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Speaker normalization typically focuses on inter-speaker variabilities of the supraglottal �vocal
tract� resonances, which constitute a major cause of spectral mismatch. Recent studies have shown
that the subglottal airways also affect spectral properties of speech sounds, and promising results
were reported using the subglottal resonances for speaker normalization. This paper proposes a
reliable algorithm to automatically estimate the second subglottal resonance �Sg2� from speech
signals. The algorithm is calibrated on children’s speech data with simultaneous accelerometer
recordings from which Sg2 frequencies can be directly measured. A cross-language study with
bilingual Spanish-English children is performed to investigate whether Sg2 frequencies are
independent of speech content and language. The study verifies that Sg2 is approximately constant
for a given speaker and thus can be a good candidate for limited data speaker normalization and
cross-language adaptation. A speaker normalization method using Sg2 is then presented. This
method is computationally more efficient than maximum-likelihood based vocal tract length
normalization �VTLN�, with performance better than VTLN for limited adaptation data and
cross-language adaptation. Experimental results confirm that this method performs well in a variety
of testing conditions and tasks. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3257185�
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I. INTRODUCTION

A major cause of performance degradation in automatic
speech recognition �ASR� systems is inter-speaker variations
in acoustic characteristics �fundamental and formant frequen-
cies, etc.�, which are mostly caused by differences in the
supraglottal speech production system �vocal tract and vocal
fold apparatus�. Accordingly, speaker normalization, which
aims to reduce these acoustic variabilities, typically focuses
on supraglottal variations. Vocal tract length normalization
�VTLN� is one of the most popular methods for reducing the
effects of speaker-dependent vocal tract variability through a
speaker-specific frequency warping function �linear, bilinear,
or piece-wise linear� �Wegman et al., 1996; Lee and Rose,
1998; Pitz and Ney, 2003; Umesh et al., 2005; McDonough
et al., 2004; McDonough, 2000�. Warping factors are typi-
cally estimated based on the maximum likelihood �ML� cri-
terion over the adaptation data through an exhaustive grid
search or warping-factor specific models �Wegman et al.,
1996; Lee and Rose, 1998�. Linear frequency warping can be
implemented directly in the power spectrum domain or in the
cepstral domain through the linearization of VTLN �Pitz and
Ney, 2003; Umesh et al., 2005; McDonough et al., 2004�.
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Along with the linearization of VTLN, the warping factor
can be estimated using the expectation maximization algo-
rithm with an auxiliary function �McDonough et al., 2004�.
Other frequency warping functions have also been studied. A
class of transforms, known as all-pass transforms �APTs�,
was proposed to perform VTLN and studied in detail in Mc-
Donough, 2000 for two classes of conformal maps, namely,
rational all-pass transforms and sine-log all-pass transforms.
It was demonstrated that using multiple-parameter warping
functions is more effective than single-parameter ones.

Another way to reduce spectral variability is to explic-
itly align spectral formant positions or formant-like spectral
peaks, especially the third formant �F3�, and to define the
warping factors as formant frequency ratios �Eide and Gish,
1996; Gouvea and Stern, 1997; Claes et al., 1998; Cui and
Alwan, 2006; Zhan and Westphal, 1997; Wang et al., 2007�.
In formant-based frequency warping methods, formant posi-
tions of different speakers are transformed into a normalized
frequency space. Eide and Gish �1996� proposed a nonlinear
warping function based on a parameter estimated using F3

frequency. Zhan and Westphal �1997� extended this formant-
based algorithm and compared the performance with ML-
based methods. Gouvea and Stern �1997� explored the per-
formance of frequency warping using the first three formant
frequencies. Claes et al. �1998� proposed a linear approxima-
tion of VTLN for reasonably small warping factors estimated

based on average F3 values. Cui and Alwan �2006� proposed
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a novel spectral formant-like peak alignment method, with a
focus on F3, to reduce spectral mismatch between adults and
children’s speech �Cui and Alwan, 2006; Wang et al., 2007�.
Based on the idea of frequency transformation for digital
filters, Wang et al. �2004� treated formant structures as filters
and developed a bilinear transform with parameters esti-
mated using average F3 frequency and bandwidth values.
Due to coarticulation, clarity, speed, and other factors, for-
mant frequencies vary considerably within an utterance and
thus make the performance of formant normalization
content-dependent.

Besides the effects of the supraglottal system, recent
studies show that the subglottal airways also affect spectral
properties of speech sounds �Hanson and Stevens, 1995;
Stevens, 1998; Sonderegger, 2004; Chi and Sonderegger,
2004; Lulich, 2006; Chi and Sonderegger, 2007; Lulich
et al., 2007�. The coupling between the supraglottal and sub-
glottal systems has been shown to be non-negligible when a
vocal tract formant approaches a subglottal resonance in fre-
quency. At such a point, the formant prominence amplitude
will be attenuated and the prominent spectral peak will jump
in frequency to skip the subglottal resonance. Many studies
have been done to model and analyze the subglottal reso-
nances for adults’ speech, particularly focusing on American
English, although a few studies in Korean and German have
shown similar results �Jung, 2008; Madsack et al., 2008�.

