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ABSTRACT OF THE DISSERTATION

Composite Multiphase Groundwater Model

by

Joon Hyun Kim
Doctor of Philosophy in Civil Engineering
University of California, Los Angeles, 1989

Professor Michael K. Stenstrom, Chair

A general comprehensive mathematical model using the composite multi-
phase approach to describe groundwater flow and pollution was developed.
The comprehensive governing equation was derived from the simple mass bal-
ance of chemical species over all the phases in schematic elementary Q’olume,
and traditional groundwater governing equations are explained from it. An
attempt was made to include the complicated aspects of physical, chemical and
biological processes such as mass fraction, compressibility, capillarity, disper-
sion, gravity, relative permeability, viscosity, sorption, interfacial mass change
and chemical and biological reactions. To make the analysis possible, as-
sumptions have been made for continuous flow of each phase and instantane-
ous equilibrium for partition. The resulting system of nonlinear governing and

constitutive equations was solved numerically.
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To handle the irregular gecometry, complex boundary conditions and many
different governing equations with simple modifications, the upstream
weighted finite element method was adopted. By using the dynamic allocation
of arrays, the code is flexible to work on an IBM 3090 Vector Facility, work-
stations and PC'’s for one, two and three dimensional problems. To reduce the
computation time and storage requirements, decoupling of the system
cquations, banded global matrix and vector and parallel processing were used.
The program was structured to facilitate inclusion of additional future consti-
tutive equétions. To demonstrate the model’s versatility, several hypothetical
problems were simulated: unsaturated flow through an embankment; one and
two dimensional solute transport; one, two, three dimensional multiphase flow;
composite multiphase flow and contaminant migration. The instability and
convergence criteria of the nonlinear problems were studied. Parameter de-
pendency of the model was also studied.

The code can simulate the transport and transformation of a complex mix-
“ture of groundiater contaminants (e.g. a mixture of light and heavy hydro-
carbons, water-born contaminants and volatile contaminants). Investigators
will be able to use the model to predict transport rates and fate of contam-

inants which will facilitate the design of better remediation plans.

Xiii



Chapter I

INTRODUCTION

1.1 GROUNDWATER FLOW AND CONTAMINATION

According to EPA’s groundwater handbook (1987), about 50% of the na-
tion’s drinking water is from underground sources. Since the 1970’s, the threat
of toxic and hazardous waste in underground drinking water has become a
public concern. Sources of pollution can be a landfill site, a manufacturing
facility, pesticides from agriculture, septic tanks, detergent from domestic use
and underground storage tank among others.

The process of groundwater pollution includes complicated physical, chem-
ical and biological aspects. Groundwater flow and migration of chemical con-
stituents need to be studied toget.her. Though limited by its conciseness, the
mathematical models are the best choice to express this complex problem.
During the past three decades, mathematical models of groundwater systems
have been developed from simple groundwater flow to multispecies multiphase
flow, expressed in the form of partial and ordinary differential equations. To
explain the discontinuous characteristics of the subsurface’ domain with the
fluid characteristics, traditionally many parameters are used with the mass
conservation law, such as storage coefficients, saturation and fluid conductiv-
ity. Darcy’s concept has been used for the momentum balance. To analyze

the problem with some degree of accuracy, we need to understand the proc-



esses related to the water flow and contamination in the subsurface region.
Because of the imperfection of our understanding, no present methodology can
give a fully accurate solution.

To apply the continuous partial differential equations over the discontin-
uous subsurface domain, the traditional concept of continuum mechanics is
used. With the rapid evolution of computer hardware and software, the sol-
ution of engineering problems increasingly relies upon the use of digital com-
puters, and coding plays an important rule in the solution of these
mathematical models. A leng\ computation time is required owing to the severe
nonlinearity of the given problem, and therefore a supercomputer with vector.
or parallel processing is required.

In coding, if the algorithm is too complicated, then the computation time
will be too long and the adoption of the code to even slightly different cases
will be a formidable job. A simple and efficient logic is essential to this prob-
lern. In this sense, finite element methods are more suitable than the finite
difference methods, because even though the governing equation is different
from case to case, the evaluation of spatial derivatives by basis functions does
- not change. The basis functions depend only on the geometry. Even if the
equation is quite long, we just need to add the element matrices for the new
spatial derivatives. In the case of the FDM, we have to change the main an-
aloguc of the algorithm because of the newly added derivatives. In FEM, be-
cause the governing equation is integrated over the spatial domain, each term
of the integrated governing equation becomes a flux and the mass balance of

the fluxes is maintained better than in the case of FDM. The resulting flux



type cxpression of the finite element scheme is not only useful for the solution

of the mathematical equations, but also for the logical understanding of the

complicated processes.

1.2

PURPOSE AND SCOPE OF THE STUDY

The objectives of this study are:

1.

To obtain a systematic expression of the governing equations of
groundwater flow and pollutant migration, which is suitable for coding
and has reasonable parameter evaluation requirements;

To develop comprehensive groundwater modeling codes which can
handle the important problems in the aquifer domain including chemi-
cal and biological reactions; |

To gain insight into the difficulty and importance of the parameter
evaluation and sensitivity analysis;

To simplify the data and parameter requirements of the code;

To study numerical techniques, such as upstream weighting, variation
of time step, several iteration technique, mass lumping, for handling

very unstable property of nonlinear partial differential equations.

The outline of this study is as follows:

1.

In Chapter 2, previous research on important topics in the modeling,
such as governing equations, constitutive equations, parameters, nu-

merical method and simulation examples is reviewed.



2. In Chapter 3, the governing equations of the groundwater flow and
pollutant migration are developed from the simple schematic mass bal-
ance. By the general governing equation, several groundwater flows and
pollutant migration equations are explained, from a simple case to a
complicated one. The constitutive equations are also developed from
the most current literature and some of them have been modified.

3. In Chapter 4, some of the difficulties in analyzing the groundwater
pollution are explained.

4. In Chapter 5, the nonlinear governing equation is solved by using the
traditional quadrilateral finite element method. Upstream weighting is
used to handle numerical oscillation and dispersion in an advective flux
dominant system. To handle the severe nonlinearity of the governing
equation, mass lumping and modified Picard iteration techniques are
used. The coupled system of several equations is simplified by decou-
pling and the use of partitioning concepts. Stability and errors are dis-
(;ussed through the stability analysis of the simple one dimensional
solute transport equation. Several methods to handle the nonlinear
characteristics are introduced.

5. In Chapter 6, traditional groundwater problems are simulated from the
simple unsaturated flow case to the complicated composite multiphase
contaminant migration case.

6. In Chapter 7, the results of simulation are discussed and some future

research is suggested.



Chapter 11

LITERATURE REVIEW

The studies in groundwater flow and contamination have evolved from the
simple saturated groundwater flow to the complex multiphase multispepies
contaminant transport problems. The governing equation of groundwater flow
has evolved from the saturated system (one water phase) , the unsaturated
system (water and air phase) to the multiphase system (water, air, oil) in hy-
drocarbon related problems.

[t is almost impossible to review all the previous research in this area be-
cause the field is expanding so rapidly. Furthermore, the field is very broad,
requiring knowledge of physics, chemistry and microbiology. In this chapter,
even though not all the previous work is reviewed, an attempt has been made

to logically explain the work related to the topic of this study in some detail.

