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Abstract

Speaker Verification (SV) systems trained on adults speech of-
ten underperform on children’s SV due to the acoustic mis-
match, and limited children speech data makes fine-tuning not
very effective. In this paper, we propose an innovative frame-
work, a Gated Linear Unit adapter with Iterative Fine-Tuning
(G-IFT), to enhance knowledge transfer efficiency between the
high-resource adults speech domain and the low-resource chil-
dren’s speech domain. In this framework, a Gated Linear Unit
adapter is first inserted between the pre-trained speaker embed-
ding model and the classifier. Then the classifier, adapter, and
pre-trained speaker embedding model are optimized sequen-
tially in an iterative way. This framework is agnostic to the
type of the underlying architecture of the SV system. Our ex-
periments on ECAPA-TDNN, ResNet, and X-vector architec-
tures using the OGI and MyST datasets demonstrate that the
G-IFT framework yields consistent reductions in Equal Error
Rates compared to baseline methods.

Index Terms: Speaker Verification, Children’s Speech, Do-
main Adaption, Low-Resource Scenario

1. Introduction

With the rise of technological innovations, children increasingly
engage with social media and e-learning platforms. While these
tools foster development, they also raise security concerns, ne-
cessitating protective measures. Advancements in voice-based
Children’s Speaker Verification (C-SV) systems are a crucial
step in ensuring children’s online safety [1]. These systems aim
to accurately verify a child’s identity based on their voice, ad-
dressing security concerns and ensuring personalized, safe user
experiences.

Compared to other domain adaptation problems, a major
challenge in C-SV arises from the constraints imposed by the
scarcity of children’s speech data. Although Speaker Verifica-
tion (SV) systems [2, 3, 4] trained on adult speech have achieved
notable success across various datasets [5, 6], they often face
challenges when applied to children speech due to the signifi-
cant acoustic differences between adult and children speech [7].
Fine-tuning pre-trained models initially trained on adult speech
with children speech datasets is one of the widely adopted
strategies. However, fine-tuning pre-trained verification models
with limited children’s speech data may not adequately address
the acoustic mismatch due to the scarcity of children’s speech
resources, resulting in inefficient knowledge transfer and hence
subpar adaptation to the target domain [8, 9].

To address the data scarcity challenge in C-SV, researchers
have primarily adopted two strategies. The first is out-of-
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domain data augmentation [10, 11, 12, 13], which supplement
existing child speech data by adding perturbed adult speech
data so that its acoustic properties resemble children’s speech.
This includes methods such as perturbing adult speech by mod-
ifying parameters like speaking rate, pitch, duration, and vo-
cal tract length, as well as leveraging cycle-consistent GAN-
based voice conversion to transform adult speech into child-like
speech [11, 12, 13].

Another strategy involves model-level adaptations, includ-
ing optimizing model architectures [14], designing more ef-
fective loss functions [15], and fine-tuning of the pre-trained
adult SV model using children speech [16]. Adapter-based
fine-tuning, achieved by integrating lightweight adapter mod-
ules into pre-trained speaker embedding models, effectively en-
hances the efficiency of knowledge transfer compared to the
baseline methods. Although adapter-based approaches have
shown promise in domain adaptation tasks [17, 18, 19, 20, 21,
22], to the best of our knowledge, no prior work has explored
their use for C-SV, where data scarcity presents greater chal-
lenges and distinguishes it from other adaptation tasks such as
cross language adaptation [23].

In this paper, we propose a novel framework, Gated Linear
Unit adapter (GLU) with Iterative Fine-Tuning, which we refer
to as G-IFT, to enhance knowledge transfer efficiency between
the adults speech domain and the children speech domain. We
first propose a novel adapter module using GLU to fine-tune
the speaker embedding models trained on adult speech, allevi-
ating the domain shifting problem in C-SV. Additionally, we
introduce a novel iterative fine-tuning strategy, which builds
upon the GLU adapter fine tuning, wherein different compo-
nents of the model are alternatively fine-tuned to enhance the
SV accuracy. Experimental results indicate that our method
amplifies the positive impact of adapter fine-tuning particularly
in the low resource scenario, achieving a further reduction in
the EER of the SV systems. The proposed G-IFT framework
also exhibits potential for broader applications in other low-
resource SV tasks, including verification tasks for individuals
with speech disorders and similar under-resourced scenarios.

