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Introduction 

In our everyday life we operate chemical processes, but we generally do not think of them in such a scientific 
fashion. Examples are running the washing machine or fertilizing our lawn. In order to quantify the efficiency of 
dirt removal in the washer, or the soil distribution pattern of our fertilizer, we need to know which transformation 
the chemicals will experience inside a defined volume, and how fast the transformation will be. 
Chemical kinetics and reactor engineering are the scientific foundation for the analysis of most environmental 
engineering processes, both occurring in nature and invented by men. The need to quantify and compare 
processes led scientists and engineers throughout last century to develop what is now referred as Chemical 
Reaction Engineering (CRE). Here are presented the basics of the theory and some examples will help understand 
why this is fundamental in environmental engineering. All keywords are presented in bold font. 

Reaction Kinetics 

Reaction Kinetics is the branch of chemistry that quantifies rates of reaction. We postulate that an elementary 
chemical reactionI is a chemical reaction whose rate corresponds to a stoichiometric equation. In symbols: 
 
 A + B  C + D [1] 

                                                             
I for our purpose we will limit our discussion to elementary reactions 
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and the reaction rate will be defined as: 
 

 -r = k · (cA) · (cB)  
 
where k is referred as the specific reaction rate (constant). The overall order of reaction III is defined as: 
 

 n =  [3] 
 
 The temperature dependency of k is described by the Arrhenius equation: 
 

 /( ) aE R Tk T A e    [4] 

 
where, A = preexponential or frequency factor 
  Ea = activation energy [J/mol, cal/mol] 
  R = gas constant = 8.314 J/mol·K = 1.987 cal/mol·K 
  T = absolute temperature [K] 

The Mass Balance 

Mass is a conservative entityIV, hence given a control volume V the sum of mass flows entering the system will 
equal the sum exiting minus (plus) the consumed (generated) or accumulated fractions: 
 

 

rate of rate of rate of rate of rate of

mass mass mass mass mass

in out generated consumed accumulated

         
                     
         
         

 [5] 

 
shortly: 
 
  IN – OUT + PROD – CONS = ACC  [6] 
 
 Equation [6] represents the key point in mass transfer: analogously to the force balance in statics, the mass 
balance allows us to quantify and verify mass flows in our system. 
Let us now apply this fundamental balance to some ideal examples. 

Ideal Chemical Reactors 

 A batch reactor, as its name states, is a non-continuous and perfectly mixed closed vessel where a reaction 
takes place. Figure 1 shows a schematic drawing of it. 

                                                             
II this is the reaction rate with respect to the reactants, the one with respect to the products being -r = +k’ · (cD)· (cE) 
III rigorously, is the order of reaction with respect to reactant A, and  with respect to B 
IV physicists would correct this statement, since energy is the only conservative entity; in all engineering applications, mass will be by far 
slower than light speed… 
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            Fig. 1. Batch reactor 

 
 
 Given its volume V, and the initial internal concentration c0, the total mass will be M = V·c0. In the unit time, 
the concentration will be able to change only in virtue of a chemical reaction. The mass balance [6] quantifies this 
change: IN – OUT + PROD – CONS = ACC. In this case: 
 

 in out
V

dm
Q c Q c rdV

dt
      [7] 

 
where r is the rate of generation (+) or depletion (-). Since the assumption of no flow in or out of the reactor 
volume (Q = 0), and constant reactor volume V, 
 

 
( )dm d c V dc

V V r
dt dt dt


      [8] 

 
where c = c(t) is the concentration at any time inside the reactorV. Then, 
 

 
dc

r
dt

 .  [9] 

 
 The differential equation [9] is the characteristic equation of a batch reactor. Considering a first-order 
reaction (r = -k·c): 
 

 
dc

k c
dt

    [10] 

 
solving, 
 

 
0

ln
c

k t
c

    [11] 

or 
 

 0
k tc c e   . [12] 

 
 Equation [12] offers a relationship between concentration and time. At any point in time, then, we can know 
the inner concentration, known the reaction constant and the initial concentration. 
 For a second-order reaction (r = -k·c 2), 
 

 0

01

c
c

k c t


  
. [13] 

                                                             
V Nota Bene: inc c ! 

c, V 
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 This procedure may be repeated for any order of reaction, just substituting the expression for r in the 
characteristic equation [9]. N.B.: The algebraic passages will heretofore be omitted. 
 
 A Continuous-Stirred Tank Reactor (CSTR) is a well-mixed vessel that operates at steady-state 
(Qin=Qout=Q). The main assumption in this case is that the concentration of the incoming fluid will become 
instantaneously equal to the outgoing upon entering the vessel. Fig. 2 explains visually this concept. 
 
 
 
  

                              Fig. 2. Continuous-Stirred Tank Reactor 
 
 A CSTR differs from a batch only in the fact that it is not closed. Thus, the mass flows in and out of the reactor 
in eq. [6] will not cancel: 
 

 ( ) 0in out
V

dm
Q c c r dV

dt
      . [14] 

 
 The mass balance in [14] equals to 0 thanks to the steady state hypothesis (=no accumulation). Solving, 
 

 0in out Hc c r     [15] 

 

where H = V/Q = average hydraulic residence time. Eq. [15] represents the characteristic equation for a 
CSTR. Assuming a first-order reaction, 
 

 
1

1
out

in H

c

c k 


 
. [16] 

 
 A Plug Flow Reactor (PFR) consists in a long, straight pipe in which the reactive fluid transits at steady-
state (no accumulation). The main assumptions of this model are that the fluid is completely mixed in any cross-
section at any point, but it experiences no axial mixing, i.e. contiguous cross-sections cannot exchange mass 
with each other. Fig. 3 illustrates it. 
 