Children’s speech analysis and recognition have drawn
increasing attention for educational purposes, and more ef-
forts have been devoted to ASR’s applications on children’s
speech. Due to developmental changes in vocal tract and
vocal ford apparati, children’s speech demonstrates high
acoustic variabilities, which makes children’s ASR more
challenging compared to adults’ ASR. The performance of an
ASR system developed for adult speech decreases drastically
when employed to recognize children’s speech. Furthermore,
recognition performance for children is usually lower than
that achieved for adults even when using a recognition sys-
tem trained on children’s speech. Such challenges require
further studies on children’s speech.

In this paper, we focus on children’s speech and explore
the hypothesis that subglottal resonances can be used for
speaker normalization, much like formant alignment tech-
niques. We first describe the subglottal system and outline
the theory of its effects on speech. We then use this theory to
implement an automatic detector of the second subglottal
resonance. Third, we address the question whether subglottal
resonances are constant for a given speaker regardless of the
language being spoken. Finally, we implement a speaker nor-
malization scheme based on the second subglottal resonance
�Sg2� and evaluate its performance on several tasks. We
compare the performance with VTLN and demonstrate the
effectiveness of this method.

II. EFFECTS OF COUPLING TO THE SUBGLOTTAL
ACOUSTIC SYSTEM

The configuration of the acoustic system below the glot-
tis consists of the trachea, bronchi, and lungs. Similar to the
vocal tract, the acoustic input impedance of the subglottal

system is characterized by a series of poles �or resonances�
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and zeros. Unlike the supraglottal system, however, the con-
figuration of the subglottal system is essentially fixed and
thus the poles and zeros are expected to remain constant for
any given speaker. Like formant frequencies, subglottal reso-
nances are generally higher for female speakers than for
male speakers, and there are substantial individual differ-
ences from speaker to speaker. It has been shown that the
lowest three subglottal resonances are around 600, 1450, and
2200 Hz for adult males, and 700, 1600, and 2350 Hz for
adult females �Stevens, 1998�.

Figure 1 shows a schematic model of vocal tract cou-
pling to the trachea through the glottis and its equivalent
circuit model, where Zl is the impedance of the subglottal
system, Zg is the glottal impedance, Zv is the impedance
looking into the vocal tract from the glottis, Ug is the volume
velocity through the glottis, and Uv is the airflow into the
vocal tract. Coupling between the subglottal and supraglottal
airways is thought to occur primarily when the glottis is
open, such as during a voiceless consonant or the open phase
of glottal vibration in a voiced sound, although Lulich �2009�
and Lulich et al. �2009� suggested that coupling may also
occur when the vocal folds are closed, either by means of a
posterior glottal opening or the vocal fold tissue itself. Dur-
ing coupling, each subglottal resonance contributes a pole-
zero pair to the speech spectrum. The frequency of the zero
is the same as that of the subglottal resonance, while the pole
is shifted upward in frequency away from the resonance and
depends somewhat on the vocal tract configuration. This is
because the zero is a function only of the part of the entire
system behind the source �that is, the subglottal airways�,
while the pole is a function of the entire system, including
the subglottal and supraglottal airways �Lulich, 2009; Chi
and Sonderegger, 2007�.

The pole-zero pair introduced in the speech spectrum
around Sg2 generally falls within the range of
1300–1500 Hz for adult males, and between 1400 and
1700 Hz for adult females �Stevens, 1998�. It is somewhat
higher in frequency for children �Jung et al., 2008�. When F2
crosses the Sg2 pole-zero pair, F2 can jump in frequency or
diminish in amplitude, or both, resulting in a discontinuity in
the F2 trajectory �Chi and Sonderegger, 2007�. This is illus-
trated in Fig. 2 for an 8-year-old girl speaking the word boy,
and it is schematically represented in Fig. 3. In both figures,
F2 rises from a low frequency to a high frequency, crossing
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FIG. 1. Schematic model of vocal tract with acoustic coupling to the trachea
through the glottis �a� and the equivalent circuit model �b� �Adapted from
Stevens, 1998�.
the Sg2 pole-zero pair along the way. The F2 discontinuity in
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Fig. 2 is marked by a diminished amplitude in the vicinity of
the zero. The Sg2 pole has a very low amplitude except
during the time when F2 is nearby. In Fig. 2 the diffuse
energy between F2 and the zero at 250 ms is likely due to the
Sg2 pole, its amplitude decreasing as F2 continues to rise.

