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1. ABSTRACT

In this paper, temporal, spectral, and structural characteristics of
Robin songs and syllables are studied. Syllables in Robin songs are
clustered by comparing a distance measure defined as the average
of aligned LPC-based frame level differences. The syllablepatterns
inferred from the clustering results are used for improvingthe acous-
tic modelling of a hidden Markov model (HMM)-based Robin song
detector. Experiments conducted on a noisy Rocky Mountain Bi-
ological Laboratory Robin (RMBL-Robin) song corpus with more
than 75 minutes of recordings show that the syllable pattern-based
detector has a higher hit rate while maintaining a lower false alarm
rate, compared to the detector with a general model trained from all
the syllables.

2. INTRODUCTION

Bird songs play a vital role in the communication between individ-
uals and species. A bird may listen to other birds and classify them
as conspecific or heterospecific, neighbour or stranger, mate or non-
mate, kin or non-kin [1]. It may also sing to other birds for mate
attraction, or territory defense [2]. Ecological and behavioral studies
can benefit from automatically detecting and identifying species or
individuals from audio recordings.

The motivation of this study is to automatically detect the exis-
tence of the Robin songs from continuous recordings collected from
Colorado.

Machine learning methods, such as back propagation and mul-
tivariate statistics [3], artificial neural networks [4], evolving neu-
ral networks [5], dynamic time warping and hidden Markov mod-
els [6] [7] [8], are effective for classifying bird and otheranimal
sounds given pre-segmented acoustic recordings; however,for con-
tinuous audio stream in which no boundary information is available,
it is important to have a recognizer that can both detect the songs and
classify the species.

An HMM-based detector with a general model trained from all the
syllables is designed as a baseline system. In an improved system,
syllable patterns are first inferred from similar syllablesobserved
in the recordings; HMMs of the inferred syllable patterns are then
trained to allow finer acoustic modelling of the syllables. Accord-
ing to our experimental results, the proposed syllable pattern-based
detector is promising in terms of the hit rate and false alarmrate.

The paper is organized as follows. Section 3 discusses the char-
acteristics of the Robin song and syllable. Section 4 introduces the
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Fig. 1. Time waveform and spectrogram of a typical Robin song.
SYL refers to the syllable units.

recorded Robin database. Section 5 shows how the syllable patterns
are inferred. Section 6 describes the acoustic modelling and network
of the HMM-based detection system. Section 7 discusses the exper-
imental results.

3. ROBIN SYLLABLE AND SONG

A typical Robin song is shown in Fig. 1. It can be seen that the song
is composed of several different syllables. Note that theseunits are
sometimes referred as phrases or song types. Although thesesylla-
bles have similar harmonic structures as the voiced speech of human
beings, there are three main differences. The first is that the pitch of
the Robin is higher than that of human with fundamental frequencies
ranging between 1500 and 4500 Hz. The second is that Robins can
only intermittently vocalize syllables, but not continuously as can
humans. The third is that Robins may produce two pitches simul-
taneously during vocalization as shown in the circled regions A and
B in Fig. 1. The phenomena can be attributed to how birds produce
songs [9]. During Robin vocalizations, air flows from two different
syrinxs are controlled by the lateral labium and the medial tympani-
form membranes. These membranes are located on the medial walls
of the bronchus and these morphological structures enable Robins to
have two voicing sources. When the controllers of the two sources
are vibrating at different speeds, two different pitch frequencies are
produced simultaneously.

4. RMBL-ROBIN DATABASE

The RMBL-Robin database used in this study was collected by using
a close-field song meter (www.wildlifeacoustics.com) at the Rocky



Table 1. The details of RMBL-Robin database
Length (minutes) Syllable # Song #

Training Set 45.5 1644 457
Test Set 32.8 970 277

Mountain Biological Laboratory near Crested Butte, Colorado. The
sampling rate is 44.1 kHz. The recorded Robin songs are naturally
corrupted by different kinds of background noises, such as wind,
water and other vocal bird species. Non-target songs may overlap
with target songs. Each song usually consists of 2-10 syllables. The
dataset is 78.3 minutes long and divided into two sets for training
and testing purposes. The details of the database is shown inTable 1.
Note that all the analysis is conducted on the training set.

