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Noise Robust F0 Tracking

Motivation

Develop an error metric that provides a good assessment
for F0 tracking algorithms

Accuratlely estimate and track F0 contours under noisy
conditions.

Outline
I. Error Metrics

II. Statistically-based Unvoiced/Voiced Classifier

III. Experimental Results and Analysis
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I. Error Metrics
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Current Error Metrics

An Example of a Tracked and Reference F0 contour

3 possible types of error in any frame i

Unvoiced → Voiced Error;

Voiced → Unvoiced Error;

F0 Value Estimation Error.
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Current Error Metrics

Current Error Metrics

Two error metrics are currently used:

Voicing Decision Error (VDE)) [NAI08]

VDE =
NV→U + NU→V

N
× 100% (1)

Gross Pitch Error (GPE) [RCR76]

GPE =
NF0E

NVV
× 100% (2)

NVV : # of frames which both the F0 tracker and the ground
truth consider to be voiced;
NF0E : # of frames for which |

F0i,estimated
F0i,reference

− 1| > 20%
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Current Error Metrics

GPE-VDE Curve (M+: using U/V classifier output as a mask) in
White Noise

8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

6

7

8

VDE (%)

G
P

E
 (

%
)

GPE−VDE Curve (White Noise, SNR = 0 dB)

 

 
Get_F0
Praat−CC
TEMPO
M+TEMPO



Error Metrics U/V Classification Experiments References

F0 Frame Error Metrics

A Metric That Combines Two Different Errors

F0 Frame Error (FFE)

FFE =
# of error frames
# of total frames

× 100% (3)

=
NU→V + NV→U + NF0E

N
× 100%.

FFE is also a combination of GPE and VDE:

FFE =
NF0E

N
× 100% +

NU→V + NV→U

N
× 100%. (4)

=
NVV

N
× GPE + VDE

Therefore, FFE takes both GPE and VDE into consideration.
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F0 Frame Error Metrics

Why FFE

Look at the Word Error Rate (WER) in ASR:

WER =
# of error words
# of total words

× 100% (5)

=
# Insertions + # Deletions + # Substitutions

# All Words
× 100%.

Analogy

Unvoiced → Voiced Error ⇐⇒ Insertion Error;

Voiced → Unvoiced Error ⇐⇒ Deletion Error;

F0 Value Estimation Error ⇐⇒ Substitution Error.

Thus, FFE in F0 tracking ⇐⇒ WER in ASR.
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II. Statistically-Based Unvoiced/Voiced Classification Frontend
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Figure: 1. The flowchart of our statistically-based U/V classification
frontend
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Unvoiced/Voiced Acoustic Modeling

Phoneme to Unvoiced/Voiced Dictionary

Table: 1. The mapping from Phonemes to Unvoiced and Voiced

Stops Affricates & Nasals Semivowels Others
Fricatives & Vowels & Glides

U p(cl) t(cl) k(cl) ch s f - hh epi h
bcl dcl gcl q th sh pau

V b d g dx jh z v m n ng em en eng nx l r el -
zh dh iy ih eh ey ae aa aw w y hv

ay ah ao oy ow uh uw
ux er ax ix axr ax-h

Phone symbols are used in the TIMIT phone level
transcription.

Two acoustic models were trained: unvoiced(U) and voiced
(V).

The models are left-to-right HMMs
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Unsupervised Speaker Adaptation

Data Set

For Training the U/V Models: TIMIT corpus

Only the training data (4 hours) are used.

For Testing the F0 Tracking: KEELE corpus

A simultaneous recording of speech and laryngograph
signals for a phonetically-balanced text.

The total length: 5 min 37 s, 5 male and 5 female speakers.

White and babble noise are artificially added to training and
testing set, SNR = 0 dB
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Unsupervised Speaker Adaptation

Adaptation to the Speaker Variance

Existing Mismatch

Only American English corpus (TIMIT) is available for
training the U/V models.

The test set (KEELE) is a British English corpus.