Recent studies �Lulich, 2006; Lulich et al., 2007; Son-
deregger, 2004� have shown that the acoustic contrasts for
some phonological distinctive features are dependent on the
subglottal resonances. As illustrated in Fig. 4, for example,
the vowel feature �back�1 is dependent on the frequency of
Sg2, such that a vowel with F2�Sg2 is �−back� and a vowel
with F2�Sg2 is �+back�. The ability of Sg2 to underlie the
distinctive feature �back� is likely derived from the fact that
Sg2 is roughly constant for a given speaker. Subglottal reso-
nances could potentially be affected by lung volume, larynx
height, and glottal configuration. Lung volume has been
shown not to significantly affect the subglottal resonances in
one study �Cheyne, 2001�, and reported accelerometer mea-
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FIG. 2. Spectrogram for the word boy from an 8-year-old girl. The second
subglottal resonance Sg2 for this speaker is 1920 Hz.
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FIG. 3. �Color online� Illustration of the F2 discontinuity caused by Sg2.
The bold solid line corresponds to the most prominent spectral peak �F2�,
which has a jump in frequency and a decrease in amplitude when F2 is
crossing the subglottal resonance Sg2. The dotted line represents the Sg2
pole, which varies somewhat in frequency and amplitude when F2 is nearby.
The horizontal thin solid line represents the Sg2 zero, which is roughly

constant �adapted from Stevens, 1998�.
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surements of subglottal resonances across utterances �in
which phonetic content was varied and voice quality was
uncontrolled—both of which may affect laryngeal height and
glottal configuration� have had standard deviations on the
order of 30 Hz or less �Chi and Sonderegger, 2007�. Thus,
although the influence of lung volume, larynx height, and
glottal configuration on subglottal resonances invites further
research, the available evidence appears to indicate that sub-
glottal resonances are roughly constant under normal speak-
ing conditions.

For this reason, Sg2 might be useful in speaker normal-
ization, since it is context independent but speaker depen-
dent. Sg1 and Sg3 have also been claimed to play a role in
distinguishing different classes of speech sounds, but Sg2
has been more thoroughly studied. In this paper, therefore,
we focus on Sg2 estimation and its application to speaker
normalization.

III. ESTIMATING THE SECOND SUBGLOTTAL
RESONANCE

A. Automatic estimation of Sg2 frequency

As noted above, when F2 crosses Sg2, there is a discon-
tinuity in the F2 trajectory. Based on this discontinuity, an
automatic Sg2 detector �Sg2D1� was developed in Wang
et al. �2008a�. The Snack sound toolkit �Snack, 2005� was
used to generate the F2 trajectory. All experiments were done
in clean conditions. The tracking parameters were specifi-
cally tuned to provide reliable F2 tracking results on chil-
dren’s speech. Manual verification and/or correction were ap-
plied through visually checking the tracking contours against
the spectrogram. �Note that this method is limited by the
accuracy of the formant tracker, which is known to encounter
difficulties in high-pitched speech such as that produced by
children.� The F2 discontinuity was detected based on the
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FIG. 4. �Color online� Illustration of the relative positions of vowel for-
mants F1 �·�, F2 ���, and F3 ��� and the subglottal resonances �Sg1, Sg2,
and Sg3� for an adult male speaker. For the vowels /i, (, �, æ/ F2�Sg2, and
they are therefore �−back�. For the vowels /a, #, Å, *, u/ F2�Sg2, and they
are therefore �+back� �adapted from Lulich, 2006�.
smoothed first order difference of the F2 trajectory, as shown
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in Fig. 5. If the F2 values on the high and low frequency
sides of the discontinuity are F2high and F2low, respectively,
then Sg2D1 is estimated as

Sĝ2 =
F2high + F2low

2
. �1�

If no such discontinuity was detected, Sg2D1 used the
mean F2 over the utterance. In many such cases, such as
during a monophthong, F2 is consistently above or below
Sg2, and the mean F2 value is either too high or too low.
Thus, the estimated Sg2 values are dependent on the speech
sound analyzed. Furthermore, discontinuities in F2 may arise
from other factors beside the subglottal resonances, includ-
ing pole-zero pairs from the interdental spaces �Honda et al.,
2009�. These discontinuities occur a few hundred hertz
higher than Sg2 discontinuities, but are sometimes more
prominent than Sg2 discontinuities and can therefore be mis-
takenly detected as Sg2.

To address both issues, we developed an improved Sg2
estimation algorithm �Sg2D2� �Wang et al., 2008b�. We first
detected F3 and obtained an estimate of Sg2 using a formula
derived in Lulich, 2009:

Sg̃2 = 0.636 � F3 − 103. �2�

Note that the derivation of this formula was based on a linear
regression on children’s speech data which have available
simultaneous accelerometer recordings, and its extension to
adults’ speech may still need further refinements.