5. INFERENCE OF SYLLABLE PATTERNS

Objectively inferring syllable patterns is not only important in study-
ing the singing behaviour of Robins, but also necessary to improve
Robin song detection in the audio stream.

5.1. Distance Measure Between Syllables

A distance measure which was originally used for isolated word
recognition is adopted. The distance between two syllablesis de-
fined as the minimum accumulative frame-level difference obtained
in a dynamic time warping scheme [10]. The difference between two
frames is based on the log likelihood ratio of the minimum prediction
error [11].

The details of the distance measure is described in the following.
The log likelihood ratio of the prediction error from framey to

framex, D(y||x), is defined as

D(y||x) = log
Eyx

Exx

= log
a

T
y Rxay

aT
x Rxax

(1)

whereEyx denotes the error obtained by feeding framey into the
inverse LPC filter inferred from framex, Exx is the minimum pre-
diction error for the LPC system inferred from framex; ax andRx

denote the LPC coefficients and autocorrelation coefficientmatrix of
framex, Rx. In this paper, we use a symmetric difference measure,
Df (x, y), defined as

Df (x, y) =
1

2

ˆ

(D(x||y) + D(y||x)
˜

(2)

Df (x, y) does not satisfy the triangular inequality. Because of its
nonzero and symmetric properties, it can still be used as a difference
measure between two different analysis frames.

In this study, a fixed frame rate LPC analysis is firstly con-
ducted on the training set to acquire the distribution of thediffer-
enceDf (x, y) between two adjacent frames. There are some frames
between which the distances change slowly. Downsampling ofthe
LPC analysis over these frames is essential to remove redundant in-
formation. When the distances are changing rapidly betweenother
frames, an upsampling of the LPC analysis is also necessary to cap-
ture the rapidly changing pitch information. In essence, a variable
frame rate (VFR) [12] LPC analysis is then applied on each syllable.

Then, a symmetric distance measure between the two syllableX

andY denoted byDs(X,Y) is defined as

Ds(X,Y) =
1

2

ˆ

Ds(Y||X) + Ds(X||Y))
˜

(3)

whereDs(Y||X) denotes the distance from syllableY to syllable
X. It is obtained through dynamic time warping (DTW) [13], i.e.
minimizing the accumulative aligned frame-level differences defined
in Eq. 2.

Although the defined distanceDs(X,Y) does not satisfy the tri-
angular inequality, it was used as a distance measure for isolated
word recognition [10], and can be used as the distance measure for
the Robin syllable clustering in the following section.

5.2. Hierarchical Clustering Analysis

The objective of clustering analysis in this section is to search com-
mon patterns which allow fine acoustic modelling of the Robinsyl-
lables compared to only using one single general pattern forall the
syllables. Training different models or templates for different key-
words has been proved to be effective for keyword spotting [14] in
which phoneme level transcription is available. However, for the
training set of Robin songs, only boundary information of the syl-
lables is annotated. Thus, it is necessary to infer the numbers of
the common syllable patterns from the training set, and thentrain
acoustic models for those patterns.

Providing the distance measure between two syllables defined in
the previous section, it is possible to conduct a distance measure-
based hierarchical clustering analysis. In this study, a modified
average-linkage hierarchical clustering is used to reliably cluster syl-
lables into patterns. Before introducing the algorithm, the inter-
cluster distance of clusterC, Dc(C), is defined as

Dc(C) =
1

NC(NC − 1)

NC
X

i=1

NC
X

j=1

Ds(Xi,Xj) (4)

whereNC denotes the syllable numbers in the cluster,Xi denotes
theith syllable in the cluster. The intra-cluster distance between clus-
terCa andCb denoted byDc(Ca, Cb) is defined as

Dc(Ca, Cb) =
1

NCa
NCb

NCa
X

i=1

NCb
X

j=1

Ds(X
Ca

i ,X
Cb

j ) (5)

whereNCa
denotes the syllable numbers in the clusterCa, andXCa

i

denotes theith syllable in the clusterCa.
The pseudocode of the modified average-linkage hierarchical

clustering algorithm is expressed in the following:

Algorithm 5.1: A MODIFIED HIERARCHICAL CLUSTERING(C)

