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1. ABSTRACT

In this paper, temporal, spectral, and structural chariaties of
Robin songs and syllables are studied. Syllables in Robigsare
clustered by comparing a distance measure defined as thaga
of aligned LPC-based frame level differences. The syllghalgern:
inferred from the clustering results are used for improvhgacous
tic modelling of a hidden Markov model (HMM)-based Robin g
detector. Experiments conducted on a noisy Rocky Mountail
ological Laboratory Robin (RMBL-Robin) song corpus with ma
than 75 minutes of recordings show that the syllable pathasec
detector has a higher hit rate while maintaining a lowerefagrm
rate, compared to the detector with a general model trairoed &ll
the syllables.

2. INTRODUCTION

Bird songs play a vital role in the communication betweeriviiod
uals and species. A bird may listen to other birds and chadsém
as conspecific or heterospecific, neighbour or strangee oraton-
mate, kin or non-kin[[il]. It may also sing to other birds fortma
attraction, or territory defensgl[2]. Ecological and bebeal studies
can benefit from automatically detecting and identifyinga@ps or
individuals from audio recordings.

The motivation of this study is to automatically detect thése
tence of the Robin songs from continuous recordings celtefrom
Colorado.
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Fig. 1. Time waveform and spectrogram of a typical Robin song.
SYL refers to the syllable units.

recorded Robin database. Section 5 shows how the syllatikrps
are inferred. Section 6 describes the acoustic modellidghatwork
of the HMM-based detection system. Section 7 discussesjier-e
imental results.
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3. ROBIN SYLLABLE AND SONG

A typical Robin song is shown in Fifi] 1. It can be seen that tmgs
is composed of several different syllables. Note that theses are
sometimes referred as phrases or song types. Although siyiae
bles have similar harmonic structures as the voiced spdéduaimaan

Machine learning methods, such as back propagation and mup_eings, there are three main differences. The first is tleapitich of

tivariate statistics[I3], artificial neural networks [4}vadving neu-
ral networks [[5], dynamic time warping and hidden Markov mod
els [€] [4] [8], are effective for classifying bird and othanimal
sounds given pre-segmented acoustic recordings; howfevempn-
tinuous audio stream in which no boundary information idlabée,
itis important to have a recognizer that can both detectahgsand
classify the species.

An HMM-based detector with a general model trained fromwdl t
syllables is designed as a baseline system. In an improwstdmy
syllable patterns are first inferred from similar syllabtdsserved
in the recordings; HMMs of the inferred syllable patterns #ren
trained to allow finer acoustic modelling of the syllablesccArd-
ing to our experimental results, the proposed syllablespatbased
detector is promising in terms of the hit rate and false alat®.

The paper is organized as follows. Section 3 discusses #ie ch

acteristics of the Robin song and syllable. Section 4 intced the
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the Robin is higher than that of human with fundamental fexmgies
ranging between 1500 and 4500 Hz. The second is that Rohins ca
only intermittently vocalize syllables, but not contingty as can
humans. The third is that Robins may produce two pitchesIsimu
taneously during vocalization as shown in the circled negid and

B in Fig.[0. The phenomena can be attributed to how birds m®du
songsl[9]. During Robin vocalizations, air flows from twofdient
syrinxs are controlled by the lateral labium and the medgialgani-
form membranes. These membranes are located on the med&l wa
of the bronchus and these morphological structures enaiiRto
have two voicing sources. When the controllers of the twa sl
are vibrating at different speeds, two different pitch fregcies are
produced simultaneously.

4. RMBL-ROBIN DATABASE

The RMBL-Robin database used in this study was collectedingu
a close-field song meter (www.wildlifeacoustics.com) & Rocky



Table 1. The details of RMBL-Robin database
| || Length (minutes)| Syllable #] Song #|
Training Set 45,5 1644 457

Test Set 32.8 970 277

Mountain Biological Laboratory near Crested Butte, CaoflaraThe

sampling rate is 44.1 kHz. The recorded Robin songs areaiBtur
corrupted by different kinds of background noises, such @&l w
water and other vocal bird species. Non-target songs mayapve

with target songs. Each song usually consists of 2-10 dgkalThe
dataset is 78.3 minutes long and divided into two sets fanitrg
and testing purposes. The details of the database is sholatbiel.
Note that all the analysis is conducted on the training set.

5. INFERENCE OF SYLLABLE PATTERNS
Objectively inferring syllable patterns is not only impamt in study-

ing the singing behaviour of Robins, but also necessary twake
Robin song detection in the audio stream.

