Robust Speaker Adaptation by Weighted Model Averaging Based on the Minimum Description Length Criterion

Xiaodong Cui and Abeer Alwan

Department of Electrical Engineering
University of California, Los Angeles, CA 90095
Email: xdcui@icsl.ucla.edu, alwan@icsl.ucla.edu

EDICS 1-RECO

January 23, 2006
List of Figures

1. A comparison of the transformation tying patterns with a regression tree of six base classes using 1-diagonal (grey node), and 3-diagonal (black node) structures. 23
2. Flow chart of implementation of weighted model averaging with structured MLLR transformations. The structures are appropriately tied with a regression tree. . 25
3. Transformation matrices generated based on vocal tract length normalization with scaling factor equal to 1.2 (left) and 0.8 (right). The darker the color, the more significant the element is. 26

List of Tables

1. Number of parameters of MLLR transformation with different structures. 23
2. Word error rate (%) of MLLR with different structured transformations on TIDIG-ITS database. Acoustic models are trained with male speech and tested on female speech. The performance is the average over the 10 female speakers in the test set. 24
3. Word error rate (%) of MLLR with different structured transformations on TIDIG-ITS database. Acoustic models are trained with female speech and tested on male speech. The performance is the average over the 10 male speakers in the test set. 27
4 Word error rate (%) of MLLR with different structured transformations on TIDIG-ITS database. Acoustic models are trained and tested on adult speech (both male and female). The performance is the average over the 20 adult speakers in the test set. 3D, 7D, 3B and full denote 3-diagonal, 7-diagonal, 3-block and full transformation matrices, respectively. .. 28

5 Word error rate (%) of MLLR with different structured transformations on TIDIG-ITS database. Acoustic models are trained on adults and tested on children. The performance is the average over the 10 kid speakers in the test set. 3D, 7D, 3B and full denote 3-diagonal, 7-diagonal, 3-block and full transformation matrices, respectively. .. 29

6 Word error rate (%) of MLLR with different structured transformations on RM database. .. 30
Abstract

The maximum likelihood linear regression (MLLR) technique is widely used in speaker adaptation due to its effectiveness and computational advantages. When the adaptation data are sparse, MLLR performance degrades because of unreliable parameter estimation. In this paper, a robust MLLR speaker adaptation approach via weighted model averaging is investigated. A variety of transformation structures is first chosen and a general form of maximum likelihood (ML) estimation of the structures is given. The minimum description length (MDL) principle is applied to account for the compromise between transformation granularity and descriptive ability regarding the tying patterns of structured transformations with a regression tree. Weighted model averaging across the candidate structures is then performed based on the normalized MDL scores. Experimental results show that this kind of model averaging in combination with regression tree tying gives robust and consistent performance across various amounts of adaptation data.
1 Introduction

Speaker adaptation is a crucial technique for speech recognition systems which modifies the original acoustic models towards a specific speaker given the speaker’s acoustic characteristics. It can yield significant improvements over “unadapted” recognizers and therefore plays an important role in real-world applications. In the past two decades, speaker adaptation has become one of the most active research areas in the speech recognition field with many important contributions. Generally speaking, speaker-adaptation techniques fall into two categories: transformation-based approaches and model-based approaches. Transformation-based approaches relate the original and adapted model parameters by a transformation, either a linear one [1] or a nonlinear one [2]. The model-based approaches adapt model parameters directly without an assumption of transformation [3][4][5].

If a large amount of adaptation data is available, both transformation-based and model-based approaches yield satisfactory performance. In real-world applications, however, situations often occur when only a limited amount of data is available for adaptation. This may be due to difficulty in collecting the data or a requirement of rapid speaker adaptation. In this situation, data sparseness will affect performance. To deal with this issue, a variety of methods has been developed for both approaches. For the transformation-based approach, a regression class tree is adopted in [1] to dynamically tie the transformation parameters, while dependencies between acoustic units are studied in [6] and [7] to make effective usage of the data. In the model-based approach, a structural MAP adaptation algorithm is proposed in [4] and [5] utilizing hierarchical priors and obtains good performance. These techniques can yield reliable adaptation for observed or unobserved acoustic units by smoothing the adaptation parameters across the sparse data.
Another interesting way to address the sparse-data problem is the eigenvoice method investigated in [8] where the acoustic models are obtained via a linear combination of representative speaker independent models in the eigenvoice (principal components) space. In case of adaptation, only the linear combination coefficients need to be estimated, which makes it a good choice for rapid speaker adaptation. The eigenvoice method has been extensively studied in the past few years and encouraging performance has been reported (e.g. [9][10][11]).

