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Abstract

In this paper, we analyze the temporal modulation char-
acteristics of speech and noise from a speech/non-speech
discrimination point of view. Although previous psychoacous-
tic studies [3][10] have shown that low temporal modulation
components are important for speech intelligibility, there is no
reported analysis on modulation components from the point of
view of speech/noise discrimination. Our data-driven analysis
of modulation components of speech and noise reveals that
speech and noise is more accurately classified by low-passed
modulation frequencies than band-passed ones. Effects of
additive noise on the modulation characteristics of speech
signals are also analyzed. Based on the analysis, we propose
a frequency adaptive modulation processing algorithm for a
noise robust ASR task. The algorithm is based on speech
channel classification and modulation pattern denoising.
Speech recognition experiments are performed to compare
the proposed algorithm with other noise robust frontends,
including RASTA and ETSI AFE. Recognition results show
that the frequency adaptive modulation processing is promising.

Index Terms: noise robust speech recognition, temporal mod-
ulation processing, spectro-temporal processing

1. Introduction
In this study, we aim to enhance the noise robustness of an au-
tomatic speech recognition (ASR) system via a front-end ap-
proach. The focus is to incorporate adaptive amplitude modu-
lation processing into the standard short-time based feature ex-
traction algorithm. As a result, ASR noise robustness is im-
proved.

Studies in speech perception have confirmed the importance
of amplitude modulation frequencies on speech intelligibility.
Drullman et. al [10] shows that modulation frequencies below
16Hz contribute to speech intelligibility significantly, especially
for vowel perception in noise. In [3], a quantitative model of
amplitude modulation is described that explains data from mod-
ulation detection and modulation masking experiments.

There is also increasing interest in using modulation infor-
mation for ASR. The relative spectra (RASTA) algorithm[11]
filters the temporal envelope trajectory to minimize convolu-
tional channel effects on speech signals and to emphasize low
modulation frequencies. Using RASTA, ASR under both ad-
ditive and convolutional noise is considerably improved. In
[4], temporal information is studied in an effort to search for
speech features invariant to both noise and speaker differences.
These are reached by emphasizing temporal information around
4 Hz, and attenuating one that moves beyond a syllable rate (2-
12Hz). The stability of the representation against additive noise
is demonstrated by spectrogram-like displays.

Recent work on modulation frequencies are further influ-
enced by current psychoacoustic studies of modulation infor-
mation, and a computational spectro-temporal model developed
in [5].

There are two main types of algorithms incorporating mod-
ulation frequencies. One is based on joint spectro-temporal
features, and the other is based on sequential spectrum and
temporal processing. Spectro-temporal processing, as in [1]
and [2], is developed to denoise speech signals according to
spectro-temporal SNR estimation. High dimensionality is a
common problem for features in the joint spectro-temporal
domain. Although some solutions have been developed ([1]
and [9]), dimensionality reduction of spectro-temporal fea-
tures remains a challenge. An example of the second type
of methods (sequential spectrum processing and temporal pro-
cessing) is a data-driven temporal feature processing algo-
rithm (TRAP TANDEM)[8] to further improve upon the origi-
nal RASTA processing. Although some studies have explored
effective information combination[6] for this sequential type of
processing, ways to combine spectral information and temporal
information need to be further investigated.

The present work addresses noise robustness using the se-
quential type of algorithms. However, it differs from previ-
ous approaches in several ways. First, we derive a frequency-
adaptive modulation domain processing to denoise speech sig-
nals. We show that frequency adaptiveness can significantly
improve temporal modulation processing performance. Second,
characteristics of speech and noise in the modulation frequency
(MF) are studied, as well as the effects of additive noise on mod-
ulation characteristics. In contrast to previous analysis that have
focused on speech intelligibility, the focus of the present anal-
ysis is on speech and noise separability in MF. Furthermore,
a denoising algorithm is developed to attenuate noise sensitive
MFs based on estimates from noise robust MFs.

Although frequency channel SNR estimation using tempo-
ral MFs has been studied in [13], our noisiness indicator differs
from that of previous work. Beside temporal scale differences,
(600ms in our algorithm and around 40ms in [13]), we use a
noisiness indicator based on the decrease in MFs between 0 Hz
and 1.5 Hz, whereas SNR estimation in [13] is for short-time
frequency denoising, relying more on pitch information derived
from high modulation frequencies.

