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Abstract of the Thesis
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by
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Master of Science in Electrical Engineering

University of California, Los Angeles, 2012

Professor Abeer Alwan, Chair

With the recent push of Automatic Speech Recognition (ASR) capabilities to mo-

bile devices, the user’s voice is now recorded in environments with a potentially

high level of background noise. To reduce the sensitivity of ASR performance

to these distortions, techniques have been proposed that preprocess the speech

waveforms to remove noise effects while preserving discriminative speech informa-

tion. At the expense of increased complexity, recent algorithms have significantly

improved recognition accuracy but remain far from human performance in highly

noisy environments.

With a concern for both complexity and performance, this thesis investigated

ways to reduce the corruptive effect of noise by directly weighting the power-

spectrum (SMF
pow

) or log-spectrum (SMF
log

) of speech by a mask whose val-

ues are within [0,1] and are indexed on the local relative prominence of speech

and noise energy. Additional contributions include a low-complexity approach to

mask estimation and the use of spectral flooring for matching the dynamic range

of clean and noisy spectra. These two techniques are evaluated on two standard

noisy ASR databases: the Aurora-2 connected digits recognition task with 11
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words, and the Aurora-4 continuous speech recognition task with 5000 words.

On the Aurora-2 task, the SMF
log

algorithm leads to state-of-the-art perfor-

mance, with a limited complexity compared to existing techniques. The SMF
pow

technique, however, results in many insertions that we attribute to the rather

weak language model present in the Aurora-2 setup. On the Aurora-4 task, both

algorithms show significant improvements over the un-enhanced baselines. In

particular, word-accuracies obtained with SMF
pow

approach those of a state-of-

the-art front-end algorithm, on half of the noise types. Yet, the performances are

heavily noise dependent, suggesting that the proposed technique is effective only

given a good initial mask estimation.

This study confirms the potential of techniques that are based on direct spec-

trum masking, and proposes a framework for doing so. Future work will need to

consider more elaborate mask estimation techniques to further improve on the

performance.
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CHAPTER 1

Introduction

This chapter provides background and motivation for the work presented in this

thesis. We first introduce the need for a low-complexity noise robust Automatic

Speech Recognition (ASR) system. Next, we present the basic components of an

ASR system and review relevant work on noise robust preprocessing. Lastly, we

provide a thesis outline.

1.1 Motivation

For the past 60 years, research in ASR resulted in steady incremental improve-

ments that now enable widespread use of this technology for applications such

as dictation, automated call-centers, domotics or military purposes. One of the

factors that most influences recognition accuracy is the possibility that the ASR

system is used in a noisy environment. In this case, there might be a mismatch

between the recorded waveforms and the waveforms used to train the recognizer,

causing a steep drop in recognition rate as the Signal-to-Noise Ratio (SNR) de-

creases.

Even though this mismatch can be reduced by training the system with noisy

waveforms, this approach is still limited in that there is a potentially large num-

ber of noise characteristics. This is especially true with the recent increase of

ASR-powered mobile devices, often used in highly noisy and non-stationary en-
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vironments such as cars or restaurants. Also, mobile devices suffer from limited

computational capabilities that restricts the complexity of the processing that can

be performed. These observations motivated the development of low-complexity

methods for preprocessing the speech waveforms in a way that attenuates the

mismatch between clean and noisy recordings.

In the last 15 years, efforts to reduce this noise mismatch have produced large

accuracy gains in adverse conditions over the traditional non-robust approaches,

while preserving good performance in clean conditions. Yet, current state-of-the-

art techniques still fall far behind the computational capability of the human

brain, especially for non-stationary noises or when the SNR lies below 5dB SNR.

In short, effective compensation for real-life acoustic noise in speech recognition

is still an open problem, and any improvements in that direction would lead to

direct benefits for currently deployed systems.

The next sections will provide an overview of the traditional HMM-based

approach to ASR, and will then describe the ideas behind some state-of-the-art

noise robust ASR front-end algorithms.

1.2 Background on Automatic Speech Recognition

An ASR system automatically performs transcription of speech to text. In an

offline phase, the system is trained with thousands of hours of speech waveforms

and their corresponding text transcriptions. During this phase, the system builds

a model for each acoustic unit (phonemes, triphones, or words) seen in training.

In the online phase, the system matches the received waveform to the acoustic

models developed in training. After using syntax and grammar information via

the language model, the system outputs the most likely word sequence. Figure

2



Feature Extraction

Statistical Modeling

most likely word sequence

Acoustic Models
scoring

Transcriptions
“zero four eight five”

Training Waveforms Testing Waveforms

Language Model

Feature Extraction

Figure 1.1: A traditional ASR system is composed of a preprocessing algorithm (feature

extraction), statistical acoustic models and a language model

1.1 shows the diagram of a traditional ASR system.

In this section, we present some background on a popular ASR structure,

namely the Mel-Filtered Cepstral Coefficients (MFCC) preprocessing followed by

an HMM-based statistical model.

1.2.1 Front-end Feature Extraction

Speech waveforms cannot be fed directly to a statistical engine for recognition.

Some dimensionality reduction has to be performed first. Waveforms are digital

representations of the pressure variations, and are sampled at 8kHz or 16kHz

in most applications. Since discriminative speech information has been found

to lie at frequencies up to at least 4000Hz, time samples are highly correlated

and thus are not well suited for building discriminative models for recognition.

The first step, before doing any statistical learning, is to convert these waveforms

3
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Figure 1.2: The spectral representation (bottom) captures which time-frequency com-

ponents of the original waveform (top) have the most (in red) or the least energy (in

blue). The sampling rate is 8kHz and the number of FFT channels is 512

into time-varying features that carry discriminative information about the speech

signal while reducing the redundancy of the original data.

A successful approach to feature extraction that is now widespread in the ASR

community is called Mel-Frequency Cepstral Coefficients (MFCC), and will be

introduced as described in [3]. Like most feature extraction methods, MFCCs are

computed via a spectro-temporal representation of speech called a spectrogram,

obtained by taking the short-time Fourrier transform of the waveform using a

25ms Hamming window and a 10ms shift between each frame. The resulting

spectrogram shows which time-frequency bins carry the energy of the speech

waveform (See Figure 1.2). Since most of the speech information is thought to be

carried by the vocal tract resonances, also referred to as formants, this frequency

domain representation is essential to capture discriminative information for ASR.
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The MFCC algorithm then groups the frequency channels together to further

reduce the dimension via a non-linear filterbank inspired by the human cochlea.

Different auditory-inspired filterbanks have been proposed to this end, but they

all share the characteristics of using several narrow filters at low frequencies and

few wide filters at high frequencies. MFCCs use a Mel-filterbank, with triangular

shaped filters and a number of channels between 25 to 40. The energy at the

output of each filter is then compressed using a log operator, also inspired by

the auditory system. Then, a Discrete Cosine Transform (DCT) is taken on each

time-frame of the Mel-spectrum as a way to reduce the remaining cross-channel

correlation. For each frame, only the first 13 DCT coefficients are kept since they

account for most of the signal energy. At this point, it is usually found helpful

to perform weighting along the frequency axis (liftering) and to normalize each

time-frame by subtracting its mean for each of the 13 coefficients (cepstral mean

normalization). In a last step, the dynamic nature of speech and the particularly

discriminative information about energy onsets is taken into account. To this

end, first and second derivatives of the DCT coefficients are computed. These

13+13 coefficients are appended to the original 13 coefficients, for a total of 39

coefficients per 10ms time-frame.

These MFCC features have a lower dimension and are less correlated than the

original spectrum or waveform. Such a preprocessing is an essential first step to

build discriminative statistical models.

1.2.2 Acoustic Modeling

Statistical modeling using Hidden Markov Models (HMMs) is a widely used ap-

proach in the field of automatic speech recognition [4]. This section introduces

the basic ideas behind the use of HMMs for acoustic modeling, but the specifics

5



of each HMM configuration used in our experiments are left for Chapter 3.

A HMM is a statistical Markov model used to model a sequence of obser-

vations as the output of a network of hidden states. Each state has its own

output probability density function, but transfers between states are made possi-

ble by the mean of transition probabilities. Since the observation sequence is the

only information available to the user, these output distributions and transition

probabilities are the parameters that are used to parametrize the HMM.

Formally, let us define a continuous-valued HMM ⇤ comprised of N discrete

states (s1, . . . , sN) and an observation space O ⇢ Rn (see Figure 1.3). Suppose

this HMM generates the occupied state sequence S1:T = (s(1), . . . , s(T )) and the

observation sequence O1:T = (o1, . . . ,oT

) 2 OT . Using these notations, ⇤ can be

entirely described by its parameters � = (⇡,A,B) where:

• ⇡ = (⇡1, . . . , ⇡N

) are the initial state probabilities, namely ⇡
i

= Pr (s(1) = s
i

)

• A = (a
ij

)1i,jN

are the state transition probabilities, namely 8t 2 [2, T ] :

a
ij

= Pr (s(t) = s
j

| s(t� 1) = s
i

)

• B = (b
i

)1iN

are the state output distributions, namely 8t 2 [1, T ] :

b
i

(o
t

) = Pr (o
t

| s(t) = s
i

)

In ASR, left-to-right HMMs are used to model the speech acoustic units that

will be later connected to form the word transcriptions. Each HMM can be chosen

to model units like phonemes, triphones, or even whole words depending on the

size of the vocabulary and the amount of data available for training. Using HMMs

with multiple states allow to model the time dynamics in the observations of these

acoustic units. The various output distributions at each state model the dynamic

6



s1 s2 s3 s4

a11

a12 a23 a34

a22 a33 a44

a13 a24

b1(o) b2(o) b3(o) b4(o)

Figure 1.3: Diagram of a causal four-states HMM, for an observation space O ⇢ R

in the observed vector, and allow for flexibility in the duration of these patterns

via the probabilistic nature of state-transitions. In ASR, state-specific output

distributions are generally modeled as Gaussian Mixture Models (GMM), where

the number of Gaussians per mixture can be tuned depending of the amount of

available training data. These HMMs are then connected to model longer speech

segments, thus providing statistical information at the sentence level.

Three main problems must be solved in order to use HMMs for acoustic

modeling (see [4]):

Problem 1 Given a sequence of observations O1:T = (o1, . . . ,oT

), how do we

find the parameters � = (⇡,A,B) of the HMM that bests models these

observations?

This problem pertains to the training process, where the observations and

the transcriptions are known. In training, we are trying to find the best

7



HMM for each of the acoustic units present in the transcriptions. Problem

1 is solved by the Baum-Welch Reestimation algorithm.

Problem 2 Given an HMM with parameters � = (⇡,A,B), how do we compute

the probability of a given observation sequence O1:T = (o1, . . . ,oT

)?

This problem is related to the recognition process, in which we try to decide

which model is most likely to explain a given sequence of observations. This

problem can be solved using the Forward-Backward Procedure.

Problem 3 Given an HMM with parameters � = (⇡,A,B) and an observation

sequence O1:T = (o1, . . . ,oT

), how do we find the most likely state sequence

S1:T = (s(1), . . . , s(T ))?

This problem also pertains to the recognition process, and can be solved

using the Viterbi algorithm.

Further optimizations like tying states from different HMMs so that they share

the same observation pdfs allows for better acoustic modeling with limited data.

Moreover, creating specific models for silences and short pauses has also been

shown helpful to model observations from between the words.

1.2.3 Language Modeling

The last element of the back-end ASR system, the language model, allows us

to add prior information about the structure of the target language. This in-

formation can be thought as a grammar that helps avoid unlikely acoustic unit

combinations and correct errors such as “Luke likes to eat arts” to “Luke likes

to eat tarts”. Using a good language model provides a large gain in accuracy,

especially in large vocabulary recognition tasks where HMM fails to take into

account the strong a-priori correlation between neighboring words. Among the

8



most popular language models are statistical models like N-grams, which model

the conditional probability of a word given the past N words. Designing good

language models is a research field on its own, and we suggest the interested

reader to refer to [3] for more details.

