composed of mel-frequency cepstral coefficients

(MFCCs) of dimension 20, along with their first derivatives.

Second derivatives were not used because they did not pro-

vide notable performance gains in our preliminary work. The

second feature set was inspired by a psychoacoustic model

of voice quality [13, 14]. In a previous study [15], we tested

the effectiveness of this feature set, after which the set was

modified to better represent speaker identity for ASV [16].

The modified feature set (denoted as VQual2), included F0,

F1, F2, F3, harmonic amplitude differences H1-H2, H2-H4,

H4-H2k, formant amplitudes A1, A2, A3, and cepstral peak

prominence (CPP, [25]). Here, H1, H2, H4, and H2k indicate

the amplitudes of first, second, and fourth harmonics, and the

harmonic nearest to 2 kHz. All features were automatically

extracted without manual refinements.

3.3. Evaluation Metric

For humans, the similarity between the stimuli in each pair

was measured by unfolding the confidence ratings such that

a value of 10 (positive that voices are the same) meant the

voices were very similar, and a value of 1 (positive that voices

are different) meant they were maximally dissimilar. These

scores were averaged across listeners. For ASV systems, the

PLDA score, which represents the ratio of the likelihood that

the given pair of stimuli are from the same speaker to the like-

lihood that the pair is from two different speakers, was used.

6327



After obtaining the similarity scores from humans and

PLDA scores from each automatic system, the scores were

calibrated using standard logistic regression [26]. The re-

sulting calibrated log-likelihood-ratio (LLR; L) represents the

scalar responses by humans and the automatic systems.

The detection cost function (Cdet), commonly known as

DCF, and the log-likelihood-ratio cost function (Cllr) were

used for performance evaluation [27]. Cdet is defined as the

expected cost of detection errors. It is a measure of discrim-

ination suitable for evaluating application-dependent perfor-

mance. For our application, Cdet was obtained with cost of

misses set at 25 and cost of false alarms set at 1, as the ratio

between target trials and non-target trials.

On the other hand, Cllr is defined as an integral over

a spectrum of operating points of Cdet. Thus, Cllr is an

application-independent measure for evaluating soft deci-

sions. It can be interpreted as a measure of loss of informa-

tion, thus the lower the Cllr, the more the average information

per trial (in bits) increases by applying the system. Cllr has an

analytic solution as shown in [27]:

Cllr(Lt) =
1

2

(

∑

t∈tar

log
2
(1 + e

−Lt)

Ntar

+
∑

t∈non

log
2
(1 + e

Lt)

Nnon

)

where Lt is the log-likelihood-ratio for trial t; and where ‘tar’

is a set of Ntar target trials and ‘non’ is a set of Nnon non-

target trials. The two normalized summation terms represent

expectations of ‘log costs’ for target trials (first term) and for

non-target trials (second term), respectively.

The Bosaris toolkit [28] was used to calibrate the raw

scores and for calculating Cdet and Cllr. As the data size ana-

lyzed was limited, and as the main purpose of the study was to

analyze calibration-independent performance, the calibration

was trained and used on the same dataset.

3.4. System Fusion

Systems were fused based on the logistic regression method

[29] using the Bosaris toolkit [28]. The fusion trains combi-

nation weights to fuse multiple systems providing a calibrated

set of log-likelihood ratios.

3.5. Speaker-Level Analysis

The L and Cllr values were analyzed on the speaker level. For

each of the 50 speakers, the Lt values for the trials including

that speaker were collected. Then, mean values of Lt for tar-

get and non-target trials were calculated separately, denoted

as Ltar and Lnon, respectively. If Ltar is large for a speaker,

this indicates that the speaker has small within-speaker vari-

ability. Similarly, if Lnon is large for a speaker, it indicates

that the speaker has small between-speaker variability, and it

is difficult for the system to distinguish her from others.

Cllr can be representative of the reliability of the L score.

The lower the Cllr, the more reliable the system responses

are for the speaker. C tar
llr and Cnon

llr , at the speaker level, were

calculated in a similar manner.

4. RESULTS AND DISCUSSION

4.1. Human and Machine Performance

Human and machine performances are summarized in Ta-

ble 1. As expected, humans performed better than machines.

For example, humans’ Cdet was as low as 0.273, while values

for the MFCC-based system and VQual2-based system were

0.500 and 0.682, respectively. Humans performed even better

than fusion of the two automatic systems, which had Cdet =
0.513. In addition, fusing human responses with any auto-

matic system improved performance, consistent with [30].

This trend was preserved with different false alarm costs, and

for the Cllr values.

When fusion improved performance, it suggested com-

plementarity among systems. When the MFCC and VQual2

were fused, the Cnon
llr decreased from 0.739 to 0.721, without

changing C tar
llr . On the other hand, when humans responses

were fused with VQual2, the Cnon
llr was not affected while the

C tar
llr slightly decreased from 0.417 to 0.405. MFCCs provided

more complementary information to human responses than

VQual2 features did; they reduced C tar
llr and Cnon

llr from 0.417

to 0.342 and from 0.434 to 0.368, respectively.

Note that the data set was not split into development and

evaluation sets for fusion, which might have resulted in some

overfitting. In the future, with more data, we will repeat these

experiments to ensure that no overfitting occurs.

4.2. Log-Likelihood-Ratio Analysis

Speaker-level Ltar and Lnon are shown in Fig. 1. For humans,

the target trial distribution had a smaller variance compared

to that of the ASV systems. Additionally, the Ltar and Lnon

distribution for humans were well-separated. This explains

higher human accuracy compared to machines.

Table 1. ASV performance in terms of detection cost func-

tions (Cdet), log-likelihood-ratio cost (Cllr), log-likelihood-

ratio cost for target trials (C tar
llr ), and log-likelihood-ratio cost

for non-target trials (Cnon
llr ). The plus (‘+’) symbol indicates a

fusion between the systems.

Cdet Cllr C
tar
llr C

non
llr

MFCC (M) 0.500 0.737 0.736 0.739

VQual2 (V) 0.682 0.884 0.897 0.872

Human (H) 0.273 0.425 0.417 0.434

M+V 0.513 0.728 0.736 0.721

H+M 0.216 0.355 0.342 0.368

H+V 0.273 0.419 0.405 0.434

H+M+V 0.231 0.353 0.341 0.365
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