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ABSTRACT

This paper proposes a new statistical model-bakelhbod
ratio test (LRT) VAD to obtain reliable speech hrspeech
decisions. In the proposed method, the likelihcatibr(LR)
is calculated differently for voiced frames, as ogpgd to

aperiodic component ratio used for speech/non-$peec
detection in [9] showed promising results with apdic
noise interferences.

One popular VAD is the statistical model-based LRT
VAD first proposed in [10]. Variants of this noisebust
VAD to increase weak speech onset and offset detect

unvoiced frames: only DFT bins containing harmonichave been proposed. For example, [11] used a sewafR,
spectral peaks are selected for LR computationeviaduate  while [12] used multiple observations of the shorte DFT
the new VAD's effectiveness in improving the noise-feature vector to replace the hangover schemeGh Por
robustness of ASR, its decisions are applied to- prehese VADs, the high LRs of strong speech framdstlze
processing techniqgues such as non-linear spectrgketection of weak neighboring speech frames. Howeve
subtraction, minimum mean square error short-tipecsal  under low signal-to-noise ratio (SNR) conditiorie t Rs of
amplitude estimator, and frame dropping. From tH8RA the stronger speech frames are not high enougbdstlhe
experiments conducted on the Aurora2 database, thietection of weaker speech frames. This paper piese
proposed harmonic frequency-based LRTs give bettatew way for calculating LR to tackle the above éssno

results than conventional LRT-based VADs and thadsrd
G.729B and ETSI AMR VADs.

Index Terms— Voice activity detection, statistical
model, harmonic frequency, robust speech recognitio

1. INTRODUCTION

The performance of an automatic speech recogn{A&R)
system degrades with mismatched training and st do
improve the noise-robustness of an ASR system edain
using clean data, techniques such as speech emhamcf -
4], noise-robust feature extraction feature enhaecd
[5][6], and model-based noise adaptation [7] camjpglied.
Most of these techniques require a reliable voictvity
detector (VAD) to identify non-speech segments riorse
estimation. ASR performance can also improve witioad
VAD alone by dropping non-speech segments.

Spectral harmonicity has been utilized in noisedstb
applications operating in the frequency domain bsea
harmonic peaks are usually preserved in noisy $peééan-
linear spectral subtraction (NSS) in [3] definedsraaller
subtraction factor at harmonic peaks which resulied
higher ASR accuracy at low SNRs. In [4], regeneraif

LRT-based VADs and is organized as follows. Secton
reviews the technical background of LRT-based VADs
developed in [10] and [12], while Section 3 desesilihe
proposed method built on these VADs. The proposAd V

is then compared with the referenced VADs [10][&2d
standardized VADs: ITU’'s G.729B [13] and ETSI AMR
VAD options 1 and 2 [14], in regards to speech claia
accuracy and their influence on ASR performance in
Sections 4 and 5, respectively.

2.LRT-BASED VAD

For existing LRT-based VADs [10], the decision rue
formulated by taking the geometric mean of the bRall K
DFT bins to get the current LR\(t) of framet. This is
equivalent to taking the arithmetic mean of thegdrithmic
versions and comparing it with a threshojdto decide
whether speech is present at frame
1 & H,
logA(t) == logA, () =7 1)
Ki= Hg
whereA(t) is the LR of thekth DFT bin. H, and H denote
speech absence and speech presence, respectivatg.
speech spectrum is symmetiic= NDFT/2+1 where NDFT

harmonic structures improved the quality of demmise is the number of DFT points taken.

speech. A harmonic model is used in a generalized for
robust voiced/unvoiced detection in [8], and a qdid-to-

To increase detection of weak speech tails, a hidde
Markov model (HMM)-based hangover scheme is



implemented in [10], while a multiple observatidgkelihood
ratio test (MOLRT) VAD is proposed in [12]. The MBI
decision rule is established by summing consecltige Rs
from 2M+1 frames to make the decision for frameThe
use of multiple observations eliminates the need tfie

hangover scheme and reduces the variance of the LRT

giving rise to a more noise-robust VAD with threlshg.

n+M

)
L(n)= > logA(t) = 7"

t=n-M Ho

()