Set the stopping distance threshold asDC
max

Each syllable is initiated as a cluster.

do

8
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>

:

Search the closest two clusters,Ci∗ andCj∗ , by
comparingDc(Ci, Cj)
Copy the elements ofCi∗ andCj∗ into a new clusterC∗

if Dc(C
∗) > DC

max

then RemoveC∗, break ;
else

then UseC∗ to replaceCi∗ andCj∗

while More than one cluster is left
Dc(C): intra cluster distance of clusterC;
Dc(Ca, Cb): inter cluster distance of clusterCa andCb;

In this paper, only clusters with numbers of syllables greater than
a threshold denoted byNC

th are retained as syllable patterns. The
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Fig. 2. The relationship between the number of syllable patterns
and stopping distance thresholdDC

max given different cluster number
thresholdNC

th . Only clusters with numbers of syllables great than
NC

th are regarded as syllable patterns.

relationship between the number of syllable patterns and stopping
distance thresholdDC

max given differentNC
th is shown in Figure 2.

Under the same clustering stopping threshold, the larger the clus-
ter number threshold is, the fewer syllable patterns there are. Un-
der each cluster number threshold, the number of syllable patterns
first increases then decreases when the clustering stoppingthreshold
DC

max increases. It might be because whenDC
max is small, many

small clusters are not regarded as syllable patterns; whenDC
max has

a high value, i.e. the allowable maximum intra-cluster distance is
high, many syllables are clustered together, which causes the num-
ber of patterns to be small.

It is still difficult to infer the actual numbers of the syllable pat-
terns from the clustering results, because biologists are not clear
about the repertoire size of the syllable patterns in Robin songs.
However, the clustering results are helpful in the sense of training
acoustic models from the syllable patterns that are close ina cer-
tain feature space, which may improve detection and classification
results.

6. ROBIN SONG DETECTION SYSTEM

During training, feature segments required by the template-based ap-
proach, i.e. DTW, can be obtained by examining the boundary in-
formation contained in the transcriptions. However, the boundary
information is no longer available in the test set which implies that
the template-based method is not suitable for the detectiontask, and
pre-processing is needed to acquire the boundary information. As
an HMM-based system with models of the Robin syllables and back-
ground sounds is capable of detecting the boundaries and classifying
the sounds, by decoding the continuous feature stream, simultane-
ously, HMMs are used for acoustic modelling in our detectiontask.
A left-to-right HMM with 3 emitting states is adopted for modelling
the syllable patterns; an ergodic HMM with 3 emitting statesis used
for modelling the background sounds.

Two HMM network A and B are constructed for acoustic model
training and audio feature stream decoding purposes. Network A
shown in Figure 3 models all syllables as a single general HMM,
and all background sounds as another general HMM. The difference
between networks A and B, shown in the Figure 4, is that differ-
ent syllable patterns are modeled as different HMMs. As mentioned

Fig. 3. HMM network A. RBN: the general HMM for all Robin
syllables.BGS: background sound HMM.

Fig. 4. HMM network B.RBNn: the HMM for thenth Robin syl-
lable pattern.RBN0: the HMM for the remaining Robin syllables
that do not belong to any syllable pattern.BGS: background sound
HMM.

above, not all syllables can be clustered into a syllable pattern. An
extra HMM with the same topology as the syllable pattern HMM
is used for modelling unclustered syllables. Syllable patterns are
inferred by using the clustering-based method mentioned inthe pre-
vious section.

Bigram models for both HMM networks are learned from the
training set such that each arc in the network is assigned with a
transition probability. The integration of the bigram model into the
HMM networks implies the occurrence relationship between the syl-
lable and background sounds are taken into consideration.

Unsupervised Maximum Likelihood Linear Regression (MLLR)
adaptation [15] is applied to minimize the mismatch betweenthe
trained acoustic models and the test cases.

As we are interested in detecting the existence of the Robin songs,
the syllable level decoding results are needed to be converted to song
level results. According our observation, the duration between the
syllables in a Robin song is less than 0.5 seconds most of the time.
Therefore, detected syllables that are less than 0.5 seconds in dis-
tance are grouped into a single song.