1.3 ASR in Adverse Noise Conditions

In this section, we present the challenges posed by using ASR when the speech

signal is corrupted by additive background noise. First, we review the difficulties

posed by additive background noise with the traditional MFCC preprocessing.

Then, we present some alternative front-end techniques that have been used

for increasing the recognition accuracy in noise. Last, we describe the Missing

Feature framework, a group of techniques for noise robust ASR that has received

attention in the last 15 years.

1.3.1 Difficulties in Noise

When noise is present in the background, the speech waveform is distorted. As

a result, the spectrogram of noisy speech no longer matches the spectrogram of

clean speech, since the spectral components of the noise are now also present

(Figure 1.4). Therefore, the common scenario of training the ASR system with

MFCCs computed on clean speech and testing this system on noisy speech will

be very challenging for the back-end when matching the noisy features with the

clean models.

In fact, experiments show that even adding noise at a relatively high SNR

(20dB) increases the word-error rate by a factor of 6 when using MFCC pre-

processing (Table 1.1). At low SNRs (0-5dB), recognition rates drop below 50%

9
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Figure 1.4: The spectrogram of an utterance corrupted by artificially adding subway

noise at 0dB SNR (bottom) is highly distorted compared to the spectrogram of the

corresponding clean speech utterance (top)

while human recognition performance remains good down to -10dB SNR. This

steep accuracy drop using MFCCs is even more severe on a large-vocabulary task,

pressing the need for noise robust feature extraction algorithms.

1.3.2 Review of Noise Robust Techniques

This subsection describes some approaches to feature extraction that resulted in

improved performance for ASR in noisy environments.

Compensation for the noise distortions can be done at the waveform or spec-

trogram level, to make the noisy speech signal resemble the clean speech signal

via speech enhancement, before using traditional features like MFCCs. Efforts in

this area have attracted attention since [5, 6] introduced a framework for Mini-

mum Mean-Square Error (MMSE) based spectral amplitude estimation in 1984.

Many approaches to speech enhancement have been developed since then, and

10



SNR (dB) clean 20 15 10 5 0

Word-Accuracy (%) 99.6 97.6 93.6 78.7 45.8 11.9

Table 1.1: The Percent Word-Accuracy of ASR using MFCC features degrades steeply

as the SNR decreases. Experiments have been carried out on the Aurora-2 connected

digits recognition task as described in Chapter 3. Numbers shown are averaged over 8

types of additive noises

were recently summarized in [7].

It was also shown successful to perform compensation as part of the feature

extraction process itself, by modifying steps of the MFCC processing to retain

less variability from the noise. To this end, the Mean Variance Arma (MVA)

technique [8] performs mean and variance normalization on the MFCC coeffi-

cients before smoothing the features with an Auto-Regressive Mean Averaging

(ARMA) filter. As another example, the recently introduced Power Normalized

Cepstral Coefficient (PNCC) algorithm [9] suggests to replace some steps of the

MFCC computation by an auditory inspired and more noise robust processing.

Its major differences with the MFCC algorithm are the use of a Gammatone au-

ditory filterbank [10] in lieu of a Mel-filterbank, a power compression instead of

a log-compression, and a noise compensation step on the spectrogram based on

tracking and subtracting the noise floor.

The idea of emphasizing the information from the spectral peaks rather than

the valleys has also been shown to help retain discriminative speech information.

In the auditory inspired front-end described in [11], the authors introduce a peak

isolation technique (PK-ISO) based on liftering, half-wave rectification and peak

normalization. An additional step to PK-ISO was proposed in [12] that consists

in deciding on a constant peak-to-valley ratio to further increase the similarity

11



between clean and noisy spectra. These ideas have also been shown to help build

robust features when used in conjunction with noise-suppression algorithms. In

[13], the noisy spectrogram is enhanced via spectral imputation (cf. Section 1.3.3)

before isolating the peaks via Log-Spectral FLooRing (LS-FLR), a technique

similar to [11] but applied in the log-spectral domain. Lastly, tracking spectral

peaks across time has been shown in [14] to provide information that can be used

to build low-dimensional noise-robust features for a digit recognition task.

Several other characteristics of human speech have been successfully exploited

to build noise robust preprocessing algorithms. Among these, the forward-masking

characteristics of the human auditory system have inspired several authors into

building front-ends that emphasize signal onsets rather than slowly varying am-

plitudes. For instance, the study from [11] coupled their peak isolation algorithm

with a auditory-derived model of forward-masking and obtained significant im-

provements in recognition accuracy in noisy conditions. Other discriminative

characteristics of speech lies in its temporal dynamics, as rapid energy varia-

tions like plosive consonants could also carry useful information. Yet, computing

frames every 10ms is sometimes not sufficient to capture these quick variations.

This motivated [15] to introduce a variable frame rate for analysis, based on a

measure of local Euclidian distances on MFCC vectors. This algorithm uses as

many frames as the fixed-rate method, but allocates more frames to the quickly

varying parts of the speech and less to the slowly varying parts, like steady vowels.

Further investigations have found other distance measures such as the entropy

between MFCC vectors [16] to further increase gains in accuracy.

Lastly, some approaches do not fall into the standard MFCC framework, ei-

ther because they use an alternative representation to the spectrogram, or be-

cause they exploit spectrographic information differently. Analysis of the spectral
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modulations of speech [17] reveals that noise can be attenuated by focusing on

amplitude modulations around 4Hz, where most of the speech energy is present.

These approaches to computing the modulation spectrogram can be successfully

combined with previously described frame-level noise compensation techniques

[18]. With a different scope, features based on spectro-temporal filtering of the

spectrogram by 2-d Gabor wavelets have been successfully applied to small vo-

cabulary noisy ASR [19]. This technique generates high-dimensional features

that capture local spectrographic modulations along several directions on the

time-frequency plane. After dimensionality reduction using techniques based on

neural networks, these multi-stream features are appended to MFCCs to provide

additional discriminative power in both clean and noisy conditions.

1.3.3 The Missing-feature Approach to Noise Robust ASR

The Missing-Feature (MF) approach to noise robust ASR is a framework that has

become increasingly popular over the last decade [20]. This subsection presents

a brief introduction to MF for ASR, and reviews some popular algorithms that

have influenced the proposed approach, described in Chapter 2.

The MF framework is based on the idea that if one could compute a mask

labeling each time-frequency bin of the spectrogram as reliable or unreliable, then

this information could be helpful to the recognition process. Two ways have been

proposed to account for the reliability information: marginalization and imputa-

tion. The first technique reduces the weight of the unreliable bins in the back-end

at the recognition stage, whereas the second performs estimation of the unreliable

parts of the spectrogram in the front-end, before computing traditional MFCCs

(see Figure 1.5). While the marginalization technique is optimal in theory, it

is usually discarded for computational reasons, and because it precludes the use
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estimated mask

Spectrum Imputation

noisy spectrum reconstructed
spectrum

Mask Estimation

noisy spectrum estimated mask

Figure 1.5: In the MF framework, a mask is first estimated to label the time-frequency

bins of the noisy spectrum as reliable (black) or unreliable (white). Then, the informa-

tion from this mask is used by the imputation algorithm to infer the unreliable parts of

the noisy spectrogram.

of the cepstrum for feature representation. The following will describe several

techniques that have been used for mask estimation and spectral imputation.

Mask estimation aims at labeling time-frequency bin of the spectrogram as

reliable if the speech energy is dominant, or as unreliable if the noise energy is

dominant. An accurate mask provides highly valuable information to the recog-

nizer, since it enables it to focus on the reliable components, the most discrimi-

native for speech recognition. Estimating a good mask is a difficult problem, as

it requires a criterion to tell apart speech from noise energy. Techniques have

been proposed that look at clues based on spectral-subtraction [21], SNR [22],

and the harmonic structure of voiced speech [23]. Other authors successfully used

statistical classifiers with two-classes, based on Bayes rule [24] or HMMs [25].

Spectral imputation is the process of estimating the value of unreliable com-

ponents of the spectrogram based on the value of the reliable bins. The resulting

reconstructed spectrogram then is fed to a traditional front-end feature extraction

scheme like MFCCs. The first approaches that have been proposed to perform
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spectral imputation, such as conditional mean imputation [26] and MAP inference

[27] are based on modeling statistical information of the clean speech spectrum.

Some recent approaches feature the use of compressive sensing as a means for

data recovery under the assumption of sparsity of the clean speech signal. In

[28, 29], a basis for sparsity is obtained by accumulating a large dictionary of

exemplars whereas [30, 13] exploit the time-frequency correlation of speech and

use an image processing inspired two-dimensional Haar transform on the spec-

trographic data. Lastly, a recent study [31] suggests that a simple imputation

technique, directly using the mask as a set of multiplicative coefficients on the

power spectrum followed by variance normalization leads to state-of-the-art re-

sults on a large vocabulary task, if the mask is using oracle information about

the speech location. This pilot study suggests that on tasks requiring a strong

language model, large improvements will more likely originate from more accu-

rate mask estimation than sophisticated imputation. Yet, such an imputation

technique by mask weighting hasn’t been successful with more realistic estimated

masks.

This thesis investigates the idea of weighting the spectrum with an estimated

mask, by proposing a novel mask estimation procedure as well as two different

frameworks for mask weighting.

1.4 Organization of the Thesis

Following the background information and the motivations presented above, Chap-

ter 2 describes the proposed noise robust front-end algorithms for feature extrac-

tion. Then, Chapter 3 presents the evaluation setup and comments on the results.

Finally, Chapter 4 offers a conclusion and directions for future work.

15



CHAPTER 2

Proposed Missing-feature based Feature

Extraction Approach

In this chapter, the proposed low complexity feature extraction approach is de-

scribed. In order to follow the Missing-Feature framework, we first introduce our

approach to estimating a soft-decision mask on the spectrum. In the second part

of this chapter, we present and justify our approach to spectral imputation.

2.1 Mask Estimation

In this section, we describe the steps in the computation of the SNR-based soft

decision mask. Our goal is to determine in which areas of the noisy speech spec-

trogram does the energy originate from the speech rather than the background

noise. We output a mask that will have a value close to 1 in these areas, and a

value close to 0 where the noise is prominent. A flowchart for the algorithm is

shown in Figure 2.1. The following section assumes that a Mel-filterbank is used,

but the same ideas could be applied using a Gammatone filterbank.

2.1.1 Noise Modeling

This first subsection lays some theoretical ground on modeling the corruptive

effect of the noise.
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2. SOFT-DECISION MASK 

 
In this section, we describe the steps in the computation of the 
SNR-based soft decision mask. The mask comprises values be-
tween 0 and 1, where a value close to 1 indicates that the energy in 
the noisy signal originates from speech in a significantly high pro-
portion. A flowchart is shown in Fig.1. 

 
2.1. From channel-wise SNR to a first soft-mask estimation 

 
We first perform an estimation of the noise power in each of the 32 
Mel-channels, by averaging the energy over the first and last 15 
frames. Then, we compute an estimate of the a-posteriori SNR γ at 
each time-frequency bin. 

where Psignal  and Pnoise are the respective powers of the signal and 

the noise. The threshold ρmin = 0.5  serves as a flooring value. 
 

The above estimation relies on the assumption that the noise is 
stationary and on the oracle information that the first and last 15 
frames are composed solely of noise. Yet, one might object to the 
validity of these two assumptions, especially in environments 
where the noise is often rising or fading and where its power 
should regularly be re-estimated. For the latter case, Section 2.3. 
describes a solution based on [12], which can be incorporated into 
our framework in order to handle time-varying noise conditions. 

The SNR estimate is mapped to the interval [0,1] by using the 
tunable sigmoid function 

where α = 0.2  and β = 4dB  provided the best recognition rates. 
Tuning the latter parameter is essential to computing a mask that 
provides a good tradeoff between finding as many of the speech 
regions and not picking up too much noise. 

 
2.2. Median filtering and blurring towards a smoother mask 
 
In general, most of the noise variance remains in the mask after 
mapping the SNR to [0,1] via the sigmoid (see Fig.3.c.). The next 
two steps aim at refining the estimates while exploiting the spec-
tro-temporal correlation of speech. 