Among speaker adaptation techniques, the maximum likelihood linear regression (MLLR) [1] is one of the most well-known and widely-used approaches due to its effectiveness and computational advantages. In this paper, we investigate a robust speaker adaptation scheme using MLLR with a structured transformation matrix. The scheme yields consistent performance across various amounts of adaptation data - sparse or adequate. Structured MLLR transformations are clustered through a regression tree [1] and their ML estimation is provided. Given a certain amount of adaptation data, a variety of transformation structures is chosen and their tying patterns with the regression tree are described by the minimum description length (MDL) [12] to account for the tradeoff between transformation granularity and descriptive ability. Based on the normalized MDL scores, the final transformation is obtained by a weighted average across the candidate structures.

Previous work on applications of the MDL principle in acoustic model selection [13] and [14] involves the use of MDL to automatically determine the regression tree depth, applied to a mean shifting [13] and structural MAP adaptation [14]. In this paper, we investigate the use of the MDL principle to determine the optimum transformation structure from a set of predefined structures.
The remainder of the paper is organized as follows: In Section 2, formulation of estimation of structured MLLR transformations is provided. Structure description via the MDL principle and weighted model averaging based on normalized MDL scores are given in Sections 3 and 4. Section 5 discusses the choice of proper structures. Experimental results are presented in Section 6 which is followed by a discussion in Section 7. A summary is presented in Section 8.

2 Structured Transformations

As in [1], the MLLR transformation can be written as:

$$\hat{\mu} = A \xi$$

(1)

where $\xi = [1, \mu_1, \cdots, \mu_N]^T$ is the augmented mean vector with $\mu = [\mu_1, \cdots, \mu_N]^T$ denoting the N-dimensional mean vector of a Gaussian mixture in speaker-independent acoustic models. The adapted Gaussian mixture mean $\hat{\mu}$ is computed from the original augmented mean ξ via a linear transformation matrix A with an $N \times (N + 1)$ dimension.

When the adaptation data are adequate to perform reliable estimation, a full matrix form of A is preferred. However, most often in practical situations, only limited adaptation data are available. Under this condition, it is interesting to investigate different structures of A which may render fewer free parameters to estimate while still providing a good descriptive ability of the transformation. For a particular structure, only the elements of interest in the transformation matrix are taken into account while the rest are set to zeros. For instance, Eq.2 illustrates a structure of the transformation matrix A with elements of interest located in the first column and along the three principal diagonals in the remaining sub-matrix.
Before we derive the ML estimate of the structured transformation, let us first review the derivation of transformation matrix A with no assumption of its structure (see for example [1]). It will become manifest that the ML estimate of the structured transformation is an extension of the estimate of a full transformation matrix in an EM framework.

Suppose there are R adaptation utterances and U^r is the number of frames in the rth utterance. $\gamma^r_t(i,k) = p(s^r_t = i, \kappa^r_t = k | \mathcal{O}^r, \lambda)$ is the posterior probability of being at state i and Gaussian mixture k at time t given the rth observation sequence $\mathcal{O}^r = \{o^r_1, \cdots, o^r_{U^r}\}$. ξ_{ik} and Σ_{ik} are the augmented mean vector of μ_{ik} and covariance matrix associated with state i and Gaussian mixture k. λ are the parameters of previous models in the EM iterations. Transformations are tied into Q classes: $\{\omega_1, \cdots, \omega_q, \cdots, \omega_Q\}$. For a specific class ω_q, the transformation matrix A_q is shared across all the Gaussian mixtures $\mathcal{N}(\mathbf{o}^q_i; \mu_{ik}, \Sigma_{ik})$ with $(i,k) \in \omega_q$. The ML estimation of A_q can be obtained from:

$$
\sum_{r=1}^{R} \sum_{t=1}^{U^r} \sum_{(i,k) \in \omega_q} \gamma^r_t(i,k) \Sigma^{-1}_{ik} \mathbf{o}^r_i \xi^T_{ik} = \sum_{r=1}^{R} \sum_{t=1}^{U^r} \sum_{(i,k) \in \omega_q} \gamma^r_t(i,k) \Sigma^{-1}_{ik} A_q \xi_{ik} \xi^T_{ik} \tag{3}
$$
Define the terms the same way as in [1]:

\[V_{ik}^r = \sum_{t=1}^{U'} \gamma_t(i, k) \Sigma_{ik}^{-1} \]
\[D_{ik} = \xi_{ik} \xi_{ik}^T \]
\[Z_q = \sum_{r=1}^R \sum_{t=1}^{U'} \sum_{(i, k) \in \omega_q} \gamma_t(i, k) \Sigma_{ik}^{-1} \alpha_{i} \xi_{ik}^T \]

Hence:

\[\text{vec}(Z_q) = \left(\sum_{r=1}^R \sum_{(i, k) \in \omega_q} (V_{ik}^r \otimes D_{ik}) \right) \cdot \text{vec}(A_q) \]

where vec(\cdot) converts a matrix into a vector in terms of the rows and \(\otimes \) is the Kronecker product.