2.1 MACROSCOPIC VOLUME AVERAGING

To apply the continuous partial differential equations over the discontin-
uous subsurface domain, traditional concepts in continuum mechanics are
used. The work by Hassanizadeh and Gray (1979) can be considered as one
of the earliest. According to them, by defining the averaging properties such

as volumectric fraction, the averaging procedure is applied to the microscopic



balance of some property (mass, momentum, heat, encrgy etc.), so the aver-
aged macroscopic balance cquation is acquired.

Bachmat and Bear (1986) presented the criteria for the selection of the size
of the representative clementary volume, which is the conceptual elementary

volume for the macroscopic averaging process.

2.2 MULTIPHASE FLOW SYSTEM

Many methodologics have been developed in petrochemical engineering to
analyze multiphase systems. Odeh (1986) broadly explained the existing
mathematical model for the recovery of hydrocarbons. He described the be-
havior of the pressure and the volume of the three phases: oil or hydrocarbon,
water and gas. According to him, three forces (viscous force, Darcy force and
gravitational force) govern the distribution of fluids in reservoirs. He classified
the simulations as follows: 1) the case of no distinct front (black oil simulator)
and 2) the case of distinict moving front (enhanced oil recovery simulator). The
governing equations are explained for the above two cases with the constraint
conditions. The treatment of the nonlinearity (simultaneous or strongly cou-
pled, sequential or weakly coupled process) is explained. A comparison has
been made among the different matrix solvers. He explained some more diffi-
cult cases of the simulations. Suggestions for the better numerical techniques
have been made as adaptive grid refinment, high order numerical techniques,
non-finite diffcrence methods and combination of analytical and numerical

methods.



Henry and Metcalf (1983) performed an experiment generating multiphase
flow by displacing oil with carbon dioxide. They found the pressure and tem-
perature regions in which multiple phases exist and the reduction of the mo-
bility by the multiple phase generation , which is beneficial for the carbon
dioxide flooding of a reservoir,

Osbor‘ne and Sykes (1986) simulated the simplified multiphase system with
constant air phase pressure. A two dimensional quadrilateral finite element
algorithm was used and its accuracy was compared with the preexisting model.
The case of the Hyde Park Landfill is simulated with the analysis of parameter

uncertainty.

2.3 COMPOSITE MULTIPHASE SYSTEM

Quy and Labrid (1983) developed an enhanced oil recovery model in which
they described the physical aspects of dispersion, partition and convection.
They used a ;imple one dimensional finite difference method to solve the sys-
tem equations sequentially. The system consisted of three phases (aqueous,
oleic and microemulsion) and seven components (water, oil, surfactant, alcohol
or cosurfactant polymer and two electrolytes of anions and bivalent cations).
They compared their results to previously measured laboratory data (Labrid,
1979).

Abriola and Pinder (1985) simulated a multiphase system comprised of two
species (a volatile, slightly water soluble compound and a nonvolatile, water

insoluble compound). For the deformable soil matrix, they applied mass con-



servation of the soil species. Becausce of the very low water solubility, mass
conservation of the water phase was considered by deriving the equation just
in terms of the water related variables. Two more governing equations were
derived for two chemical species. Many required empirical relations like effects
of matrix and fluid compressibilities, gravity, phase composition, interface
mass exchange, capillarity, diffusion, dispersion are described. A hypothetical
onc dimensional case was simulated using an implicit finite difference method
with Newton iteration.

Pinder and Abriola (1986) presented a more general and standard formu-
lation of the composite multiphase governing equation. They employed the
partitioning concept and simulated a two dimensional hypothetical saturated
system by using finite differences. They used Lin’s experimental result (1982)
to evaluate saturation and relative permeability. They concluded that more
data were requirced to evaluate the constitutive equations for a wide variety of
soil and contaminant types and a more efficient algorithm was required to
avoid numérical difficulties.

Corapcioglu and Baehr (1987) derived the governing equation of composite
multiphase flow in the unsaturated zone by summing up mass conservation
terms in each phase, including source terms for solution, precipitation, con-
densation, volatilization, desorption, adsorption, biological and chemical re-
actions. New forms for the dispersion coefficient and partition coefficients
were suggested. One dimensional finite difference simulation was performed

for a hypothetical case consisting of gasoline comprised of eight constituents



(benzene, toluene, 1-hexane, cyclohexane, n-hexane, aromatics, alkanes, heavy

cnds).

2.4 NUMERICAL METHOD

All the previous investigators provided numerical methods to solve the go-
verning equations. The procedure can be divided into two types - the finite
difference method (FDM) and the finite element method (FEM). A detailed
review of the numérical method is beyond the scope of this study. Therefore,
only a cursory review is provided here. Because of the nonlinearities and
complicated governing equations, the simple standard finite element or finite
difference algorithm must be modified. Some of these techniques were dis-
cussed previously, and a brief review if provided here.

Pinder et al. (1973) suggested an element-wise evaluation of the parameters
in the finite element method by using the basis function to handle the variable
property over each element. To illustrate this, they tested a steady state radial
flow problem in which transmissivity was a parameter.

Pinder and Shapiro (1979) developed modiﬂed Hermitian basis functions
by adding asymmetric upstream weighting term to the Hermitian basis func-
tion and applied to the solute transport equation.

Faust (1985) simulated one dimensional linear waterflood and two dimen-
sional unsaturated flow using the simplified form of multiphase flow by finite
differences and Newton iteration. The simulation shows that dense, low vis-

cosity contaminants travel deeper and faster than lighter contaminants. Fur-



thermore, lighter contaminants do not necessarily form a distinct lens above
the water table, even though floating lenses are commonly accepted in con-
ceptual models.

Huyakorn et al. (1986) derived a three dimensional finite element algorithm
for variably saturated flow. The element shapes were rectangular and trian-
gular prisms. Instead of the numerical integration of the basis functions, the
influence cocfficients technique was used. To handle the large number of nodal
points, a slice successive overrelaxation procedure was used to solve the matrix.

Huyakorn et al. (1986) suggested the curvilinear finite element method for
the solute transport problem. According to their simulation result, it is superior
to the standard Galerkin method by at least one order of magnitude. The
threc dimensional domain is divided into layers and each laver is divided into
orthogonal curvilinear ¢lements. In a curvilinear system, the vertical coordi-
nate is unchanged but horizontal coordinates are along the normal direction
to streamlines. By using the complex mapping, the irregular curvilinear ele-
ments are converted to regular shape. A curvilinear flow net can be obtained
through an analytical solution or by a numerical solution of Laplace’s equation
with conformal transformation. In applying the upstream weighting, numerical
dispersion can be reduced owing to the directional property of finite element
flow net.

Pclkaland Peters (1986) proposed computer-independent program tech-
niques to fully utilize vector and parallel computers. Additional intrinsic vector
functions with the Fortran 77 standard and more memory are required. They

found that the barriers to vectorization are (1) conditional and branch state-

10



ments, (2) sequential dependencies, (3) nonlinear and indirect indexing, (4)
subroutine calls within loops and (3) recursive operations. To vectorize the
program, the scalar variables must be arranged in vectors for the continuous
operation and the global matrix is solved in an iterative fashion using a previ-
ously developed vectorized solver. The global matrix requires more storage for
rectangular shaped matrix. They tested their techniques using a simple three
dimensional groundwater flow problem using CDC CYBER 175 and 205
computers. They also provided benchmarks.

Kuppusamy et al. (1987) simulated p-cymene in an unsaturated aquifer
using the constitutive formulation by Parker et al. ( 1987). The governing
equation was written in terms of total head.

