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ABSTRACT

A noise-robust, signal-to-noise ratio (SNR)-weighted correlogram-

based pitch estimation algorithm (PEA) in which a bank of comb

filters operates in each of the low, mid, and high frequency bands

is proposed. Correlograms are obtained by applying autocorrela-

tions directly on the low-freq filterbank (FBK) output, and the out-

put envelopes of all 3 FBKs. An SNR-weighting scheme is used

for channel selection to yield a summary correlogram for each FBK.

These summary correlograms are averaged to obtain an overall sum-

mary correlogram, which is time-smoothed before peak extraction

is performed. The final pitch contour is obtained via dynamic pro-

gramming. The proposed PEA is evaluated on the Keele corpus with

additive white or babble noises. In comparison with widely-used

PEAs, the proposed PEA has the lowest overall gross pitch error

(GPE), especially in low SNR cases.

Index Terms— Pitch estimation, correlogram, multi-band,

comb filtering, noise-robustness

1. INTRODUCTION

Fundamental frequency (F0) or pitch information of voiced speech

is required for many speech applications. Although F0 estimation is

a well-researched topic, accurate F0 estimation in noise still poses a

challenge. Pitch estimation algorithms (PEAs) can be broadly classi-

fied into three categories: 1) time-domain, 2) frequency-domain, and

3) time-frequency-domain. Time-domain PEAs directly exploit a

signal’s temporal periodicity, which includes zero-crossing rate, av-

erage magnitude difference function (AMDF), and autocorrelation-

based methods [1–3]. Frequency-domain PEAs estimate F0 using

the signal’s short-time spectral harmonicity [4, 5]. Time-frequency

domain PEAs typically separate a signal into various frequency

bands, and then apply time-domain processing in each band. The

auditory-model correlogram-based PEA is a popular time-frequency

domain method inspired by Licklider’s duplex theory of pitch per-

ception [6]. The signal is first decomposed into multiple frequency

channels by an auditory filterbank to model the cochlear frequency

analysis function, for which the gammatone auditory filters [7] are

widely used [8–11]. Autocorrelation is then applied directly on ev-

ery channel’s output [10] or on its envelope. The latter is generally

done on mid and high frequency channels (with center frequencies

> 1 kHz) [8, 9], whose wide bandwidths allow the capturing of

multiple harmonics, resulting in signal envelopes that oscillate at

F0 (beats). Together, these multi-channel autocorrelations form the

correlogram, from which single, or possibly multiple F0 candidates

are derived. Correlogram-based perceptual PEAs can yield esti-

mates close to human’s perceived pitch for signals with a missing
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fundamental, inharmonic complexes and noise tones [12]. Being a

multi-band approach, correlogram-based PEAs have the potential to

be noise-robust, especially in the presence of colored noise.

Signal processing schemes employing comb filters have also

been proposed for F0 estimation, especially in the presence of noise

and harmonic disturbances. A spectral comb analysis technique [5]

involving cross-correlation between the spectrum and spectral comb

function with teeth of decreasing amplitude, and variable teeth inter-

vals, gives more accurate F0 estimates than a cepstrum-based PEA

[13]. An adaptive comb filter was formulated in [14] for pitch es-

timation and harmonic enhancement in additive white noise. In the

presence of overlapping periodic signals, an F0-tuned comb filter has

been successfully applied to notch or enhance one of the sources, be-

fore performing F0 estimation on individual signals [15].

Motivated by the information richness present in the correlo-

gram representation, and the harmonic enhancement/suppression ca-

pability of comb filters, the multi-band comb FBK correlogram-

based PEA is proposed in this paper. Details on the proposed algo-

rithm can be found in Section 2. Section 3 describes the performance

evaluation criteria and setup, while Section 4 presents the results of

the proposed method in comparison to other PEAs. The findings are

summarized in Section 5.

2. PROPOSED METHOD

The block diagram in Fig. 1 summarizes the proposed PEA.
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Fig. 1. Block diagram of proposed pitch estimation algorithm.