5.1. Distance Measure Between Syllables

A distance measure which was originally used for isolateddwo

recognition is adopted. The distance between two syllaisleke-
fined as the minimum accumulative frame-level differenceaioled
in a dynamic time warping schenie |10]. The difference betwe®
frames is based on the log likelihood ratio of the minimundpréon
error [17].

The details of the distance measure is described in thenfimitgp

The log likelihood ratio of the prediction error from frangeto
framezx, D(y||z), is defined as

T
a, R.a,

D(yllz) =log 7= =log 1"

1)
where E,, denotes the error obtained by feeding fragnmto the
inverse LPC filter inferred from frame, E. is the minimum pre-
diction error for the LPC system inferred from frampa, andR,
denote the LPC coefficients and autocorrelation coefficraattix of

framez, R.. In this paper, we use a symmetric difference measure;

D¢ (z,y), defined as

Dy(a,y) = 3 [(Dlally) + Dlyla)] @

Dy (z,y) does not satisfy the triangular inequality. Because of its

nonzero and symmetric properties, it can still be used affaelce
measure between two different analysis frames.

In this study, a fixed frame rate LPC analysis is firstly con-

ducted on the training set to acquire the distribution of diféer-

enceD¢(x,y) between two adjacent frames. There are some frames
between which the distances change slowly. Downsamplirtgeof

LPC analysis over these frames is essential to remove redtimt
formation. When the distances are changing rapidly betvatiesr
frames, an upsampling of the LPC analysis is also necessagpt
ture the rapidly changing pitch information. In essenceaable
frame rate (VFR)[I2] LPC analysis is then applied on eaclabid.

where D, (Y||X) denotes the distance from syllatie to syllable
X. It is obtained through dynamic time warping (DTVI/)[13]..i.e
minimizing the accumulative aligned frame-level diffecen defined
in Eq.2.

Although the defined distande, (X, Y) does not satisfy the tri-
angular inequality, it was used as a distance measure flatésb
word recognition[[I0], and can be used as the distance ne&sur
the Robin syllable clustering in the following section.

5.2. Hierarchical Clustering Analysis

The objective of clustering analysis in this section is tarsk com-
mon patterns which allow fine acoustic modelling of the Ratyik
lables compared to only using one single general patteralfohe
syllables. Training different models or templates for gliéint key-
words has been proved to be effective for keyword spotiidj il
which phoneme level transcription is available. However, the
training set of Robin songs, only boundary information af gyl-
lables is annotated. Thus, it is necessary to infer the ntsnble
the common syllable patterns from the training set, and tha&n
acoustic models for those patterns.

Providing the distance measure between two syllables dkiime
the previous section, it is possible to conduct a distancasore-
based hierarchical clustering analysis. In this study, alifieal
average-linkage hierarchical clustering is used to rglialuster syl-
lables into patterns. Before introducing the algorithng thter-
cluster distance of clustér, D.(C), is defined as

No No

D.(C) = WZZDS(X“XJ) 4)

i=1 j=1

where N¢ denotes the syllable numbers in the clusdf, denotes
thein syllable in the cluster. The intra-cluster distance betwaas-
ter C, andC, denoted byD.(C,, Cy) is defined as

1 Nca Ncb

D.(Ca,Ch) = No Ve Z Z DS(XZ.Ca7X]_Cb) (5)
a b

i=1 j=1

whereNc, denotes the syllable numbers in the clugter andX
denotes théy, syllable in the cluste€’,,.

The pseudocode of the modified average-linkage hieraidchica
clustering algorithm is expressed in the following:

Algorithm 5.1: A MODIFIED HIERARCHICAL CLUSTERING(C)

Set the stopping distance thresholdZ2s.,,.
Each syllable is initiated as a cluster.
Search the closest two cluste€s; andC);«, by
comparingD.(C;, C;)
Copy the elements af’;+ andC;+ into a new clusteC”™
do { if Do(C™) > DS .
then RemoveC™, break ;
ese
then UseC™ to replaceC;= andC«
while More than one cluster is left
D.(C): intra cluster distance of clustét,

Then, a symmetric distance measure between the two sylable Dc(Ca, Cs): inter cluster distance of clustéf, andCs;

andY denoted byD,(X,Y) is defined as

DL(X,¥) = 3 [D.(YI|X) + D.(X||Y))] &)