3. LRT-BASED VAD USING HARMONIC BINS

When speech is present, it does not always marefestgy
in all DFT bins. This is especially true for highghed
voiced utterance, where most of the energy is émtat the
harmonic frequency bins. Under low SNR conditiomgst
of the speech spectrum is masked by noise, thusRh&t)
tends to be low after taking the geometric mean(j’s of
all DFT bins. This increases the probability of seid
speech detections. To boost the LR score in sughtins,
a new method for evaluating the LR for voiced franie

hnext =H idx( p) + hsep (7)
p=p+l )
where X(t) is the kth DFT coefficient for noisy speech.
Finally, the log LR for voiced frame is computedf@léows
L H
Iog/\v(t):EZIog/\H‘dx(n) t)=n )
p n=0 Ho

As for unvoiced frames, the log LRw(t) is still
calculated using (1), with all DFT bins. This isngoinstead
of picking only the stronger energy bins or higfrequency
bands because the energy of unvoiced speech tenbls t
weak and might be dominated by noise interferenaésn,
unvoiced consonants such as plosives usually hagegge
distributed across all frequency bins.

In this paper, the noise varianch (t) of X(t) is
estimated using a secondary energy-based VAD. bisen
variances are updated during the first 10 frameshmn the
frame energyE(t) falls below the adaptive energy threshold
Enredt). Etnredt) is computed from the mean(Esw) and
standard deviatios(Es./) of the values stored in the circular
buffer E,; of dimension 10. The frame energies are stored in

proposed: select only the DFT bins where the haitnon ihe pyffer whenever the noise variances are updated

peaks reside for LR computation, since harmonictsake
peaks are stronger and more resilient to noisef@arances
than other speech spectral components. This LRuUiation

Noise variances update:

can be applied to both LRT and MOLRT-based VADS. Fo nitial noise variances:

the method to work well, the frame size has to &gd

enough to reveal harmonic structures in the DFTCtspm

for low pitch utterances. Since an adult’s pitchgfrency
commonly ranges from 50 to 400 Hz (correspondingitich

period from 2.5 to 20 ms), a frame size of 50 neeigcted.
To identify voiced frames and pitch frequencieg #ignal
x(n) is down-sampled to a frequenky of 2 kHz before the
normalized autocorrelation functid(m)is applied.

R(m)z[wlds(r) a( m}/[z ¢ n} (3)

2
where dy(n) is the down-sampled version &tn), m is the
autocorrelation lag anM is the number of samples dyn).

If the magnitude of the maximum peakR®fm)exceeds 0.3
(empirically chosen), and its corresponding autmalation
lag myax falls within the designated pitch range, the frame
classified as voiced, else it is classified as ioed For
every voiced frame, the harmonic bin separatiomr(ded
off to the nearest integer) is calculated as:

h d NDFT
= roun —_—
* mmax x Fs / FD

whereFs is the sampling frequency of the sigrét). Vector
Higx Stores the DFT bin indices of the harmonic peahishv
are obtained using the following iterations

(4)

Initialization:
p =0, Nextharmonic binindex; = Peep (5)
Iterate (6-8) whileh,ey< K,
H (p)= agmax (X () £) (6)

-1<ks<h

next”+= it

next

Ay =094, -1+ 01X, ()T k= 0,1,.K-  (10)
A @=1X,0F . k=01..K- (11)

Energy threshold update:
Ethres(t) = ,U(E buf) + U(E buf) (12)

4. VAD RESULTS

Reference speech and non-speech segments for tbeaBu
database’s Test Set A are obtained through maabalihg
the clean version every 10 ms. The receiver opweyati
characteristic (ROC) curves are used to evaluate th
accuracy of the proposed VAD. In Section 5, norespe
frames are used for noise estimation in speechneehaent
algorithms. Hence, the probability of detecti®y,is defined
as the percentage of correctly detected refereanespeech
frames, while the probability of false alarr®; is the
percentage of reference speech frames wronglyifisehais
non-speech. Fig. 1 shows the ROC curves of LRT, RDL
and the proposed improved versions of these LR&as
VADs, abbreviated as Hmfreq-LRT and Hmfreg-MOLRT
respectively for subway and babble noise-corruptaa. M

= 8 is used in MOLRT VADs because it is reporteditid
the best performance [12]. The receiver operatiigtp for
the standardized VADs are also plotted.