The following sections are structured as follows: Section 2
introduces the GLU adapter and iterative fine-tuning in the G-
IFT framework. Section 3 covers the experimental setup. Sec-
tion 4 presents the results of the proposed approach under vary-
ing conditions. Section 5 concludes and suggests future work.

2. Methods
2.1. Gated Linear Unit adapters

We first propose a novel adapter structure inspired from the
Gated Linear Unit (GLU) mechanism [24]. The motivation be-
hind using a GLU layer was to allow the network to decide how
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Figure 1: An overview of the proposed G-I1FT framework. The GLU adapter architecture is shown in (a), and illustration of the steps
involved in the G-IFT-1 and G-IFT-2 methods (discussed in Section 2.2) are shown in (b) and (c) respectively.

much information should flow through the adapter, i.e., gating
weights based on the adaptation data. The GLU layer learns
the gating weights with the help of two linear layers and a sig-
moid operation. The GLU adapter structure used in this pa-
per is shown in Figure 1 (a). Firstly, the output of the speaker
embedding model, E, is fed into the adapter module, pass-
ing through a linear layer followed by a ReLU activation func-
tion. Then after performing layer normalization, G_in is passed
through the GLU layer. Finally, the output of GLU layer, G _out
is passed through a linear layer before being passed on to per-
form speaker identification by the classifier. The operation per-
formed by GLU layer is given in Equation (1). W, V, b, and ¢
are learnable parameters. In GLU layer, the sigmoid operation
on the output of one of the linear layers acts as the weights to
the output of the second linear layer, deciding how much infor-
mation from the pre-trained embedding model should be passed
on ahead.

Gout:(Gzn*W+b)®U(Gzn*V+C) (1)

The proposed adapter is inserted between the output of the
speaker embedding model and the input of the classifier. When
evaluating the proposed GLU adapter based approach, the out-
puts of the adapter module, denoted as Aoy in Figure 1, are
utilized as speaker embeddings.

2.2. G-IFT: GLU adapter with Iterative Fine-Tuning

Fine-tuning pretrained verification models in SV tasks dif-
fers from fine-tuning in other tasks such as Automatic Speech
Recognition (ASR) due to the need for adjusting the clas-
sifiers based on the number of speakers in the target do-
main dataset. This requires the classifier’s parameters to be
trained from scratch, rather than relying solely on transfer learn-
ing. Traditional adapter fine-tuning methods commonly up-
date the adapter and classifier simultaneously; in some cases,

the adapter, classifier, and embedding model are all updated
simultaneously. However, since the classifier and the inserted
adapters typically require more substantial adjustments than
the pretrained embedding model, this approach can be ineffi-
cient especially in the low-resource scenario, potentially slow-
ing down convergence and reducing overall performance.

To enhance the efficiency of knowledge transfer, we pro-
pose a novel framework, Gated Linear Unit Adapter with It-
erative Fine-Tuning (G-IFT), which applies an iterative fine-
tuning strategy to the GLU adapter. The motivation behind
this approach is to address potential inefficiencies associated
with simultaneous updates by allowing more focused updates
to the adapter and classifier initially, which helps them adapt
more effectively to in-domain children speech data. This frame-
work aims to make more efficient use of target data during fine-
tuning, especially in the low-resource scenario, which leads to
better performance in C-SV. Additionally, this method is highly
adaptable and is not constrained by the underlying model archi-
tecture.