In this paper, only clusters with numbers of syllables gretitan
a threshold denoted by are retained as syllable patterns. The
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Fig. 3. HMM network A. RBN: the general HMM for all Robin
§ syllables.BGS: background sound HMM.
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Fig. 2. The relationship between the number of syllable patterngig. 4. HMM network B.RBNn: the HMM for then Robin syl-
and stopping distance threshdkﬁax given different cluster number |able pattern.RBNO: the HMM for the remaining Robin syllables
threshold ;. Only clusters with numbers of syllables great thanthat do not belong to any syllable patteBGS: background sound

N are regarded as syllable patterns.

relationship between the number of syllable patterns aoppgtg
distance threshol®S,.. given differentN is shown in Figur&l2.
Under the same clustering stopping threshold, the largeichhs-
ter number threshold is, the fewer syllable patterns theze bBin-
der each cluster number threshold, the number of syllakitens
first increases then decreases when the clustering stofypaghold
DS, increases. It might be because whBfy,, is small, many
small clusters are not regarded as syllable patterns; iifgn has
a high value, i.e. the allowable maximum intra-clusteralise is
high, many syllables are clustered together, which calseaum-
ber of patterns to be small.

It is still difficult to infer the actual numbers of the syllabpat-
terns from the clustering results, because biologists ateclear
about the repertoire size of the syllable patterns in Robimgs.
However, the clustering results are helpful in the senseaifing
acoustic models from the syllable patterns that are close éer-
tain feature space, which may improve detection and claasifin
results.

6. ROBIN SONG DETECTION SYSTEM

During training, feature segments required by the temgdased ap-
proach, i.e. DTW, can be obtained by examining the boundary i
formation contained in the transcriptions. However, therutary
information is no longer available in the test set which ieplthat
the template-based method is not suitable for the detetzislg and
pre-processing is needed to acquire the boundary infoomaths
an HMM-based system with models of the Robin syllables ac#-ba
ground sounds is capable of detecting the boundaries assifyiag
the sounds, by decoding the continuous feature stream/taimeu
ously, HMMs are used for acoustic modelling in our detectask.
A left-to-right HMM with 3 emitting states is adopted for melting
the syllable patterns; an ergodic HMM with 3 emitting statessed
for modelling the background sounds.

Two HMM network A and B are constructed for acoustic model

training and audio feature stream decoding purposes. Nktio

shown in Figurddd models all syllables as a single general HMM

and all background sounds as another general HMM. The elifter

between networks A and B, shown in the Figlite 4, is that differ

ent syllable patterns are modeled as different HMMs. As ioaet

HMM.

above, not all syllables can be clustered into a syllableepat An
extra HMM with the same topology as the syllable pattern HMM
is used for modelling unclustered syllables. Syllable gratt are
inferred by using the clustering-based method mentionéldempre-
vious section.

Bigram models for both HMM networks are learned from the
training set such that each arc in the network is assigneld avit
transition probability. The integration of the bigram mbatgo the
HMM networks implies the occurrence relationship betwémnstyl-
lable and background sounds are taken into consideration.

Unsupervised Maximum Likelihood Linear Regression (MLLR)
adaptation[[15] is applied to minimize the mismatch betwten
trained acoustic models and the test cases.

As we are interested in detecting the existence of the Ralnigs
the syllable level decoding results are needed to be ca@w&rtsong
level results. According our observation, the durationmeen the
syllables in a Robin song is less than 0.5 seconds most ofrttee t
Therefore, detected syllables that are less than 0.5 sedordis-
tance are grouped into a single song.

7. EXPERIMENTAL RESULTS

The performance of the Robin song detection is evaluatedring
of the recall rate and precision rate denotediband P which can
be expressed as
Np,
R=—
NQ
whereN}, is the number of hit songsy, is the number of the ground
truth songs, andV, is the number of detected songs. A detected song
is regarded as a hit song only if the center of the detecteglisdime
falls into the vicinity &0.5 seconds) of the center of a ground truth
song.

The objective is to increase the recall rate and precisitam at
the same time. Because of the well-known trade-off relatigm
between the two rates, the F-score, a weighted combinafitimeo
two rates denoted b¥' [[16], is defined as:

(14 3> PR
B2P+ R’

< 100%, P =" s 100%, ©6)
Ng

)



with models trained for the syllable patterns has a hightenalé un-
der the same false alarm rate compared with a system modigisdr
from all syllables.

Table 2. the detection results including the Recall Ra®, (Preci-
sion Rate P), and F-scoreK’) using HMM network A and Bwo

VFR: only use a fixed frame rate in syllable pattern clustering.
adapt: unsupervised MLLR adaptation.
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