At SNR of 20 dB, it is observed that tRg of MOLRT-
based VADs is higher than single observation LRT &;a
lower than 20 %, while slightly poorét is observed al;
higher than 20 %. It is also observed that the RO®es of
the Hmfreg-based VADs are very close to their gereRT



Noise:Sub dB VADs in improving ASR accuracy: Berouti et al's N§§
100

100 w’T and Ephraim and Malah’s minimum mean square error
80 |+ E: = LF'“ short-time spectral amplitude (STSA) estimator [A]NSS,
_ ! ! —a Hmfreq-LRT the spectral floor parametef is set at 0.02 and the
& 60 : —=— MOLRT subtraction factora is linearly dependent on SNR as
a” 40 N —¢= Hmfreq-MOLRT calculated in (4) of [1]. The noise estimation @dare used
. : * 6729 in the speech enhancement algorithms is similathtd
20 'r' 1 ::2; described in Section 3. The noise power spectrum is
o8 : . et . . o] initialized with the first frame's data (11) and eth
0 20 40 607100 0 20 40 60 100 recursively updated (10) during non-speech frames
Py (%) (a) Py (%) determined by the VAD. The frame size and shiftdufse
Hoise:Subway, SNR:OdB  Noise:Babble, SHR:0dB speech enhancement are 25 and 10 ms respectiagig, &
100 — = g 100 ——— those used for extracting the 39-element MFCC D _A E
gol---- R R < S feature vector [15] from the post-enhanced sigBakides
_ ; i speech enhancement, frame dropping (FD) is angittesr
< 60 60 - : :;’;T:;"LRT processing technique selected to evaluate the VAD's
= a}- deeedetid 4o .| ummeqmoLrr|  Performance. In this paper, FD is implemented Ipjaging
oo P % g7z the time samples of non-speech frames with those fa
20 g oo 204 ] + AMR1 typical silence waveform. When combined with speec
. S S ok * aMR2 enhancement, FD is performed on the post-enhanuezth
0 20 40 60 80 100 0 20 40 &0 80 100 signal. For simplicity, a constant decision ruleeghold is
Pe () (k) Py () applied in LRT-based VADs. The threshold valueslLfaiT,

Fig. 1. Comparison of ROC curves for LRT-based andHmfreq-LRT, MOLRT and Hmfreq-MOLRT are set to 2, 4,
Standardized VADs for Subway and Babble Noise-Qued g and 20, respectively. These values give the bestall

Data in Test Set A at SNR of (a) 20 dB, (b) 0 dB ASR results for the pre-processing schemes inastig

versions. This result is expected because the IdRescof ASR word accuracies, averaged across all the 4enois
vowel frames are already very high at SNR of 20 TBus, types in Test Set A, for the VADs and pre-procegsin
boosting these scores further through utilizingntemic ~ techniques investigated, are presented in Tables- AC.
frequency bins does not have much effect on the ¥AD Tables 1A, 1B and 1C contain the averaged reswit2d, O
accuracy. In contrast, at a low SNR of 0 dB, theftdn ~and 0-20 dB SNRs respectively. From Table 1C, trexall
versions outperform their generic LRT counterpafisere ASR results obtained with Hmfreg-based VADs outperf

is a |arger increase Pu when Hmfreq-MOLRT is Compared the standardized and referenced LRT-based VADalfthe

to MOLRT than when Hmfreq-LRT is compared to LRT.Pre-processing techniques investigated. Without iz
This is because boosted LR scores for weak vovaehds highest averaged word accuracy is achieved by théred-
have a greater influence on the scores of surrogrsfieech LRT-based VAD. On the other hand, Hmfreq-MOLRT-
frames in the multiple observations scheme thansihgle ~based VAD gives the best ASR results when FD islired.
observation hangover scheme. The improvement iare ~ The overall recognition accuracy of 74.21 % obtdiméth
lower for the babble noise-corrupted data as soamednic ~ Hmfreq-MOLRT-based VAD is closest to the 75.35 %
spectral structures are present in babble. Hehese tis a  obtained using manually labeled VAD decisions.