      The first step is to apply a 3× 5  two-dimensional median filter. 
This filter aims to erase the outliers due to the noise variability. For 
example, a bin with high power surrounded by a majority of lower 
power bins is most likely an artifact of noise variance, but will 
mislead the current SNR estimator into thinking it contains speech 
information. The median filter corrects these errors, and outputs a 
mask with an increased spectro-temporal coherence (see Fig.3.d.). 

The second step aims to smooth the rather sharp and piecewise-
constant decision regions created by the median filter. Spatial av-
eraging is performed with a constant disk of radius 2. This smooth-
ing serves the same purpose of noise variability cancellation as the 
Median filter, but acts in a complementary way, by outputting a 
smooth, yet well-segmented soft-decision mask (see Fig.3.e.).  

Filter parameters have been optimized empirically, and will de-
pend on the frame rate, window size and type, as well as on the 
number of Mel channels. In our experiments, we used a Hamming 
window of length 25ms that we shift by 10ms between successive 
frames. The number of Mel channels is 32. 

 

a  

e  

d  

c  

b  

 
Fig.3. Output at each step of the processing of the soft mask for the 
digit ‘SIX’ corrupted by car noise at 5dB. The x-axis corresponds 
to time and y-axis to the Mel frequency.(a) Mel-filtered spectrum, 
(b) a-posteriori SNR, (c) after mapping to [0,1], (d) after median 
filtering and (e) the final soft mask after blurring. Note that (c, d, 
e) range in [0,1], while (a) and (b) both use a different scale. 
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Fig. 1. Flowchart of Soft-Mask computation 
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Fig. 2. Flowchart of the complete enhancement-based front-end 
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Figure 2.1: Flowchart of the proposed mask estimation technique

In this study, we will be considering specific noisy conditions under which

the Missing-Feature framework has been shown to be more appropriate. Specif-

ically, we will assume that the observed segment of speech has been additively

corrupted by noise that is Gaussian, zero-mean and uncorrelated with the speech

signals. These assumptions are reasonable when considering speech corrupted by

background noise such as speech recorded by smartphones in a car. Sometimes,

however, the distortions will be speech dependent, for instance when recording

in a room with high reverberation. In that case, our assumptions may no longer

hold and the proposed method might fail to effectively tell apart the distortions

from the actual speech.

Following these assumptions, we perform short-term spectral analysis of the

observed noisy waveform to obtain:

Y (i, k) = S(i, k) +N(i, k)

where Y (i, k) is the amplitude of the observed noisy spectrum at time frame i

and frequency channel k, S(i, k) is the amplitude of the clean speech and N(i, k)

models additive corruptive noise. In order to compute the power spectrum, it is

commonly assumed that the signals are in phase. In this case we can write:

|Y (i, k)|2 ' |S(i, k)|2 + |N(i, k)|2 . (2.1)

Following the Gaussian framework described in [32] and assuming that the noise

variance is reasonably constant over the short duration of this analysis, |N(i, k)|2
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can be modeled as an exponential random variable with probability density func-

tion:

p(|N(i, k)|2) = 1

�2
N

(k)
exp

 
� |N(i, k)|2

�2
N

(k)

!

where �2
N

(k) is the noise variance for DFT channel k. The latter stationarity

assumption will be essential in our analysis and implies that while the noise

variance is allowed to gradually increase or decrease over time, we won’t expect

rapid variations in the background noise like bursts or other highly non-stationary

noises.

After applying the non-linear Mel-filterbank on the original power spectrum,

the Mel-filtered power spectrum is defined by:

|Y (i,m)|2 =
cm+1X

k=cm�1

w
m

(k) |Y (i, k)|2 (2.2)

where c
m

denotes the center frequency of the mth Mel-filter and w
m

(k) represents

its weighting across frequencies. As a direct consequence of (2.1) the resulting

Mel-spectral power is given by:

|Y (i,m)|2 = |S(i,m)|2 + |N(i,m)|2 (2.3)

where we define

|S(i,m)|2 =

cm+1X

k=cm�1

w
m

(k) |S(i, k)|2

|N(i,m)|2 =

cm+1X

k=cm�1

w
m

(k) |N(i, k)|2 .

Because a weighted sum of exponentially-distributed random variables with

possibly unequal variances follows a generalized �2 distribution, [32] found that

the distribution for |N(i,m)|2 can be approximated by:

p�
2

m

(|N(i,m)|2) = A
m

 
|N(i,m)|2

�2
N

(m)

!(km/2�1)

exp

 
� |N(i,m)|2

�2
N

(m)

!
(2.4)
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Figure 2.2: Probability density function of a �2 distribution for various degrees of

freedom. The median value is shown with a dashed line for each value of k

where �2
N

(m) is the size parameter of the �2 distribution, k
m

the channel-specific

number of degrees of freedom, and A
m

a normalizing factor. Theoretically, k
m

corresponds to the number of random variables averaged in Eq. 2.2, that is, to

the width of the mth Mel-filter. Since the most narrow filter has a bandwidth of

approximately 100Hz, a typical value for k
m

should be above 5, and will increase

as we move up in frequency and use wider filters. In practice though, the value

for k
m

is more reliably estimated on a subset of the data using the ratio of non-

central moments of the observed power distribution. We won’t need to obtain an

actual estimate of k
m

in the current study, but an interested reader can refer to

[32] for more details.

A direct consequence of (2.3) and (2.4) is that for a fixed |S(i,m)|2 we have:

p(|Y (i,m)|2) =

8
><

>:

0 if |Y (i,m)|2 < |S(i,m)|2

p�
2

m

�
|Y (i,m)|2 � |S(i,m)|2

�
otherwise

By looking at a typical �2 distribution (Fig. 2.2), we find that while it is not
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perfectly Gaussian, it still is roughly symmetrical and puts most of its weight in

the neighborhood of the median, especially in the present case where k � 5. This

observation motivates the idea that taking the median of the noise |N(i,m)|2 over

several frames would effectively reduce the fluctuations and leave us with a good

indicator (maybe biased) of �2
N

(m). This fact will be useful later in supporting our

approach to canceling the SNR distortions caused by high bin-to-bin variability

by using a moving median filter.

2.1.2 Noise Variance Cancellation via Spectro-Temporal Filtering

The reliable/unreliable criterion we wish to derive, the soft-valued mask, should

be based on a long-term estimate of the noise power rather than depend on local

variations due to the noise variance. Yet, as described in Chapter 1, traditional

SNR-based mask estimation techniques like [33] fail to take into account the noise

variability in deciding wether a bin is reliable or unreliable. This subsection will

propose additional steps based on two-dimensional median filtering and blurring

to remove these fluctuations from the mask, resulting in more spatially coherent

decision regions.

The traditional method to compute SNR-based soft masks is fairly intuitive.

The time-frequency bins where the Signal-to-Noise Ratio is high have higher

speech energy than noise energy. Therefore, they are tagged as reliable and the

corresponding mask value is set close to 1. Conversely, if the SNR is low because

the noise is in higher proportions than the speech then the bin value is deemed

unreliable, and is given a mask value close to 0. In practice, this approach requires

an estimate of the noise power at each bin in order to compute the SNR. We will

first assume that we are given such an estimate �̃2
N

(i,m) and will describe the

steps in computing the SNR-based mask. Then, Sections 2.1.3 and 2.1.4 will
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describe two methods to actually estimate the noise power.

The bin-wise SNR �
i,m

is defined by:

�
i,m

= 10 · log
 
max

 
⇢
min

,
|Y (i,m)|2

�̃2
N

(i,m)

!!

where ⇢
min

is a flooring threshold set to 0.5 that avoids unnecessarily high ampli-

tude negative values for the resulting SNR. The soft-mask is generated as in [33]

by mapping the SNR estimate �
i,m

to the interval [0, 1] using a simple sigmoid

function. The mapping is of the form:

f
↵,�

(x) =
1

1 + exp(�↵(x� �))

where ↵ sets the sigmoid slope and � sets the sigmoid center. In other words, if

we define

M
(1)
i,m

= f
↵,�

(�
i,m

) 2 [0, 1]

to be a first estimate of the soft-mask values, then ↵ allows to set the sharpness

of the mapping while � is a tunable offset for the SNR estimate �
i,m

. Tuning for

↵ allows to decide for soft or hard [0, 1] decisions, while tuning for � will allow

to compensate for any bias in the SNR estimate �
i,m

. Since there is no objective

criterion to help us decide on those parameters, we tune ↵ and � empirically

like in [33], by picking the values that maximize our recognition accuracy jointly

with the enhancement technique that will be introduced in Section 2.2. For the

current setup, we have found ↵ = 0.2 and � = 4dB to give the best results and

will be using these values in the following. It is important to note that if we were

to use a different enhancement technique, the optimal values for ↵ and � may be

different. Figure 2.3 shows the first three steps in the mask computation, from

the observed spectral power |Y (i,m)|2 to the SNR �
i,m

and finally the first mask

M
(1)
i,m

.
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Because we use a noise estimate �̃2
N

(i,m) that is relatively smooth in time

and frequency and carries information about the average noise power, the noise

fluctuations present in |Y (i,m)|2 will propagate to �
i,m

and finally to M
(1)
i,m

. As

can be verified in Figure 2.3c, these fluctuations are heavily corrupting the initial

mask estimate, especially in the silence regions where some coefficients are very

close to 1 even though no actual speech is present. One way to attenuate this

effect could be to change the mapping f
↵,�

(x) so as to compress those values closer

to zero. While this would work in non-speech regions, it would also attenuate

useful lower-energy speech information that might originate from unvoiced sounds

like the phoneme /f/ in five.

These observations motivate us to use an alternative approach, based on two-

dimensional median filtering, as a way to remove these fluctuations while leaving

speech information intact. This approach can be justified in several ways. First,

since the noise power estimate �̃2
N

(i,m) is assumed to be smooth both in time and

frequency, applying the median filter on M
(1)
i,m

or |Y (i,m)|2 will lead to similar

final outputs. Now, the above study of the properties of the �2 distribution

from which |Y (i,m)|2 originates shows that the median provides a good estimate

of |S(i, n)|2 + �2
N

(m) and thus will effectively eliminate the noise fluctuations.

Second, the median has similar smoothing properties to the mean while being

less sensitive to the common outliers that emerge from a �2 distribution. Third,

two-dimensional median filters tend to be more preserving of the abrupt edges of

the speech regions while a blurring effect could occur if we were to use a Gaussian

filter, or another local averaging technique.

With these ideas in mind, we apply a 3 ⇥ 5 median filter to our mask to

obtain M
(2)
i,m

. As shown in Figure 2.4a, M (2)
i,m

exhibits less noise fluctuations and

shows an increased spectro-temporal coherence: reliable and unreliable bins are
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(a) Mel-power spectrum |Y (i, m)|2

(b) Local bin-wise SNR �
i,m

(c) Soft-mask M
(1)
i,m

after mapping of the SNR to [0,1] using ↵ = 0.2 and

� = 4dB

Figure 2.3: Output at the first three steps of the processing of the soft mask for the

spoken digit six corrupted by car noise at a global SNR of 5dB. The x -axis corresponds

to time and the y-axis to the Mel channel. While the dynamic ranges of these plots

differ, blue always corresponds to a value at the lowest-end of the range while red is at

the highest-end of the range
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(a) Soft-mask M
(2)
i,m

after applying a 3 ⇥ 5 median filter

(b) Final soft-mask Mfinal

i,m

after smoothing

Figure 2.4: After 2-d median filtering (a) and smoothing (b), the soft mask is not as

sensitive as before to the noise fluctuations

now grouped together in the time-frequency domain. The second step aims at

smoothing the rather sharp and piecewise-constant decision regions created by

the median filter. Spatial averaging is performed with a constant disk of radius

2. This smoothing serves the same purpose of noise fluctuation cancellation as

the median filter, but acts in a complementary way, by outputting a smooth, yet

well-segmented soft-decision mask M final

i,m

(see Fig. 2.4b).