Adaptively learn the distribution of ’Unseen data’!

Maximum Likelihood Linear Regression (MLLR) speaker
adaptation [LW95]

A linear transformation Ws to all the mean vectors of the
Gaussians:

µ
′

s = Wsµs (6)
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III. Experimental Results and Analysis
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Experiments

VDE of the U/V Classifier Using the KEELE Corpus

Table: 2. Error rates at SNR = 0 dB, SI: speaker independent models,
GSD/RSD: global style/regression tree style adapted models. (error
rates)

VDE White Noise Babble Noise
MFCC ETSI MFCC ETSI

SI 11.57% 10.84% 30.70% 26.27%
GSD 10.98% 9.81% 27.61% 22.48%
RSD 10.18% 9.14% 27.23% 23.54%

MFCC: Mel-Frequency Cepstral Coefficients
ETSI: feature output of the European Telecommunications
Standard Institute (ETSI) advanced frontend.

before MFCCs extraction: two stage mel-warped Wiener
filtering.
after MFCCs extraction: blind equalization.
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Experiments

GPE-VDE Curve (M+: using U/V classifier output as a mask) in
White Noise
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Experiments

GPE-VDE Curve (M+: using U/V classifier output as a mask) in
Babble Noise
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Experiments

Analyze the GPE-VDE Curve

For every F0 tracker without the U/V mask, GPE ց when VDE
ր. A possible explanation could be:

If the VDE ր, it may be because the F0 tracker only takes
voiced frames with high SNR as voiced.

Since it is easier to estimate the F0 value over a voiced
frame with a higher SNR, the GPE ց.

Recall: GPE and VDE

GPE =
NF0E

NVV
× 100%, VDE =

NV→U + NU→V

N
× 100%
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Experiments

GPE, VDE and FFE for the KEELE Corpus Under Default
Parameters

Table: 3. Error rates at SNR = 0 dB, M+: U/V mask provided by
model-based classifier

White Noise Babble Noise
GPE VDE FFE GPE VDE FFE

Get_F0 0.59% 35.95% 36.04% 18.89% 30.54% 35.15%
Praat 0.73% 30.77% 30.93% 27.36% 30.99% 38.70%

TEMPO 1.49% 21.92% 22.38% 8.90% 47.37% 47.89%
M+TEMPO 6.99% 9.34% 12.64% 21.19% 22.48% 30.86%
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Experiments

GPE, VDE and FFE for the KEELE Corpus

Table: 4. SNR = 0 dB, M+: U/V mask provided by model-based
classifier, min VDE/FFE : when VDE/FFE is minimized. (error rates)

White Noise Babble Noise
GPE VDE FFE GPE VDE FFE

Get_F0
min VDE 3.19% 20.00% 21.04% 31.56% 28.21% 37.58%
min FFE 2.83% 20.02% 20.94% 8.51% 30.65% 32.79%

Praat
min VDE 2.10% 19.72% 20.41% 31.82% 29.32% 38.69%
min FFE 2.10% 19.72% 20.41% 5.31% 32.67% 33.86%

TEMPO
min VDE 15.87% 14.52% 20.59% 58.05% 36.51% 50.35%
min FFE 4.93% 14.69% 16.56% 8.11% 40.16% 41.24%

M+TEMPO
min VDE 7.10% 9.14% 12.52% 18.65% 22.48% 29.86%
min FFE 7.10% 9.14% 12.52% 18.65% 22.48% 29.86%

Integrating our model-based U/V classifier into an F0-tracking
algorithm can improve its FFE and VDE.
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Experiments

Summary

The F0 Frame Error (FFE) and GPE-VDE curve can be
used to evaluate the F0 tracking algorithms in a unified
framework.

The model-based U/V classifier can output robust U/V
masks for F0 trackers under both white and babble noise
conditions which is helpful for reducing the overall FFE.
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Experiments

Future Work

Better features for U/V classification to improve VDE.

Explore noise robust F0 value estimation methods to
reduce GPE.
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