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ABSTRACT 
 
This paper proposes a new statistical model-based likelihood 
ratio test (LRT) VAD to obtain reliable speech / non-speech 
decisions. In the proposed method, the likelihood ratio (LR) 
is calculated differently for voiced frames, as opposed to 
unvoiced frames: only DFT bins containing harmonic 
spectral peaks are selected for LR computation. To evaluate 
the new VAD’s effectiveness in improving the noise-
robustness of ASR, its decisions are applied to pre-
processing techniques such as non-linear spectral 
subtraction, minimum mean square error short-time spectral 
amplitude estimator, and frame dropping. From the ASR 
experiments conducted on the Aurora2 database, the 
proposed harmonic frequency-based LRTs give better 
results than conventional LRT-based VADs and the standard 
G.729B and ETSI AMR VADs. 
 

Index Terms— Voice activity detection, statistical 
model, harmonic frequency, robust speech recognition 

 
1. INTRODUCTION 

 

The performance of an automatic speech recognition (ASR) 
system degrades with mismatched training and test data. To 
improve the noise-robustness of an ASR system trained 
using clean data, techniques such as speech enhancement [1-
4], noise-robust feature extraction feature enhancement 
[5][6], and model-based noise adaptation [7] can be applied. 
Most of these techniques require a reliable voice activity 
detector (VAD) to identify non-speech segments for noise 
estimation. ASR performance can also improve with a good 
VAD alone by dropping non-speech segments.  

Spectral harmonicity has been utilized in noise-robust 
applications operating in the frequency domain because 
harmonic peaks are usually preserved in noisy speech. Non-
linear spectral subtraction (NSS) in [3] defined a smaller 
subtraction factor at harmonic peaks which resulted in 
higher ASR accuracy at low SNRs. In [4], regeneration of 
harmonic structures improved the quality of denoised 
speech. A harmonic model is used in a generalized LRT for 
robust voiced/unvoiced detection in [8], and a periodic-to-

aperiodic component ratio used for speech/non-speech 
detection in [9] showed promising results with aperiodic 
noise interferences.  

One popular VAD is the statistical model-based LRT 
VAD first proposed in [10]. Variants of this noise-robust 
VAD to increase weak speech onset and offset detection 
have been proposed. For example, [11] used a smoothed LR, 
while [12] used multiple observations of the short-time DFT 
feature vector to replace the hangover scheme in [10]. For 
these VADs, the high LRs of strong speech frames aid the 
detection of weak neighboring speech frames. However, 
under low signal-to-noise ratio (SNR) conditions, the LRs of 
the stronger speech frames are not high enough to boost the 
detection of weaker speech frames. This paper presents a 
new way for calculating LR to tackle the above issue in 
LRT-based VADs and is organized as follows. Section 2 
reviews the technical background of LRT-based VADs 
developed in [10] and [12], while Section 3 describes the 
proposed method built on these VADs. The proposed VAD 
is then compared with the referenced VADs [10][12] and 
standardized VADs: ITU’s G.729B [13] and ETSI AMR 
VAD options 1 and 2 [14], in regards to speech detection 
accuracy and their influence on ASR performance in 
Sections 4 and 5, respectively. 

 
2. LRT-BASED VAD 

 
For existing LRT-based VADs [10], the decision rule is 
formulated by taking the geometric mean of the LRs of all K 
DFT bins to get the current LR, Λ(t) of frame t. This is 
equivalent to taking the arithmetic mean of their logarithmic 
versions and comparing it with a threshold η to decide 
whether speech is present at frame t. 
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where Λk(t) is the LR of the kth DFT bin. H0 and H1 denote 
speech absence and speech presence, respectively. Since 
speech spectrum is symmetric, K = NDFT/2+1 where NDFT 
is the number of DFT points taken. 