Filter parameters have been optimized empirically, and will depend on the

frame rate, window size and type, as well as on the number of Mel channels. In

our experiments, we used a Hamming window of length 25ms that we shift by

10ms between subsequent frames. The number of Mel channels used is 32.
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2.1.3 Naive approach to Noise Estimation

In this section, we propose a naive method to obtain the smooth noise power

spectral density estimate �̃2
N

(i,m) that is used to compute the mask.

Let us assume that the noise is reasonably stationary and exhibits constant

power through the whole utterance. If we also make the assumption that the

first few milliseconds are composed solely of noise, then we can obtain a reliable

estimate for �̃2
N

(i,m) by taking an average of the observed power |Y (i,m)|2 over

the first few frames. Formally, we derive �̃2
naive

(i,m) by:

�̃2
naive

(i,m) =

1

2L

"
X

i<L

|Y (i,m)|2 +
X

i>T�L+1

|Y (i,m)|2
#

where L will depend on the available data. In practice, a choice of L from 10 to

15 proves to be enough to reliably estimate the noise power. With the current

window length and shift, this corresponds to a non speech segment of length

about 175ms.

As stated above, this method will fail as soon as the noise power fades, rises

or is non-stationary in nature, but the technique provides a good oracle estimate

when the noise is fairly stationary and a few non-speech frames are available at

both ends of the recording.

2.1.4 Adaptive Mask Estimation via Minimum Statistics Noise Power

Tracking

In this section, we propose a strategy to overcome the rather limiting stationarity

assumptions of the noise estimate introduced in Section 2.1.3.

To this end, we use the Minimum Statistics-based (MS) noise power spec-

tral density estimator from [34]. The MS algorithm tracks the minima values of a
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smoothed power estimate of the noisy signal. By compensating the inherent bias,

it derives an estimate of the noise PSD. Even though many subsequent authors

have claimed to obtain more reliable noise estimators, a recent study ([35]) has

shown that [34] still stands among the best algorithms across many noise condi-

tions, especially in low-SNR and when facing varying noise. An implementation

for this algorithm is available through the Voicebox Toolkit for Matlab [36] and

allows a smooth integration within our framework via a routine called estnoisem.

This function takes the un-warped spectrum |Y (i, k)|2 as an input, and out-

puts an estimate �̃2
MS

(i, k) of the noise power in the linear frequency domain.

Because this estimate has a tendency to produce outliers at the beginning of the

speech segment as well as sharp transitions in the estimated noise magnitude

across time, we found it useful to smooth the output by applying a median filter

of length 50 frames, equivalent to approximately 0.5 sec. The resulting noise

power estimate �̃2
MS,med

(i, k) has the desired time-smoothness of �2
N

(i, k) and

automatically tracks varying powers of noise.

In order to obtain a noise estimate in the Mel-domain, we apply the Mel-

filterbank to the previous estimate to obtain �̃2
MS

(i,m). After comparison with

the oracle noise estimate derived in Section 2.1.3 for stationary noises, we noticed

that the noise power was over-estimated by a factor of 2.5 to 4 on average.

This bias is compensated for by multiplying the latter estimate by a factor of

0.36 before computing the SNR. We believe that this bias originates from the

differences between the naive estimation that is performed directly in the Mel-

domain and the current estimation that is performed in the linear domain before

being filtered into the Mel-domain. This procedure is necessary though, as the

algorithm from [34] is not designed to operate in the Mel-domain directly.

After this final bias correction, we obtain a noise estimate that we will refer
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Figure 2.5: Flowcharts for the proposed SMF
pow

and SMF
log

algorithms

to as �̃2
MS, unbiased

(i,m). This estimate has the double advantage that it does not

require an oracle knowledge of speech presence and can adapt to varying powers

of noise, as opposed to �̃2
naive

(i,m) that was derived in Section 2.1.3.

2.2 Spectral Imputation

This section introduces two Spectral Masking and Flooring (SMF) imputation

techniques called SMF
pow

and SMF
log

. These techniques extracts information

from the latter soft-mask in order to enhance the observed speech spectrum.

Both techniques use the soft-mask as a set of multiplicative coefficients, but while

SMF
pow

performs enhancement on the power spectrum, SMF
log

is designed to

work on the log-spectrum. Since they rely on similar ideas (spectro-temporal

weighting, dynamic range matching and noise variance cancellation) and only

differ in the specifics of their implementation, the two algorithms will be presented

in parallel. Flowcharts are shown in Figure 2.5.
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2.2.1 Imputation via Spectrum Weighting

In this section, we motivate and describe the idea at the core of our imputation

method: using the soft-mask as a set of multiplicative coefficients to discard the

corrupted parts of the spectrum.

The proposed algorithm is based on the idea that, if the soft mask already

contains some information based on the spectro-temporal correlation of speech,

then the imputation can be made quite easily. Using such a soft mask, the filled-

in values of unreliable bins could originate from a weighted value of the original

unreliable bin. In other words, the neighboring bins to an unreliable one help

decide what proportion of its power should be retained. For instance, suppose a

bin tagged as unreliable has many neighbors tagged as reliable. Then, because

speech is known to be so highly time-frequency correlated, we might consider

using a fraction of the noisy value of that bin instead of setting it to zero or to

some interpolated value from the neighboring reliable bins, as done in traditional

imputation techniques introduced in Chapter 1 [37, 30, 13]. With this in mind,

we propose the two following algorithms for imputation:

• Weighting the observed spectral power |Y (i,m)|2 by its corresponding soft

decision mask M final

i,m

. We refer to this algorithm as SMF
pow

.

• Weighting the log spectral power Y
log

(i,m) = log

�
|Y (i,m)|2

�
by the soft

decision mask M final

i,m

. We refer to this algorithm as SMF
log

.

While it is not included in Figure 2.5, SMF
pow

and SMF
log

include a normal-

ization step at the utterance level. For SMF
log

, the utterance is normalized by

the maximum of the time waveform. For the SMF
pow

setup, the normalization

follows the normalization from the PNCC framework [9]: after Gammatone fil-

tering, the spectral power energy is computed on a frame basis, and the whole
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spectrogram is normalized by 10

15 times the 95

th percentile of this frame-by-

frame power. Both of those normalization allow the front-end parameters to be

independent of the frame energy.

As can be seen from Figure 2.5, the SMF
pow

system is designed with a Gam-

matone filterbank and a 1/15 power compression while SMF
log

is used in com-

bination with a Mel-filterbank and a logarithmic compression. This choice is

primarily motivated by the fact that we wanted to try our enhancement tech-

nique both in the case of the MFCC framework — which use the Mel-filterbank

and log-compression — and with the recently introduced PNCC framework [9],

which shows good performance using a Gammatone filterbank combined with

root compression. Out of the four possible combinations, we present the two that

have shown to perform best in our evaluations, namely:

• SMF
log

with the MFCC framework: Mel filters and log

• SMF
pow

with the PNCC framework: Gammatone filters and (·)1/15

Finally, since weighting the power spectrum and the log-spectrum is such a differ-

ent operation in nature, SMF
pow

and SMF
log

might have very different optimal

soft-mask parameters ↵ and �.

2.2.2 Dynamic Range Matching

The proposed approach of discarding the likely non-speech components of the

spectrum efficiently removes most of the corruptive noise energy. Yet, both meth-

ods create artifacts in the non-speech regions of clean and high-SNR spectra. This

section describes the techniques that were used in both SMF
pow

and SMF
log

to

obtain matching dynamic ranges across SNRs.

In the case of SMF
log

, the log-spectrum of clean speech after mask weighting
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exhibits a higher dynamic range than the enhanced log-spectrum of noisy speech.

This is primarily due to the components with negative values, representative of

low-energy speech and silence. Such negative values are seldom observed in the

enhanced log-spectrum because the additive noise makes the observed signal in-

herently higher in energy. Moreover, the few remaining low energy regions will

likely be tagged as unreliable and weighted with coefficients close to 0. Since

speech recognition statistical models are generally trained using clean speech

segments, this dynamic range mismatch between clean-speech and noisy-speech

spectra might harm recognition accuracy. To alleviate this issue, we use a tech-

nique called Log-Spectral Flooring (LS-FLR), that was recently introduced in [13]

to provide a lower bound on the reconstructed spectral energy of unreliable bins.

In LS-FLR, we compute the liftered log-spectrum and set a flooring threshold,

empirically optimized at 0dB. Formally, the liftered log-spectrum is obtained by:

eY
log

= C�1L
cep

⌦ C
h
M final

i,m

⌦ Y
log

i

where C is the discrete Cosine transform operator , L
cep

is the cepstral lifter and

⌦ represent the element-by-element multiplication for vectors or matrices. The

liftering step, equivalent to applying a band-pass filter in the frequency domain,

tends to enhance the contrasts between the spectral peaks and valleys. Then,

the flooring step builds upon the common belief that spectral valleys carry little

discriminative energy while potentially resulting in unbounded values for eY
log

. As

suggested in [13], we define the floored liftered spectrum as

eY fl

log

= max(�fl
log

, eY
log

)

where the flooring threshold �fl
log

is empirically set to 0dB. The latter processing

helps matching the dynamic range of clean-speech and noisy-speech log-spectra

while relying on the fact that discriminative information for ASR is more likely
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to be found in the peaks of the spectrum than in the valleys. Indeed, a clean-

speech silence whose power was �3dB after masking will be floored up to 0 while

a noisy-speech silence with high initial energy will be reduced down to 0 by the

mask. Values of eY fl

log

lying significantly above 0 are expected to originate from

speech energy only, which thereby makes the pattern matching easier for the

recognition engine.

In the case of SMF
pow

, similar problems are encountered. After applying

the (·)1/15 operator on the weighted power spectrum, we obtain the compressed

weighted power spectrum

Y
pow

(i,m) =

⇣
M final

i,m

⌦ Y
⌘1/15

.

This (·)1/15 operator has the neat property that it maps the bin values to a

minimum of 0dB, eliminating the inconvenience of very low energy bins that

become highly negative after taking the log. Yet, a mismatch remains between

clean-speech and noisy-speech spectra in low-amplitude regions. An additional

problem is that the (·)1/15 operator exhibits a sharp transition from 0 to 1 for bins

with very low energy. Such a transition will create high-amplitude fluctuations

in the low-energy parts of the spectrum and therefore, should be avoided. A pro-

gressive flooring technique called Small Power Boosting, that aims at solving this

dynamic range mismatch was first introduced in [38]. Inspired by this technique,

we define:

Y fl

pow

(i,m) =

⇥
(Y

pow

(i,m))

a

+

�
�fl
pow

�
a

⇤1/a

where �fl
pow

is the power floor and a is a parameter representing the smoothness of

the mapping. This mapping function is almost constant for powers significantly

below �fl
pow

and exhibits a linear behavior at powers significantly above �fl
pow

. By

setting the appropriate values for �fl
pow

and a, this soft-flooring helps solve the

two dynamic range issues outlined above.
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2.2.3 Noise Variance Cancellation

According to the additive noise model presented in Section 2.1.1, the noise power

equally corrupts the high and low energy parts of the speech power spectrum

|S(i,m)|2. The proposed spectral weighting techniques aimed at reducing the

noise effect in the unreliable bins of the spectrum, by doing some noise cancel-

lation. However, the high energy parts have also been corrupted, but since the

mask weights at these reliable bins was hopefully all 1’s, such distortions have not

been accounted for in the above. In order to prevent from a spectral mismatch

of clean-speech and noisy-speech spectral peaks, this section introduces a simple

additional smoothing step.

In the case of SMF
log

, we perform smoothing with a two-dimensional low-pass

Gaussian filter of size 5 × 5 and standard deviation of sv = 0.7 bins. This rather

sharp filter helps remove the remaining noise variability on the parts of the log-

spectrum that have been preserved by the mask multiplication step. As can be

seen in Figure 2.5b, the smoothing is done twice: once right after multiplication

by the mask, to avoid this variance to be enhanced by the liftering step and once

right after the flooring, to smooth the liftered spectrum. In the case of SMF
pow

,

we perform smoothing on Y fl

pow

using a similar filter.