The proposed G-IFT framework includes two variants, G-
IFT-1 and G-IFT-2, which share the same foundational struc-
ture but differ in their iterative fine-tuning strategies as shown
in Figure 1 (b) and (c). In G-IFT-1, the process involves three
main steps. First, the model is initialized and trained on the
source domain dataset to obtain a pre-trained speaker embed-
ding model. Second, the GLU adapter is inserted between the
pretrained speaker embedding model and a classifier designed
for fine-tuning on the target domain dataset. Third, the train-
ing alternates iteratively between fine-tuning the GLU adapters
and the classifier jointly, followed by fine-tuning the pretrained
speaker embedding model. G-IFT-2 follows the same first two
steps as G-IFT-1 but introduces a slightly different iterative
strategy. In this variant, the process alternates iteratively by first
fine-tuning the classifier, then the GLU adapters, and then the
pretrained speaker embedding model. This adjustment allows



Table 1: The train-eval splits of the OGI and MyST databases
used for training/fine-tuning the models are presented. #Spks
refers to the number of speakers, #Hrs to the duration in hours,
and #Trials to the number of SV trials in the evaluation set.

Train Eval
#Spks  # Hrs #Spks  # Trials
0GI 120 2.65 993 190972
MyST-1 1210 2.00 91 100000
MyST-2 1210 8.00 91 100000
MyST-3 1210 85.00 91 100000
MyST-4 1210 268.00 91 100000

G-IFT-2 to prioritize classifier adaptation in isolation before in-
tegrating adjustments from the adapters and embedding model.

3. Experimental Settings
3.1. Databases

We conduct experiments on two children’s speech databases,
OGI [25] and MyST [26]. For OGI, we use the scripted por-
tion, which contains children’s speech from approximately 100
speakers per grade, spanning kindergarten to grade 10. The
train/eval split follows the protocol established in [27]. The
MyST dataset consists of 499 hours of speech data collected
from 1,372 students in grades 3 to 5. For our experiments we
utilize only the annotated portion totaling approximately 268
hours. For MyST, we also create multiple smaller training sub-
sets from the MyST training set, maintaining a consistent evalu-
ation split to analyze the impact of in-domain training data size
on the proposed method. While creating the MyST train splits
MyST-1 to MyST-4, we ensure that data from all the speakers
in the complete training set is included. Hence, as we go from
MyST-1 to MyST-4, the amount of speech data per speaker in-
creases. Across all train and evaluation splits in both datasets,
there is no overlap in speakers. It should be noted that the MyST
evaluation set is the same, irrespective of the MyST train split.
The train eval splits of both databases are shown in Table 1.

3.2. Baseline Systems

In this study, we utilized ECAPA-TDNN [2], ResNet [28], and
X-vector [29] as the SV systems. All experiments were con-
ducted using the SpeechBrain toolkit [30]. Models trained from
scratch on the OGI and MyST datasets served as the baseline
systems and are referred to as Baseline. Pretrained speaker em-
bedding models are trained on the VoxCeleb dataset [S]. The
experiment where these pretrained models are directly tested
on children speech data is referred to as Pretrained. We refer
to fine-tuning the Pretrained model with child speech data for a
fixed number of epochs as vanilla fine-tuning and this model is
referred to as Finetune in this paper. The input features for all
the models were 80-dimensional filter bank features extracted
with a frame length of 25 ms and a hop size of 10 ms. Equal
Error Rate was used to evaluate the SV systems’ performance.
Optimization was performed using the Adam optimizer
with a learning rate of 0.001 and a weight decay of 0.000002,
along with a cyclic learning rate scheduler to balance explo-
ration and exploitation, with a base learning rate of 1 x 1075,
a maximum learning rate of 0.001, and a step size of 65,000.
Notably, the number of training epochs varied across different
methods due to differences in fine-tuning strategies. Specifi-

Table 2: Performance in terms of Equal Error Rate (EER %)
comparison across OGI and MyST-1 datasets. Pretrained is
the open source adult SV systems tested directly on children
speech data. Baseline is the SV systems trained using children
speech data from scratch, and Finetuned is the adult SV sys-
tems finetuned using children speech data. GLU is adapter fine
tuning, G-IFT-1, and G-IFT-2 are the proposed adapter fine
tuning framework. RA is the Residual Adapter [9]. Significant
improvements (paired t-test; p-value=0.05) over Finetune are
represented with “*”.