7. EXPERIMENTAL RESULTS

The performance of the Robin song detection is evaluated in terms
of the recall rate and precision rate denoted byR andP which can
be expressed as

R =
Nh

Ng

× 100%, P =
Nh

Nd

× 100%, (6)

whereNh is the number of hit songs,Ng is the number of the ground
truth songs, andNd is the number of detected songs. A detected song
is regarded as a hit song only if the center of the detected song in time
falls into the vicinity (±0.5 seconds) of the center of a ground truth
song.

The objective is to increase the recall rate and precision rate at
the same time. Because of the well-known trade-off relationship
between the two rates, the F-score, a weighted combination of the
two rates denoted byF [16], is defined as:

F =
(1 + β2)PR

β2P + R
, (7)



Table 2. the detection results including the Recall Rate (R), Preci-
sion Rate (P ), and F-score (F ) using HMM network A and B.wo
VFR: only use a fixed frame rate in syllable pattern clustering.+
adapt: unsupervised MLLR adaptation.

R (%) P (%) F

Network A 74.2 71.8 0.734
Network B wo VFR 75.5 73.3 0.748
Network B 76.0 73.6 0.753
Network B + adapt 76.0 75.2 0.758

where theβ is a weighting factor. Since the recall rate is more im-
portant than the precision rate in this study,β is set to be 1.5.

The sampling rate of the recordings is 44.1 kHz. When the mi-
crophone is far from the vocalizers during the recording, the high
frequency components (> 5000 Hz) of the songs sometimes are lost.
As the pitch information of the Robin ranging from 1500 to 4500 Hz
are retained most of the time, a band pass filter with cut-off frequen-
cies of 1000 and 5000 Hz is applied to the raw recordings.

For Robin syllables, the magnitude of the first harmonic is usu-
ally higher than other harmonics, and hence is less susceptible to
background noise. As a pair of conjugate poles of the LPC filter is
supposed to match one spectral peak, given the fact that there may
exist one or two pitch harmonics in the pass-band, i.e. one ortwo
spectral peaks in the spectrum, the order of LPC has to be at least 4
to capture all possible pitches.

In the fixed frame rate LPC analysis, a frame rate of 5 ms is used.
In the variable frame rate-based LPC analysis, effective frame rates
5, 10, and 20 ms are used. The low and high thresholds are set as
0.13 and 0.36 respectively, which makes the ratio of the numbers of
frames with high, middle, and low frame rates to be 1:1:1. In both
analyses, the frame length is 10 ms.

In feature extraction, to be consistent with the LPC-based clus-
tering analysis, a 15-dimension feature composed of the 4th-order
LPCs plus logarithm energy and first and second derivatives is com-
puted every frame for model training and testing. The frame step
size is fixed to 5 ms. The frame length is 10 ms.

In the variable frame rate-based clustering analysis, the cluster-
ing stopping thresholdDC

max ranges from 0.08 to 0.40, the syllable
number threshold in a clusterNC

th is set to be 5, 10, 25, 50, or 100.
In acoustic modelling, the number of Gaussian mixtures per state is
set to be 1, 2, 4, 8, 16, or 32. For the HMM network B, the highestF-
score is achieved whenDC

max = 0.12,NC
th = 25, and the number of

Gaussian mixtures per state is 8. Changing the number of the states
in the HMMs to other than 3 can not improve the F-score. Under this
configuration, there are 3 HMMs for syllable patterns and 1 HMM
for the background sound. The details of the detection results using
HMM networks A and B are shown in Table 2. When replacing the
simple HMM network A with the advanced network B, the recall
and precision rate are both improved by 1.8% . When the network B
is followed by an unsupervised MLLR adaptation module, the pre-
cision rate has a gain of 1.6% while the recall rate keeps unchanged.
We also found that using a fixed frame rate in the syllable pattern
clustering can result in a lower recall and precision rate.

8. CONCLUSIONS

In this paper, syllable patterns of Robin songs can be objectively
inferred by performing a hierarchical clustering analysisin which
the distance measure is calculated by aligning the LPC-based frame
level differences. This HMM-based Robin song detection system

with models trained for the syllable patterns has a higher hit rate un-
der the same false alarm rate compared with a system models trained
from all syllables.
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