The remaining of this paper is organized as follows. Sec-
tion 2 presents analysis of temporal modulation frequencies of
both speech and noise signals, and compares different modula-
tion features for a speech/non-speech discrimination task. Sec-
tion 3 describes the proposed modulation processing algorithm.
Speech recognition experiments are described in Section 4, fol-
lowed by a summary in Section 5.



2. Analysis
2.1. Speech/Non-speech Classification Experiment

Because speech and noise signals have distinct modulation fre-
quency characteristics, we test this feature separability using a
classification experiment.

Modulation frequencies (from 0 Hz to 16 Hz) are used as
temporal modulation features. The dimension of temporal mod-
ulation feature varies according to our experimental setting. For
example, 0 − 2 Hz feature in Figure 1 is of dimension 3, and
0− 16 Hz feature is of dimension 11. A long window length is
used for computing modulation features (600ms). In addition,
we aggregate speech and noise modulation features for training
and testing according to acoustic frequencies. We perform a
feature classification task using linear support vector machines
(SVMs) trained to classify speech/noise modulation features.

Speech data from TIMIT are used; babble noise data are
synthesized from randomly sampled TIMIT data so that the
babble noise density is controlled. Overall, 10 minutes of
speech and babble noise are used to train the classifier, and 10
minutes of speech and noise data are used in testing.
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Figure 1: Classification accuracy for modulation features

Figure 1 depicts SVM classification results. Performance
curves corresponding to classification of speech and babble
noise of different densities (10, 5, and 3) are shown. The density
parameter controls the number of random speech signals used
in generating synthetic noise. Density 3 represents a more chal-
lenging task than density 10. As shown in the figure from left to
right, tested modulation features included low-passed MFs, and
a band-passed MF (the 0-16Hz-No-DC feature) where the 0 Hz
MF is excluded. Band-passed MF performs consistently worse
than low-passed ones. The results show the importance of com-
bining DC modulation along with low modulation frequency for
the task of speech/non-speech feature classification. Therefore,
although the removal of long-term static magnitude spectrum
negatively affects speech intelligibility to a small extent[10],
the micro-structure of frequency energy distribution provided
by the static magnitude spectrum appears to be important for
speech/non-speech classification.

2.2. Speech and Noise Modulation Characteristics

Similar to studies on modulation characteristics of speech[4],
we observe that speech MFs have smoother energy transition
from 0 Hz to low modulations, and a localized MF peak at
around 4 Hz. For noise, however, sharp energy decrease oc-
cur from 0 Hz to low MFs. This may be be a good feature for

speech/non-speech discrimination in a frequency channel.
Unlike existing analysis that studies modulation character-

istics for a given acoustic frequency, we analyze the cross cor-
relation between different MFs across acoustic frequencies. A
high cross correlation between different MFs indicates the ex-
istence of consistent modulation patterns across acoustic fre-
quencies, whereas a low cross correlation indicates less consis-
tent modulation patterns. Based on speech production theory, it
is our hypothesis that the modulation pattern of speech signals
over long segments is more consistent than that of noise.

Figure 2 presents the histogram of cross correlation be-
tween low MFs 1.5Hz and 3Hz. For speech signals, the his-
togram shows that low MFs are highly correlated, while cross
correlations for noise signals are mostly less than 0.9 between
low modulation frequencies.
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Figure 2: Histogram of cross correlation between MF 1.5Hz and
3Hz. The x-axis is cross correlation; The y-axis is probability
density. Upper left and right panels are speech and babble noise;
bottom left and right are street noise and restaurant noise.

Figure 3 presents the cross correlation histogram of speech
signal corrupted by subway noise at SNR 15dB and 5dB. Ad-
ditive noise considerably reduces cross correlation between low
MFs. Therefore, a modulation processing algorithm needs to
address this reduced cross-correlation between low MFs due
to noise to avoid modulation pattern mismatch for noise robust
ASR.
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Figure 3: Cross correlation between modulation frequencies
1.5Hz and 3Hz of noisy speech at SNR 15dB and 5dB (left
and right panels respectively).



