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Abstract
Despite recent breakthroughs in automatic speaker recognition
(ASpR), system performance still degrades when utterances are
short and/or when within-speaker variability is large. This study
used short test utterances (2-3sec) to investigate the effect of
within-speaker variability on state-of-the-art ASpR system per-
formance. A subset of a newly-developed UCLA database is
used, which contains multiple speech tasks per speaker. The
short utterances combined with a speaking-style mismatch be-
tween read sentences and spontaneous affective speech de-
graded system performance, for 25 female speakers, by 36%.
Because humans are more robust to utterance length or within-
speaker variability, understanding human perception might ben-
efit ASpR systems. Perception experiments were conducted
with recorded read sentences from 3 female speakers, and a
model is proposed to predict the perceptual dissimilarity be-
tween tokens. Results showed that a set of voice quality fea-
tures including F0, F1, F2, F3, H1*-H2*, H2*-H4*, H4*-H2k*,
H2k*-H5k, and CPP provides information that complements
MFCCs. By fusing the feature set with MFCCs, human re-
sponse prediction RMS error was .12, which represents a 12%
relative error reduction compared to using MFCCs alone. In
ASpR experiments with short utterances from 50 speakers, the
voice quality feature set decreased the error rate by 11% when
fused with MFCCs.
Index Terms: voice quality, speech perception model, speaker
recognition

1. Introduction
Recognizing the identity of a speaker from his or her voice
is an important topic for researchers in various fields includ-
ing forensic phonetics, voice therapy, and engineering. In
automatic speaker recognition (ASpR), the emergence of the
i-vector framework brought about remarkable improvements.
Machines could outperform humans in some difficult condi-
tions (e.g. channel mismatch, non-native language, unfamil-
iar voices) [1]. However, machines require a large amount of
enrollment and test data and long utterances to model speak-
ers’ voices. For example, when the enrollment and test utter-
ance lengths are shortened to 2 sec from 2.5 min, the equal er-
ror rate (EER) surges to 35% from 3.37% for the NIST 2008
SRE telephone-based utterances [2]. Performance also de-
grades when within-speaker variability is large, as in emotional

speech [3]. Humans, on the other hand, are able to distinguish
speakers with high accuracy even from very short utterances.
If the listeners are familiar with the speaker, humans perform
better with short utterances and emotional variability than ma-
chines [4]. Thus, obtaining insights into how humans recognize
speakers may improve ASpR system performance. Modeling
human responses to predict perceived speaker identity itself is
an interesting topic. In forensics, for instance, measuring the
similarity between speakers is a critical issue in constructing
fair voice line-ups for ear witnesses [5].

Finding features representing speaker-specific information
is critical both for human response modeling and for ASpR.
Yet, no single set of acoustic parameters associated with hu-
man speaker recognition has been identified [6]. Studies have
shown that humans recognize familiar voices as complex, in-
tegral auditory patterns [6, 7, 8], and that they remember un-
familiar voices with reference to a “prototype” and deviations
from that prototype [6, 9]. In ASpR systems, the most pop-
ular features are mel-frequency cepstral coefficients (MFCCs)
[10]. Note that they represent vocal tract information well, but
not the voice source. Although the voice source contains abun-
dant speaker-specific information, only a few studies have used
it in ASpR applications. For example, Espy-Wilson et al. used
eight acoustic parameters consisting of both voice source and
vocal tract features [11]. Mazaira-Fernandez et al. separated
voice source from vocal tract information, and they combined
cepstral coefficients from those two estimates [12]. These stud-
ies showed the effectiveness of voice source information with
promising results, but such information still has not been uti-
lized extensively in ASpR.

We used voice quality features in order to reflect voice
source characteristics. Here, the term voice quality is defined
as a perceptual response to an acoustic voice signal, and qual-
ity is measured using a psychoacoustic model proposed in [13].
This model includes perceptually-validated spectral domain pa-
rameters to model the voice source, along with formant fre-
quencies and additional parameters to model F0, amplitude, and
the inharmonic part of the voice source. In a previous study,
these acoustic voice quality measures predicted listeners’ con-
fusions between 5 female speakers reasonably well from sus-
tained vowel /a/ sounds [14]. This study attempted to use this
same set of acoustic features to predict perceptual dissimilar-
ity from sentences read by 3 speakers, as well as vowel sounds.
If features from the psychoacoustic model are useful to predict
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perceptual dissimilarity, it is possible that these features will
also prove useful in ASpR.

In this study, we aimed to answer the following questions:
How well do humans recognize speaker identity, and are voice
quality features useful to model human responses? How can
voice quality features be used to improve ASpR systems when
there is variability and the utterances are short?