2.3 Summary

In this chapter, we introduced a SNR-based soft-mask estimation technique along

with two spectral imputation algorithms, SMF
log

and SMF
pow

, designed to at-

tenuate the distortions caused by additive background noise, with applications

to noise robust ASR.

The proposed soft-mask estimation technique is based on modeling the dis-
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tortions of the noise as additive in the power spectral domain. In order to per-

form noise estimation, the minimum statistics-based algorithm from [34] is used

for its robustness against non-stationary noise conditions, when compared to a

naive noise estimator based on power averaging. This noise estimate provides a

SNR-based soft-mask that is enhanced by two-dimensional median filtering and

smoothing to cancel the noise fluctuations.

The proposed SMF
pow

algorithm uses this mask as a set of multiplicative

coefficients on the power spectrum, while the proposed SMF
log

algorithm pro-

ceeds with mask weighting using the log-spectrum. Both algorithms implement

an additional flooring step to better match the dynamic ranges of clean and

noisy spectra. Lastly, the SMF
log

algorithm is enhanced with power smoothing

to cancel the remaining noise variance on the spectral peaks. The influence of

mask weighting using the power or the log-power domain on speech recognition

accuracy will be discussed in Chapter 3.
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CHAPTER 3

Experimental Validation

In this chapter, the proposed approaches to feature extraction are evaluated in

two different Automatic Speech Recognition (ASR) setups. In the first part,

we introduce the two selected databases along with the back-end configuration

for each setup. In the second part of this chapter, we present and discuss our

experimental findings, and compare the performances of the proposed technique

versus state-of-art algorithms.

3.1 Data and Experimental Setup

In this section, two speech recognition tasks are presented for evaluation of the

SMF
log

and SMF
pow

techniques. We describe the databases, noise conditions

and back-end configurations for each case.

3.1.1 Small Vocabulary ASR

The first task that has been selected is the Aurora-2 noisy digit recognition task

[39]. Since its release in 2000, this database has been widely reported in the ASR

literature when evaluating noise robust algorithms.

The Aurora-2 database consists of utterances of connected spoken digits arti-

ficially corrupted by background noise. The noise samples have been recorded in
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the following real-life environments: subway, babble, car, exhibition hall, restau-

rant, street, airport and train station. All speech signals have been downsampled

to 8kHz, and pre-filtered to conform to the standardized IUT-T G.712 frequency

characteristics for telephone speech, with a passband between 300Hz and 3400Hz.

The training set consists of 8440 utterances containing recordings from 55

male and 55 female adult speakers. These noise-free utterances are used to train

the ASR statistical models. The original test set consists of 4 subsets of 1001

utterances containing recordings from 52 male and 52 female speakers not seen

in the training set. For each type of noise, one of these subsets is corrupted with

noise added at 5 different SNR conditions (20dB, 15dB, 10dB, 5dB, 0dB). Since

there are 8 noise types, we use a total of 8⇥ 5⇥ 1001 utterances for testing.

The recognition engine is implemented using the Hidden Markov Models

Toolkit (HTK) software package v3.4.1 [40]. The Aurora-2 scripts are used to

prepare speech signals for processing as well as to train and test the ASR sys-

tem. The HMM-based recognizer is configured with 11 single-word models: the

digits “oh” and “zero” to “nine”, plus two silence models “sil” and “sp”. Each digit

is modeled with a 16-states HMM with a 3-mixture Gaussian Mixture Model

(GMM) per state. The silence “sil” models the pauses at the beginning and the

end of an utterance and is modeled by a 3-state HMM with 6 Gaussian Mixtures

per state. The silence model “sp” stands for “short-pause” and models the short

silences between words. It is modeled by a 1-state HMM tied to the center state

of the “sil” HMM.

Finally, the language model used in this experiment is shown in Figure 3.1. It

constrains the ASR output to be an arbitrary long sequence of digits, and makes

it possible to have a “sil” at the beginning and the end, and a “sp” after each

digit.
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short pauses in-between words. The possible state transitions for each type of 

HMM are shown in Figure 2.5. 

Lastly, the language model used in the testing phase is formulated in a 

way which enables the test utterance to be modeled by any sequence of digits, 

with the flexibility of inserting a “sil” at the start and end of the utterance, and 

inserting a “sp” between digits. The structure of the language model is 

illustrated in Figure 2.6. 

 

Figure 2.6 Language Model used during ASR  Figure 3.1: Language Model used for the Aurora-2 experiment. Figure from [1]

3.1.2 Large Vocabulary ASR

The second task that has been selected is the large vocabulary continuous speech

recognition (LVCSR) Aurora-4 task1, as described in [2]. Because it is a large

vocabulary database with various noise conditions, experiments on Aurora-4 have

been increasingly reported in the noise robust ASR literature in the last few years.

The Aurora-4 database was created as part of an effort of the Aurora Working

Group from the European Telecommunications Standards Institute (ETSI) to

evaluate the robustness of different front-ends for LVCSR in noisy conditions. It

is constructed as a subset of the DARPA Wall Street Journal (WSJ0) Corpus and

features a 5000-word vocabulary for both the training and the testing set. Speech

signals used for these experiments were recorded by a head-mounted Sennheiser

HMD-414 close-talking microphone providing a good quality signal. A second set
1
While the Aurora-4 task is sometimes refered to as Large-Vocabulary in the ASR litterature,

5000 words is at the lower end of LVCSR as some tasks use vocabularies with more than 60,000

words.
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of recordings from lower-quality microphones also exist for this database but was

not used in this study since this set introduces distortions that do not fall into

our additive noise model. Speech signals are down-sampled to 8kHz and noise

is digitally added at SNRs from 5 to 15dB. The noise types are similar to those

used in the Aurora-2 database, with 6 different environments: street traffic, train

station, car, babble, restaurant and airport.

The training set contains 7,138 clean utterances from 83 speakers, totaling

14 hours of speech data. These recordings are obtained from speakers reading

articles from the Wall Street Journal, and fall within a vocabulary of 5000 words.

The clean test set contains 330 utterances from 8 speakers, recorded using the

same microphone as in training, and without any Out of Vocabulary (OOV)

words. Using this clean set, six noisy test sets were created by separately adding

each of the 6 noise types at randomly chosen SNRs between 5 and 15 dB. The

total number of utterances used for testing is thus 7⇥ 330, with an average SNR

level of 10dB and an equal representation for each noise type.

The recognition engine is implemented using HTK [40], as in the case of

Aurora-2. The scripts from [41] for the WSJ0 database were used for training

and testing. The HMM-based recognizer is configured using context-dependent

word-internal triphone models. Each triphone is modeled by a 3-state HMM as

shown in Fig. 3.2 (a). As in Aurora-2, potentially long silences are modeled by the

HMM “sil” whereas short pauses accounting for inter-words silences are modeled

by the HMM “sp”, as shown in Fig. 3.2 (b) and (c). Each state of these HMMs

initially contains a single mixture GMM, that is increased to up to 16 mixtures

during training. The pronunciations for each of the words were obtained using

the publicly available CMU dictionary [42]. Training of the triphone models was

performed as follows:
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To adjust to varying channel and speaker conditions, cepstral mean subtraction [31] was
performed on the 12 cepstral features with the mean being computed and subtracted separately for
each utterance. Other normalization techniques, such as vocal tract length normalization [32] and
variance normalization [33], were not used in this study even though they are supported in our
prototype system. Further, adaptation techniques, such as Maximum Likelihood Linear
Regression (MLLR) [34] and Linear Discriminant Analysis (LDA) [35], were not be employed.

Using the feature data, we trained a set of context-dependent cross-word triphone models. Each
triphone model was a 3-state left-to-right model with self-loops with the exception of two models
as shown in Figure 5. The silence model, sil, has a forward and backward skip transition to
account for long stretches of silence containing transitory noises. The short, interword silence
model, sp, contains a forward skip transition that allows it to consume no data when there is no
silence between consecutive words. Each state in the models contains a Gaussian mixture model
where the number of mixtures is initially set to one and is trained up to sixteen mixtures.

The triphone models were trained using a standard Baum-Welch Expectation Maximization (EM)
training algorithm. A typical training schedule we use is summarized in Table 3. However, for
baseline system, we changed the force alignment step. Instead of force-aligning the word
transcription on monophone models to get the monophone transcriptions, we produced a
cross-word triphone transcriptions by aligning the word-transcription to the cross-word triphone
models that were previously generated from the best performing system tuned on the Eval set.
These aligned triphone transcriptions were then converted to monophone transcriptions by

Figure 5. Typical HMM topologies used for acoustic modeling: (a) typical triphone, (b) short pause, and
(c) silence. The shaded states denote the start and stop states for each model.

S0 S1 S2 S3 S4 S0 S1 S2 S3 S4S0 S1 S2

(a) (b) (c)

Figure 4. Each temporal derivative is computed using a five frame window (at 10 msec per frame). Hence,
the second derivative computation, which requires five frames of first derivative data, involves data
extending over nine frames of the input signal.

x∂ dt⁄

x2∂ dt2⁄ x2∂ dt2⁄

delta:

delta-delta:

Figure 3.2: HMM models used for acoustic modeling for the Aurora-4 task: (a) typical

triphone, (b) short pause, and (c) silence. The shaded states denote the start and stop

states for each model. Figure from [2]

1. Learn flat start monophones with single mixture Gaussians using the Baum-

Welch reestimation algorithm. The Gaussian means and variances are ini-

tially set to the average mean and variance over a subset of training data.

2. Use the above models and the Viterbi algorithm to force-align the phone-

level transcriptions to the acoustic data.

3. Learn the monophones on the training set with aligned labels using the

Baum-Welch algorithm.

4. Combine the monophone models into word-internal triphone models. Rees-

timate their parameters using the Baum-Welch algorithm.

5. Tie the states of some triphones using decision tree clustering to alleviate

the lack of training data and improve the reliability of the models. Tied

states share the same Gaussian mixtures parameters.

6. Progressively increase the number of mixtures from 1 to 2, 4, 8 and 16 by

splitting existing mixtures at each step, and reestimating their parameters

with the Baum-Welch algorithm.
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Finally, we use the WSJ standard 5K non-verbalized closed bigram Language

Model (LM). A bigram language model provides the probabilities of occurrence

for each triphone conditioned on all pairs of past triphones. The insertion penalty,

that limits short word insertions in place of noise, is set to -4 while the LM scale

factor, that balances the importance of the LM over the acoustic models, is set

to 15.

3.2 Results and Discussion

In this section, we present and discuss the evaluation results of the selected ASR

tasks using the front-end algorithms SMF
pow

and SMF
log

proposed in Chapter 2.

In a first part, we present the setups that gave the best recognition results on each

task. In the subsequent parts, we discuss the influence of various parameters in

recognition performance. Lastly, we compare the performance and the complexity

of the proposed method to state-of-the-art noise robust front-end algorithms.

3.2.1 Main Results on Aurora-2

In this subsection, we present the performances for SMF
pow

and SMF
log

on the

Aurora-2 task and discuss the contribution of the different steps to the overall

improvement in accuracy over the baselines. We will present the results as we

obtained them chronologically, namely SMF
log

and then SMF
pow

.

The SMF
log

front-end was first evaluated on the Aurora-2 task, with the

parameters mentioned in Chapter 2: ↵ = 2, � = 4 dB and �fl
log

= 0 dB. Table

3.1 shows the accuracy on the Aurora-2 task for SMF
log

under the following

configurations:

• Mel-Filtered Cepstral Coefficients (MFCC baseline)
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SNR (dB) 20 15 10 5 0 Avg.