To increase detection of weak speech tails, a hidden 
Markov model (HMM)-based hangover scheme is 



implemented in [10], while a multiple observation likelihood 
ratio test (MOLRT) VAD is proposed in [12]. The MOLRT 
decision rule is established by summing consecutive log LRs 
from 2M+1 frames to make the decision for frame n. The 
use of multiple observations eliminates the need for the 
hangover scheme and reduces the variance of the LRT, 
giving rise to a more noise-robust VAD with threshold η’. 
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3. LRT-BASED VAD USING HARMONIC BINS 

When speech is present, it does not always manifest energy 
in all DFT bins. This is especially true for high-pitched 
voiced utterance, where most of the energy is located in the 
harmonic frequency bins. Under low SNR conditions, most 
of the speech spectrum is masked by noise, thus the LR Λ(t) 
tends to be low after taking the geometric mean of Λk(t)’s of 
all DFT bins. This increases the probability of missed 
speech detections. To boost the LR score in such situations, 
a new method for evaluating the LR for voiced frames is 
proposed: select only the DFT bins where the harmonic 
peaks reside for LR computation, since harmonic spectral 
peaks are stronger and more resilient to noise interferences 
than other speech spectral components. This LR formulation 
can be applied to both LRT and MOLRT-based VADs. For 
the method to work well, the frame size has to be large 
enough to reveal harmonic structures in the DFT spectrum 
for low pitch utterances. Since an adult’s pitch frequency 
commonly ranges from 50 to 400 Hz (corresponding to pitch 
period from 2.5 to 20 ms), a frame size of 50 ms is selected.  
To identify voiced frames and pitch frequencies, the signal 
x(n) is down-sampled to a frequency FD of 2 kHz before the 
normalized autocorrelation function R(m) is applied. 
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where ds(n) is the down-sampled version of x(n), m is the 
autocorrelation lag and N is the number of samples in ds(n). 
If the magnitude of the maximum peak of R(m) exceeds 0.3 
(empirically chosen), and its corresponding autocorrelation 
lag mmax falls within the designated pitch range, the frame is 
classified as voiced, else it is classified as unvoiced. For 
every voiced frame, the harmonic bin separation (rounded 
off to the nearest integer) is calculated as: 
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where Fs is the sampling frequency of the signal x(n). Vector 
Hidx stores the DFT bin indices of the harmonic peaks which 
are obtained using the following iterations 

Initialization: 
p = 0,  Next harmonic bin index: 
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( )next idx seph p h= +H          (7) 

p = p+1    (8) 

where Xk(t) is the kth DFT coefficient for noisy speech. 
Finally, the log LR for voiced frame is computed as follows 
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As for unvoiced frames, the log LR Λuv(t) is still 
calculated using (1), with all DFT bins. This is done instead 
of picking only the stronger energy bins or higher frequency 
bands because the energy of unvoiced speech tends to be 
weak and might be dominated by noise interferences. Also, 
unvoiced consonants such as plosives usually have energy 
distributed across all frequency bins.  

In this paper, the noise variance λN,k(t) of Xk(t) is 
estimated using a secondary energy-based VAD. The noise 
variances are updated during the first 10 frames or when the 
frame energy E(t) falls below the adaptive energy threshold 
Ethres(t). Ethres(t) is computed from the mean μ(EEEEbuf) and 
standard deviation σ(EEEEbuf) of the values stored in the circular 
buffer Ebuf of dimension 10. The frame energies are stored in 
the buffer whenever the noise variances are updated. 

Noise variances update:  
2

, ,
ˆ ˆ( ) 0.9 ( 1) 0.1 | ( ) | , 0,1, ..., 1N k N k kt t X t k Kλ λ= − + = −

 
(10)

 
Initial noise variances: 
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Energy threshold update:  
( ) ( ) ( )thres buf bufE t µ σ= +E E        (12) 

 
4. VAD RESULTS 

 
Reference speech and non-speech segments for the Aurora2 
database’s Test Set A are obtained through manual labeling 
the clean version every 10 ms. The receiver operating 
characteristic (ROC) curves are used to evaluate the 
accuracy of the proposed VAD. In Section 5, non-speech 
frames are used for noise estimation in speech enhancement 
algorithms. Hence, the probability of detection, Pd is defined 
as the percentage of correctly detected reference non-speech 
frames, while the probability of false alarm, Pf is the 
percentage of reference speech frames wrongly identified as 
non-speech. Fig. 1 shows the ROC curves of LRT, MOLRT 
and the proposed improved versions of these LRT-based 
VADs, abbreviated as Hmfreq-LRT and Hmfreq-MOLRT 
respectively for subway and babble noise-corrupted data. M 
= 8 is used in MOLRT VADs because it is reported to yield 
the best performance [12]. The receiver operating points for 
the standardized VADs are also plotted. 