When the covariance matrix \(\Sigma_{ik} \) is diagonal, \(A_q \) could be computed row by row from the following linear relationship:

\[z_{qm}^r = G_{qm} \cdot a_{qm}^r \]

where \(z_{qm} \) and \(a_{qm} \) are the \(m \)th row of \(Z_q \) and \(A_q \), and:

\[G_{qm} = \sum_{r=1}^R \sum_{(i, k) \in \omega_q} v_{ik(mm)}^r D_{ik} \]

where \(v_{ik(mm)} \) is the \(m \)th element on the diagonal of matrix \(V_{ik}^r \).

In this paper, we are interested in the structure of \(A \) and ways of exploiting the structure in robust speaker adaptation. For a \textbf{structured transformation}, suppose the \(m \)th row of \(A_q \) has \(P_m \) elements of interest, namely,

\[a_{qm} = [0, \ldots, 0, a_{qm,l_1}, 0, \ldots, 0, a_{qm,l_{P_m}}, 0, \ldots, 0] \]

Define

\[\tilde{a}_{qm} = [a_{qm,l_1}, a_{qm,l_2}, \ldots, a_{qm,l_{P_m}}] \]
and

\[
\tilde{z}_{qm} = [z_{qm,l_1}, z_{qm,l_2}, \ldots, z_{qm,l_{p_m}}]
\]

as being the sub-vectors consisting of only those elements of interest. Then, \(\tilde{a}_{qm} \) can be solved using the following relationship:

\[
\tilde{z}_{qm}^T = \tilde{G}_{qm} \cdot \tilde{a}_{qm}^T
\]

where

\[
\tilde{G}_{qm} = \begin{bmatrix}
 g_{l_1 l_1}^{(qm)} & g_{l_1 l_2}^{(qm)} & \cdots & g_{l_1 l_{p_m}}^{(qm)} \\
 g_{l_2 l_1}^{(qm)} & g_{l_2 l_2}^{(qm)} & \cdots & g_{l_2 l_{p_m}}^{(qm)} \\
 \vdots & \vdots & \ddots & \vdots \\
 g_{l_{p_m} l_1}^{(qm)} & g_{l_{p_m} l_2}^{(qm)} & \cdots & g_{l_{p_m} l_{p_m}}^{(qm)}
\end{bmatrix}
\]

In other words, the matrix \(\tilde{G}_{qm} \) is generated by eliminating the rows and columns of \(G_{qm} \) which correspond to the zero elements in the structure, and keeping those of interest. The ML estimation of the structured transformation obtained in Eq.11 is a general form for all possible structures.

3 Description of Structured Transformation Based on MDL

Since it was first proposed in 1978 [12], the MDL has been extensively studied and applied in model selection problems. There are many excellent papers reviewing MDL, e.g. [15], [16], [17], etc. In speech recognition, the MDL was also used as a means to cluster acoustic units or optimize acoustic models [18][19]. Rooted in information theory, the MDL principle renders a view to
model selection from a coding perspective. It treats a statistical model S with parameter θ as a coding algorithm to compress data X for the estimation. The total length ($L(S)$) to describe the coding of the data via the model includes the length of the compressed data ($-\log p(X|\theta)$) plus the length describing the model itself ($L(\theta)$):

$$L(S) = -\log p(X|\theta) + L(\theta)$$ \hspace{1cm} (13)

In Eq.13, the first term on the right-hand side accounts for how well the model fits the data and the second term describes the complexity of the model. It is desirable to describe complicated phenomena by a simple model just as the famous Occam’s razor states – “One should not increase, beyond what is necessary, the number of entities required to explain anything”. Thus, given M competing models, the one with the shortest code length is favored which results in a simple model (or short $L(\theta)$) with a good fit of the data (or short $-\log p(X|\theta)$). In this paper, the MDL is employed to describe the structured MLLR adaptation using a regression tree.