 

    
Q, c0 Q, ct Q, ct+ t Q, c0u t

l

A

 Fig. 3. Plug Flow Reactor 
 

 Operating a mass balance on the selected volume V = A·l, and assuming steady-state conditions, we obtain 
 

 0t t t
V

dm
Q c Q c r dV

dt 


        [17] 

 
hence, 
 

cout, V 

cin, Q 

cout, Q 
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 0t t t t t tQ c Q c r V Q c Q c r Q t               [18] 

 
which reduces to 
 

 0t t tc c r t     [19] 

 
or 
 

 
c

r
t





  [20] 

 
 Considering an infinitesimally thin cross-sectional volume, its thickness will reduce to dl, therefore: 
 

 
dc

r
dt

   [21] 

 
which, again, is the characteristic equation of the plug flow reactor. Considering a first-order reaction, the 
concentration equation will be 
 

 0
k tc c e   . [22] 

Segregated Flow Analysis 

 The non-ideality of industrial and natural processes lead engineers to develop corrections to the ideal models, 
in order to use them with less restrictions. For this reason, it is defined a residence time distribution, which is 
a function that describes the evolution of the average instantaneous concentration versus the elapsed time. It is 
very convenient to express the residence time distribution as the normalized function E, 
 

0

( )
E( )

( )

c t
t

c t dt



 [23] 

 
which has its total area under the curve equal to unity: 
 

0

E( ) 1t dt


   [24] 

 
 Fig. 4 shows the evolution of E vs. time. The E curve is the distribution needed to account for non-ideal flow. 

 
 
 
 
 
 
 
 
 
Fig. 4. The residence time distribution 
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 Considering the definition of E, the average residence time will become: 
 

0

E( )H t t dt


    [25] 

 
 An useful tool used in this field is the cumulative residence time fraction (or cumulative frequency) curve 
F, defined as: 
 

0

0

0

( )

F( ) E( )

( )

it

c t dt

t t dt

c t dt






  







. [26] 

 
 Equation 26 shows that the F curve at t=ti is defined as the cumulative area under the E curve from zero to ti. 

This means that F represents the fraction of flow with a residence time ti. Combining [25] and [26]: 
 

1

0

FH t d     [27] 

 
which is the highlited area in fig. 5. Note that the boundaries of the integral in [27] must be 0 to 1, since the area 
under the E curve equals unity. 
 

Fig. 5. The cumulative frequency curve 
 
 
 The reason why we introduce the use of these functions is to quantify the non-ideality of reactors. A classic 

example is the evaluation of the average residence time. According to the ideal reactor theory, = V/Q, where V 
is the total volume of the reactor. In case dead zones are present in the vessel, the residence time distribution will 

not account for them, showing a decreased reactor volume. Hence,  calculated in both ways will give an estimate 
of the dead zone volume. 
 Fig. 6 illustrates the characteristic curves for various flows. 
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Fig. 6. Characteristic curves for various flows 

 
Principles of Chemical Reaction Engineering 

The effort to quantify non-ideal departures in chemical reactors leads to treat two main non-ideal models, the 
dispersion model, and the CSTR in series model. It belongs to common sense that if we inject a colored tracer into 
a flowing reactor, some of the dye will exit before the expected time (shot-circuiting), while some other will reside 
longer in the reactor (backmixing). In the case of a plug flow, the dispersion model accounts for axial 
dispersion D, which is the physical parameter that quantifies axial backmixing and short-circuiting of fluid. In a 
differential volume of flowing fluid: 
 

2

2

c c
D

t x

 
 

 
 [28] 

 
analogous to Fick’s first law on diffusion. Considering the whole flowing fluid, [28] will be corrected for the fluid 
motion through the introduction of an advection term: 
 

2

2

c c c
D u

t xx

  
   

 
 [29] 

 
which, in its dimentionless form becomes 
 

2

2

c D c c

t u L zz

         
 [30] 

 
where, L = reactor length 
  u = fluid velocity in the reactor 
  D = dispersion coefficient [cm2/s] 
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and the dimentionless group 
u L

D

 
 
 

 is called Peclét number, the parameter that quantifies the extent of axial 

dispersion, with limits: 
 

0     negligible dispersion (plug flow)

     large dispersion (mixed flow).

u L

D

u L

D

  
 

  
 

 

 
 Fig. 7 shows concentration curves in closed vessels for various extents of backmixing quantified through the 
dispersion model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Concentration curves at different Peclét numbers 
 

 
 
 The CSTR-in-series model considers a sequence of completely mixed tanks as a fit to sequential zones of 
the non-ideal reactor. In a sense, this is similar to considering the PFR as a sequence of non-interacting 
differential volumes.  Thus, both the E and F curves will be the sum of a series:  
 

 1 /

E
( 1)!

N N t

N

N N t e

N



 

        
 [31] 

 
and 
 

 1
/

1

1
F 1

( 1)!

iN
N t

N
i

N t
e

i





 



                
 . [32] 

 
 Fig. 8 visualizes this concept for the F curve. 
 
 



Stenstrom, M.K. & Rosso, D. (2003) Fundamentals of Chemical Reactor Theory 

 

 
9 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Cumulative concentration curves for different 
numbers of CSTR in series. N= number of reactor. A 
PFR diagram is dashed. 
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