3. Method
A frequency adaptive modulation processing algorithm is de-
veloped. The basic idea is to denoise noise-sensitive MFs for
noisy channels based on a linear combination of noise-sensitive
and noise-robust MFs from the the closet robust channel and
noise-robust MFs from the noisy channel under consideration.
We assume that for most noise types and SNRs, noise-sensitive
MFs range from 0 Hz to 2 Hz, whereas noise robust MFs range
from 3 Hz to 8 Hz[4].

In contrast to RASTA[11] in which the static average mag-
nitude spectrum (i.e. the micro-structure information contained
in modulation 0Hz) is filtered to remove convolutional noise,
we adaptively denoise MFs less than 2 Hz. The benefits of re-
covering this micro-structure information have been discussed
in [7]. The author suggests that this information is important
for avoiding negative reconstructed magnitude spectrum. In ad-
dition, our speech/non-speech feature classification experiment
shows modulation at 0 Hz is important when combined with low
MFs in order to provide a salient speech event cue. Accord-
ingly, it plays two distinct roles in our algorithm. First, when
combined with the MF at 1.5Hz, it can be used as a frequency
channel SNR correlated indicator or ”noisiness” indicator. Sec-
ond, denoised MFs at 0 Hz and low MFs can provide speech
detection information for the front-end. Without the 0 Hz MF,
speech detection in noise is harder, especially when negative
magnitude spectrum issues occur. For that reason, modulation
at 0 Hz is also denoised in our algorithm rather than attenuated.

The general modulation processing flow chart is shown in
Figure 4.���� ������	
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Figure 4: Flowchart of modulation domain processing

Implementation of the adaptive modulation processing is
shown in Figure 5. di(f) is the log magnitude at MF i and
frequency f , while d

′
i(f) corresponds to denoised log magni-

tude. A near log magnitude compression 20log10(1 + |x|) is
used to reduce the dynamic range of modulation components.
MFs ≤ 2 Hz are denoised, while MFs > 16 Hz are attenuated.
Each module of the algorithm in this figure is explained below
in detail.

As shown, a modulation energy measure β(f) and a nois-
iness indicator ξ(f) are extracted. Specifically, β(f) =∑

i=3,..,8 di(f), and ξ(f) = d0(f) − d1.5(f). These two
measurements are used to select acoustic frequencies with high
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Figure 5: Flowchart of frequency adaptive modulation process-
ing algorithm

modulation energy and small ξ(f) by a channel classification
module. Small ξ(f) indicates a smoother energy transition from
modulation 0 Hz to 1.5 Hz, thus a higher SNR for the channel.
To classify frequency channels, a recursive min-max scheme is
used. Noise robust channels are selected every 200Hz in our
implementation. There are 2 thresholds used in the classifica-
tion module: Tβ and Tξ. Tβ is an adaptive threshold adjusted
according to local maximum of β(f), while Tξ is an empiri-
cal threshold for ξ(f). Tξ = 5.5 + 0.33× mean of ξ(f) over
0 < f < 50. Frequencies corresponding to smaller β(f) com-
pared to Tβ are removed. Among the remaining frequencies,
frequency with minimum ξ(f) is chosen as a possible noise ro-
bust channel. To reduce misclassification when SNRs are low,
threshold Tξ is used as a upper bound for the possible noise
robust channel. The min-max computation is then repeated
throughout the whole frequency range. This way, the channel
classification module is optimized to minimize false classifica-
tion errors.

Speech modulation parameters, ∆di(fsp) for i ≤ 2 Hz, are
subsequently estimated from the classified noise robust channel
fsp. Specifically, for i = 0, 1, 2 Hz,

∆di(fsp) = di(fsp)− 1

3
Σj=3,4,5dj(fsp). (1)

When assuming an exponential model for MF magnitudes
(approximately holds for speech MFs), ∆di(fsp) is close to the
log linear parameter for the modulation magnitude at frequency
fsp and MF i. Therefore, for a noisy channel f , the closest fsp

is used to denoise noisy MFs. For i ≤ 2 Hz,

d
′
i(f) = ∆di(fsp) +

1

3
Σi=3,4,5di(f) (2)

Finally, the denoised MF d
′
i(f) is compared with the corre-

sponding noisy MF di(f). A noisy MF is denoised if |d′i(f)−
di(f)| > KdB, where K is 1.5dB in our implementation.