At SNR of 20 dB, it is observed that the Pd of MOLRT-
based VADs is higher than single observation LRTs at Pf 
lower than 20 %, while slightly poorer Pd is observed at Pf 
higher than 20 %. It is also observed that the ROC curves of 
the Hmfreq-based VADs are very close to their generic LRT 



versions. This result is expected because the LR scores of 
vowel frames are already very high at SNR of 20 dB. Thus, 
boosting these scores further through utilizing harmonic 
frequency bins does not have much effect on the VADs’ 
accuracy. In contrast, at a low SNR of 0 dB, the Hmfreq 
versions outperform their generic LRT counterparts. There 
is a larger increase in Pd when Hmfreq-MOLRT is compared 
to MOLRT than when Hmfreq-LRT is compared to LRT. 
This is because boosted LR scores for weak vowel frames 
have a greater influence on the scores of surrounding speech 
frames in the multiple observations scheme than the single 
observation hangover scheme. The improvements in Pd are 
lower for the babble noise-corrupted data as some harmonic 
spectral structures are present in babble. Hence, there is a 
higher tendency of misclassifying these harmonic noise 
interferences as speech. In general, MOLRT-based VADs 
have better non-speech detection performance than the 
standardized VADs as well, with the exception of AMR2 at 
SNR of 0 dB. However, AMR2’s receiver operating point is 
located at the lower Pd and Pf region, which may result in 
poor noise estimation for non-stationary noise. 

 
5. ASR EXPERIMENTS 

 
The Aurora experimental framework [15] is used to conduct 
the ASR experiments. A HMM-based recognizer is 
implemented using HTK version 3.4.1. HMMs are trained 
using the Aurora2 clean training set and tested on Test Set 
A. Two well-established speech enhancement algorithms are 
used to evaluate the effectiveness of the proposed Hmfreq 

VADs in improving ASR accuracy: Berouti et al’s NSS [1] 
and Ephraim and Malah’s minimum mean square error 
short-time spectral amplitude (STSA) estimator [2]. In NSS, 
the spectral floor parameter β is set at 0.02 and the 
subtraction factor α is linearly dependent on SNR as 
calculated in (4) of [1]. The noise estimation procedure used 
in the speech enhancement algorithms is similar to that 
described in Section 3. The noise power spectrum is 
initialized with the first frame’s data (11) and then 
recursively updated (10) during non-speech frames 
determined by the VAD. The frame size and shift used for 
speech enhancement are 25 and 10 ms respectively, same as 
those used for extracting the 39-element MFCC_D_A_E 
feature vector [15] from the post-enhanced signal. Besides 
speech enhancement, frame dropping (FD) is another pre-
processing technique selected to evaluate the VAD’s 
performance. In this paper, FD is implemented by replacing 
the time samples of non-speech frames with those from a 
typical silence waveform.  When combined with speech 
enhancement, FD is performed on the post-enhanced speech 
signal. For simplicity, a constant decision rule threshold is 
applied in LRT-based VADs. The threshold values for LRT, 
Hmfreq-LRT, MOLRT and Hmfreq-MOLRT are set to 2, 4, 
6 and 20, respectively. These values give the best overall 
ASR results for the pre-processing schemes investigated. 

ASR word accuracies, averaged across all the 4 noise 
types in Test Set A, for the VADs and pre-processing 
techniques investigated, are presented in Tables 1A – 1C. 
Tables 1A, 1B and 1C contain the averaged results for 20, 0 
and 0-20 dB SNRs respectively. From Table 1C, the overall 
ASR results obtained with Hmfreq-based VADs outperform 
the standardized and referenced LRT-based VADs for all the 
pre-processing techniques investigated. Without FD, the 
highest averaged word accuracy is achieved by the Hmfreq-
LRT-based VAD. On the other hand, Hmfreq-MOLRT-
based VAD gives the best ASR results when FD is involved. 
The overall recognition accuracy of 74.21 % obtained with 
Hmfreq-MOLRT-based VAD is closest to the 75.35 % 
obtained using manually labeled VAD decisions.  