We then searched for a discontinuity within �100 Hz of
this estimate using the original algorithm. The range
�100 Hz was chosen based on calculated standard devia-
tions of Sg2 on the calibration data. If no discontinuity in

this range was found, Sg̃2 was used. If a discontinuity was
found, we estimated Sg2 using the following equation:

Sĝ2 = � � F2high + �1 − �� � F2low, �3�

where � is a weight in the range �0, 1� that controls the
closeness of the detected Sg2 value to F2high. The optimal
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FIG. 5. �Color online� An example of the detection algorithm applied in
Wang et al., 2008.
value of � was calibrated over the data described below us-
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ing the minimum mean square error criterion:

� = arg min E��Sĝ2 − Sg2�2� �4�

and was found to be 0.65 in our experiments.

B. Calibration of the Sg2 estimation algorithm

To verify and calibrate our Sg2 estimation algorithm,
acoustic data were collected from six female children aged
2–17 years old �speakers G1–G6 in Lulich, 2009�. The chil-
dren were native speakers of American English and all of
them except the youngest were recorded repeating the phrase
“hVd, say hVd again” three times for each of the vowels �i�,
�(�, ���, �æ�, �a�, �#�, �o�, �*�, and �u�. The subjects also re-
cited the alphabet, counted to 10, and recited a few short
sentences. The recording list was presented in random order
and verbally prompted by the experimenter. The youngest
speaker �G1� was recorded counting to 10, reciting the alpha-
bet, and answering questions of the sort “What is this?,” in
which the experimenter pointed to his hand or head, for in-
stance. All utterances were recorded in a sound-isolated
chamber using a SHURE BG4.1 uni-directional condenser
microphone and an accelerometer. Both the speech and ac-
celerometer signals were digitized at 16 kHz. Microphone
signals of each speaker were used to measure average F3 and
the discontinuity in the F2 track. An independent direct mea-
sure of the average Sg2 for each speaker was obtained from
an accelerometer signal. The accelerometer was attached to
the skin of the neck below the larynx so that the measured
vibration of the neck skin is directly related to the acoustic
pressure variations in the air column at the top of the trachea
�Cheyne, 2001; Chi and Sonderegger, 2007�. The accelerom-
eter signal can therefore act as a stand-in for the subglottal
input impedance, in which the subglottal resonances appear
as formants in the accelerometer spectrum.

The detection algorithms Sg2D1 and Sg2D2 were cali-
brated �to estimate discontinuity thresholds for both Sg2D1
and Sg2D2, and � for Sg2D2� on data from two of the re-
corded children and tested on the remaining four. The values
measured from the accelerometer data were used as the
“ground truth” Sg2 frequencies �henceforth denoted by
“Sg2Acc”�. The average Sg2 estimates �with standard devia-
tions� over various vowel contents are shown in Table I.

TABLE I. Comparison of Sg2 estimates for two algorithms over various
vowel contents, where Sg2D1 refers to the algorithm used in Wang et al.
�2008a�, Sg2D2 is the new algorithm, Sg2M is the manual measurement
from speech spectrum, and Sg2Acc is the “ground truth” measurement from
the accelerometer signal. For each algorithm the average Sg2 estimates �Hz�
are shown �with standard deviations in parentheses�. The two speakers with
an “ *” symbol are those used for calibration.

Speaker Sg2D1 Sg2D2 Sg2M Sg2Acc

1 2135 �531� 2194 �95� 2193 �97� 2176
2 2115 �334� 1766 �137� 1719 �112� 1646
3 2586 �467� 2718 �143� 2634 �135� 2679
4 2098 �358� 1823 �151� 1781 �129� 1614
5* 2065 �267� 2021 �79� 2013 �76� 1970
6* 1612 �251� 1689 �72� 1681 �65� 1648
Compared to Sg2D1, the updated algorithm Sg2D2 estimates
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Sg2 much better with less variance across vowels. The ob-
served standard deviation values of Sg2D2 are similar to
those from manually measured Sg2’s �Sg2M�2 in this study
and those found in other studies �Jung et al., 2008�.

The performance of these two algorithms was investi-
gated in more detail for each vowel for two speakers and the
results are shown in Table II and Fig. 6. As stated earlier, if
no discontinuity in the F2 track is detected �as for the vowels
above the double line, Table II�, Sg2D1 uses the mean F2 as
Sg2 and thus is highly dependent on vowel content. Sg2D2,
on the other hand, uses a formula to estimate Sg2 from F3
which is less content-dependent than F2. In such cases, it can
be seen that the formula in Sg2D2 gives much closer esti-

TABLE II. Detailed comparison of Sg2 estimates for the two algorithms on
two speakers. For vowels above the double line, there are no discontinuities
in the F2 trajectory, and Sg2D1 uses the mean F2 as Sg2, while Sg2D2 uses

Eq. �2� �Sg̃2� to make an estimate; for vowels below the double line, the F2
discontinuity is detectable, and Sg2D1 uses Eq. �1�, while Sg2D2 uses Eq.
�3�. The row “Avg.�std�” shows the mean �and standard deviation� for each
algorithm.