Given an amount of adaptation data and a transformation structure, a regression class tree [1] is a good choice to obtain robust performance by dynamically tying Gaussian mixtures in the acoustic HMMs in terms of spatial similarity. The regression tree is created based on the centroid splitting algorithm using the Euclidean distance between the Gaussian mixture means as described in [20]. During adaptation, the Gaussian mixtures are pooled within their base class leaves or their parent nodes until the occupation counts are satisfactory for reliable estimation.

While different transformation structures have different numbers of parameters, they provide different transformation descriptive ability and require different amounts of data to conduct reliable estimation. For illustration purposes, Fig.1 compares the tying patterns of a 1-diagonal and 3-diagonal transformations with a six-class regression tree. The six base classes are denoted
as the leaves at the bottom of the tree. In the figure, the tying of 1-diagonal structure is represented by grey nodes with solid arrows and 3-diagonal structure by black nodes with dashed arrows. For instance, in the 1-diagonal structure case, Gaussian mixtures from base class 1 share the transformation estimated from their own class while Gaussian mixtures from base class 2 are applied with the transformation estimated from both base classes 1 and 2. On the other hand, base classes 1, 2, 3 and 4 share the same transformation estimated from those classes in the 3-diagonal structure case. There are totally 4 transformations for the 1-diagonal structure and 2 transformations for the 3-diagonal structure.

From the figure, since the 1-diagonal structure has fewer parameters than the 3-diagonal case, transformations have been tied at a lower level in the tree which indicates a better granularity. On the other hand, the 3-diagonal structure has more parameters to describe the transformation; this indicates a better descriptive ability. Therefore, a tradeoff has to be made between transformation granularity and descriptive ability.

Suppose there are M competing structures \{S_1, \ldots, S_M\} which result in different regression-tree tying schemes. Typically, complicated structures have transformations tied across more Gaussian mixtures (higher level in the tree toward the root node) and simple structures across less Gaussian mixtures (lower level in the tree toward the leaves). To explore the compromise between transformation granularity and descriptive ability for each transformation structure, the minimum description length (MDL) principle is a good criterion.

In particular, suppose the Gaussian mixtures of the original acoustic HMMs are clustered into L base classes with D_l ($l = 1, \ldots, L$) mixtures in the lth class. For the dynamical tying of the structure S_m ($m = 1, \ldots, M$) resulting in Q_m transformations with a regression tree over R
adaptation utterances \{O^1, O^2, \cdots, O^R\}, the description length is composed of three parts:

\[L(S_m) = L_1(S_m) + L_2(S_m) + L_3(S_m) \] \hspace{1cm} (14)

where

\[L_1(S_m) = -\log p(O^1, O^2, \cdots, O^R | A_1, \cdots, A_{Q_m}; \lambda) \] \hspace{1cm} (15)

\[L_2(S_m) = \sum_{q=1}^{Q_m} \frac{|S_m|}{2} \log \Gamma_{mq} \] \hspace{1cm} (16)

\[L_3(S_m) = \sum_{l=1}^{L} D_l I_{ml} \] \hspace{1cm} (17)

In Eq.14, \(L_1(S_m) \) is the code length of the compressed data \(\{O^1, O^2, \cdots, O^R\} \) using \(Q_m \) distinct transformations with structure \(S_m \); \(L_2(S_m) \) is the code length of the \(Q_m \) transformations; \(L_3(S_m) \) is the code length identifying one of the \(Q_m \) transformations for each Gaussian mixture. The three terms influence the compromise between transformation granularity and descriptive ability in different ways. \(L_1(S_m) \) and \(L_2(S_m) \) balance the likelihood and the number of transformation parameters by choosing transformation structures that have a higher likelihood with less parameters. In addition, \(L_3(S_m) \) introduces penalty for tying patterns with more transformations since they have to employ a longer code to describe the application of the transformations to Gaussian mixtures. In the following, we will provide details on calculation of the three lengths.