MFCC 97.6 93.6 78.7 45.8 11.9 65.5

SMF
log

(no Masking, Smoothing) 97.5 94.7 86.2 64.8 29.5 74.5

SMF
log

(no Flooring) 96.9 93.7 86.6 71.0 43.4 78.3

SMF
log

(no Masking) 97.6 94.7 86.6 66.7 33.7 75.8

SMF
log

98.4 97.1 93.7 83.1 58.6 86.2

Table 3.1: Percent Word-Accuracies per SNR on Aurora-2 for the SMF
log

algorithm

• SMF
log

with no Masking and Smoothing (MFCC + LS-FLR)

• SMF
log

with no Flooring (MFCC + Masking + Liftering + Smoothing)

• SMF
log

with no Masking (MFCC + LS-FLR + Smoothing)

• SMF
log

as in Chapter 2 (MFCC + Masking + LS-FLR + Smoothing)

Improvements in accuracy with the SMF
log

front-end are observed at all SNRs

over the non-robust MFCC baseline. It is also interesting to note the contribu-

tions of various components of the proposed algorithm to this gain in perfor-

mance. Comparison between the last two rows show that the masking step alone

accounts for about 50% of the improvements. The prominent role of this step was

expected as masking removes most of the noise distortions. Comparison between

rows 3 and 5 show the essential role of the flooring step, as a tool to adjust the

spectrum’s dynamic range that accounts for about 40% of the gain. Finally, the

difference in accuracy between rows 2 and 4 shows that the smoothing step plays

a small but significant role in improving the accuracy, by about 1.3% on average.

The SMF
pow

front-end technique was also evaluated on the Aurora-2 setup,

with the following parameters: ↵ = 0.5, � = 6 dB, �fl
log

= 4 and a = 5. Note
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SNR (dB) 20 15 10 5 0 Avg.

MFCC 97.6 93.6 78.7 45.8 11.9 65.5

SMF
pow

(no Masking/Flooring) 98.0 95.6 87.9 66.9 33.3 76.3

SMF
pow

96.9 92.2 82.5 64.5 37.6 74.7

Table 3.2: Percent Word-Accuracies per SNR on Aurora-2 for the SMF
pow

algorithm

that these parameters were optimized for the large-vocabulary Aurora-4 task, but

results are also shown on the Aurora-2 task for consistency. Word-Accuracies are

shown in Table 3.2 for the following configurations:

• MFCC baseline

• SMF
pow

with no masking and flooring, equivalent to PNCC without Power

Bias Subtraction (PBS). This serves as a second baseline, more robust as

MFCC, that SMF
pow

should improve on.

• SMF
pow

as in Chapter 2

Surprisingly, the proposed setup SMF
pow

performs worse than the un-enhanced

baseline shown in the second row. Yet, a more careful analysis shows that the

two algorithms have different error patterns. Table 3.3 details the performances

of both algorithms under the following two error measures:

• The Word-Accuracy (%) accounts for all three types of errors : Insertion,

Deletion and Substitution. It is defined by:

Acc =
#Words � (#Del + #Sub + #Ins)

#Words

• The Word-Correct (%) does not take into account the insertions. It it is
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Noise type Sub. Bab. Car Exh. Rest. Str. Airp. Train Avg.

Word-Accuracy (%)

SMF
pow

no

Mask/Floor
68.5 65.3 67.2 60.4 64.5 69 71.2 69.3 66.9

SMF
pow

65.1 53.6 80.0 58.8 52.0 68.0 65.3 73.3 64.5

Word-Correct (%)

SMF
pow

no

Mask/Floor
69.1 70.3 67.4 62.6 72.1 70.8 74.9 72.7 70

SMF
pow

78.4 74.5 84.2 71.4 72.2 79.3 80.7 83.1 78.0

Table 3.3: Percent Word-Accuracies and Word-Correct at 5dB SNR, on Aurora-2

defined by:

Cor =
#Words � (#Del + #Sub)

#Words

From Table 3.3, we can see that SMF
pow

has a systematically higher Word-

Correct than the baseline without masking or flooring. This means that masking

and flooring can correct many deletion and substitution errors but also introduce

many insertions, mostly from the short digits ’eight’ and ’oh’. These insertion

errors greatly impact the overall Word-Accuracy previously shown in Tables 3.2

and 3.3. Such errors were not observed in the experiments with SMF
log

, for which

masking and flooring were shown to have a positive impact on Word-Accuracy.

Since masking on the spectrum and on the log-spectrum are different operations,

our guess is that masking using the log-spectrum removed more noise components

that might not have been removed by simply masking using the power spectrum.

This in turn could result in more insertions for SMF
pow

, due to the statistical

engine misclassifying noise chunks as short digits. We also think that these errors
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Noise Type Clean Airp. Babble Car Rest. Street Train Avg.

MFCC 90.2 55.5 49.4 72.7 51.4 40.8 40.9 51.8

SMF
log

81.0 54.8 58.9 72.41 56.2 58.7 59.3 60.0

SMF
pow

no

Mask/Floor
88.4 56.8 56.5 78.5 55.6 54.5 52.9 59.1

SMF
pow

no

Masking
88.9 56.9 56.6 81.2 54.8 56.2 54.7 60.1

SMF
pow

no

Flooring
88.9 56.9 60.8 82.6 55.6 61.1 63.0 63.3

SMF
pow

88.4 58.1 61.3 84.4 56.7 64.4 65.1 65.0

Table 3.4: Percent Word-Accuracies for SMF
log

and SMF
pow

on Aurora-4

are amplified by the rather weak language model used on the Aurora-2 task. As

we will show in the next subsection, such insertion errors using SMF
pow

are no

longer prominent on the Aurora-4 task, where we use a stronger bigram language

model.

3.2.2 Main Results on Aurora-4

In this subsection, we present the performances for SMF
pow

and SMF
log

on the

Aurora-4 task and discuss the contribution of the different steps to the overall

improvement in accuracy over the baselines. For consistency, these experiments

have been run with the same parameters previously used on the Aurora-2 setup.

Results are shown in Table 3.4.

First, a few comments can be made on the SMF
log

versus the MFCC setup.

On clean data, the accuracy of the proposed SMF
log

technique falls 10% below
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the accuracy of the baseline MFCC. This large accuracy loss was not previously

observed on the limited vocabulary Aurora-2 task. We believe that denoising by

masking on the log-spectrum, combined with an imperfect estimated mask and

optimizing the parameters on a small vocabulary setup lead to a rather strong

noise suppression that might have eroded low energy speech components, even in

clean conditions where the masking effect should have been rather weak. While

this low-energy speech information may not be needed to discriminate 11 digits,

it is essential when dealing with a large vocabulary task like in Aurora-4, and

explains why such an accuracy drop is observed. On noisy utterances however,

the proposed SMF
log

technique leads to an 8% average improvement over MFCC.

Such improvements are obtained despite the observed bad performance on clean

speech, and confirms that the proposed masking and flooring technique is indeed

helpful in attenuating the noise distortions.

The SMF
pow

method, in contrast to SMF
log

, proposes a more forgiving ap-

proach to noise suppression that will hopefully improve the performances in both

clean and noise conditions. The following approaches are evaluated, with gradual

enhancements:

• SMF
pow

without Masking and Flooring, equivalent to PNCC without Power

Bias Subtraction (PBS). This provides a non-robust baseline similar in

essence to MFCC.

• SMF
pow

without Masking, equivalent to PNCC no PBS + Flooring.

• SMF
pow

without Flooring, equivalent to PNCC no PBS + Masking.

• SMF
pow

with all the steps presented in Chapter 2, equivalent to PNCC no

PBS + Masking + Flooring.
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First, we observe that the two non-robust baselines, MFCC and SMF
pow

without

masking and flooring (equivalent to PNCC without PBS), have similar perfor-

mance when tested on clean data, with recognition accuracy of 90.2% and 88.4%

respectively. In noise though, SMF
pow

without masking and flooring outper-

forms MFCC by more than 7% on average across noise types. This motivates our

choice to base SMF
pow

on the PNCC framework (Gammatone filterbank, power

compression) instead of the MFCC framework (Mel filterbank, log compression)

which seems less noise robust in the present large vocabulary scenario. Further

addition of masking and flooring on top of the PNCC no PBS baseline improves

the accuracy in noise by 4% and 1% respectively, and in clean by 0.5% for both

cases. Lastly, combining masking with flooring lead to a total absolute improve-

ment of 6% in noise with no change in clean, well above the performances of

SMF
log

. As was suggested in Section 3.2.1, we believe that this performance gap

is due to a lighter noise suppression coupled with a stronger language model that

avoids errors due to short insertions.

3.2.3 Influence of the Noise Estimation Technique

In all previously reported results, we used the adaptive noise estimate from [34]

to compute our SNR-based mask. In Chapter 2, we also presented a more naive

technique for noise estimation based on a channel-wise time-averaging of the

noise power over a few frames, at the beginning and the end of the utterance.

In this subsection, we present experiments to assess the effect on the recognition

accuracy when choosing either method.

Table 3.5 presents the performances obtained with the SMF
log

algorithm

on the Aurora-2 task, when noise estimation is performed in the naive fashion

and with the adaptive estimate from [34], as previously presented in Section
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Noise type

Sub. Babble Car Exhib. Rest. Street Airp. Train Avg.

SMF
log

(no Masking)

77.7 72.7 78.1 72.0 72.1 78.0 78.1 77.9 75.8

SMF
log

(naive N. Est.)

83.7 84.8 88.4 86.6 82.3 83.0 87.1 87.1 85.4

SMF
log

83.7 84.3 89.1 87.2 82.9 87.4 87.6 87.3 86.2

Table 3.5: Percent Word-Accuracies for SMF
log

on Aurora-2, with various noise esti-

mation techniques

3.2.1. What we observe is that the adaptive noise estimate, besides making no

hypothesis about silence in the first and last few frames as well as about the noise

stationarity, actually performs better on average than the naive noise estimate.

When looking at the improvements broken up by noise type, we notice that

the absolute improvements lie within 0 to 1% for all noises, except for the street

noise where an absolute 4.4% improvement in achieved. The street noise has been

recorded on a busy street, and is particularly non-stationary. As shown on Figure

3.3, the short-time power of street noise varies sharply, with swings of more than

20dB across intervals of a few seconds. In these environmental conditions, the

stationarity hypothesis of the naive noise estimator is violated and obtaining a

time-varying estimate becomes essential to properly compute the mask, and thus

remove the right amount of noise from the signal. Such an estimate is used in

the proposed SMF
log

algorithm, with a beneficial effect on recognition accuracy.

3.2.4 Influence of Mask Weighting on the Training Data

For both SMF
log

and SMF
pow

, no difference in processing is made when handling

clean and noisy data. While masking makes sense when dealing with noisy data,
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Figure 3.3: The short-time spectral power of pure street noise is highly non-stationary

it is not clear whether doing so when dealing with clean data would not distort

the original spectrum. This is a concern since the noise estimated on a clean

utterance might very well be non-zero due to the imperfect behavior of [34] at

very high SNRs. An erroneous noise estimate could in turn lead to discarding

some important parts of the clean speech spectrum, which would hurt recognition

accuracy. Sections 3.2.1 and 3.2.2 already showed that no such degradation was

observed for SMF
log

on Aurora-2 and SMF
pow

on Aurora-4, the best performing

setups. Yet, one might wonder what would happen if no such masking was

performed on data labelled as clean, in order to preserve the spectral information

of speech. The choice to apply masking or not depending on the noise conditions

is not so realistic on the testing utterances, since the environment is assumed to

be unknown. The training utterances, on the other hand, are recorded in clean

conditions and lends themselves well to bypassing the Mask weighting step. This

subsection presents a set of experiments where no masking is performed on the

data used for training, and compares the results to the original setup where no

such clean/noisy distinction is made.

Table 3.6 shows results obtained on the Aurora-2 task for the SMF
log

al-
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Noise type Sub. Bab. Car Exhib. Rest. Str. Airp. Train Avg.

Training and Testing with Masking

SMF
log

(naive N. Est.)
83.7 84.8 88.4 86.6 82.3 83.0 87.1 87.1 85.4

SMF
log

83.7 84.3 89.1 87.2 82.9 87.4 87.6 87.3 86.2

Training without Masking and Testing with Masking

SMF
log

(naive N. Est.)
84.9 86.3 88.3 86.7 84.8 84.5 87.9 87.5 86.4

SMF
log

83.5 84.3 88.9 86.8 82.5 87.2 87.4 87.1 86.0

Table 3.6: Influence of training the clean models with and without masking, on the

Aurora-2 task. Percent Word-Accuracies are shown, averaged over 5-15 dB SNR

gorithm, both with the adaptive and the naive noise estimates. In the case of

SMF
log

with the adaptive estimate, no significant difference in accuracy is ob-

served both across noise types and on average. This demonstrates that the adap-

tive noise estimation is good enough that using masking on the clean training

utterances is not harmful to building discriminative word models. For SMF
log

with the naive estimation method, the accuracy when no masking is performed

for training is 1% higher on average than with masking. This trend is stronger

for noises such as street or restaurant, confirming our doubts in the potential of

the naive averaging technique to capture information from non-stationary envi-

ronments.