Vowel

Speaker 1 �age 6�
Sg2Acc: 2176 Hz

Speaker 2 �age 13�
Sg2Acc: 1646 Hz

Sg2D1 Sg2D2 Sg2D1 Sg2D2

�i� 2987 2312 2563 1971
�(� 2515 2306 2439 1909
�e� 2894 2115 2629 1998
��� 2799 2291 2378 1867
�æ� 2382 2289 2350 1863
�a� 1599 2020 1796 1700
�#� 1687 2243 1948 1704
�o� 1512 2185 1497 1613
�*� 1578 2228 1964 1717
�u� 1739 2071 1825 1631
�au� 1841 2114 1974 1617
�a(� 2103 2170 2072 1709
�Å(� 2115 2183 2063 1659

Avg.�std� 2135 �531� 2194 �95� 2115 �334� 1766 �137�
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FIG. 6. �Color online� Comparison of Sg2 estimates for the two speakers in

Table II: left panel for speaker 1 and right panel for speaker 2.
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mates to the ground truth, especially for mid and back vow-
els. For the case when there is a discontinuity in the F2
trajectory �as for the diphthongs below the double line�, both
algorithms work well when the F2 discontinuity is from Sg2,
as for speaker 1. In this case, Sg2D1 gave an estimate within
about 70 Hz of the true Sg2 value, while the Sg2D2 estimate
was within less than 10 Hz. For speaker 2, where the most
prominent F2 discontinuity was probably from the interden-
tal space, Sg2D1 gave an estimate hundreds of hertz above
the Sg2 value, while Sg2D2 roughly located the correct Sg2
value using Eq. �2�. Thus, Sg2D2 is less prone to mistakenly
detecting discontinuities not caused by Sg2. In addition to
diphthongs, discontinuities in F2 should also be detectable in
certain consonant-vowel transitions �Lulich, 2009�. Since
Sg2D2 performs consistently better than Sg2D1, we will fo-
cus only on Sg2D2 in the following experiments. As shown
in Tables I and II, and Fig. 6, the proposed detector produces
Sg2 estimates close to the ground truth. Also, as will be
shown in �Sec. V�, the estimated Sg2 helps to improve
ASR’s performance on children’s speech, which is of pri-
mary interest to us.

IV. VARIABILITY OF SUBGLOTTAL RESONANCE Sg2

The acoustic characteristics of children’s speech have
been shown to be highly different from those of adults’
speech, in terms of pitch and formant frequencies, segmental
durations, and temporal and spectral intra- and inter-speaker
variabilities �Lee et al., 1999; Huber et al., 1999�. Studies of
subglottal resonances �Hanson and Stevens, 1995; Sondereg-
ger, 2004; Chi and Sonderegger, 2004; Lulich, 2006; Chi and
Sonderegger, 2007; Lulich et al., 2007�, however, have
mainly focused on adults’ speech in English with little effort
devoted to children’s speech or to other languages �but see
Jung, 2008; Jung et al., 2008; Madsack et al., 2008�. This
section analyzes children’s speech in English and Spanish,
investigating the variabilities of Sg2 under different contents
and across languages.

To examine the cross-language variability of Sg2 fre-
quencies, we recorded a database �ChildSE� of 20 bilingual
Spanish-English children �ten boys and ten girls� in the first
or second grade �around 6 and 7 years old, respectively�
from a bilingual elementary school in Los Angeles. The re-
corded speech consisted of words containing front, mid-,
back, and diphthong vowels. There were four English words
�beat, bet, boot, and bite� and five Spanish words �calle
“street,” casa “house,” quitar “to take out,” taquito “taco,”
and cuchillo “knife”�, all of which were familiar to the chil-
dren. Prior to the recording, children were instructed to prac-
tice as many times as they wanted. Both text and audio
samples for each target word were available for prompt, and
children decided what prompt they needed during recording
and what language they wanted to record first. There were
three repetitions for each word, and children spoke all the
words in one language in a row with 3 s pause between
words, and then repeated them. After they finished the re-
cordings in one language, there was about a 1 min pause
before they began the recordings in the other language. Re-

cordings were made with 16 kHz sampling rate and 16-bit

ng et al.: Second subglottal resonance detection and its applications



resolution. Like the English word bite �ba(t�, the Spanish
words calle �kaje� and cuchillo �kutfijo� had obvious F2 dis-
continuities. We used these words with diphthongs to esti-
mate Sg2 frequencies. Therefore, for each speaker, there
were three English tokens and six Spanish tokens for the Sg2
estimation.