Suppose the introduction of the transformation does not alter (a) the initial state probabilities, (b) the state transition probabilities, and (c) the frame/state alignment. Then, the first term in Eq. 14, \(L_1(S_m) \), could be computed based on the forward-backward procedure [21] using
transformed Gaussian mixtures by the transformations \{A_1, \ldots, A_{Q_m}\}:

\[
\log p(\mathcal{O}_1^1, \mathcal{O}_2^1, \ldots, \mathcal{O}_R^1 | A_1, \ldots, A_{Q_m}; \lambda) = \log \prod_{r=1}^R p(\mathcal{O}_r^1 | A_1, \ldots, A_{Q_m}; \lambda) = \sum_{r=1}^R \log p(\mathcal{O}_r^1 | A_1, \ldots, A_{Q_m}; \lambda) = \sum_{r=1}^R \log \left(\sum_{j=1}^N \alpha_j^r(i) \beta_j^r(i) \right)
\]

The forward variable \(\alpha_j^r(i)\) and backward variable \(\beta_j^r(i)\) are computed using the transformed Gaussian mixture \(\mathcal{N}(\alpha_j^r; A_q^\xi_{ik}, \Sigma_{ik})\).

In the second term, \(L_2(S_m)\), \(|S_m|\) is the number of free parameters in the transformation with the structure \(S_m\). \(\Gamma_{mq}\) is the occupation counts of transformation \(A_q\) with structure \(S_m\) and can be computed as:

\[
\Gamma_{mq} = \sum_{r=1}^R \sum_{t=1}^{U_r} \sum_{(i,k) \in \omega_q} \gamma_q^r(i,k) \quad \text{given } S_m
\]

which denotes the adaptation data’s total contribution to the transformation \(A_q\) with structure \(S_m\).

The third item, \(L_3(S_m)\), is the length of the code to locate a particular transformation in the tree. Each of the \(Q_m\) transformations with structure \(S_m\) is labeled by an integer from \(\{1, \ldots, Q_m\}\) for identification. To specify a transformation with structure \(S_m\) for each Gaussian mixture from base class \(l\), the labelling integer \(j(m,l)\) of the transformations, which is a function of structure \(S_m\) and base class \(l\), is identified and coded. In light of the coding literature such as [22] and [23], the approximate universal code length for a non-zero integer \(j(m,l)\) is:

\[
I_{ml} = \log 2 \cdot (2 + \log_2^{-1} |j(m,l)| + 2\log_2^{-1} \log_2^{-1} |j(m,l)|)
\]
where \(\log_2^+ | \cdot | \) is the positive part of the logarithm function. Substituting Eq.20 into Eq.17, we can compute the total bits needed to identify the transformations for all the Gaussian mixtures in the acoustic models. Note that \(L_1(S_m) \) and \(L_2(S_m) \) are computed in nats while \(L_3(S_m) \) in bits, therefore, scaling factor \(\log 2 \) is needed to change the different logarithm bases in the summation.

Together, the three coding lengths, \(L_1(S_m) \), \(L_2(S_m) \) and \(L_3(S_m) \), give the description length of a transformation with structure \(S_m \).

4 Weighted Model Averaging

Given the MDL scores for all the competing transformation structures with a regression tree, the structure with the shortest coding length is preferred and may be considered as the best candidate among all the competing structures. However, problems may occur if only the “best” structure is adopted. First, the MDL is asymptotically accurate when applied to a large amount of data. In case of limited data, the MDL choice may vary from one data set to another and give unsatisfactory results. Moreover, when the MDL scores are close, there is no one structure that is clearly superior to the others. In this situation, weighted model averaging could provide a more stable and robust performance than a single structure.

Suppose the MDL scores for the \(M \) competing structures \(\{S_1, \cdots, S_M\} \) are \(\{\zeta_1, \cdots, \zeta_M\} \) with \(\zeta_{\min} \) and \(\zeta_{\max} \) being the minimum and maximum scores, respectively. A normalized score of the \(m \)th candidate structure \(S_m \) is defined as

\[
\Delta_m = \eta \cdot \frac{\zeta_m - \zeta_{\min}}{\zeta_{\max} - \zeta_{\min}}
\] (21)
where \(\eta \) is empirically determined, and the weight for the structure \(S_m \) is computed as

\[
\pi_m = \frac{e^{-\Delta_m}}{\sum_{m=1}^{M} e^{-\Delta_m}}
\]

(22)

Assume the transformation applied to base class \(l (l = 1, \cdots, L) \) with structure \(S_m \) is \(A_{q(m,l)} \), the final transformation for this base class is calculated as:

\[
A_l = \sum_{m=1}^{M} \pi_m A_{q(m,l)}
\]

(23)

Eq. 23 represents a final transformation by the weighted average of different structured transformations.