Table 3.7 shows results obtained on the Aurora-4 task for the SMF
log

and

SMF
pow

algorithms, both using the adaptive noise estimator. We observe a clear

trend on both algorithms and across all noise types: training and testing with

masking leads to improved results over a mismatched scenario where no masking
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Noise type Clean Airp. Babble Car Rest. Street Train Avg.

Training and Testing with Masking

SMF
log

81.0 54.8 58.9 72.41 56.2 58.7 59.3 60.0

SMF
pow

88.4 58.1 61.3 84.4 56.7 64.4 65.1 65.0

Training without Masking and Testing with Masking

SMF
log

80.3 51.6 54.2 66.8 51.9 51.4 52.8 54.8

SMF
pow

87.6 54.2 58.7 82.1 53.1 64.2 64.6 62.8

Table 3.7: Influence of training the clean models with and without masking, on the

Aurora-4 task. Percent Word-Accuracies are shown, averaged over 5-15 dB SNR

is performed on the training data. In the clean testing case, the gain is modest,

but the reasons for this behavior are straightforward since doing a similar pro-

cessing on both data will increase the feature similarity and thus the recognition

accuracy. In the noisy case, we observe an absolute difference in accuracy of

6% for SMF
log

and 2% for SMF
pow

, higher than the previous 0.8% difference

in clean for both SMF
log

and SMF
pow

, and than the 0.2% average difference

in noise observed for SMF
log

on Aurora-2 (Table 3.6). While the amplitude of

these differences are most likely only artifacts of the masking technique and the

recognition task, it becomes clear that applying the same processing on clean and

noisy data consistently provides a gain in accuracy for the two proposed tech-

niques, when using the adaptive noise estimation method. This is good news for

another reason, because it means that we could use a single algorithm to deal

with a mismatched and a multi-condition setup, where noisy utterances are also

available in the training corpus.
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Noise Type Clean Airp. Babble Car Rest. Street Train Avg.

Word-Accuracy (%) using SMF
pow

with flooring exponent a = 5

�fl
pow

= 2 89.3 57.2 60.8 83.4 55.7 61.3 62.1 63.4

�fl
pow

= 3 88.8 57.3 61.1 83.8 56.8 62.8 63.8 64.3

�fl
pow

= 4 88.4 58.1 61.3 84.4 56.7 64.4 65.1 65.0

�fl
pow

= 5 87.4 57.3 61.7 83.1 56.0 64.1 65.5 64.6

�fl
pow

= 6 86.4 57.2 61.0 82.1 56.5 64.9 65.7 64.6

Table 3.8: Influence of the Power Spectrum flooring parameter �fl
pow

for SMF
pow

, on

the Aurora-4 task. Percent Word-Accuracies are shown, averaged over 5-15 dB SNR

3.2.5 Influence of the Flooring Parameters

This subsection explores the effect of various flooring parameters. Experiments

will be presented for the SMF
pow

algorithm on the Aurora-4 task, where the

flooring is done using the soft-flooring function introduced in Section 2.2.2 as:

Y fl

pow

(i,m) =

⇥
(Y

pow

(i,m))

a

+

�
�fl
pow

�
a

⇤1/a

where �fl
pow

is the power floor and a is an exponent that sets the smoothness of

the mapping.

Table 3.8 shows the effect of increasing and decreasing the power floor on

recognition accuracy, with a fixed flooring exponent set at a = 5. As expected,

setting the floor too low (�fl
pow

= 2) decreases the word-accuracy as it increases the

dynamic range of the spectral powers, thereby introducing more variability into

the spectral valleys, which are known to carry little discriminative information.

On the other hand, increasing the power floor too much (�fl
pow

= 6) tends to

erase discriminative low-energy speech information and impact the recognition

accuracy. A good middle ground for setting this parameter is found at �fl
pow

= 4.
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Noise Type Clean Airp. Babble Car Rest. Street Train Avg.

Word-Accuracy (%) using SMF
pow

with power floor �fl
pow

= 4

a = 3 88.8 58.2 61.9 84.0 56.6 64.0 64.4 64.8

a = 4 88.2 58.0 61.5 83.6 56.5 64.7 65.3 64.9

a = 5 88.4 58.1 61.3 84.4 56.7 64.4 65.1 65.0

a = 7 88.5 56.6 59.7 83.6 55.5 62.8 63.6 63.6

a = 9 88.2 55.6 58.0 83.5 54.4 62.2 63.7 62.9

Table 3.9: Influence of the Power Spectrum flooring parameter a for SMF
pow

, on the

Aurora-4 task. Percent Word-Accuracies are shown, averaged over 5-15 dB SNR

Table 3.9 shows the effect of increasing and decreasing the flooring exponent

on recognition accuracy, with a fixed power floor set at �fl
pow

= 4. When the ex-

ponent is low and gets close to a = 1, the mapping becomes more linear, weakly

compressing the dynamic range while preserving some of the variability of the

spectral valleys. As a increases, the mapping becomes similar to a hard thresh-

olding of the type Y fl

pow

(i,m) = max(Y
pow

(i,m), �fl
pow

), where all the information

about spectral powers less than �fl
pow

is erased. The optimal tradeoff is found with

an exponent value of a = 5.

3.2.6 Comparison versus State-of-the-art front-ends

As described in Chapter 1, many other algorithms have been previously intro-

duced to perform front-end processing for noise robust speech recognition. In

this subsection, we present a performance comparison of our methods to some of

the state-of-the-art techniques for each task.

Table 3.10 shows a SNR-wise comparison of word-accuracies for the SMF
log
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SNR (dB) 20 15 10 5 0 Avg.

MFCC 97.6 93.6 78.7 45.8 11.9 65.5

SMF
log

98.4 97.1 93.7 83.1 58.6 86.2

MFCC + MVA 97.9 96.1 91.6 81.0 59.2 85.1

PNCC 98.7 97.3 93.3 81.1 53.7 84.8

ETSI-AFE 98.1 96.7 92.8 83.2 59.8 86.1

Table 3.10: Comparison of Percent Word-Accuracies for several state-of-the-art tech-

niques on Aurora-2

technique to algorithms reported as state-of-art on the Aurora-2 database:

• MFCC + Mean Variance ARMA filtering (MVA) as introduced in [8] is a

low-complexity normalization scheme that reduces the variability between

the clean and noisy MFCCs at the cepstrum level.

• Power Normalized Cepstral Coefficients (PNCC) as described in [9], with

the Power Bias Subtraction (PBS) algorithm.

• ETSI-AFE as described in [43] is the current state-of-art for single-channel

noise robust front-end processing on Aurora-2. It performs denoising via a

two-stage Wiener filtering approach.

As we can see from this first set of experiments, the proposed SMF
log

’s perfor-

mances are in par with all the other techniques, at every SNR level. On average

over all SNRs, the proposed technique does slightly better than the best perform-

ing algorithm ETSI-AFE. This validates our approach of masking and flooring to

reduce the variability between features computed on clean and noisy utterances.

An evaluation of the computational cost of these techniques has been per-
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Algorithm Language Running Time

MFCC Matlab 30s

SMF
log

(naive N. Est.) Matlab 40s

SMF
log

(adaptive N. Est.) Matlab 150s

MFCC + MVA Matlab 30s

PNCC Matlab 1200s

ETSI-AFE C 50s

Table 3.11: Running time of various state-of-the-art front-ends, for a feature extraction

task of 1001 utterances from the test set of the Aurora-2 database

formed on 1001 utterances from the testing data. The scripts were evaluated in

the programming language used by the authors, namely Matlab for all the algo-

rithms but ETSI-AFE, which was written in C. Results displayed in Table 3.11

show that the good accuracy of the proposed method is achieved with a reason-

able computational cost (150s), when compared to PNCC (1200s) or ETSI-AFE

(50s in C). Also, we notice that replacing the adaptive noise estimation method

by the naive averaging technique cuts the computational cost of our processing

by a factor of 12, from +120s to only +10s on top of the traditional MFCC

processing. This shows that the proposed masking and flooring techniques are

computationally efficient, and that the biggest load in complexity is introduced

by the external noise estimation algorithm from [34].

Table 3.12 shows the word-accuracy of the SMF
log

and SMF
pow

algorithms

versus the previously introduced PNCC technique, on the Aurora-4 database. On

this task, PNCC proves to perform better on average than the proposed SMF
pow

approach, where we attempted to replace the PBS processing by our conceptually

simpler masking and flooring steps. Yet, the proposed algorithm performs as well
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Noise type Clean Airp. Babble Car Rest. Street Train Avg.

MFCC 90.2 55.5 49.4 72.7 51.4 40.8 40.9 51.8

SMF
log

81.0 54.8 58.9 72.41 56.2 58.7 59.3 60.0

SMF
pow

88.4 58.1 61.3 84.4 56.7 64.4 65.1 65.0

PNCC 88.0 67.2 68.3 83.4 64.3 66.7 66.4 69.4

Table 3.12: Percent Word-Accuracies for SMF
pow

and SMF
log

compared to PNCC

on Aurora-4

as PNCC on 4 out of the 7 test conditions (clean, car, street and train). Only in

the remaining three noise conditions (airport, babble and restaurant) is there a

performance gap. These observations as well as the upper bound using an oracle

mask obtained by [31] suggest that our mask estimation technique is not perfect

for some noise types, and that obtaining a more accurate mask could improve

recognition performance. In this sense, the proposed SMF
pow

technique can be

seen as a successful framework to apply direct masking on the power spectrum,

for noise robust ASR front-end processing.

3.3 Summary

In this Chapter, we introduced two ASR setups for evaluation of the proposed

algorithms: a small-vocabulary connected words recognition task (Aurora-2) and

a large vocabulary continuous speech recognition task (Aurora-4). In both cases,

we presented the characteristics of the speech data and noise conditions, as well

as the back-end configurations with the acoustic and language models.

The experiments showed that the SMF
log

algorithm performs better than

SMF
pow

and other state-of-the-art algorithms like ETSI-AFE or PNCC on the
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Aurora-2 task. We have shown that masking and flooring account both for about

50% of the gain in performance over an un-enhanced baseline. On the Aurora-4

task, we found that the SMF
pow

algorithm performs better than SMF
log

, yet

still worse than the performance of the PNCC technique on three out of six noise

types. As suggested by [31], the present thesis confirms the importance of an

accurate mask estimation to perform direct masking.

On both ASR setups, using a mask computed with the adaptive noise power

estimator from [34] to process clean and noisy speech spectra, both in training

and testing, lead to better results than when using a naive noise estimator.

Lastly, the influence of varying the flooring parameters of the SMF
pow

algo-

rithm was studied, confirming our interpretation of flooring as a tool to match the

dynamic ranges of clean and noisy spectra while discarding the non-discriminative

information carried by spectral valleys.
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CHAPTER 4

Conclusion and Perspectives

In this thesis, we introduce two front-end algorithms for ASR: SMF
log

and

SMF
pow

. These algorithms, presented in Chapter 2, attenuate the distortive

effect of additive background noise by means of mask weighting and dynamic

range matching. In doing so, we further elaborate on previous work on incorpo-

rating direct binary mask weighting to ASR by [31]. That work suggested that

such an approach would only work with an ideal mask and on tasks with a strong

language model. To asses the validity of our approach to mask weighting with an

estimated mask, Chapter 3 presents an evaluation setup that includes ASR tasks

with both a small vocabulary (Aurora-2) and a large vocabulary (Aurora-4). It

was found that while SMF
log

was more adapted to the Aurora-2 task, SMF
pow

performed significantly better on the Aurora-4 task.

