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Noise Robust FO Tracking

@ Develop an error metric that provides a good assessment
for FO tracking algorithms

@ Accuratlely estimate and track FO contours under noisy
conditions.

@ |. Error Metrics
@ |l. Statistically-based Unvoiced/Voiced Classifier
@ |ll. Experimental Results and Analysis
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Current Error Metrics

An Example of a Tracked and Reference FO contour
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3 possible types of error in any frame i

@ Unvoiced — Voiced Error;
@ Voiced — Unvoiced Error;
@ FO Value Estimation Error.
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Current Error Metrics

Two error metrics are currently used:

Voicing Decision Error (VDE)) [NAIO8]

Ny _u + Ny_v

VDE =

- x 100% 1)

| A\

Gross Pitch Error (GPE) [RCR76]

N
GPE = %€ % 100% )
Nyv

Nyv: # of frames which both the FO tracker and the ground
truth consider to be voiced;

Neoe: # of frames for which \FO"‘*’M —1| > 20%

I:Oi ,reference
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GPE-VDE Curve (M+: using U/V classifier output as a mask) in
White Noise

GPE-VDE Curve (White Noise, SNR = 0 dB)
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FO Frame Error Metrics

A Metric That Combines Two Different Errors

FO Frame Error (FFE)

# of error frames

FFE = 1009
# of total frames XA 3)
Nu_v + Nv_u + Nroe

= N x 100%.

FFE is also a combination of GPE and VDE:

NU—>V + NV—>U

N
FFE = LOE x 100% + x 100%. (4)

N
— % x GPE + VDE

-

Therefore, FFE takes both GPE and VDE into consideration.



Error Metrics
oe

FO Frame Error Metrics

Why FFE

Look at the Word Error Rate (WER) in ASR:

# of error words
WER = 1009
# of total words X O )

. # Insertions -+ # Deletions + # Substitutions « 100%
- # All Words o

-

Analogy

@ Unvoiced — Voiced Error <= Insertion Error;
@ Voiced — Unvoiced Error < Deletion Error;
o FO Value Estimation Error <= Substitution Error.

A\

Thus, FFE in FO tracking <= WER in ASR.



U/V Classification

. Statistically-Based Unvoiced/Voiced Classification Frontend



U/V Classification

Figure: 1. The flowchart of our statistically-based U/V classification
frontend

U/V Classification
Frontend Adaptation |G

'

1

1

1

: Y
1

1

! Training @
"

1

1

1

+ feature ,

wav Feature N :) FO FO contour
5! Extraction > ' Tracking

U/V mask

Classifier
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Unvoiced/Voiced Acoustic Modeling

Phoneme to Unvoiced/Voiced Dictionary

Table: 1. The mapping from Phonemes to Unvoiced and Voiced

Stops Affricates & Nasals Semivowels | Others
Fricatives & Vowels & Glides
U || p(cl) t(cl) k(cl) chsf - hh epih
bcl dcl gel g th sh pau
Vv bdgdx jhzv m n ng em en eng nNx Irel -
zh dh iy ih eh ey ae aa aw wy hv
ay ah ao oy ow uh uw
ux er ax ix axr ax-h

@ Phone symbols are used in the TIMIT phone level
transcription.

@ Two acoustic models were trained: unvoiced(U) and voiced
(V).

@ The models are left-to-right HMMs
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Unsupe Speaker Adaptation

Data Set

For Training the U/V Models: TIMIT corpus
@ Only the training data (4 hours) are used.

For Testing the FO Tracking: KEELE corpus

@ A simultaneous recording of speech and laryngograph
signals for a phonetically-balanced text.

@ The total length: 5 min 37 s, 5 male and 5 female speakers.

White and babble noise are artificially added to training and
testing set, SNR =0 dB
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Unsupervised Speaker Adaptation

Adaptation to the Speaker Variance

@ Only American English corpus (TIMIT) is available for
training the U/V models.

@ The test set (KEELE) is a British English corpus.