Kaluarachchi and Parker (1989) described many efficient schemes to handle
nonlinearities and to reduce the computational time. The integration of the el-
ement matrix was performed analytically so that the code can be used on a
personal computer, even though it requires the rectangular shape element.
Cooley’s iteration method (1983) and mass lumping were used for the nonlin-
caritics. One and two dimensional oil infiltration with varying fluid property
were simulated.

The governing system of equations used in this study is more complicated
than that used in the previously cited research. Therefore, simple finite ele-
ment method has been expanded to more general and stable algorithm by the
preparation of the following procedures:

1. multidimensional basis and weighting functions

2. clement-wise evaluation of parameters

11



3. modified Picard iteration

4. decoupling of the governing cquations

5. evaluation of boundary conditions by basis functions

6. logical expression of variables with dimension, species, phase, direction

and nodal point

2.5 CONSTITUTIVE EQUATIONS

To explain the discontinuous characteristic of the subsurface domain with
the fluid characteristic, many parameters such as the storage coefficient, satu-
ration, fluid conductivity have been used with the mass conservation law.

Darcy’s concépt from Allen (1984) has been used for the momentum bal-
ance with the parameter fluid conductivity to express the velocity of each
phase.

Parker, Lenhard and Kuppusamy (1987) developed the closed form of ex-
pressions for the saturation and capillary pressure relations in two and three
phase using the effective saturation concept. They derived the expression of
relative permeability by extending the method of Van Genuchten. Parker and
Lenhard (1987) derived a more general expression for fluid saturation, relative
permeability, pressure including residual saturation. Lenhard and Parker
(1988) experimentally validated the theory of extending two phase td three
phase saturation pressure relationships. Lenhard et al.(1988) performed an
cxperiment of multiphase flow in sandy porous medium by using Soltrol 170

- and compared the result to the one dimensional finite clement multiphase code.

12



Plumb and Whitaker (1988) applied the volume averaging concept to ac-
quire the large scale dispersive coefficient which includes the local heterogene-
ity of the domain. The resulting transport equation has additional terms of the
second derivative with respect to the time and mixed space-time derivative.

Parker’s approach (1987) is used in this study to evaluate the saturation and
relative permeability. The saturation derivative is evaluated analytically from

the capillary head.

2.6 CHEMICAL AND BIOLOGICAL REACTION PROCESS

Moltz et al. (1986) simulated microbial growth-degradation by applying
modified Monod kinetics with solute transport equations. They assumed.mi-
crocolonies attached to solid matrix surfaces. The limiting factors of the mi-
crobial growth are carbon, energy source (substrate) and oxygen. The one
dimensional Eulerian-Lagrangian procedure was used for simulation.

Borden et al. (1986) presented the solute transport equafions including mi-
crobial reaction for oxygen and hydrocarbon and the transport equation for
subsurface microorganisms. They included the effects of microbial kinetics,
horizontal dispersion, adsorption and reacration. In using the USGS MOC
code for ’the field case simulation, they calibrated the modecl to the observed
chloride distribution and estimatcd parameters.

Yeh and Tripathi (1989) combined the transport model \;'ith the chemical
rcactions. They used the flow equations, multicomponent transport equations

and derived equilibrium chemical equations. To solve the system of equations,

13



three approaches were studied: (1) mixed differential and algebraic equation,
(2) direct substitution, (3) sequential iteration. They recommend the sequential

iteration with total analytical concentrations of aqueous components.

14



Chapter 111

MATHEMATICAL FORMULATION

3.1 GOVERNING EQUATIONS

To use the general conservation law, the porous media is idealized as the
continuous domain (even though actually it is not) by using the concept of the
macroscopic volume averaging (Bear 1979, Hassanizadeh 1979). All possible
phases and migration patterns are shown in the localized problem domain and
detailed view of the representative clementary volume in Figure 1.

The derivation from this averaging process is explained in detail in Appen-
dix B. The schematic elementary volume is developed to explain the composite
multiphase profile and to derive the governing equation physically. The gov-
erning equation is derived below without using the volume averaging technique
by the schematic elementary volume as in Figure 2.

As shown in Figure 2, the schematic elementary volume is a general multi-
phase multispecics system expressed by the saturation or volumetric fraction
of each phase and by the‘ mass fraction of each species. The mass transfer
among the different phases is summed up to be zero, according to Corapcioglu

and Bachr (1987). The mass balance of species i over all phases is expressed
by

4 _ . mb i i
Dy oy = (R ghar 3 1)
a=1
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Figure 1: Idealized contaminant migration and REV
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M, = mass of « phase
M, = mass of i species in « phase

G; = production rate of i specics in « phase

8= o
R
_ M,
P, = density of « phase =
i . . A * N .1[&
w; = mass fraction of i species in « phase = v
la
C; = concentration of i specics in « phase = PaWi
) ) ) ) oot
C* = concentration of i species over fluid phases = S, Ci = S,p,wi = —
Vi = microscopic velocity of i species in « phase
V, = velocity of « phase
If AxAyAz becomes very small, then
om, T i ' 32
[T-*_V(malfa)_gx]:() ( ....._)

The velocity of i species in « phase is rewritten as, Vi=V, +Vi-V,

So,

—_

mVy=miV, + mi(Vi- V)= 0,clV, + 0,Ci SN

o ——
r
~

i =0,C4V,— 0,DVCl= ¢S, pwiV, — $S, 0wl (3-3)

where,

D! = dispersive cocfficient of i species in z phase
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As shown above, the flux difference between the species and phase velocity is

expressed as a Fickian form. Here, the dispersive coefficient depends on fluid

characteristics and property of porous media. Even though Fickian-type

equation is used for the dispersive flux, the dispersive flux is different from the

diffusive flux in aquatic domain which only depends on the gradient of con-

centration.

The velocity of « phase is expressed by Darcy’s law as

— k

Vy=—k="AVP, — pyg)
~ 0y

where,
k = intrinsic permeability tensor
k. = relative permeability of « phase

K, = dynamic viscosity of « phase

P, = pressure of « phase

g = gravity vector

So, the governing equation is expressed as

3(0,p.w') .k R
Z[ﬁ“— = V(0upavf =~V Py = p,8)

qud
= V(68,D:V(p,v,) — g5 = 0]

To cxpress the above equation in terms of equivalent water head
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o kr:cpno P Py
__/\—-(VP——pm)—~k—-(VP +pm/)—— T;_(VP; +7)T-j)
aHy o8 v

© e A 1 mn—

- ——-(5“\7/ T KV(h+p" 2) = §“VH (3—6)
T, T Py T, e
where
P, : . : :
h, = g fluid pressure head in equivalent water height
H =h+z = total piczometric head in equivalent water height
Ww k
- . Pw8 o P
K, = kk, T fluid conductivity of « phase, Kg = 5“71/1_k,
The governing equation is
(@S, P W) -
Z{ 2 (4,0 Vi, + 245)
- ¢S, Py
o v iy, G0 = @)D
= V($S,D,V(p, ) — g} + ——=0 (3-7)
Using velocity notation
(@S, p w )
Z{ 4 V(S0 Wi V)~ V($S,DIV(p ) — gl
(1 - w
=®p)

ct

To cvaluate the derivative with respect to time



E((bSlpr;

c(dp,) éw! és,
ct i

. M .
== W’S + qﬁple—-é[— + ¢p1W;""5}'"' (3 - 9)

j g )