ECAPA-TDNN | ResNet | X-vector

OGI MyST-1| OGI MyST-1| OGI MyST-1

Pretrained 17.39  17.48 | 12.62 1447 23.59 24.95
Baseline 12.15  24.80 | 1423  36.23 14.71 25.70
Finetune  11.10  20.04 7.45 10.64 15.89 21.26
RA [9] 1134 22.89 7.47 12.76 15.61 21.54
GLU 9.70 22.30 6.92 12.48 12.31 17.96
G-IFT-1 8.88* 16.38 6.77%  9.29 12.71 18.20
G-IFT-2 9.06 14.22*% | 6.88 8.37% | 12.09*% 16.79*

cally, the vanilla fine-tuning method updates all model param-
eters, including both the speaker embedding model and classi-
fier, simultaneously within each training epoch. In contrast, the
G-IFT framework adopts an iterative strategy, alternately fine-
tuning the classifier, GLU adapters, and the pretrained speaker
embedding model in a iterative manner. As a result, the total
number of epochs for the GIFT-1 method was twice that of the
vanilla fine-tuning method, and for the GIFT-2 method, it was
three times that of the vanilla fine-tuning method. This adjust-
ment ensures that the number of parameter updates across all
methods is equivalent.

4. Results and Discussion
4.1. Performance of the G-IFT framework

Table 2 presents results on the OGI and MyST-1 datasets us-
ing various training methods. The proposed G-IFT framework,
including G-IFT-1 and G-IFT-2, consistently improves perfor-
mance across all architectures. Rows 2 and 3 show baseline and
vanilla fine-tuning results. Fine-tuning generally outperforms
training from scratch, except for X-vector on OGI. Row 4 re-
ports results of Residual Adapter (RA) fine-tuning, configured
to match our GLU adapter in parameter size and training steps
(15 epochs). Although RA performed well in [9], it is less effec-
tive here. In contrast, direct fine-tuning with the GLU adapter
(without iteration) outperforms vanilla fine-tuning in four of six
cases. The last two rows show that G-IFT-1 and G-IFT-2 consis-
tently outperform vanilla fine-tuning in all test cases. Compared
to GLU fine-tuning, one of the G-IFT variants always achieves
the best result, validating the benefit of iterative strategies in
enhancing GLU adapter adaptability under limited data. We
also examined Iterative Fine Tuning (IFT) alone on MyST-1,
which yields EERs of 22.5%, 10.2%, and 20.9% for ECAPA-
TDNN, ResNet, and x-vector, without clear improvement. In
contrast, applying IFT to GLU reduces EERs to 14.2%, 8.4%,
and 16.8%, The adapter-classifier setup provides greater mod-
eling capacity.

4.2. Impact of Training Data Size on Model Adaptability

To further investigate the impact of training dataset size on the
proposed G-IFT framework, we use the four MyST subsets



Table 3: Equal Error Rate (EER %) across different models—ECAPA-TDNN, X-vector, and ResNet—on various MyST training splits.
The duration of the training splits increases progressively from MyST-1 to MyST-4. The evaluation results are obtained using a consis-
tent testing split, with no overlap in speakers between the training and test splits in all experiments. Significant improvements (paired

t-test; p-value=0.05) over Finetune are represented with “*”.

ResNet \

X-vector

MyST-1 MyST-2 MyST-3 MyST-4 | MyST-1 MyST-2 MyST-3 MyST-4 | MyST-1 MyST-2 MyST-3 MyST-4

ECAPA-TDNN ‘
Baseline  24.80 14.42 10.76 10.11 36.23 19.26
Finetune  20.04 7.97 5.81 6.05 10.64 9.33
RA [9] 22.89 8.19 6.13 6.07 12.76 8.62
GLU 22.30 7.51 5.92 5.97 12.48 7.48
G-IFT-1  16.38 7.03 5.49% 5.42% 9.29 6.42
G-IFT-2  14.22*  7.81 5.93 5.99 8.37% 5.87*

18.05 11.48 25.70 19.76 17.08 16.24
6.60 4.87 21.26 19.16 16.70 16.11
5.70 4.87 21.54 19.50 16.36 17.83
5.50 5.07 17.96 15.05 11.49*%  11.75%
4.89% 4.82 18.20 15.37 12.29 12.58
552 5.27 16.79% 14.58* 14.70 15.30