The within-speaker standard deviations were calculated
on the Sg2 values estimated from the six Spanish tokens for
each speaker. We also calculated the within-speaker coeffi-
cients of variation �COVs�, a measure of dispersion of a
probability distribution, which was computed as the ratio of
the standard deviation to the mean Sg2 value for each
speaker. As shown in Fig. 7, the within-speaker Sg2 standard
deviations are around 20 Hz and the COV is less than 0.01.
No significant difference in the COVs is observed between
genders. A similar trend is observed for the within-speaker
Sg2 standard deviations calculated from the English tokens.
Compared to the COV of formant frequencies �Lee et al.,
1999�, which are usually around 0.10, the COV of Sg2 is
about one order of magnitude smaller. Therefore, the within-
speaker Sg2 variability is negligible since they are suffi-
ciently small compared to formant variabilities. This means
that for a given speaker Sg2 is relatively constant against
contents and repetitions.

Since Sg2 frequency for a given speaker does not de-
pend on the contexts, we calculated the Sg2 COV for each
speaker over the three English tokens and six Spanish tokens
and viewed this as the Sg2 cross-language variabilities, as
plotted in Fig. 8. The cross-language Sg2 COVs are less than
0.01, and there is no significant difference between genders.
The cross-language COVs are similar to the within-speaker
COVs, indicating that the cross-language effects are not sig-
nificant for Sg2 frequencies and the Sg2 frequency for a
given speaker is independent of languages.

Because of its invariability across speech content and
language, Sg2 was judged to be applicable to speaker nor-
malization. Since Sg2 is content-independent, we hypoth-
esized that the performance of speaker normalization using
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FIG. 7. �Color online� Average within-speaker Sg2 standard deviations and
the COVs against contents and repetitions.
Sg2 should be robust and independent of the amount of ad-
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aptation data available. This would make the Sg2 normaliza-
tion method greatly suitable for limited data adaptation,
which is often the case in ASR applications.

On the other hand, the language-independent property of
Sg2 makes cross-language adaptation possible based on Sg2
normalization. Theoretically, with Sg2 normalization acous-
tic models trained in one language could be adapted with
data in any other language,

V. SPEAKER NORMALIZATION RESULTS

Similar to formant normalization, the warping ratio for
Sg2 normalization is defined as

� = Sg2r/Sg2t, �5�

where Sg2r is the reference Sg2 and Sg2t is the Sg2 of the
test speaker. The reference Sg2 is defined as the mean value
of all the training speakers’ Sg2’s. The Sg2 values are de-
tected using the Sg2D2 algorithm. In this section, we evalu-
ate the content dependency of Sg2 normalization and also its
use for cross-language normalization.

A. Comparison of VTLN and Sg2 frequency warping

Figure 9 shows F1, F2, and F3 values from a 9-year-old
girl before and after warping using VTLN �Lee and Rose,
1998� and the Sg2 ratio. The line Sg2 is the reference second
subglottal resonance for an adult male speaker �as in Fig. 4�.
Compared to Fig. 4, unwarped data demonstrate an obvi-
ously different pattern as to the relative positions of the for-
mants with respect to the reference Sg2. For instance, the
back vowels �*� and �u� have higher F2 values than the ref-
erence Sg2, while in Fig. 4 F2’s of all the back vowels lie
below the Sg2 line. It is necessary to apply frequency warp-
ing to achieve the reference formant position pattern. Both
VTLN �in circles� and Sg2 �in squares� warp the formants
close to the reference pattern, although Sg2 warping yields a
formant pattern more similar to the reference speaker’s.

To examine the effects of warping in more detail, we
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the normalized values. Sg2 warping aligns the test speaker’s
formants more closely to the reference speaker’s formants
�Fig. 4�, as indicated by the proximity of the data points to
the diagonal line �with slope 1�. In ASR such warping results
in greatly reduced spectral mismatch between test and refer-
ence speakers, and thus can lead to better ASR performance.

B. Effectiveness of Sg2 normalization

Since VTLN has been shown to provide significant per-
formance improvement on children’s speech recognition, we
first evaluate the subglottal normalization method on a con-
nected digits recognition task of children’s speech using the
TIDIGITS database. Speech signals were segmented into
25 ms frames, with a 10 ms shift. Each frame was param-
etrized by a 39-dimensional feature vector consisting of 12
static Mel Frequency Cepstral Coefficients �MFCCs� plus
log energy, and their first- and second-order derivatives.
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Acoustic Hidden Markov Models �HMMs� were
monophone-based with three states and six Gaussian mix-
tures in each state. VTLN was implemented based on a grid
search over �0.7, 1.2� with a stepsize of 0.01. The scaling
factor producing maximal average likelihood was used to
warp the frequency axis �Lee and Rose, 1998�.