The first term of the above equation describes the storage capacity of the given

system and is evaluated as follows:

wis, 00 isp 21 g,
—pw'S i( ¢ %y Mg (3—10)
CE S ong  Padhg” Gt
where,
—g%a: compressibility of the porosity by f pressure head = ¢,
pla 82; = compressibility of « phase by § pressure head = a,

S.p = $p + ¢y = specific storativity of the porous matrix and fluid

Therefore, the governing equation becomes,

3 3

¥ ch, i Js, 8\\’;. c((1 — d))p:w;‘)
;{‘le(pﬁ“ﬁsﬁsﬁx)? + d)pa“'a_? + (;bpc(sx ar } + 3t
3 - p —_— . . .
- Z{V(plwié\’a(Vha F 5 NEVODI )+ g} (= 11)
a=1 )

The second term of the time derivative is the saturation change which depends
on the convective flux and capillary pressure. The expansion of this term can
be implemented in two ways. The first case occurs when the dominant driving

force of the system is convective flux of fluid phase. The situation occurs in
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oil recovery problems, often called as Buckley-Leverett problems (1942). In
this case, even though there is no capillary pressure, the saturation is changed
by the flux of each phase and the saturation can not be expanded with respect
to the capillary pressure. The saturation becomes one primary variable of the
system which should be solved simultaneously with the pressure term by the
given boundary and initial conditions.

The other case occurs when the dominant driving force is the pressure dif-
ference of the each fluid phase. This condition occurs during contaminant
migration in a groundwater basin. The time derivative of saturation cén be
cxpanded with respect to the capillary pressure, and simultaneous solution of
the equation about the saturation term is not required. This assures conver-
gence of the nonlinearity and short computation time. The saturation and its
derivative are determined by the constitutive relation of the saturation and
capillary pressure. Even when there is no actual capillary phenomena in re-
gions where there is only one phase, a hypothetical saturation derivative is re-
quired to avoid singularity of the systcm of equations. This hypothetical value
does not precisely match a real ficld problem and increases parameter re-

quirements.

[n the first case, the governing equation becomes

3 3 o - ~ - i
; oh, ; 0S, cw, (1 — plpywy)
Z{Z(pﬁwﬁSﬂSﬁl)—ﬁ + dp v, % + ¢p.S, o b+ r

a=1 p=1



3
—_-z p“

Py :
p:j N+ V(plxt'é§1V/zﬂx)

+V(0,D(p W)+ git  (3—12)

~
-~

where,

hge = hg — b, = AS,) = capillary pressure between f and « phase

In the second case, the governing equation becomes

awé c((1 — d))psw;‘)
}+

dt ot

303 ‘
i i 855 ch,
E I{BE l(pﬁwﬁSﬂSﬂx + d)pﬁwﬁ——aha )—at + @S.p,
d= =

V(pl

i Mu

TN+ V0LV +El) (- 13)

As we can sce in the above two equations, the primary variables are pressure
head, mass fraction and saturation. Even if the second equation is used, we
have at least two sets of primary variables. To solve these primary variables
we necd additional constitutive equations, boundary and initial conditions for
each variable. In the case of the saturation variable, the resulting governing
equation will be of the hyperbolic type with respect to saturation, and charac-
teristic method gives the best result (Huyakorn and Pinder, 1983) , but we can
use the upstream weighted finite difference or‘ﬁnite element method to reduce
numerical oscillation. Many papers have been written on reducing the insta-

bility in Leverett problem in petrochemical engineering. In the case of mass
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fraction, the resulting governing equation will be of the parabolic type, which
also requires upstream weighting when an advective flux dominates. The sim-
plified form of this mass transport equation is solute transport equation. This

cquation can be defined as multispecies mass transport equation.

The related parameters of the governing equation are

p, = density of a phase

k. = relative permeability

U, = viscosity of « phase

D. = the dispersion coefficient of i species in « phase

g = internal production rate of i spccies in « phase
The density, relative permeability, viscosity and dispersion coefficient are
computed using the constitutive equations. The internal production rate can
be considered as the source term and evaluated using chemical or biological

reaction equations.

Speciﬁg‘groundwater systems are explained by the above composite multiphase

equation in following sections.
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3.1.1  Saturated Groundwater Flow
In a saturated aquifer, only the water phase exists in the void fraction of the
porous media, therefore S, = 1, k,, = 1.
Only water is present, so w¥ = 1, Vwi = 0.
The source and sink terms are pumping and recharging flow rates, so
8w = &» = water pumping ( - sign ) or recharging ( + sign ) rate.
Only water pressure head exists, so the specific storativity or storage coefficient

IS Sy =, + Pf, .

The resulting governing equation is

ch,,
pWSWW 5t - V(pw~w(Vh +J ))+gw (3 - 14)

where,
f = upward directional vector in y direction,
P = density of water phase.
With no change of density in spatial direction, the governing equation simpli-

fies to

oh,, gy

Sww a V(~ w(Vhw +./ )) + (3 - 15)
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3.1.2  Unsaturated Groundwater Flow
For simplification, the air phase pressure head is assumed to be atmospheric
pressure ( A, = 0 ), and immobile air phase eliminates the need to calculate the

air pressure. Therefore, wy =1, wi=1, Vwi=0, S,+S,=1, h,,=AS,)

If capillary pressure is the dominant force of the system, then from the second

governing equation,

as,, aoh, .
(SySiw + O —=— = V(K VA, + /) + 3-16—1)
Ohw ot -~ P

Sy = flhy, hy) 3—-16-2)

If convective flux is the dominant force of the system, then from the first

governing equation,

ah , aSs - g
— 5,5, a(;“ Ty &w =~ V(K{Vig,— i )+ p‘:’ 3-17-1)
hgy = fS,.) (3-17-2)

3.1.3  Solute Transport in Unsaturated System

| This case exists when all chemical species are totally dissolved in the water
phase and are transported by advective water phase motion with the disper-
sion in water and air phases. All these aspects are included in next solute
transport equation. Usually water flow is computed on the first stép and the

solute migration is computed using watcr phase velocity. For water flow, the



unsaturated equation can be used. If there is only one species, denoted as o,

then we need two cquations as follows:

(1). Water Phase Flow Equation ( Equation for Water Species )
Assuming that the dissolved chemical species do not affect the flow of the
water phase and an immobile air phase, the second approach for the governing

equation can be as follows:

¢S, ch,, — g

(Swaw + n— r——= V(K\V(Vhw +jiN+ G3-18- 1)
oh,, " Ct ~ Pw

Sw zf(haw) 3—-18-2)

(2). Solute Transport Equation ( Equation for Oil Species )

In the saturated region, the solute migration is expressed by
d ( 0 0 0 ' 0 =
ot Oup iy + 00 vg + 0,0 W) = V(p WKWV, +7 )+

V0, DV (pywio)) + V(0,DV(0 W) + g + 80 (3 19)

~
-~

Combining the partitioning concept explained in the section (3.2.2),
0 =
E(H'S(QSSWPW + d)Sapang +(1 - ¢)psH.?w)) = V(pwwsgw(Vhw +iN+

V($S,DV(p,wa) + V(@S DIV(p Howo) + go+ 82 (3—20)
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3.1.4  Multiphase Flow System
This is the case when there is simultancous immiscible flow of water, air and
oil. The governing equations are similar to the equations used in black oil si-
mulation. The primary dependent variables are pressure head and saturation
of each phase. The mass fractions in composite multiphase equation become
wy=1, wi=1, wi=1 and the derivative of mass fraction is Vwi=0.
The summation of saturation of cach phascis S, + S,+ S,=1. The com-

posite multiphase cquation is simplified to multiphase equations as follows:

3 .
E(d)swpw) = V(puw \V(Vhw +./ )) + 8w (3 i e l)
0 Po— "
S BS) = VoKVt 55 )4 g,  (3-21-2)
9 pa— .
E:(QbSaPa) Vip, KVhy + P_vj )+ &, (3-21-3).