2. Data and Acoustic Analysis
2.1. Database

A database to study within- and between-speaker variability
was designed and collected at UCLA. Over two hundred female
and male speakers participated in three separate recording ses-
sions on different days. At the beginning of each session, they
repeated the isolated vowel /a/ three times and read two repeti-
tions of five Harvard sentences. These tasks allow cross-session
comparison.

Two further speech tasks were included in each session.
They were designed to sample variability consistent with nor-
mal everyday speaking situations. For example, to collect
speech samples with affect variability, speakers were asked to
report on a recent conversation which was neutral, happy, or an-
noying. Other speech tasks included giving instructions, mak-
ing a phone call, and speaking to pets. All of the audio record-
ings were made in a sound-attenuated booth with a sampling
rate of 22 kHz. Detailed description of the database can be
found in [14].

2.2. Voice Quality Features

A voice quality feature set was used to measure the correla-
tion between acoustic and perceived within-speaker variability
in our previous study [14]. The set consists of F0, F1, F2, F3,
H1*-H2* (the amplitude difference between the first and sec-
ond harmonics), H2*-H4* (the amplitude difference between
the second and the forth harmonic), the difference between H4*
and H2k* (the amplitude of harmonic component near 2 kHz),
the difference between H2k* and H5k, and cepstral peak promi-
nence (CPP, [15]). The asterisks (*) indicate that the effect of
formants on harmonic amplitudes is corrected [16]. These fea-
tures are selected based on an extensive study performed to find
the necessary and sufficient set of features contributing to per-
ceived voice quality [13, 17, 18, 19, 20]. This study applied
these features to predict perceived dissimilarity between voices,
and to improve automatic speaker recognition systems.

The measures were extracted with VoiceSauce software
[21] every 10 msec using Straight [22] for pitch estimation
and Praat [23] for extracting formant frequencies. The window
length was set to 25 msec for formant extraction, but the source
measures were extracted pitch-synchronously.

3. Perceptual Experiments and Modeling
3.1. Perceptual Experiments

Eight read sentences recorded from 3 female speakers were
used as stimuli in the experiment. Two sessions per speaker
were selected, with 2 repetitions of 2 different sentences per
session. The selected sentences were “A pot of tea helps to
pass the evening” and “The soft cushion broke the man’s fall”.
The stimuli pairs were used to compare the effect of session,
content, and speaker difference. From a total of 24 tokens, 30
same-speaker pairs and 48 different-speaker pairs were created.

To determine how easy these different sentences were to
distinguish, 15 normal-hearing UCLA students and staff mem-
bers participated in a listening experiment. They heard the pairs
of stimuli over Etymotic insert earphones (model ER-1) at a
comfortable constant listening level. Each pair could be played
only once in each presentation order (AB/BA). Listeners were
not told how many speakers were represented in the trials. They
judged whether the voices represent one speaker or two differ-
ent speakers for each pair of stimuli, and reported their confi-
dence in their response on a scale from 1 (positive) to 5 (wild
guess). The experiment was self-paced and listeners were en-
couraged to take breaks as needed.

Similar experiments were conducted with 60 listeners and
sustained vowel /a/ sounds from 5 female speakers, as described
in [14].

3.2. Human Listener Performance

Human listeners were quite accurate in distinguishing
same/different speaker pairs even when the utterances were
short (≤ 3 sec). For these sentence stimuli, listeners averaged
89.0% correct (hits & correct rejections) (sd: 8.21%, range:
65.4%-97.4%). In comparison, our previous study using iso-
lated vowels reported accuracy ranging from 38.6% to 84.8%,
with a mean of 69.0% (sd: 10.43%) [14].

The dissimilarity score d from an individual listener was
calculated from the listener’s same/different speaker response
and the uncertainty u which was reported on a 1 (positive) to
5 (wild guess) scale. If a listener responded that he/she was
positive the two tokens were from the same speaker (u = 1),
then d should be low. On the other hand, if the response was
“positive these are different speakers”, then d should be high.
In this sense, the dissimilarity score was defined in following
way:

d =

{
u if “same speaker” response

11− u if “different speaker” response

The dissimilarity score was then averaged across listeners.
The resulting averaged dissimilarities d̄ ranged from 0 to 10,
where ‘0’ was assigned to identical token pairs, which were not
included in the perception experiment.

It was observed that when the same/different speaker deci-
sion was re-calculated based on the ensemble score d̄, accuracy
increased substantially to 97.4% (see Figure 1), versus 89.0%
for averaged data. The accuracy gain is more obvious in the
vowel case, for which ensemble accuracy reached 86.4%, which
is higher than the score of the best individual listener.