Multi-channel outputs are indicated by bold arrows.



2.1. Multi-band Comb Filterbanks

The front-end comprise three FBKs. The low-frequency (freq) comb

FBK covers 0 to 1 kHz, the mid-freq FBK covers 1 to 2 kHz, while

the high-freq FBK covers 2 to 3 kHz. In each FBK, there are multiple

channels of comb filters: one channel for each autocorrelation lag, τ
within a possible F0 range (50-400 Hz). The comb filter in the kth

channel is implemented in the freq (f ) domain using a raised-cosine

function shown in Eq. (1).

combk(f) = 0.5 + 0.5 cos(2πfτk) (1)

where τk = τmax, τmax−1, ..., τmin. τmax = fs/min F0, τmin =
fs/max F0, and fs is the sampling freq. The corresponding comb

filter for capturing noise power in-between harmonics is defined as

noise combk(f) = 1− combk(f). For an F0 search range of 50 -

400 Hz, and fs of 8 kHz, τmin is 20, and τmax is 160, resulting in

a total of K = 141 comb filter channels in each FBK. An example

of the comb filter channel with an F0, comb f0,k = 250 Hz (corre-

sponding to fs=8 kHz

τk=32
) and its noise-capturing filter each FBK, are

illustrated in Fig. 2. The comb filter in each FBK is designed such

that its lower cut-off freq is at the null just prior to the band’s lower

freq limit; while its upper cut-off freq is at the null just after the

band’s upper freq limit. Fig. 3 plots the magnitude spectra of the

low and mid-freq FBKs, post and prior to multi-channel comb fil-

tering of a G.712-filtered [16] voiced speech frame corrupted with

babble noise at 5 dB SNR. Lower spectral energies are denoted by

darker pixels and higher channel indices correspond to comb filters

with higher F0s. Each channel captures a different set of harmonics

that are multiples of its comb f0,k , and suppresses spectral energies

at odd 0.5 multiples of it. For example, the 80th channel in Fig. 3a

(boxed) captures harmonics at 0.2, 0.3, 0.4 and 0.5 kHz, and attenu-

ates in-between interferences. This noise-suppression scheme helps

to generate a more periodic envelope signal when noise straddles the

signal’s harmonics, resulting in a more prominent autocorrelation

peak at the true F0 for particular channels.

2.2. Multi-band SNR-weighted Summary Correlograms

On a 30 ms frame-by-frame basis, SNR for the kth channel in low-

freq FBK, SNRlow(k) is computed using:

SNRlow(k) =
∑

f |X(f) comblow,k(f)|
2

∑
f |X(f) noise comblow,k(f)|2

(2)

where X(f) is an 8192-pt discrete Fourier transform (DFT) co-

efficient of an input frame sampled at 8 kHz. SNRs for mid and

high-freq FBK channels are computed using the same scheme.

The mean SNR of the kth channel is computed over the 3 FBKs,

i.e. SNR(k) =
SNRlow(k)+SNRmid(k)+SNRhigh(k)

3
. Peaks in

SNR(k) with values > 1 are identified, and only comb-filtered

DFTs, X(f) comb[freq band](f) of the corresponding channels in the

3 FBKs are reverted back to their time-domain representations for

further processing. The new indices of these selected channels are

denoted by k′ in subsequent text. The number of selected channels

per FBK is found to be ≈ 30 on average. An energy-normalized

correlogram, Rlow,k′ is obtained by computing the autocorrelation

of selected channels in the low-freq FBK, as shown in Eq. (3).