5 Choice of Structure Form

Ideally, for the given amount of adaptation data, all possible transformation structures should be considered and their corresponding MDL scores be calculated. Suppose the transformation matrix \(A \) is \(N \times (N+1) \) in dimension, then there are \(2^{N \times (N+1)} \) possible structures to investigate, which is computationally prohibitive in practical situations. However, earlier research could shed light on the appropriate choice of transformation structures. For instance, [24], [25] and [26] show that vocal tract length normalization (VTLN) in the linear spectral domain can translate into a linear transformation in the cepstral domain, which could be considered as a special case of linear regression. The transformation obtained this way has a special structure: dominant components are located along the several principal diagonals of the matrix. Fig.3 visualizes two transformation matrices associated with two scaling factors using the approach investigated in [26] for the Mel-frequency Cepstral Coefficients (MFCC) feature. Similar structures could also be found in [24].
The above-mentioned VTLN results provide an interesting acoustic motivation on the choice for the transformation structure. Taking into account a reasonable coverage of structures and computational considerations, we choose four structures for our experiments: 3-diagonal (3D), 7-diagonal (7D), 3-block (3B) and full matrix (full). The 3-block structure with sub-full-matrix for the static, first and second order derivatives of the transformation is widely used in MLLR speaker adaptation [20]. Table 1 shows the number of free parameters for the four structured transformation matrices.

6 Experimental Results

Fig. 2 elaborates the implementation of the proposed weighted model averaging approach with structured transformations. Experiments are performed on the TIDIGITS and Resource Management (RM) databases. TIDIGITS consists of connected digit string composed of 1 to 7 digits and RM is a continuous speech corpus where the sentences pertain to a naval resource management task. The speech data are sampled at 16k Hz. MFCC features are computed with a 25 ms frame length and a 10 ms frame shift. The feature is 39 in dimension consisting of 13 static MFCCs (including C0) and their first and second order derivatives. TIDIGITS experiments use phoneme-specific HMMs adopting a left-to-right topology with 3 to 5 states for each phoneme. A 3-state silence model and 1-state short pause model are also used. There are 6 mixtures in each state. All the Gaussian mixtures have diagonal covariance matrices. RM experiments use triphone HMMs with 3 states for each triphone and 6 Gaussian mixtures in each state.

The structures discussed here refer to the sub-matrix after the first column in \(A \) in Eq.1. For simplicity, we refer to them as the structure of \(A \).
Four sets of experiments are designed for TIDIGITS testing: male-trained-female-tested, female-trained-male-tested, adult-trained-adult-tested and adult-trained-child-tested. The male speaker independent acoustic models are trained with 55 males and the female models with 55 females. The adult models are trained by pooling together the 55 males and 55 females. In the testing set, there are 10 males, 10 females and 10 children. In both training and testing sets, each speaker provides 77 utterances. Before recognition, data from each speaker are extracted to adapt the speaker-independent models by MLLR. The adaptation is performed with 2, 5, 10, 15, 20, 25, 30 and 35 digits. For the RM database, speaker independent models are trained by 72 speakers with 40 utterances from each speaker. The test set contains 10 speakers with 300 utterances from each speaker. The adaptation is performed with 1, 3, 10, 50 and 100 utterances.

An MLLR regression tree with 128 base classes is created for the TIDIGITS task and 512 base classes from the RM task. To ensure matrix invertibility during the transformation tree-tying, a minimum number of Gaussian mixtures is required at the tying nodes which is 3, 7, 13 and 39 for 3D, 7D, 3B and full matrix, respectively. Furthermore, for reliable estimation, a threshold has to be set for each transformation structure depending on its number of free parameters. In this paper, we choose the threshold to be approximately equal to the number of parameters for each structure. That is, 150, 300, 550 and 1500 are the occupation counts for a valid transformation estimation with 3D, 7D, 3B and full matrix, respectively. The scaling factor η in Eq.21 is set to 2.0. η is tuned to give reasonable weights for the structures. Values around 2.0 will give the best performance according to our experiments and they are consistent across recognition tasks.

Tables 2 - 5 show the TIDIGITS experimental results with four transformation structures
using different amounts of adaptation data. Baseline results are without adaptation. Adaptation results using the “single” best structure based on MDL, and using the averaged transformation across all four structures weighted using the MDL scores are denoted as “MDL” and “MDL-Ave”, respectively. The 3-block and full matrix structure results with very limited data (e.g. 2 digits for 3-block matrix structure and 2 and 5 digits for full matrix structure) are not shown in the tables since even the global tying for the transformation can not meet the occupation threshold requirement, and the results are thus not meaningful. Table 6 shows the experimental results for the RM database.