First, experiments performed on the Aurora-2 connected digit recognition task

demonstrated that mask weighting combined with flooring could lead to state-of-

the-art results, even with an estimated mask and no language model. Indeed, the

SMF
log

algorithm performed at least as well as ETSI-AFE, the best performing

algorithm on Aurora-2. Contributions of the SMF
log

algorithm include an im-

proved soft-mask estimation algorithm integrating the adaptive noise estimator

from [34], the idea to perform masking on the log-spectrum, the integration of

Log-Spectral Flooring as an alternative to variance normalization, and the final

spectral smoothing.
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Further, experiments performed on the Aurora-4 continuous speech recog-

nition task demonstrated that mask weighting and flooring with SMF
pow

could

approach the performance of state-of-the-art algorithms like PNCC in some noise

conditions, thus replacing a costly processing with the proposed low-complexity

procedure. This result is an improvement over [31], which suggested that only

ideal masks could lead to such gains in accuracy. We believe that this gain is

the combined result of our mask estimation technique with soft values in [0,1]

and the proposed dynamic range matching technique using progressive flooring,

as compared to the simple variance normalization procedure used in [31]. On the

other hand, the limited accuracy gains observed in half of the noise types confirm

the high dependability of mask weighting techniques on a reliable initial mask

estimate.

These results show that techniques that perform severe denoising like SMF
log

are better fitted to small vocabulary tasks like Aurora-2, where the language

model cannot prevent a large amount of insertions errors. With a larger vocab-

ulary task, like Aurora-4, insertions are more likely to be avoided thanks to a

stronger bigram language model. On such a task, severe denoising techniques

like SMF
log

tend to erase discriminative speech information, thus impacting the

performance of ASR. Therefore, smoother denoising techniques such as SMF
pow

or PNCC have been shown to preserve more discriminative speech components,

with a positive impact on word-accuracy.

Future investigations could study the potential of mask weighting approaches

using more sophisticated mask estimation techniques, especially if they can ac-

count not only for background noise but also other effects such as reverberation or

channel distortions. Also, since flooring has been shown to account for about 50%

of the accuracy gains in the above experiments, a natural extension of this study
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would look at the performance of flooring compared to variance normalization,

as an alternative dynamic range matching technique when using ideal masks. If

flooring performed better than variance normalization with ideal masks, then a

new upper bound on the performance of mask weighting techniques would be

found. Finally, better estimates of the power spectral density of non-stationary

noises are needed, as an improved tracking of the noise would directly translate

into a more precise mask estimate.

58



References

[1] Ngee Tan, L., Voice Activity Detection using Harmonic Frequency Compo-
nents in Likelihood Ratio Tests, Master’s thesis, University of California, Los
Angeles, USA, 2010

[2] Parihar, N. and Picone, J., “DSR Front End LVCSR Evaluation -
AU/384/02,” European Telecommunications Standards Institute, 2002

[3] Rabiner, L.R. and Juang, B.H., Fundamentals of Speech Recognition, PTR
Prentice Hall, ISBN 9780130151575, 1993

[4] Rabiner, L.R., “A tutorial on hidden Markov models and selected applica-
tions in Speech recognition,” Proceedings of the IEEE, volume 77, no. 2,
pp. 257 –286, 1989

[5] Ephraim, Y. and Malah, D., “Speech enhancement using a minimum-mean
square error short-time spectral amplitude estimator,” IEEE Transactions
on Acoustics Speech and Signal Processing, volume 32, no. 6, pp. 1109–1121,
1984

[6] Ephraim, Y. and Malah, D., “Speech enhancement using a minimum
mean-square error log-spectral amplitude estimator,” IEEE Transactions on
Acoustics Speech and Signal Processing, volume 33, no. 2, pp. 443–445, 1985

[7] Loizou, P.C., Speech Enhancement: Theory and Practice, Taylor and Francis,
2007

[8] Chen, C.P., Bilmes, J., and Kirchhoff, K., “Low-Resource Noise-Robust Fea-
ture Post-Processing On Aurora 2.0,” Proceedings of ICSLP, pp. 2445–2448,
2002

[9] Kim, C. and Stern, R.M., “Feature extraction for robust Speech recognition
based on maximizing the sharpness of the power distribution and on power
flooring,” IEEE International Conference on Acoustics Speech and Signal
Processing ICASSP, pp. 4574 –4577, 2010

[10] Moore, B.C.J. and Glasberg, B.R., “A revision of Zwicker’s loudness model,”
Acustica united with Acta acustica, volume 82, pp. 335–345, 1996

[11] Strope, B. and Alwan, A., “A model of dynamic auditory perception and its
application to robust word recognition,” IEEE Transactions on Speech and
Audio Processing, volume 5, no. 5, pp. 451–464, 1997

59



[12] Zhu, Q., Iseli, M., Cui, X., and Alwan, A., “Noise Robust Feature Extraction
for ASR using the Aurora 2 Database,” Proceedings of EuroSpeech, pp. 185–
188, 2001

[13] Borgstrom, B. J. and Alwan, A., “Missing Feature Imputation of Log-
Spectral Data For Noise Robust ASR,” Workshop on DSP in Mobile and
Vehicular Systems, 2009

[14] Strope, B. and Alwan, A., “Robust Word Recognition using Threaded Spec-
tral Peaks,” IEEE International Conference on Acoustics Speech and Signal
Processing ICASSP, pp. 625–628 vol.2, 1998

[15] Zhu, Q. and Alwan, A., “On the use of variable frame rate analysis in Speech
recognition,” IEEE International Conference on Acoustics Speech and Signal
Processing ICASSP, pp. 1783–1786, 2000

[16] You, H., Zhu, Q., and Alwan, A., “Entropy-based variable frame rate analysis
of speech signals and its application to ASR,” IEEE International Conference
on Acoustics Speech and Signal Processing ICASSP, volume 1, pp. 549–552,
2004

[17] Hermansky, H., “History of modulation spectrum in ASR,” IEEE Inter-
national Conference on Acoustics Speech and Signal Processing ICASSP,
pp. 5458–5461, 2010

[18] Mitra, V., Franco, H., Graciarena, M., and Mandal, A., “Normalized ampli-
tude modulation features for large vocabulary noise-robust Speech recogni-
tion,” IEEE International Conference on Acoustics Speech and Signal Pro-
cessing ICASSP, pp. 4117–4120, 2012

[19] Zhao, S.Y., Ravuri, S., and Morgan, N., “Multi-Stream to Many-Stream:
Using Spectro-Temporal Features for ASR,” Proceedings of Interspeech
Brighton United Kingdom, pp. 2951–2954, 2009

[20] Raj, B. and Stern, R.M., “Missing-feature approaches in Speech recognition,”
IEEE Signal Processing Magazine, volume 22, no. 5, pp. 101–116, 2005

[21] Drygajlo, A. and El-Maliki, M., “Speaker verification in noisy environments
with combined spectral subtraction and missing feature theory,” IEEE In-
ternational Conference on Acoustics Speech and Signal Processing ICASSP,
volume 1, pp. 121–124, 1998

[22] Vizinho, A., Green, P., Cooke, M., and Josifovski, L., “Missing Data Theory,
Spectral Subtraction And Signal-To-Noise Estimation For Robust ASR: An
Integrated Study,” Proceedings of Eurospeech, pp. 2407–2410, 1999

60



[23] Barker, J., Cooke, M., and Green, P. D., “Robust ASR based on clean Speech
models: an evaluation of missing data techniques for connected digit recog-
nition in noise.” Proceedings of Interspeech, pp. 213–217, 2001

[24] Seltzer, M., Raj, B., and Stern, R.M., “A Bayesian classifier for spectro-
graphic mask estimation for missing feature Speech recognition,” Speech
Communication, volume 43, no. 4, pp. 379–393, 2004

[25] Borgstrom, B.J. and Alwan, A., “Improved Speech Presence Probabilities
Using HMM-Based Inference, With Applications to Speech Enhancement
and ASR,” IEEE Journal of Selected Topics in Signal Processing, volume 4,
no. 5, pp. 808 –815, 2010

[26] Cooke, M., Morris, A., and Green, P., “Recognising occluded Speech,” Work-
shop on the Auditory Basis of Speech Perception, pp. 297–300, 1996

[27] Raj, B., Singh, R., and Stern, R.M., “Inference of missing spectrographic
features for robust Speech recognition,” Proceedings of ICSLP, pp. 1491–
1494, 1998

[28] Gemmeke, J. F., Van Hamme, H., Cranen, B., and Boves, L., “Compres-
sive Sensing for Missing Data Imputation in Noise Robust Speech Recogni-
tion,” IEEE Journal of Selected Topics in Signal Processing, volume 4, no. 2,
pp. 272–287, 2010

[29] Gemmeke, J. F., Virtanen, T., and Hurmalainen, A., “Exemplar-Based
Sparse Representations for Noise Robust Automatic Speech Recognition,”
IEEE Transactions on Audio Speech and Language Processing, volume 19,
no. 7, pp. 2067–2080, 2011

[30] Borgstrom, B. J. and Alwan, A., “Utilizing Compressibility in Reconstructing
Spectrographic Data, With Applications to Noise Robust ASR,” IEEE Signal
Processing Letters, volume 16, no. 5, pp. 398–401, 2009

[31] Hartmann, W. and Fosler-Lussier, E., “Investigations into the incorpora-
tion of the Ideal Binary Mask in ASR,” IEEE International Conference on
Acoustics Speech and Signal Processing ICASSP, pp. 4804–4807, 2011

[32] Borgstrom, B. J. and Alwan, A., “A Statistical Approach to Mel-Domain
Mask Estimation for Missing-Feature ASR,” Signal Processing Letters IEEE,
volume 17, no. 11, pp. 941–944, 2010

[33] Barker, J., Josifovski, L., Cooke, M., and Green, P., “Soft Decisions In Miss-
ing Data Techniques For Robust Automatic Speech Recognition.” Proceed-
ings of ICSLP, pp. 373–376, 2000

61



[34] Martin, R., “Noise power spectral density estimation based on optimal
smoothing and minimum statistics,” IEEE Transactions on Speech and Au-
dio Processing, volume 9, no. 5, pp. 504 –512, 2001

[35] Taghia, J., Taghia, J., Mohammadiha, N., Sang, Jinqiu, Bouse, V., and
Martin, R., “An evaluation of noise power spectral density estimation algo-
rithms in adverse acoustic environments,” IEEE International Conference
on Acoustics Speech and Signal Processing ICASSP, pp. 4640 –4643, 2011

[36] Brookes, M., Voicebox, Speech Processing Toolbox for MATLAB, Department
of EE, Imperial College, London, www.ee.ic.ac.uk/hp/staff/dmb/voicebox/

[37] Raj, B., Seltzer, M.L., and Stern, R.M., “Reconstruction of missing features
for robust Speech recognition,” Speech Communication, volume 43, no. 4,
pp. 275–296, 2004

[38] Kim, C., Kumar, K., and Stern, R.M., “Robust Speech recognition using
a Small Power Boosting algorithm,” IEEE Workshop on Automatic Speech
Recognition and Understanding, pp. 243 –248, 2009

[39] Pearce, D. and Hirsch, H.-G., “The Aurora Experimental Framework for
the Performance Evaluation of Speech Recognition Systems under Noisy
Conditions,” ISCA ITRW ASR2000, pp. 29–32, 2000

[40] Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., and Woodland,
P., The HTK Book Version 3.0, Cambridge University Press, 2000

[41] Vertanen, K., HTK Wall Street Journal Training Recipe, Department
of Computer Science, Montana Tech of The University of Montana,
http://www.keithv.com/software/htk/, 2008

[42] The CMU Pronouncing Dictionary, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, http://www.speech.cs.cmu.edu/cgi-bin/cmudict, 2001

[43] ETSI, “Speech Processing, Transmission and Quality Aspects; Distributed
Speech recognition; Advanced front-end feature extraction algorithm;
Compression algorithms ETSI ES 202 050,” Technical report, 2007,
http://www.etsi.org/

62