Rlow,k′(τ ) =
∑N−τ

m=1
x
low,k′ (m)x

low,k′ (m+τ)
∑

N
m=1

x2

low,k′
(m)

(3)

xlow,k′ is the time-domain signal from the k′th channel in low-freq

comb FBK; while N = 240 is the total number of samples in a 30

ms frame. Autocorrelation is also applied to the mean-normalized

envelopes of xlow,k′ , xmid,k′ , and xhigh,k′ . The signal envelope

is extracted by taking the squared magnitude of its analytic signal
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Fig. 2. A comb FBK channel (bold solid line) and its corresponding

noise-capturing filter (thin solid line) with an F0 of 250 Hz: low-freq

FBK channel (top), mid-freq FBK channel (middle), and high-freq

FBK channel (bottom). Note that the comb filters are symmetric

about 0 Hz, but only the positive frequency portion is drawn here.
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Fig. 3. Magnitude spectra of a babble-corrupted voiced speech frame

at 5 dB SNR, after multi-channel comb filtering (top panels), and

prior to filtering (bottom panels) for (a) low-freq and (b) mid-freq

FBKs.
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Fig. 4. Low-freq FBK correlogram and summary correlograms of a

babble-corrupted speech frame at 5 dB SNR with a period of τ = 80.

a) Low-freq FBK correlogram (top) and its summary correlogram

(bottom), and b) summary correlograms for low-freq (top), mid-freq

(middle), and high-freq FBK envelopes (bottom).
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Fig. 5. a) Gammatone FBK correlogram and b) summary correl-

ogram obtained from gammatone FBK (top), and overall summary

correlogram obtained from multi-band comb FBKs (bottom).

(via the Hilbert transform). Each envelope has its mean subtracted

before applying autocorrelation. From these, the low-freq FBK en-

velope correlogram Rev low,k′ , mid-freq FBK envelope correlogram

Rev mid,k′ , and high-freq FBK envelope correlogram Rev high,k′

are obtained. An SNR-weighted summary correlogram, sR∗(τ ) is



then computed by combining the channels in each correlogram using

an SNR-weighting function, wSNR(k
′):

wSNR(k
′) = SNR(k′)−1

∑
k′ [SNR(k′)−1]

(4)

sR∗(τ ) =
∑

k′

R∗,k′(τ )wSNR(k
′) (5)

where ∗ represents “low”, “ev low”, “ev mid”, or “ev high”. Fi-

nally, the overall multi-band summary correlogram, sRall(τ ) is ob-

tained by averaging these 4 sR∗(τ )s. Fig. 4 displays the low-

freq FBK correlogram, and all sR∗(τ )s of a G.712-filtered voiced

speech frame corrupted with additive babble noise at 5 dB SNR. For

comparison, an energy-normalized correlogram obtained using 141

gammatone filters (with center frequencies equally distributed on the

equivalent rectangular bandwidth (ERB) scale from 50 Hz to 4 kHz),

and its summary correlogram sRgammatone for the same speech frame,

is plotted in Fig. 5, together with sRall obtained from averaging the

4 sR∗(τ )s in Fig. 4. The comb FBK-generated correlogram does not

have the usual dendritic structure found in that generated by gamma-

tone filters, because the comb filters used are not narrowband like the

gammatone filters. In Fig. 5, sRall has a more prominent peak at the

true periodicity of τ = 80 than sRgammatone. The peak prominence at τ
= 80 in sRall is mainly contributed by the summary correlograms of

the envelopes. Through this example, the advantages of using comb

FBKs, and including summary correlograms of signal envelopes in

separate freq bands are highlighted.

2.3. Post-processing

A first-order exponential smoothing in Eq. (6) is used to yield a

time-smoothed overall summary correlogram sRsmooth,n, where n
is the frame index.

sRsmooth,n(τ ) = 0.5 sRall,n(τ ) + 0.5 sRsmooth,n−1(τ ) (6)

F0 candidates corresponding to the 10 highest peaks with magni-

tudes >0 in sRsmooth,n are passed into a simple dynamic program-

ming algorithm to obtain the final F0 contour. A node’s local score is

defined by the candidate’s peak magnitude in sRsmooth,n; while the

transition score is defined by:
min(F0prev,F0curr)

max(F0prev ,F0curr)
, where F0prev , and

F0curr are the previous and current nodes’ F0 values, respectively.