The last equation is eliminated by assuming an immobile air phase. If the first
approach of the governing equation is used, then the resulting governing

equation is same as Faust (1985).

ah,, as,
SuSwv g+ $Pw— = Vip, K\ (Vi + )= VoK Vi) + 8, (3= 22— 1)

ch, as, .
Sosoo_aT + d)po"a_t— = V(poéo(

Po=
5 N+g (3-22-2)

Sa=Rha) hoy=AS,) S,=1-5,-5, (3-22-3)

The primary variables are S, ,.
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The Buckley-Leverett (1942) problem is a simplified form of the above system,

which is cxplained as follows. Assuming no capillary pressure and constant

total flow,

; ~ _
= A"’“W“ S ke, 3-23-2
f ( + /\_— H nv /\;ﬁ w) v) ( T )
ny
Rr/)
where, TéP’o o)
- T ] J L
g = constant total flow é\ qw+ q, ‘ém) = T4y "
@ fract10nal ﬂow function ! ‘)@‘,h)(,;/l/(o

As shown above, the convective flux of each phase is decided by the relative

permeability and viscosity of each phase, which means the saturation depend-

ency of convective flux.

If capillary pressure is dominant, then the governing equation is same as Ka-

luarachchi and Parker (1989) as follows:

-~

as,, oh,, , ~
(SywSinw + b0, T = Ve KV, i)+ g, B-24—1)

ow

S (3/1 .
(So oo T qbpo = Gt V(pol\ (

01

}'j_j))+go(3_24—2)
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3.1.5  Composite Multiphase Contaminant Migration

This is the case when there is simultancbus flow of water, oil and air. The
chemical species of cach composite phase i§ changing over time and space.
Therefore, the chemical conrstituent becomes another dependent variable, de-
noted as mass fraction. The composite multiphase equation cannot be simpli-
fied in this case. The pressure head, saturation and mass fraction should be
solved simultaneously. However, the governing equation is usually rearrangéd
into two sub-problems; composite multiphase tlow and contaminant migration.
The multiphase portion is computed first and then the component of each

phase is computed.
(1) Composite Multiphase Flow
* Primal variables are pressure head and saturation.

(a) Ist approach

Js, 5w,i
Z{Z(Pp“/gsﬁsga)-— + pp i Fya ¢P1517}
a=1 f=1

+ 21 = G ) = Zf“f’x“ KAVhg + 527

— Vip,wiK Vhg,) + V@S, DV i) + ¢y (3-25-1)

hg, = hg — h, = fiS,) (3-25-2)
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(b) 2nd Approach

3, 3 aSg o, awi 5 ;
Z Z(pﬁnrﬁsﬁs,31+¢pm G S A0 = o)

a=1

—Z{V(p,(wM T )+ V@S, DIV + g} (3= 26-1)

S, = fih, by, ) (3-26-2)

(2) Composite Multiphase Contaminant Transport

The primary variable is mass fraction of species o in water phase. Arranging
the governing equation with respect to this primal variable with partitioning

concept,

—(w“(qb wPw T quopo owt ¢Sapah'0v +(1- (;b)pngv))

= {V(d)swpnww w) T V(qssopngw“u Vo) + V(¢5aP¢1H;v‘V$ Va)}
V($S, DV (p,w0) + V($S,D,V (0 ,H o))
+V(¢S, D"V(p Howo)+go+go+gs (3—27)

where, H?,, HS, HS, = partitioning coefficients.
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3.2 CONSTITUTIVE AND PARTITIONING EQUATIONS

3.2.1 Constitutive Equations

3.2.1.1  Saturation and Relative Permeability

From Parker et al. (1987), using the Van Genuchten scheme, the effective

saturation of each phase is defined as

S, — S,w . .
St = 5 5 e = effective saturation of water phase
w
KAy . : -
St = S’ S” = effective saturation of total phase ( water + oil phase )
st rt

S,= S, + S, = water phase saturation + oil phase saturation -

The saturation of each phase is
Sw=Sn+ (S — Sp)S2, S,= S, +(S,,— S,)S¢
So=S8,~ Sy S,=1-5,
S = saturated saturation of oz. phase

S, = residual saturation of « phase

The effective saturations are determined by the capillary heads as,

S =1+ @t )™ for hy,>0, =1 for hy, <0 (3-28-1)

S =1+ (aotg) ™™ for hyy>0, =1 for hy<0 (3-28-2)

. |
where, sm = | T
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In Figure 3, the relation between the capillary head and saturation is plotted.
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‘Figure 3: Capillary head and saturation from Parker et al.(1987)

The relative permeability of each phase is defined from the effective saturation

as follows:

k

= (S92 {1 — (1 — (55!mymy2
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]

kro = (SE = SO — ()™ — (1 — (s ™My™2 (320 - 2)

3.2.1.2 Dispersive Coefficient

The dispersive flux is a result of the extension of species flux to phase flux
as 0,0, Vi = 0,0,wi(V, + (Vi — V,)) = 6,0,wiV, — 8,DiV(p, i) .
Dispersive flux is the difference between the microscopic species phase flux and
the averaged phase flux, which is caused by the specics velocity fluctuation
from the averaged phase velocity. The result of the dispersion is sinﬁlar to the
diffusion of chemical specics and traditional Fickian-type flux is used for the
evaluation of the diffusion. The diffusive flux is caused by the difference of
solute concentration. The dispersive flux is caused by the microscopic velocity
fluctuation, and the difference in chemical concentration. The dispersion co-
efficient has directional property of velocity of each phase and can be different
for each species. .

Extending the approach from Sutra (1984), the dispersion coefficient tensor

of 1 species in « phase is expressed as

i 1 2 i 12
w4xx ‘-_(dlll/ax+d.ct :c})’ D:lcyy:7(d,l<!Vax+chclV1,y) (3-30-1)

uj ——( )Vllw for i=xy,j=xy (3—-30-2)
Ve=Vix+ V3, = magnitude of « phase velocity
d,= !V, = longitudinal dlspcrsxon coefficient of i species in « phase
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d,=d!,V, = transversc dispersion cocfficient of i species in « phase
i, = longitudinal dispersivity of i species in « phase

al, = transverse dispersivity of i species in a phase

Corapcioglu and Baehr (1987) proposed an alternative formulation. They
suggested that the hydrodynamic coefficient tensor depends on the void frac-

tion ( 8 ), the soil type, and phase velocity, They expressed it as follows:

Di= da,+Di gz, (3-131)

&
I

the matrix of factors depending on fluid velocity
A, = product of 8, and dispersivity

Di, = molecular diffusion constant for ith constituent

¢, = complexity tensor for fluid

Although many forms of equations have been developed for the dispersive
constant, no equation is available for the general case. For the diffﬁsive con-
stant of the aquatic domain, good methods have been developed and if we
combine the parameter estimation scheme with the experiment, we can acquire
reasonable result. However, in the subsurface domain, the tortuosity of the
gecometry makes the analysis very difficult to perform aqd the microscopic.
phase velocity is almost impossible to postulate. The only method used here-

tofore relics on soil sample tests and the tracer tests. These results can be

combined with parameter estimation techniques. Often only approximate re-
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sults can be obtained. Additional research is required to overcome these dif-

ficultics.