3.3. Modeling Human Responses

Multi-dimensional scaling (MDS, [24]) was used to compute
the distance between tokens in a perceptual space. The aver-
aged dissimilarity score d̄ was normalized to have a value be-
tween 0 and 1, and the normalized score was analyzed using
a 6-dimensional non-metric MDS (stress=0.004 and 0.058 for
sentences and vowels). The Euclidean distances between to-
ken pairs of all possible combinations were calculated in the
MDS space. The objective of using MDS was to obtain per-
ceptual distance, not to reduce dimensionality for visualization.
Therefore, higher dimensional MDS was used to represent the
dissimilarity between stimuli [25, 26]. The resulting token dis-
tance had a 0 to 1 range.
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Figure 1: Listener performance (accuracy) in identifying
same/different speaker pairs with read sentences and 15 lis-
teners (top), and sustained vowel /a/ sounds and 60 listeners
(bottom).

A standard feature set for ASpR systems was used as a
baseline to predict human responses. This set included 20-
MFCCs along with their first- and second-order derivatives.
Voice quality (VQual) features described in Section 2.2 with
their first- and second-order derivatives were also included. The
mean and standard deviation of each feature including deriva-
tives within a token were calculated, and the absolute differ-
ences in the feature mean and standard deviation were found
between tokens. The perceptual dissimilarities were predicted
with a linear regression framework. Here, the variable being
predicted was the Euclidean distance between two tokens in the
MDS perceptual space, and the predictors were the differences
in means and standard deviations between the two tokens. The
predictors were of 120-dim for MFCCs and 54-dim for VQuals.
MFCCs and VQuals were used individually or combined by
concatenating them together before linear regression.

3.4. Results

The human response prediction results in terms of root-mean-
squared error (RMSE) between the predicted value and the to-
ken distance in the MDS space, either with only the mean or
with the mean and standard deviation of every feature, are sum-
marized in Table 1. As hypothesized, VQuals provided comple-
mentary information to MFCCs. When the perceptual distance
was predicated with MFCC feature vectors, consisting of the
mean and standard deviation of each feature and its derivatives,
the best RMSE was 0.140 for sentences and 0.121 for vowels.
Using only VQual features did not improve the performance.
However, when they were combined with MFCCs, the RMSE
performance improved by 11.80% for sentences.

Combined MFCC and VQual means improved relative per-
formance by only 2.24%, while combined mean and standard

deviation (mean&sd) improved 11.80% for sentences. On the
other hand, mean&sd for vowels improved the performance
only by 3.14%, possibly because sustained vowel sounds do not
vary much within a token.

Note that the human listeners had higher accuracy on read
sentences than on isolated vowels, but the acoustic features did
less well at predicting human performance for the sentences.
This was expected because there are many other sources of in-
formation in connected speech that are not represented by the
current feature set.

Score-level fusion was also tried, but no improvement was
found over concatenating the features.

Table 1: Perceptual dissimilarity prediction performance in
RMSE using either MFCC, VQual, and the combination of the
two. Relative improvements by combining MFCC and VQual
features compared to the performance with only MFCC are
shown in parentheses.

sentences vowels
mean mean&sd mean mean&sd

MFCC 0.143 0.140 0.123 0.121
VQual 0.156 0.140 0.128 0.128

MFCC+VQual
0.140 0.123 0.118 0.117

(2.24%) (11.80%) (4.07%) (3.14%)

In summary, human response prediction showed the effec-
tiveness of the voice quality feature set. Before applying these
features to ASpR systems, we first examined how a state-of-
the-art ASpR system would perform with short utterances and
within-speaker variability.

4. Automatic Speaker Recognition
4.1. Standard ASpR System Setup

The effect of within-speaker variability can be observed by
comparing results from two different conditions. One is to en-
roll the speakers with data containing variability and test with
known variability (matched condition), and the other is to test
with unseen variability (mismatched condition). For example,
in the session-matched condition, each speaker is enrolled with
randomly selected samples from all three sessions and tested
on the remaining tokens. In the session-mismatched condition,
the speakers are enrolled using only data from two sessions and
tested on the third. Affect- and style-matched and mismatched
conditions are defined in a similar way.

The types of within-speaker variability of interest in this
study are session, affect, and speaking-style variability. In the
UCLA database, read sentences in all 3 sessions and sponta-
neous speech with differing affect at each session are available.
These speech samples were randomly selected for 25 female
and 25 male speakers. Because automatic speaker recognition
(ASpR) systems are sensitive to the utterance length of the en-
rollment and test data, it is important to balance the amount of
data for a fair comparison. In each session per speaker, there are
ten read sentences, each is 2-3 sec long, and an affective speech
recording lasting 30-60 sec. In order to balance the amount of
data between read sentences and affective speech, we clipped a
30-sec segment in the middle of the affective speech and divided
the segment into ten 3-sec segments. The resulting amount of
data to enroll each speaker was approximately 60 sec for ses-
sion and affect variability experiments, and approximately 90
sec for style variability experiments. All test utterances were
2-3 sec long.
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The ASpR system performance was evaluated with a state-
of-the-art system. The 20-order MFCCs with their first- and
second-order derivatives were used as features. An i-vector
[27]/PLDA [28] speaker verification system was implemented
with the Kaldi toolkit [29]. The system was developed in a
gender-dependent way.