In this setup, acoustic models were trained on 55 adult
male speakers and tested on 50 children. The baseline word
accuracy is 55.76%. For each child, the adaptation data,
which consisted of 1, 4, 7, 10, 13, or 16 digits, were ran-
domly chosen from the test subset to estimate the Sg2 and
VTLN warping factors. For comparison, we also evaluated
the performance of manually measured Sg2, which in some
sense can be viewed as the upper bound of this Sg2 normal-
ization method. For each speaker, the manual Sg2 was mea-
sured from only diphthong words containing obvious F2 dis-
continuities in the spectrum and, independent of adaptation
data, the same Sg2 value was applied for normalization. Fig-
ure 11 shows the recognition accuracy for VTLN, F3, and
Sg2 warpings with various amounts of adaptation data,
where Sg2M represents results using the manually measured
subglottal resonance.

When the amount of adaptation data is small, Sg2 nor-
malization offers better performance than VTLN. For in-
stance, with only one digit for normalization, Sg2 normaliza-
tion outperforms VTLN by more than 2%. VTLN
outperforms Sg2D2 when more data are available, while the
Sg2M provides slightly better performance to VTLN even
with 16 adaptation digits. The improvements of Sg2 normal-
ization over VTLN for up to ten adaptation digits are statis-
tically significant for p�0.05. Although automatic detection
of Sg2 was fairly accurate, it was not exact and there is thus
a gap between the performances of the automatic detection
method and that of Sg2M. With more accurate Sg2 detection
algorithms, we may expect closer performance to that of the
manual Sg2.
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C. Comparison of vowel content dependency

As discussed in Sec. III B, Sg2 is not always detectable
from acoustic signals, and thus the Sg2 detectability in ad-
aptation data are important to the normalization perfor-
mance. It is shown in Wang �2008a� that the normalization
performance using Sg2D1 algorithm is highly content-
dependent. To investigate the content dependency of the pro-
posed algorithm Sg2D2, we evaluated its normalization per-
formance on TIDIGITS database with one adaptation digit.
For each child, the adaptation data were limited to only one
digit but with varying vowels from front vowel �e.g., �(� in
six�, central vowel �e.g., �#� in one�, back vowel �e.g., �u� in
two� to diphthong �e.g., �a(� in five�. The adaptation digits
were chosen such that F2 discontinuities, if any, come only
from vowel contents without any possible interferences from
consonant-vowel transitions �Lulich, 2009�.

The performance comparison for VTLN, F3, and Sg2
normalizations is shown in Fig. 12. It can be seen that the
choice of adaptation data can potentially have an effect on
the normalization performance for all three methods. Among
them, VTLN is least affected by the choice of adaptation data
�the performance standard deviation is 0.55�, while F3 nor-
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malization is highly data dependent. The performance of Sg2
normalization is less content sensitive compared to F3 nor-
malization, but more content-dependent than VTLN. We ex-
pect that the content dependency of Sg2 normalization will
decrease with improved Sg2 detection algorithms. In spite of
its greater content dependency, on average Sg2 normalization
provides better performance than VTLN.

D. Performance on RM1 database

Since the TIDIGITS setup is a highly mismatched case,
the experiments demonstrate the effectiveness of subglottal
resonance-based speaker normalization. To further verify the
effectiveness of this method, we also test the performance on
a medium vocabulary recognition task using the DARPA Re-
source Management RM1 continuous speech database. As a
next step, we tested the method on the RM1 database for
both a medium-mismatched case and a matched case. Triph-
one acoustic models were applied with three states and four
Gaussian mixtures per state using the same features as in the
TIDIGITS experiments. For the mismatched case, HMM
models were trained on 49 adult male speakers from the
speaker independent �SI� portion of the database, and tested
on 23 adult female speakers in the SI portion. The baseline
word recognition accuracy was 59.10%. For the regular test
on RM1, the HMM models were trained on the SI training
portion of the database with 72 adult speakers, and tested on
the SI testing set. The baseline performance was 92.47%
word recognition accuracy. In both cases, the same utterance
was used to estimate the Sg2 and VTLN warping factor for
all speakers. Table III shows the results.

For the mismatched case, Sg2 normalization provides
better performance than VTLN with about 1.5% absolute
improvement. This improvement is statistically significant
for p�0.01. For the matched case, Sg2 normalization pro-
vides comparable performance to that of VTLN. From the
computation point of view, Sg2 normalization is more effi-
cient than VTLN, since VTLN relies on an exhaustive grid
search over the warping factors to maximize the likelihood
of the adaptation data, while for Sg2 normalization the main
computational cost comes from formant tracking which can
be estimated efficiently.