3.2.2  Partitioning Equations

The partitioning equapions are based on the current understanding of
chemical and biological processes in the subsurface environment. The parti-
tioning concept is a very useful way of describing the transfer of contaminant
from one phase to another. The partitioning concept implies instantaneous
mass transfer among phases to obtain equilibrium. If the fugacity of each
species in each phase is known, the partition ratio can be calculated. The mass
fraction of i species in « phase is computed by wi = w} x H]; for known mass
fraction of i species in a phase wj and partition coefficient of i species between

« and B phase Hig. The computation time is reduced by this concept.

3.2.2.1 Partition between water and oil phase
From Pinder and Abriola (1986), in the case of trichlorocthylene, the solu-
bility of TCE in to water phase is 1100 mg/L. The value of solubility implies

mass fraction of TCE in water phase.

wg  TCE mass fraction in water phase
0 — J—

wo

1154 TCE mass fraction in oil phase

wo

If we assume no water species in oil phase ( w¢=1), then H, = 1.1 x 1073 .
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3.2.2.2  Partition between water and air phase
We can use Henry’s law to calculate the equilibrium of volatile species with
the aqucous phases. Henry’s law is defined as,

( partial pressure of chemical in gas phase ) / ( solubility of chemical in liquid

phase ).

. . Pvp atm
From Pinder and Abriola (1986), H?, = — = 10*—20
8 Se mole|cm?

Py, = vapor pressure of TCE in air phase = 0.0837 atm

5S¢ = solubility of TCE in water phase = 0.0837 x 10~*mole/cm?
Po _ms 289

P, m, 131.4

28.9, 131.4 = molecular weight of air and TCE

131.4

T 0.38

Therefore, wg = 0.0837 x

3.2:2.3  Partition between solid and water phase

In the sorption process, both adsorption and absorption are included. The
lab measurement of sorption is implemented by the determination of the
sorption isotherm by using the batch method. Figure 4 shows the relation be-

tween the sorbed concentration and the equilibrium concentration (Lyman et

0
W

al., 1982). The partition coefficient of adsorption is H9, = we

In géneral, sorption process depends on the solute, sorbent, solution condi-
tion ( pH, temperature, ionic strength, specific specics, ofganic and iﬁorganic
solute, collide, etc. ), and time. Because sorption is dominated by the organic

carbon, the partition coefficient is computed by H9, = f,. x H,,

Joc = fraction of organic carbon, measured from field data
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H,. = partition coefficient based on organic carbon, computed by
log. H,. = alog(H,,, S, BCF,...)+ b

H,, = octanol water partition coefficient

S = solubility

BCF = bioconcentration factor

Figure 5 is from Karickhoff (1984).

sorbed concentration

equilibrium concentration

Figure 4: Sorption partition coefficient from Lyman et al.(1982)

Sorption is greatly influenced by the soil characteristics and cosolvent, re-
quiring the above equation needs to be modified for site specific conditions.
When sorptive reactions are occurring slowly, a kinetic model should be used.
The simple finite difference approach for the giveh time step ( time step is de-

cided by the main program ) is adequate for this evaluation.
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Figure 5: Extrapolation of Hoc from How (Karickoff, 1984)

The sorption process is especially important in the case of the solute trans-
port (when the chemical substance is totally dissolved in water phasg). Tradi-
tionally, solvent "holdup” has been calculated through an empirical
“rctardation factor”, which is calculated from the sorption coefficient. The ve-

locity of the water flow is divided by the value of the retardation factor. In

~ saturated flow, rctardation by the sorption process is the cause of the differ-

ence between the advancing concentration and the groundwater fronts.
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3.3 CHEMICAL AND BIOLOGICAL REACTIONS

The approach for chemical reactions in the aqueous phase is applied to the
problem of the subsurface region by assuming that the chemical reactions only
occur in the liquid phase. Estimating reaction rates in groundwater is compli-
cated by the effect of buffer catalysis, dissolved metals, dissolved organic ma-

terials and cosolvents. The first-order reactions can be expressed by :

— == kG, (3 - 32)

Where k! is reaction rate constant of i species in « phase.

| To determine the reaction rate, we need the formulation of the reactions
first, then the parameter values such as &k . For the evaluation of the param-
eters, if no published formula is available, we can use the parameter estimation
scheme.

Stenstrom and the author did this parameter estimation evaluation of the
chemical reactions in the chlorination process in the lab reactor. The governing
equation was a very similar form of the solute transport equation. Even though
we could get reasonable reaction rate constant values, the physical relation
between the reaction rate constant and the surrounding conditions is not easy
to postulate because of the experimental error and also ambiguity of the dy-

namic parameters of the flow.

The biological reaction depends on the following factors :

a. the quantity of the microorganisms capable of biotransformations
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b. the concentration of the target chemicals

c. the quantity of the substrate
d. tempcrature
e. the upper and lower limit of the quantity of oxygen
f. the toxicants
In the subsurface domain, most of the microorganisms are attached to the
surface of the solids making the biofilm. So, sloughing and endogenous re-
actions should be considered. The Monod-type kinetics for the substrate OXi-
dation is commonly used, as follows:
dS; XSy
d K+ 5S¢

(3—33)

where,
S; = substrate concentration
X = concentration of active bacteria
k, = coefficient of maximum rate of utilization

K, = half velocity coefficient
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Chapter IV

DIFFICULTIES IN EACH PROCESS

4.1 PHYSICAL PROCESS

Advection, hydrodynamic dispersion, molecular diffusion and density stra-
tification are physical phenomena which is important for this model. For ad-
vection, laboratory tests for porosity and hydraulic conductivity are not
reliable for the unconsolidated samples such as sand, gravel or clay. A
pumping test for the hydraulic conductivity can be used to obtain average va-
lues over the entire domain, so we need the system identification procedure.
The dispersion is very dependent on the velocity distribution, and it is difficult
to conduct a tracer test properly. For the nonpoint source e.g. rainfall, leakage

from other aquifer, it is difficult to estimate and calibration is required.

4.2 CHEMICAL PROCESS

Oxidation, radionuclide decay, ion-exchange, complexation, cd-solvation,
sorption and immiscible phase partitioning are chemical processes.

The oxidation/reduction or electronic alterations is important in inorganic
compounds, but it is difficult to determine the redox state of the aquifer zone
and to identify and qilantify the redox active reactants. Hydrolysis, elimi-
nation and substitution reactions belong to this process. For radionuclide de-

cay, a well defined decay constant for each radionuclide is available.



For the other phenomena, little is known and approximations are usually

required. Additional research is required to better determine these phenomena.

4.3 BIOLOGICAL PROCESS

Microbial population dynamics, substrate utilization, biotransformation,
adoption, co-metabolism need to be studied in this process.

This process is morc important when the contamination residence time is
long. "Usually the biotransformation rate increases after the exposure to the
contaminant. Most microbes are attached to the solid surface ( less than 1%
of total population is truly planktonic ). The parameters from other processes
( c.g. contaminant concentration, oxygen, redox state, pH, toxidity of the con-
taminant) are quite important to this process. Knowledge in this area is still

embryonic.
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C'hapter \%

NUMERICAL METHOD

5.1 FINITE ELEMENT METHOD
The finite element method can be interpreted as the minimization of the
residual or error between the numerical solution and the true solution over the

whole spatial and time domain. Usually a finite difference algorithm is used

along the time domain instead of the finite element method, because there is

no largc difference in accuracy, and the time dbmain 1s regular shape as com-
pared to the irr'cgﬁlar spatial domain.