From the tables, structures with less parameters (3D or 7D) tend to give better performance than those with more parameters (3B or full) when the amount of adaptation data is small. When the amount of data increases, however, the situation is reversed. This is mainly due to the tradeoff between transformation granularity and descriptive ability. By choosing the single “best” model with the minimum score, MDL gives a better balanced performance with respect to the amount of adaptation data. Very often MDL is able to obtain the best performance among the four candidate structures given a certain amount of data. Weighted model averaging across all structures based on the normalized MDL scores gives more consistent and robust performance than MDL alone.

Although MDL-Ave yields the best WER in the TIDIGITS experiments, the statistical significance level of MDL-Ave compared to certain structures (e.g. 3-diag) using the matched-pair test [27] is not high (around 0.2-0.3). This is primary because the test set is not very large and the adaptation baseline for the structures is high. In the experiments on the RM database, MDL-Ave shows a statistically significant difference compared the best-performed structure (full
structure) at a significant level of 0.024.

7 Discussion

The tying of the MLLR transformation with competing structures in a regression tree, introduced in this paper, is different from the model selection problems in nested linear regression coefficient selection [15] or the optimal tree cut approaches [18][19]. This is because the tied transformations can utilize data from overlapped Gaussian mixture sets, which are neither nested nor a partition of the Gaussian mixture space. This makes it a more interesting problem. Furthermore, to locate the transformations, the regression tree has to be traversed to get to certain nodes. In this situation, MDL seems to be a superior choice to Akaike information criterion (AIC)[28] or Bayesian information criterion (BIC)[29] because MDL could be interpreted from the coding point of view, and the traverse of the tree to locate the transformations can be taken into account as a part of the model itself. This can not be easily dealt with by AIC or BIC.

The coding of the model parameters in MDL is related to the Fisher information matrix which could be directly employed to calculate the MDL score as in [19]. However, the asymptotic form used in this paper may be a good approximation even without a large amount of data under certain Bayesian assumptions [15] and this form also has its computational advantages.

As we know, in speech recognition, the connection between a good fit of model based on the ML criterion and good performance in the Viterbi decoding is not strong. Moreover, most of the model selection criteria including MDL, AIC and BIC are obtained based on large sample theory. Therefore, they may not select the best model in some cases especially when only a limited amount of data is given.
Compared with MDL alone, the weighted model averaging strategy renders more robust performance in most cases. This is because although MDL can not always choose the best structure, it does give a good “guess” on the goodness-of-fit of the structures. Therefore, a reasonable weight of the structure can produce better results. The tying pattern of the transformation with the regression tree is decided by (a) the structure and (b) the threshold of reliable estimation for the structure, both can be handled by the MDL weighted model averaging. Different structures other than those investigated in this paper are also possible and the weighted model averaging algorithm can be carried out accordingly. The major computational complexity of the algorithm comes from calculation of individual transformations and computation of MDL scores afterwards. This computational complexity grows linearly with the number of competing structures.

Structural MAP and eigenvoice approaches are both effective techniques which have obtained excellent results. The MDL and MDL-Ave algorithms discussed in this paper basically address the sparse data problem within the MLLR framework. In the structural MAP approach, it is difficult to choose the optimal tree structure for adaptation. The eigenvoice approach adapts acoustic models from prior models in the eigen-space which is similar to the MDL-Ave in terms of linear combination. However, eigenvoice is most effective when a limited amount of data is available. When the adaptation data increase, its performance saturates quickly [8]. MDL-Ave does not have this problem. It gives robust performance across various amounts of adaptation data. Despite the difference among the MDL-Ave, structural MAP and eigenvoice, they have similarities from the parameter smoothing perspective. MDL-Ave performs parameter smoothing on predefined structures, structural MAP on prior distributions and eigenvoice on prior
eigen-models.

8 Summary

In this paper, we investigate a robust maximum likelihood linear regression speaker adaptation approach with weighted model averaging across a variety of transformation structures. A general form of the maximum likelihood estimation of the structured transformation is given. The minimum description length (MDL) is adopted to describe the balance between transformation granularity and descriptive ability of the structured transformations tied using a regression tree. Based on the normalized MDL scores, transformations are averaged across all structures. Experimental results show that the proposed approach obtains robust performance with respect to the amount of adaptation data.

9 Acknowledgements

This material is based upon work supported in part by NSF Grant No. 0326214. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. The authors also would like to thank Prof. Yingnian Wu and Prof. Mark Hansen for discussions on model selection.

References

[26] X. Cui and A. Alwan, “Adaptation of children’s speech with limited data based on formant-
like peak alignment,” *Computer Speech and Language, to appear.*

[27] L. Gillick and S. Cox, “Some statistical issues in the comparison of speech recognition

Control,* vol. 19, no. 6, pp. 716–723, 1974.