E. Cross-language speaker normalization

The language-independent property of Sg2 makes cross-
language adaptation possible based on Sg2 normalization. In
our experiments, training and test data were in English, while
the adaptation data were in either English or Spanish. The

TABLE III. Performance comparison �word recognition accuracy� on RM1
with one adaptation utterance.

Accuracy Mismatched Matched

Baseline 59.10 92.47
F3 79.01 92.58

VTLN 86.65 93.91
Sg2 88.37 94.05
warping factors were estimated from the adaptation data us-
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ing Sg2D2 and applied to the test data to warp the spectrum.
English adaptation data were collected for comparison.

The performance was evaluated on the Technology
Based Assessment of Language and Literacy �TBall� project
database �Kazemzadeh et al., 2005�, and the English high
frequency words for first and second grade students were
used in the test. Monophone acoustic models were trained on
speech data from native English speakers. The test data were
from the same 20 speakers as in the ChildSE. The ChildSE
utterances �only one repetition� were used as adaptation data,
and for each speaker there were four English words and five
Spanish words for adaptation.

The typical text-dependent VTLN method using HMM
recognizers for warping factor searching is not quite suitable
in this scenario, because decoding Spanish speech with Eng-
lish phoneme models could itself introduce a systematic er-
ror due to different phonetic characteristics between these
two languages. Instead, for a fair and reasonable comparison,
text-independent VTLN is applied, which uses Gaussian
mixture models �GMMs� for warping factor searching. A
GMM with 512 mixtures was trained on English training set,
and then applied to calculate the likelihood for each warping
factor in the range �0.8, 1.2� with a step size of 0.01. The
warping factor with the highest likelihood was chosen as the
VTLN warping factor. Compared to the text-dependent
VTLN used in Wang �2008�, this text-independent method
provides similar performance with English adaptation data,
but much better for Spanish adaptation data. The subglottal
resonance was estimated using Sg2D2 for each word, and the
average was used as the speaker’s Sg2 frequency. The Sg2
warping factor was calculated using Eq. �5�.

The normalization performance is shown in Table IV for
VTLN and Sg2 using English and Spanish adaptation data.
When adaptation data are in English, which is the same lan-
guage as for the acoustic models, Sg2 normalization and
VTLN give comparably good results. For Spanish adaptation
data, however, the performance of VTLN degrades, while the
performance of Sg2 normalization remains similar as for
English adaptation data. Sg2 normalization, therefore, pro-
duces more robust results than VTLN when performing
cross-language adaptation. The performance difference be-
tween using Sg2D2 and using VTLN is statistically signifi-
cant with Spanish adaptation data for p�0.01.

VI. SUMMARY AND DISCUSSION

This paper presents a reliable algorithm for estimating
the second subglottal resonance �Sg2� from acoustic signals.

TABLE IV. Performance comparison �word recognition accuracy� of VTLN
and Sg2 normalization using English �four words� and Spanish �five words�
adaptation data. The acoustic models were trained and tested using English
data.

Method

Language of adaptation data

English Spanish

VTLN 86.61 82.35
Sg2 86.59 85.97
The algorithm provides Sg2 estimates very close to actual
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Sg2 values as determined from direct measurements using
accelerometer data. With the proposed algorithm, Sg2 stan-
dard deviation over contents and languages was investigated
with children’s data for English and Spanish. Analysis shows
that for a given speaker, the second subglottal resonance
does not appear to vary with speech sounds, repetitions, and
even across languages. Based on such observations, a
speaker normalization method is proposed using the second
subglottal resonance. This normalization method defines the
warping factor as the ratio of the reference subglottal reso-
nance over that of the test speaker.

A variety of evaluations show that the second subglottal
resonance normalization performs better than or comparable
to VTLN, especially for limited adaptation data. An obvious
advantage of this method is that the subglottal resonances
remain roughly constant for a specific speaker. This method
is potentially independent of the amount of available adapta-
tion data, which makes it suitable for limited data adaptation.

Cross-language experimental results shows that Sg2 nor-
malization is more robust across languages than VTLN, and
no significant performance variations are observed for Sg2
when the adaptation data are changed from English to Span-
ish. The fact that Sg2 is independent of language should
make it possible to adapt acoustic models with available data
from any language. The method is also computationally
more efficient than VTLN.

The Sg2 variations found in this paper are similar to
what has been reported elsewhere. However, given the small
number of subglottal resonance studies, more data may need
to be collected and analyzed in order to refine the character-
ization of subglottal resonance variability. For future work,
we will further improve the accuracy of the Sg2 detector,
evaluate the effectiveness of this method on a large vocabu-
lary database, and test the performance in noisy conditions.
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