3. EXPERIMENTS

3.1. Evaluation Database and Performance Measure

Performance evaluation of the proposed pitch estimator is con-

ducted with adult speech from 5 males and 5 females in the Keele

database [17]. This dataset consists of a phonetically balanced

story: ”The North Wind”. F0s in the reference files, (precalculated

from the larynograph signals recorded simultaneously,) are taken

as the ground truth. To generate noisy speech for assessing noise-

robustness, the original clean speech is first down-sampled to 8 kHz.

Then, white and babble noises from the NOISEX92 corpus [18]

(down-sampled to 8 kHz) are added using the Filtering and Noise-

adding Tool (FaNT) at SNRs from 20 to 0 dB (with options “-d

-m snr 4khz”). A noisy testset with narrowband telephone speech

characteristics is also generated using FaNT by applying the G.712

filter (with “-f g712” and default SNR computation options). The

G.712 filter has a flat bandpass response between approximately

300 to 3400 Hz. Since spectral harmonics below 300 Hz would be

attenuated, the noisy narrowband telephone speech would be a more

challenging corpus than its full-band counterpart.

Gross Pitch Error (GPE) [19] is the measure used for perfor-

mance evaluation. It is defined as the percentage of reference voiced

frames that has an F0 estimation error. An error for frame n occurs

when the F0 estimate, F0est(n), deviates from the reference F0 by

more than 20%.

3.2. PEAs for Performance Comparison

GPEs of 3 other PEAs are also evaluated for benchmarking purposes.

The 3 PEAs include: Get F0 [2] used in Wavesurfer [20], YIN [3],

and Rouat’s auditory model-based PEA [8]. The gammatone FBK

in [8] is implemented using Slaney’s Matlab Auditory Toolbox [21].

To ensure there is an F0 estimate for almost every voiced frame, the

voicing bias parameter in Get F0 is set to 1, while the peak detection

thresholds, S and Spe in Rouat’s PEA are lowered to 0. For all PEAs,

a frame size of 30 ms, and F0 range from 50 to 400 Hz are used. The

results in Section 4 for Get F0 are obtained with its “lag-weight”

parameter set to 0.7 (up from default value of 0.3); while those for

YIN with its lowpass cutoff freq set to 1 kHz. These parameters

yield the lowest GPE (averaged over all test data) for their PEAs.

To analyze the factors contributing to the performance of the

proposed PEA, variants of our PEA are also evaluated. The variants

are: 1) MB Rect - a single-channel rectangular filter with a band-

width of 1 kHz is used in each freq band, instead of a comb FBK; 2)

NoEvLow - the summary correlogram of low-freq FBK envelopes,

sRev low is omitted in the calculation of sRall; and 3) NoSNRwt

- each summary correlogram sR∗(τ ), is obtained by averaging au-

tocorrelations from all 141 channels in each FBK (i.e. no SNR-

weighted channel-selection). These factors are selected because the

usage of comb FBKs, low-freq FBK envelopes, and SNR-weighting

are the main design novelties of this PEA.

4. RESULTS AND DISCUSSION

Table 1 tabulates the PEAs’ GPEs, averaged over all speakers. The

average GPEs of G.712 filtered data are higher than those of the

full-band data for all cases. In both clean and noisy conditions, the

proposed PEA or its variants has the lowest GPE out of the PEAs

evaluated. NoEvLow has higher GPEs than the proposed PEA for

all cases, which is more significant for G.712-filtered than full-band

data. This is because the inclusion of sRev low (summary correl-

ogram of low-freq FBK envelopes) in the proposed PEA helps in

reducing F0 doubling and tripling errors (which are more prevalent

in the G.712 data,) caused by missing 1st and/or 2nd harmonics

in low-pitched signals after the G.712 filtering. We also observed

that MB Rect and NoSNRwt have lower GPEs compared to the pro-

posed algorithm for high SNR cases. MB Rect performs better at

high SNRs than its comb FBK variants due to the finite freq reso-

lution of comb f0,k , which results in a higher degree of attenuation

of the target speech (that has an F0 that differ from f0,comb in the

FBK) than noise when SNRs are high. The proposed PEA performs

worse than NoSNRwt at high SNRs because it has more F0 dou-

bling and tripling errors for low-pitched speakers. However, the pro-

posed PEA is computationally more efficient, and more noise-robust

than NoSNRwt, with an improvement of >3% for white noise cor-

rupted G.712-filtered data at 0 dB. In the presence of a very dominant

2nd/3nd harmonic component (more prevalent for low F0 cases),

channel selection with the proposed SNR-weighted scheme is heav-

ily biased towards channels in the low-freq FBK that capture this

component, resulting in over-estimations of F0. Hence, the proposed

PEA is likely to suffer in the presence of a strong tonal interference.