(Table 1) to analyze the performance as training resources in-
creased. As shown in Table 3, the EERs of all methods decrease
overall with increasing training data. Comparing Finetune with
Baseline in Table 3, ECAPA-TDNN and ResNet exhibit signif-
icantly better performance with fine-tuning using larger MyST
datasets, while X-vector shows comparable results between the
two approaches. This discrepancy can likely be attributed to
differences in model complexity. The larger and more intri-
cate architectures of ECAPA-TDNN and ResNet may better fit
the children speech data when trained using larger amounts of
in-domain data, whereas the simpler architecture of X-vector
might not. Residual Adapter (RA) fine-tuning results are given
in row 3 of Table 3. Additionally, GLU adapter i.e., row 4 of
Table 3 performs better than RA in 11 out of 12 test cases.

In terms of the G-IFT framework, all three model architec-
tures achieve lower EERs across different MyST training sub-
sets compared to vanilla fine-tuning. Specifically, as shown in
Figure 2, the absolute reduction in EER (%) obtained by G-IFT-
1 and G-IFT-2 methods on the MyST-1 and MyST-2 datasets
are more pronounced and consistent than those on MyST-3
and MyST-4 datasets across three architectures, highlighting
the effectiveness of our proposed approach particularly in the
low-resource scenarios. This phenomenon is likely due to our
method’s focus on iteratively fine-tuning the adapter and clas-
sifier first, which helps mitigate embedding overfitting. How-
ever, when sufficient training data is available, the large dataset
naturally reduces embedding overfitting, making the efficiency
of our method less critical and diminishing its advantage. We
also observed that both G-IFT-1 and G-IFT-2 outperform vanilla
fine-tuning on MyST-1 and MyST-2 across all three model
architectures, though the best-performing method varied be-
tween the G-IFT-1 and G-IFT-2. However, with larger train-
ing datasets like MyST-3 and MyST-4, G-IFT-1 consistently
achieved better results than G-IFT-2. A possible explanation
is that in low-resource scenarios, sequentially fine-tuning indi-
vidual components - the classifier , adapter and base model, as
implemented in G-IFT-2 may be more effective. Conversely,
under high-resource conditions, it appears sufficient to update
relatively larger sub-modules, as in G-IFT-1, where the adapter
and classifier are updated jointly followed by base model up-
date. This hypothesis is further supported by the observation
that vanilla fine-tuning also performs well in high-resource set-
tings, as reflected in our results in Table 3. These observations
prompt us to further investigate the respective strengths of G-
IFT-1 and G-IFT-2 in future work, in order to refine the frame-
work and propose a more universally effective approach appli-
cable across diverse scenarios.

M wysT-1 M MyST-2

iJh||||L

ECAPA-TDNN Reshet X-vector

MysT-3 B MyST-4

-

Figure 2: Absolute reduction in EER (%) (y-axis) by the pro-
posed G-IFT framework (Rows 4-5, Table 3) over Finetune
(Row 2) on different MyST training splits. Larger reductions
are observed in low-resource settings (MyST-1/2) than in high-
resource ones (MyST-3/4), underscoring the framework’s effec-
tiveness in low-resource scenarios.

5. Conclusion

In this paper, we proposed the G-IFT framework to alleviate the
domain mismatch challenge when adapting adults (i.e., high-
resource) SV models to perform children (i.e., low-resource)
SV. Through the integration of the GLU adapter and an itera-
tive fine-tuning strategy, the proposed framework achieved con-
sistent performance improvements across three neural network
architectures on the OGI and MyST datasets. The G-IFT frame-
work outperforms baseline methods, achieving competitive per-
formance using significantly lesser in-domain data. By vary-
ing amounts of in-domain training data using MyST dataset
we evaluate the framework’s performance under different re-
source constraints and our results highlight the potential of the
proposed G-IFT framework in improving speaker verification
systems in low-resource scenarios. Future work will focus on
refining the G-IFT framework and extending its application to
other low-resource SV tasks, including those involving disor-
dered speech.
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