4. Experiments
A noise robust recognition experiment is set using Aurora2
database. HMM models are configured and trained accord-
ing to standard Aurora2 setting using HTK tools. Word level
acoustic models are trained, where each model is represented
by 18 states and 3 mixtures per state. The MFCC features
(plus first- and second- order derivatives) are used as our base-
line system. We compare the ASR recognition accuracy of our



method, the frequency adaptive modulation processing, to that
of MFCC, RASTA-MFCC, and ETSI advanced frontend[12]
(ETSI-AFE). A RASTA-MFCC is experimented instead of the
original RASTA-PLP because the performance of the former is
significantly better than the latter on Aurora dataset. In addi-
tion, RASTA-MFCC provides a fair comparison between our
algorithm and the original bandpass based modulation process-
ing idea. Table 1 shows results of these front-ends tested on set
A subway noise.

Table 1: ASR accuracy of MFCC, RASTA-MFCC, ETSI-AFE,
and the proposed algorithm (Adaptive) under subway noise in
Aurora set A

MFCC RASTA-MFCC ETSI-AFE Adaptive
SNR20 97.05 95.00 98.4 95.60
SNR15 93.49 90.94 96.32 94.23
SNR10 78.72 80.2 91.53 86.34
SNR5 52.2 63.83 77.92 70.34
SNR0 26.01 37.98 50.91 43.75
SNR-5 11.18 16.79 20.4 18.67

Average 59.77 64.13 72.58 68.16

The average performance (averaged over SNR from 20 dB
to -5 dB) of set A and set B is shown in Table 2 and Table 3.

Table 2: Average ASR accuracy (20 dB to -5 dB) of MFCC,
RASTA-MFCC, ETSI-AFE, and the Adaptive algorithm of Au-
rora set A

MFCC RASTA ETSI-AFE Adaptive
Subway 59.77 64.13 72.58 68.16
Babble 41.83 63.40 71.93 60.95

Car 52.06 63.06 73.75 71.86
Exhibition 56.09 63.68 73.09 68.21
Average 52.43 63.56 72.83 67.30

Table 3: Average ASR accuracy (20 dB to -5 dB) of MFCC,
RASTA-MFCC, ETSI-AFE, and the Adaptive algorithm of Au-
rora set B

MFCC RASTA ETSI-AFE Adaptive
Restaurant 44.40 66.10 73.14 62.48

Street 53.01 64.21 72.42 69.24
Airport 45.74 70.12 75.65 72.36
Train 47.76 64.94 75.74 70.96

Average 47.72 66.34 74.23 68.76

The proposed frequency adaptive modulation algorithm
improves noise robust ASR performance considerably over
RASTA algorithm for all cases except for babble-like noise.
This result indicates that a frequency adaptive denoising scheme
in the modulation domain is preferable to a fixed filtering de-
sign. For babble noise, the proposed algorithm performs less
well than the RASTA algorithm. This maybe is due to the fact
that babble noise has smoother modulation energy distribution
than other types of noise. Hence, it has more false classification
errors in the channel classification modulation. Although ASR
performance of our method is worse than that of the ETSI-AFE
noise robust frontend, we believe that our algorithm remains

promising as it uses only simple modulation domain processing,
whereas ETSI-AFE utilizes a set of complex optimized noise
robust techniques.

5. Conclusions
In this work, we study the modulation characteristics of speech
and noise, and propose frequency selective modulation domain
processing for noise robust ASR. We analyze the modulation
domain from the point of view of speech and noise discrimi-
nation. Our data exploration indicates that denoising process-
ing in the modulation domain is promising when a frequency
adaptive scheme is applied. Key observations obtained in our
study include: distinction of speech and noise in modulation
characteristics; importance of micro-structure information for
speech/non-speech classification; modulation frequency corre-
lation over the acoustic frequencies of speech and noise. These
observations motivate us to design a frequency adaptive modu-
lation processing algorithm that improves noise robust ASR. In
addition, our study indicates a need to adaptively denoise mod-
ulation frequencies of noisy speech, while utilizing noise robust
modulation pattern detected across frequency channels.
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