To apply a finite element method and to develop a code for thé solution of
the previously defined different equations, it is necessary to inv_ent' several
process modules in general fashion. These modules are explained as below:

1. module for inputing data and printing results

2. module related to spatial domaih

a. module for basis and weighting functions

b. module for automatic element generation and nodal connectivities

o

module for element-wisc evaluation of nodal parameters
3. module for evaluation of element matrices

4. module for assecmbling the element matrices

W

module for solving the nonlinear system

6. module for empirical equations of parameters and source terms
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The remainder of this section discusses the general requirements for solution.
Later sections describe the specitics of the solution technique, such as upstream

weighting. From the previously defined governing equation,

3 ~ i

as ow,
Z[Z(pﬁuﬁSﬁSB )-+¢wal > X+ ¢S.p, 6*: g
a=] f=1

1~ (b)P_\-W;)

W K

PN AVGS DNt el - 1)

a=]

Applying the asymmetric weighting function IV and integrating over the

spatial domain, equation (5-2) is obtained.

ZEJWZ(%%S;; )—*dRJF JW,ﬂp W, dR+ le.
-+ f lV,Ea[‘((l —d)p Swsi)dR [f ! K j ))( iR
a=1

+ f WV(#S,D,V(pwi)dR + fw;g;dR] (5-2)

Defining the following clement matrices as shown below,

[ET; 1= <, N) 5-3-1)
dz\"j )
[E dlj]—'<” dxjd> (3_3_2)



- dw,
: id‘iJ] = dx; g

N (5-3-3)

d,; dn;

EDy ] =(—P I 5-3-4
LED;g/q,/] <‘i“id dxjd> ( )

where N, is basis function of node j and 1V, is weighting function of node i.

Using the b111r1ear basis function Ny the nodal parameter values are changed

to element-wise parameter values as follows :

nn
(pﬁu'[’i'sﬁ:x)i = Z (p[j'wésﬂx)ig"vi,ig (5 -4 - l)
ig=1
(pu“’at!\.)x Z(pa”,([\’x ngt ig (G—4-2)
poc)l Z(QS lg 110 (5 —4 - 3)

Using the above element matrices and parameter notation and applying
Green's theorem, the finite element scheme of the governing equation is ex-

pressed as :

nel nn na na

ZZZ[EE ]{(Z(Pgﬂﬁspl)j)—-f-(qbpaul E'f + ($p,S, ) UW ’/}

e=|j=]x=
~nd nd

+ ) >'Ep d,,]{(pm&)/zm(¢Sapag;;>,w}; A1+ [ET; J-Jga#(l — }pwy)

id=1jd=1

46



m na

- Z(EE Kiai oK) + ET, Jgf

=lz=1  jd=1
f w,,oiwx~ AVh, + -—j J YrdB + fW¢5 QJ';V(paw;)-r—{dB] (5-3)

Here,
nel = total number of elements
nd = dimension of the problem
nn = total number of nodes in each element
na = total number of phases excluding soil phase

id = index for direction ( 1 =x, 2 =y,3=2z)

The integral at the boundary is cvaluated by defining the fluxes as follows :

Let .
. , Pa =, - o .
Qon = — P WK, o) yn = outward normal advective flux
~ w
Gia=— $S,DiV(p,wiyn = outward normal dispersive flux

Using these definitions, the boundary conditions can be written as

J. W, I&J(Vlz +—j)fde——JAquth (5—6—~l)~

fm;s D V(pxu Vi dB = — fll"iq;’ddB 5-6-2)

Combining the generalized finite difference algorithm for time domain, results

in the following equation :
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nel nn na

2.0 QIR ET JZ{ oghSgs ! = 12

e=lj=lua=
N .
TGP )STT = I+ (B9, S ) owr T M — iy
nd nd
1 - | 1
F D Y ELED s 1 ol b+ (08,0, DI ol
id=1jd=1

+(l - ‘S)EED[dJ'd,i:j]n{(pJ“ K )jhxj+(¢) pJ..,g( (“l)j}}]

+ 2 ET (0 = logel)™ = (1~ )oYy

na nn nd )
=) 0= D (e d,ﬂ(pm& )+ [ET; Jgh;
a=lj=1 jd=1
— JIVIq;’),dB - f Wiy 4dB] -7

To solve the above equation with respect to the pressurc head, saturation and

mass fraction terms, let the assembled global matrix and load vector of the i

species in o phase be

Ldh] = ) ) T=LET, 1) (opwpSp
€ J 8

+ D D HALED i 1 o K T -8 1)
id jd
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[Asi]= ZZ A LET,(6p aely! (5-8-2)

LAmg]= > T [ET, X, S,
€ j

+ ZZ{EEEDide,i,j]n+1(¢F’15;CQ;';)7+1}] (5-8-3)
id jd

{3} ‘= ZZ[{"AIT[E Ti,j]z(f’ﬁ“’ésﬂi);
e B

N (e DD aj031 o KV = DD (CEK 4310 00125

id jd J jd
+[ET; )¢~ f Wl dB — J-Wiql"’adB] (5~8—4)

{m—_zw e ee ity (5-8-5)
{fni} = ZZ[—EE T (60,5,

£ D (6= DIEDyys0, (60,5, DI 1,,) (5-8-6)

id jd

Using the above notation, the equation (5-7) becomes
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D LR R} + 452, ) + [AmI{wl} = (M) + (65 + () (5—9)

*=]

The above system can be solved in a coupled or decoupled way. To reduce the
computation time and to minimize the difficulties associated with the nonlinear
terms, the decoupling technique is used. This depends on the property of each
primary variable and is case specific. As an example, consider composite
multiphase contaminant migration. Algorithms for specific problems are ex-
plained later. By using second approach of the governing equation, with the
immobile air phase assumption, the governing equations are reduced to the
following set:

Equation for water phase pressure head

[ARSTY™ 2 = — (CARYYRY" + LARYT (R )"
)= LAY = Lam iy + (Y™ + (A0 4 Uimy™y (5= 10— 1)

Equation for oil phase pressurc head

[A/Ig] {ho}'H'l == — ([Ahm?;]{hw}n-i- 2 [Ahg]{ha}n-H/Z)
+ D LA~ TAmEMwly "+ ()" + (f50)" ¢ {fmiy (5-10-2)

Equation for dissolved species in the water phasec

D LAmA ™ = Y= Lk — L1515,

g




"+ s+ Yy (5-10-3)

The as'sembling procedure is performed carefully to make the resulting global
matrix banded form so that an asymmetric banded matriﬁ solver can be used
and storage requircment for the variables can be reduced. Iteration continues
until the error criteria ( difference of A7+!, A7 and of‘w;’"*", win) is satisfied.
After cach iteration for nonlinearity and decoupling, the computation proceeds

to next time level.

5.1.1  Basis Function

Because the basis function only depends on the geometry of each element,
the evaluation of the basis function necds to be performed only once which

greatly reduces computation time. Therefore, all the basis functions are eval-

uated at all Gaussiaﬁ points and later assc’mblcd when the integration of ele-
ment matrices are performed. By mappin.g, the integration is performed in the
local domain. Figure 6 shows transformation of global coordinates to local
ones in one, two, thrce dimensional elements.