4.2. Standard ASpR System Performance

The ASpR system performance with short test utterances, influ-
enced by within-speaker variability, is reported in terms of equal
error rates (EER) in Table 2. Session variability did not affect
system performance and hence, those results are not shown in
the table.

Affect variability and speaking-style variability, however,
caused a notable degradation in system performance, both for
female and male speakers. Affect variability among neutral,
happy, and annoyed speech by female speakers caused the most
degradation, doubling the error rate. Note that the affective
speech recordings in the database also had session variability
because they were recorded in different sessions. However,
since the effect of the session variability was negligible, as men-
tioned earlier, the affect variability was regarded as the main
reason for the performance degradation.

It is possible that these results are dependent on the lexical
content. The read sentences were distributed evenly into enroll-
ment and test sets so that the system was enrolled with all 5
different sentences. For affective speech, however, lexical im-
balance could occur between enrollment and test data because
lexical content was not controlled. Further analysis is needed
with more speakers and more controlled conditions.

Table 2: Equal error rate (EER) for the ASpR system, using only
MFCC features, for the different conditions. The relative error
increase in the mismatched compared to the matched conditions
is reported in parentheses.

female male

affect-matched 3.64% 2.67%

affect-mismatched
7.49% 4.00%

(105.68%) (50.00%)
style-matched 5.07% 2.37%

style-mismatched
6.87% 3.64%

(35.64%) (53.91%)

4.3. Voice Quality Feature Effect on the ASpR System

The standard system described in Section 4.1 was used in this
analysis. As baseline features, 20-MFCCs with their first- and
second-derivatives were applied to the system. Another sys-
tem with the same back-end but with voice quality features was
also implemented. Because the development data (NIST SRE)
were sampled at 8kHz, the measure H2k*-H5k could not be
used, since it requires access to the harmonic component close
to 5kHz. Thus, this feature was excluded from the VQual set
in this task. The resulting feature vector dimension was 60 for
MFCCs and 24 for VQuals. The two systems were fused at the
score level to obtain final results.

It was found that the voice quality features provided com-
plementary information to MFCCs. The performance of the
ASpR system which fused MFCCs and VQuals is summarized
in Table 3. In the affect-matched condition, fusing voice qual-
ity features improved the system performance for both genders.

The improvement was 11.60% for female voices and 19.11%
for male voices. A similar trend was observed for the affect-
mismatched cases and style-matched conditions. However, the
style-mismatched condition degraded slightly for female speak-
ers when adding VQual features.

Even though the EER improved by adding VQual features,
a difference in EER between matched and mismatched condi-
tions remains. This can be explained by the fact that voice qual-
ity may be varying significantly according to the emotional sta-
tus and speaking-style of the speaker. Further analysis is needed
with orthographic transcriptions and acoustic measures. Nev-
ertheless, it was apparent that voice quality features provided
speaker-specific information which might not be sufficiently
represented by MFCCs.

Table 3: Equal error rate (EER) for the proposed system. The
relative improvements over using only MFCCs are shown in
parentheses.

female male

affect-matched
3.22% 2.16%

(11.60%) (19.11%)

affect-mismatched
6.70% 3.60%

(10.49%) (9.89%)

style-matched
4.65% 2.16%

(8.26%) (8.78%)

style-mismatched
6.90% 3.38%

(−0.37%) (7.25%)

5. Conclusion
This study investigated the effectiveness of voice quality fea-
tures (VQual) based on a psychoacoustic model. These features
were used to model human responses in a series of perceptual
experiments. In predicting perceived speaker dissimilarities,
VQuals provided complementary information to MFCCs. The
root-mean-squared error decreased as much as 11.80% for read
sentences by combining the means and standard deviations of
VQuals and MFCCs.

VQual and MFCC features were then applied to an auto-
matic speaker recognition (ASpR) system. The experiments
were conducted with a newly developed database containing
various kinds of within-speaker variability. It was found that a
state-of-the-art ASpR system performed worse when there was
within-speaker variability and utterances were short (≤ 3 sec).
VQuals did not necessarily improve the robustness to within-
speaker variability, but they did improve ASpR system perfor-
mance in most conditions. However, the reliability of VQual
features highly depends on pitch tracking and formant tracking
performance. This might make it hard to apply this set of fea-
tures to utterances with extremely high/low pitch.

Further studies will include perception experiments with
more speakers and more within-speaker variability to reveal
how robust humans are to a wide range of variabilities. The
knowledge gained might also improve ASpR system robustness
to such variability. Higher level features such as prosodic fea-
tures will also be considered for further improvements.
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