Similarly, for G.712-filtered data, Get F0 has higher GPEs under

clean condition than at 20 and (sometimes) 10 dB. The increment

of the lag-weight parameter which biases Get F0 towards higher F0



estimates, coupled with dominant 2nd/3rd harmonic in low-pitched

signals, led to a larger number of F0 doubling/tripling errors for low-

pitched speakers. We also found that using time-smoothed overall

summary correlogram sRsmooth, improves GPEs by ≈ 2% on the

average for 0 dB cases.

Table 1. Average GPEs (%) of various PEAs using the downsampled

(8 kHz) Keele corpus corrupted with additive white (WN) and babble

(BN) noises. The lowest GPE in each column is bold-faced.

SNR (dB) Clean 20 10 5 0

8 kHz Keele with WN added

Get F0 [20] 2.58 2.63 3.56 5.48 12.06

YIN [3] 2.68 2.77 3.45 5.60 11.79

Rouat et al. [8] 2.56 3.33 6.46 11.20 20.38

MB Rect 2.34 2.65 3.25 5.23 10.93

NoEvLow 2.88 2.66 3.07 3.77 7.02

NoSNRwt 2.24 2.26 2.81 3.97 7.22

Proposed 2.65 2.62 2.73 3.60 6.28

8 kHz Keele with BN added

Get F0 2.90 6.90 12.81 26.28

YIN 3.14 8.69 18.58 36.74

Rouat et al. 3.69 9.64 18.19 32.83

MB Rect 2.53 5.37 11.00 24.26

NoEvLow 3.16 5.48 10.76 23.38

NoSNRwt 2.36 4.83 9.73 22.23

Proposed 2.63 4.81 9.42 21.87

G.712-filtered Keele with WN added

Get F0 6.92 6.45 6.33 8.44 14.27

YIN 6.95 7.3 9.15 12.85 21.75

Rouat et al. 6.25 8.38 14.46 21.53 32.03

MB Rect 4.76 5.04 6.18 9.12 16.29

NoEvLow 7.61 7.17 7.82 9.47 14.20

NoSNRwt 4.74 5.14 5.47 7.55 12.90

Proposed 5.88 5.40 4.97 6.10 9.22

G.712-filtered Keele with BN added

Get F0 6.59 10.97 17.1 28.65

YIN 8.37 16.23 27.55 44.49

Rouat et al. 8.97 18.24 28.86 42.82

MB Rect 5.14 9.36 16.31 29.79

NoEvLow 7.61 10.76 15.68 27.98

NoSNRwt 5.35 8.42 14.89 26.23

Proposed 5.90 8.26 12.75 24.97

5. CONCLUSION

An SNR-weighted correlogram-based PEA using multi-band comb

FBKs is proposed. The proposed PEA is effective in enhancing the

accuracy of F0 estimation in the presence of noise. The inclusion

of low-freq FBK envelope information improves performance when

dealing with signals with missing lower harmonics (G.712), while

the usage of comb FBKs, SNR-weighted and time-smoothed sum-

mary correlogram is beneficial at low SNRs. Together, these novel

processing techniques enhance noise-robustness.
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[20] K. Sjölander and J. Beskow, “WaveSurfer - An Open Source

Speech Tool,” in Proc. of Int. Conf. on Spoken Lang. Proc.,

2000, pp. 464–467.

[21] M. Slaney, “Auditory toolbox, version 2,” Tech. Rep. 1998-

101, Interval Research Corporation, 1998.