Adaptively learn the distribution of 'Unseen data’!l

Maximum Likelihood Linear Regression (MLLR) speaker

adaptation [LW95]

A linear transformation Wg to all the mean vectors of the
Gaussians:

N; = Wsps (6)
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[ll. Experimental Results and Analysis
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VDE of the U/V Classifier Using the KEELE Corpus

Table: 2. Error rates at SNR = 0 dB, Sl: speaker independent models,
GSD/RSD: global style/regression tree style adapted models. (error
rates)

VDE White Noise Babble Noise
MFCC | ETSI MFCC | ETSI
Sl 11.57% | 10.84% || 30.70% | 26.27%
GSD || 10.98% | 9.81% | 27.61% | 22.48%
RSD || 10.18% | 9.14% || 27.23% | 23.54%

@ MFCC: Mel-Frequency Cepstral Coefficients
@ ETSI: feature output of the European Telecommunications
Standard Institute (ETSI) advanced frontend.
@ before MFCCs extraction: two stage mel-warped Wiener
filtering.
o after MFCCs extraction: blind equalization.
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GPE-VDE Curve (M+: using U/V classifier output as a mask) in
White Noise

GPE-VDE Curve (White Noise, SNR = 0 dB)
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GPE-VDE Curve (M+: using U/V classifier output as a mask) in
Babble Noise

GPE-VDE Curve (Babble Noise, SNR = 0 dB)
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Ex periments

Analyze the GPE-VDE Curve

For every FO tracker without the U/V mask, GPE \, when VDE
/. A possible explanation could be:

@ If the VDE 7, it may be because the FO tracker only takes
voiced frames with high SNR as voiced.

@ Since it is easier to estimate the FO value over a voiced
frame with a higher SNR, the GPE \.

Recall: GPE and VDE

N Ny_u + Nu_
GPE — —F%E , 100%,  VDE = Y=Yt u=v 1509

Nyv N
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GPE, VDE and FFE for the KEELE Corpus Under Default
Parameters

Table: 3. Error rates at SNR = 0 dB, M+: U/V mask provided by
model-based classifier

White Noise Babble Noise
GPE | VDE | FFE GPE | VDE | FFE
Get_FO 0.59% | 35.95% | 36.04% || 18.89% | 30.54% | 35.15%
Praat 0.73% | 30.77% | 30.93% || 27.36% | 30.99% | 38.70%

TEMPO 1.49% | 21.92% | 22.38% 8.90% | 47.37% | 47.89%
M+TEMPO | 6.99% | 9.34% | 12.64% || 21.19% | 22.48% | 30.86%
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GPE, VDE and FFE for the KEELE Corpus

Table: 4. SNR = 0 dB, M+: U/V mask provided by model-based
classifier, min VDE/FFE : when VDE/FFE is minimized. (error rates)

White Noise Babble Noise

GPE [ VDE | FFE GPE | VDE | FFE
Get EO m?n VDE 3.19% 20.00% | 21.04% || 31.56% | 28.21% | 37.58%
— min FFE 2.83% 20.02% | 20.94% 8.51% | 30.65% | 32.79%
Praat m!n VDE 2.10% 19.72% | 20.41% || 31.82% | 29.32% | 38.69%
min FFE 2.10% 19.72% | 20.41% 531% | 32.67% | 33.86%
TEMPO m?n VDE 15.87% | 14.52% | 20.59% || 58.05% | 36.51% | 50.35%
min FFE 4.93% 14.69% | 16.56% 8.11% | 40.16% | 41.24%
M+TEMPO m!n VDE 7.10% 9.14% 12.52% 18.65% | 22.48% | 29.86%
min FFE 7.10% 9.14% 12.52% 18.65% | 22.48% | 29.86%

Integrating our model-based U/V classifier into an FO-tracking
algorithm can improve its FFE and VDE.
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Summary

@ The FO Frame Error (FFE) and GPE-VDE curve can be
used to evaluate the FO tracking algorithms in a unified
framework.

@ The model-based U/V classifier can output robust U/V
masks for FO trackers under both white and babble noise
conditions which is helpful for reducing the overall FFE.
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@ Better features for U/V classification to improve VDE.

@ Explore noise robust FO value estimation methods to
reduce GPE.
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