Figure 1: A comparison of the transformation tying patterns with a regression tree of six base classes using 1-diagonal (grey node), and 3-diagonal (black node) structures.

<table>
<thead>
<tr>
<th>matrix structure</th>
<th>3-diag</th>
<th>7-diag</th>
<th>3-block</th>
<th>full</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of parameters</td>
<td>154</td>
<td>300</td>
<td>546</td>
<td>1560</td>
</tr>
</tbody>
</table>

Table 1: Number of parameters of MLLR transformation with different structures.
<table>
<thead>
<tr>
<th></th>
<th>Number of adaptation digits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>No adaptation</td>
<td>13.0</td>
</tr>
<tr>
<td>3D</td>
<td>2.7</td>
</tr>
<tr>
<td>7D</td>
<td>7.0</td>
</tr>
<tr>
<td>3B</td>
<td>-</td>
</tr>
<tr>
<td>full</td>
<td>-</td>
</tr>
<tr>
<td>MDL</td>
<td>3.0</td>
</tr>
<tr>
<td>MDL-Ave</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Table 2: Word error rate (%) of MLLR with different structured transformations on TIDIGITS database. Acoustic models are trained with male speech and tested on female speech. The performance is the average over the 10 female speakers in the test set. 3D, 7D, 3B and full denote 3-diagonal, 7-diagonal, 3-block and full transformation matrices, respectively.
Figure 2: Flow chart of implementation of weighted model averaging with structured MLLR transformations. The structures are appropriately tied with a regression tree.
Figure 3: Transformation matrices generated based on vocal tract length normalization with scaling factor equal to 1.2 (left) and 0.8 (right). The darker the color, the more significant the element is.
<table>
<thead>
<tr>
<th></th>
<th>Number of adaptation digits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>No adaptation</td>
<td>4.4</td>
</tr>
<tr>
<td>3D</td>
<td>1.7</td>
</tr>
<tr>
<td>7D</td>
<td>3.6</td>
</tr>
<tr>
<td>3B</td>
<td>-</td>
</tr>
<tr>
<td>full</td>
<td>-</td>
</tr>
<tr>
<td>MDL</td>
<td>1.7</td>
</tr>
<tr>
<td>MDL-Ave</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 3: Word error rate (%) of MLLR with different structured transformations on TIDIGITS database. Acoustic models are trained with female speech and tested on male speech. The performance is the average over the 10 male speakers in the test set. 3D, 7D, 3B and full denote 3-diagonal, 7-diagonal, 3-block and full transformation matrices, respectively.
Table 4: Word error rate (%) of MLLR with different structured transformations on TIDIGITS database. Acoustic models are trained and tested on adult speech (both male and female). The performance is the average over the 20 adult speakers in the test set. 3D, 7D, 3B and full denote 3-diagonal, 7-diagonal, 3-block and full transformation matrices, respectively.
<table>
<thead>
<tr>
<th>Number of adaptation digits</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>No adaptation</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>3D</td>
<td>2.4</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>7D</td>
<td>5.0</td>
<td>1.6</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>3B</td>
<td>-</td>
<td>9.3</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>full</td>
<td>-</td>
<td>-</td>
<td>8.2</td>
<td>3.0</td>
<td>1.3</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>MDL</td>
<td>2.4</td>
<td>1.4</td>
<td>1.2</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>MDL-Ave</td>
<td>1.9</td>
<td>1.4</td>
<td>1.1</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 5: Word error rate (%) of MLLR with different structured transformations on TIDIGITS database. Acoustic models are trained on adults and tested on children. The performance is the average over the 10 kid speakers in the test set. 3D, 7D, 3B and full denote 3-diagonal, 7-diagonal, 3-block and full transformation matrices, respectively.
<table>
<thead>
<tr>
<th></th>
<th>Number of adaptation utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>No adaptation</td>
<td>7.5</td>
</tr>
<tr>
<td>3D</td>
<td>5.9</td>
</tr>
<tr>
<td>7D</td>
<td>5.8</td>
</tr>
<tr>
<td>3B</td>
<td>6.7</td>
</tr>
<tr>
<td>full</td>
<td>7.5</td>
</tr>
<tr>
<td>MDL</td>
<td>5.8</td>
</tr>
<tr>
<td>MDL-Ave</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Table 6: Word error rate (%) of MLLR with different structured transformations on RM database.