higher tendency of misclassifying these harmonigseo A possible explanation for higher word accuracies
interferences as speech. In general, MOLRT-base®3/A achieved when NSS or STSA is operated with HmfrRq-L
have better non-speech detection performance than tbased VAD than with Hmfreq-MOLRT-based VAD or
standardized VADs as well, with the exception of RRlat manually labeled decisions is single observatiof{fased
SNR of 0 dB. However, AMR2’s receiver operatingmas YADS' decisions result in better noise reductiortsira
located at the lowePy and P; region, which may result in between-words regions. This improves the word reitiog

poor noise estimation for non-stationary noise. performance in cases where the words are not bdubye
consonants. Even in cases where consonants aredniiys
5.ASR EXPERIMENTS Hmfreq-LRT-based VAD, the vowel itself is sometimes

sufficient for correct word recognition, since thésa pure
The Aurora experimental framework [15] is useddoduct  digit ASR task. Analysis also reveals that the Hmiér
the ASR experiments. A HMM-based recognizer isSMOLRT-based VAD and manual-labeled decisions lead t
implemented using HTK version 3.4.1. HMMs are tegin more substitution errors than the Hmfreq-LRT-bas&d
using the Aurora2 clean training set and tested@st Set when NSS or STSA is performed. This could be calsed
A. Two well-established speech enhancement algositare  poorly suppressed noise that alters the spectral
used to evaluate the effectiveness of the propétatteq characteristics of weak speech regions detected by



Table 1A. Averaged Word Accuracy (%) for Test SedtR0 dB. 0 dB than 20 dB. This corresponds to the VADS

NSS: Non-linear Spectral Subtraction, STSA: Shamel performances shown via the ROC curves in Section 4.
Spectral Amplitude Estimator, FD: Frame-Dropping
VADs | NSS |[STSA| FD | NSS+FD |STSA+FD | Overall 6. CONCLUSION

G729 |95.77|96.00(92.98| 94.40 94.77 94.78
AMR1 |95.72|95.63|92.76| 93.80 93.58 94.30 This paper presents a novel way to improve the enois
AMR2 [95.22]|95.77|94.39| 94.67 95.41 95.09]  robustness of existing LRT-based VADs by selecting

LRT |95.87]96.12193.21] 94.49 95.02 | 94.94  harmonic DFT components for computing the LR scarfes

Hmfreg- | oc o= | 96.08 93.25| 94.38 94.82 94.92| voiced frames. ROC curves show an increase in corre
'(-)RT 9573195869624 9575 %60 9592 VAD decisions for this implementation. Higher ASR
'\H/'mfl;RT_ : : : : 01 : accuracies are obtained when Hmfreg-based VADs’

€ 195.98(95.95|96.59| 96.02 95.98 | 96.10 decisions are applied to well-known pre-processing
MOLRT . .
Manual techniques compared to conventional LRT-based VABs
i 96.28|96.26| 97.45| 96.55 96.58 96.621  well standardized VADs, especially in low SNR cdiufis.
Table 1B. Averaged Word Accuracy (%) for Test Sett® dB 7. REFERENCES

VADs |NSS |STSA| FD |NSSt+FD |STSA+FD | Overall )
G729 | 27.9826.1116.71] 25.82 2513 24.35 [1] M. Berouti, R. Schwartz, and J. Makhoul, “Enbament of

AMR1L | 2550 23.94]16.72] 25.74 23.92 23.18 speech corrupted by acoustic nois@”Proc. Int. Conf. Acoustic,
AMR2 | 36.28 3720/ 1859 32.79 34.78 31.93 Speech and Signal Processing (ICAS$B) 208-211, Apr. 1979.

LRT 38.13 36.97| 17.33| 26.08 31.25 20.95 [2] Y. Ephraim, and D. Malah, “Speech Enhancemesihgl a
- - - : - - minimum mean-square error short-time spectral  aogdi

Hrﬂg—?q 41.37139.62|18.76| 27.27 31.96 | 31.77|  estimator”,IEEE Trans. Acoustic, Speech and Signal Processing
MOLRT | 38.29 38.45) 20.56] 33.66 | 37.19 | 33.63 'O /ASSP-32, pp. 1109-1125, Dec. 1984. .

amf [3] J. Beh, and H. Ko, “A novel spectral subtrantischeme for
MHCW)LFEQT 40.76/39.95|23.01| 36.51 38.81 35.81 robust speech recognition: spectral subtractiomgusspectral

harmonics of speechICASSP Proc.pp. 684—687, Apr. 2003.
Manual 40.18/40.00| 21.01| 43.10 44.24 37.71 [4] C. Plapous, C. Marro, and P. Scalart, “Speechaacement

labeling using harmonic regeneratiodGASSP Prog pp. 157-160, 2005.
0 [5] H. Hermansky, and N. Morgon, “RASTA processimj
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VADs |NSS |STSA| FD | NSS+FD |STSA+FD| Overall [6] Q. zhu, and A. Alwan, “Non-linear feature exttin for
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