A possible explanation for higher word accuracies 
achieved when NSS or STSA is operated with Hmfreq-LRT-
based VAD than with Hmfreq-MOLRT-based VAD or 
manually labeled decisions is single observation LRT-based 
VADs’ decisions result in better noise reductions at in-
between-words regions. This improves the word recognition 
performance in cases where the words are not bounded by 
consonants. Even in cases where consonants are missed by 
Hmfreq-LRT-based VAD, the vowel itself is sometimes 
sufficient for correct word recognition, since this is a pure 
digit ASR task. Analysis also reveals that the Hmfreq-
MOLRT-based VAD and manual-labeled decisions lead to 
more substitution errors than the Hmfreq-LRT-based VAD 
when NSS or STSA is performed. This could be caused by 
poorly suppressed noise that alters the spectral 
characteristics of weak speech regions detected by 

Fig. 1. Comparison of ROC curves for LRT-based and 
Standardized VADs for Subway and Babble Noise-Corrupted 
Data in Test Set A at SNR of (a) 20 dB, (b) 0 dB 

 



 
Hmfreq-MOLRT-based VAD and manual-labeled decisions, 
resulting in more misclassifications.  

When FD is combined with speech enhancement, there is 
a much sharper decrease in the average word accuracies for 
systems with single observation LRT-based VADs than 
those with MOLRT-based VADs. The contributing factor is 
the increasing number of deletion errors with decreasing 
SNRs for these VADs. This is evident from the larger 
decrease in ASR accuracies before and after FD is applied in 
Table 1B when compared to Table 1A. It is also observable 
from Tables 1A and 1B that the proposed Hmfreq scheme, 
when compared to the LRT and MOLRT-based VADs it is 
built upon, shows larger improvements in ASR accuracies at 

0 dB than 20 dB. This corresponds to the VADs’ 
performances shown via the ROC curves in Section 4. 
 

6. CONCLUSION 
 
This paper presents a novel way to improve the noise-
robustness of existing LRT-based VADs by selecting the 
harmonic DFT components for computing the LR scores of 
voiced frames. ROC curves show an increase in correct 
VAD decisions for this implementation. Higher ASR 
accuracies are obtained when Hmfreq-based VADs’ 
decisions are applied to well-known pre-processing 
techniques compared to conventional LRT-based VADs as 
well standardized VADs, especially in low SNR conditions. 
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Table 1A. Averaged Word Accuracy (%) for Test Set A at 20 dB. 
NSS: Non-linear Spectral Subtraction, STSA: Short-Time 

Spectral Amplitude Estimator, FD: Frame-Dropping 

VADs NSS STSA FD NSS+FD STSA+FD Overall 
G729 95.77 96.00 92.98 94.40 94.77 94.78 

AMR1 95.72 95.63 92.76 93.80 93.58 94.30 
AMR2 95.22 95.77 94.39 94.67 95.41 95.09 
LRT 95.87 96.12 93.21 94.49 95.02 94.94 

Hmfreq-
LRT 

96.05 96.08 93.25 94.38 94.82 94.92 

MOLRT 95.72 95.86 96.24 95.75 96.01 95.92 
Hmfreq-
MOLRT 

95.98 95.95 96.59 96.02 95.98 96.10 

Manual 
labeling 

96.28 96.26 97.45 96.55 96.58 96.62 

Table 1B. Averaged Word Accuracy (%) for Test Set A at 0 dB 

VADs NSS STSA FD NSS+FD STSA+FD Overall 
G729 27.98 26.11 16.71 25.82 25.13 24.35 

AMR1 25.59 23.94 16.72 25.74 23.92 23.18 
AMR2 36.28 37.20 18.59 32.79 34.78 31.93 
LRT 38.13 36.97 17.33 26.08 31.25 29.95 

Hmfreq-
LRT 

41.37 39.62 18.76 27.27 31.96 31.77 

MOLRT 38.29 38.45 20.56 33.66 37.19 33.63 
Hmfreq-
MOLRT 

40.76 39.95 23.01 36.51 38.81 35.81 

Manual 
labeling 

40.18 40.00 21.01 43.10 44.24 37.71 

Table 1C. Averaged Word Accuracy (%) for Test Set A from 0 to 
20 dB 

VADs NSS STSA FD NSS+FD STSA+FD Overall 
G729 70.66 70.13 59.95 67.67 68.09 67.30 

AMR1 68.60 68.24 60.30 67.52 67.24 66.38 
AMR2 73.22 74.08 61.96 71.18 72.50 71.19 
LRT 75.88 75.24 59.56 67.92 70.39 69.80 

Hmfreq-
LRT 

77.41 76.26 60.22 68.29 70.46 70.53 

MOLRT 75.39 75.34 65.77 73.55 75.11 73.03 
Hmfreq-
MOLRT 

76.76 76.00 67.64 74.94 75.72 74.21 

Manual 
labeling 

76.79 75.97 67.79 78.17 78.04 75.35 

 