The basis functions and asymmetric weighting functions can be expressed
by the notation of the linear basis function in each direction. Figure 7 shows
the basis and weighting functions.

The basis functions are :

1\"{;[-,1-8' == 0.5(1 + flélg)’ ll\r,’l',ig = 0.5(1 + r’l”lg)

Ny g=0.3(1+ {4, (5—11—1)
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One Dimension

X Xie 3 £,
T T — ; ‘;
Two Dimension (-xi~2-y"oz) : 71“
(Xie3,Yis3), ol lf (85, 13)
I A
_1 I f
[} ‘1
(x:,:) Crpnyiy) G0 (8, 7,)

(1,1,1)=(85: 15, 8s)

Three Dimension (X7 .77 .2..7)

(xiyi=)) (xrl-:/z-lv'zi*l) (“1“1-'1)=(§1'ﬂ;v§1)

Figure 6: Transformation of global coordinates into local ones

Niig = VeiigVniigVtiig (5—11-=2)

The derivatives of basis functions are :

| 6'1'Vfl . éN,“- B a/V{l _ .
_v' =0.D-:l', - 20.37“, - =O.Dcl (D— 12 — l)
oé cn ol




~.

\\

Figure 7: Linear basis and weighting function

éN.ig  CNy; ONijg  CNy

P - ’ i
- = - ‘\'V, —_— = Nr:: Nr::
e oZ niigt'{iig n on FiigtViig
Olvi.l'g ¢ ‘VC i . - 5
514 C- ) ’ X

The local coordinates of nodal points in each element are :
KPRET D T DS (S TR DR IR

n, ==L, -1, 1, 1,-1,-1, 1, 1

G=HLI1L0L- -0




The Gaussian points are :
£ = -0.577,0.577,0.577,-0.577, -0.577, 0.577, 0.577, -0.577

ng = -0.577,-0.577, 0.577, 0.577, -0.577, -0.577, 0.577, 0.577

P
-~
el

[

0.577, 0.577, 0.577, 0.577, -0.577, -0.577, -0.577, -0.577

The derivatives of global basis functions are derived as follows:

- - r- -

’— . ' -

51\’,,1g ax,g 6’ylg azlg ONi,ig
3¢ FE R FP"
divi,l'g _ ax,-g Cyig 8zl-g az\",-’l-g 51 3)
on an dn dn Oy
5N,—yig axlg 5’ng 5zig 51\,i,ig
ol o¢ ot a¢ | oz
L u | L -
The above matrix is called as Jacobian matrix A
nn nn o asar
3x; ONjig 3
X; = Z‘/\i,igxi’ PE = Z PE X; 5-14)
=] i=1
[ .y - P ]
Z OI\i,ig Z ONUg Z al\i,ig
X; ' Z;
6f 1 Lot Liar
6’1\7“- 5‘1\’,- i 51\/'“ . _
= | Y —2x, > ==y Y% (5—15)
an an an |
Z @Ni lg’ 51\’,- lg 51\"1- lg
~ e X Z__'___ v, Z ..,' 2.
o & ot é

dxdy = det([J]),ddy (5 — 16)




- ) ) .
ax : ac
0Ny | oM .
L = [T < (5-17)
Oy én
divi,ig : 01\, ig
i Oz | i ol ]

The components of the element matrices are:

[ET;]= f f f WN dxdydz = f f f W | dedna

Z'“g/'g (5—18—1)

Ig“'

an;
dz,/] jij——dxd}dz-j‘J‘J‘W—IJ[d*dnaL
moaN,
= D W 20J] (5-18-2)
? Y'd

aiv, dv; B AW,y dN g,
ED, jfj (id’dz —_ 5—-18-3
L lde'J] dx;q d,\ 4 igz=:1 dx;y dxd 71 ( )
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5.1.2 Upstream Weishting Function

As indicated previously, upstream weighting is used to reduce numerical
oscillation. Using the technique of H uyakorn and Nikuha (1979), asymmetric
weighting functions are developed from the basis function by adding a asym-
metric weighting term. In Figure 7, the additional weighting terms were

shown.

The weighting functions are :

lV{i,ig =N Eiig + 3[2 1'\ £l lg/\ £2,ig IVr]i,ig = 1\’;7’-’%, + 3[)‘1'771'1\!;71,ig1\'r)12,ig

Weiig= Vi + 3vEiNe1, iV ig (3-19-1)
Wi g = =¥ Fllg”;]z zglng ig 3-19-2)

The derivatives of weighting functions are :

Wiy  ONy, | IWyiie 0N, ,
s = g ni -
Py = + 30, £0.25(0 — 2Z ), _ = + 382.0.25(0 — 27
Of aé: alél ( SIg) ; 0’7 a” ﬂﬁl ( W,g)

6’ ,VCi,ig _ 6’[\’78—:"

+ 3740250~ 20,)  (5-20-1)

&
e _ V% W, W, Wiy Wiy W, IV,
o€ B o0& niig"" Ciig? on - an EiighhLiig
cly; any. .
— L= “eiigWyizg  (5-20-2)
c( ol sHLIg HLig

By using the Jacobian matrix (/]




R ol - L0
et e oL FARA L
ol 8!!"” ;. ow,. oWw;:. ¢alv;.
J4g , g l,Ig T ,_,] l,Ig l,lg ” I,lg T -
é”“‘"f@ ( ~ ) = ’ - ) =['I] ( YN ’ ~ v ) (3—21)
ox Cy cz ac on a4

The weighting factors are evaluated from the nodal velocity as follows:

2: % , a3=a4= 1% % (3—22_“1)
| Veyl+1 Vel | Ves |+ Veyl

alza

\ 4
Br=By= Pt T . By=PFi Vw3t Vo (5—22-2)
[V 1+ 1 V2 “1 Vsl +1 Vsl
VCI+ VCS ’C2+ Vc:6
‘J,‘lz'ysz

. Va=v6= . (5-22-3)
Vel 1 Vsl 2T T+ Vel

Where, a;, §;, ¥; = weighting factor along &, 5, {, direction.

5.1.3  Boundary Conditions

In the finite element analogue of the governing equation, as shown previ-

ously in equation (5-7), the term related to the boundary conditions is :

- J Wql ;dB - JI-Viqxi’dtiB | (5 —23)

The above equation quantifics the overall influx at the boundaries. Even
though the finite element analogue is applied to each element over the whole
domain, the values of boundary fluxes at inside elements cancel each other, so
only evaluations at the overall outside boundaries are needed. There can be
threc types of boundary conditions, described as follows:

1. Specified primary variable values




2. Specified flux values

3. Mixed type
The integrations of the boundary fluxes are also dependent on the dimension
of the problem; therefore, the algorithm must be derived forlmultidimensional

cases for the above three type boundary conditions.

3.1.3.1  1st type boundary ( known primary variables )

By adding the large penalty values to the right and left hand side of the fi-
nal system of equations, the known boundary values are maintained through
the simulation.

h=hg

At this boundary point, if we denote this boundary node as ib, then
hig(Ajp + penalty) + ....... = fip + hg X penalty 5-249

From the above equation, if the value of penalty is very large , then the result

iS hib = IZB'

5.1.3.2  2nd type boundary ( known flux at node )
This case exists when fluxes are known. By using the basis and weighting

functions, the integration of normal fluxes can be performed as follows :

(a) One Dimensional Problem

Jo1=— Ip, 15 fb,np == b np (53-25)
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The functions f; , and Jonp are added to the right hand side global vector.

(b) Two Dimensional Problem
: 2
J.W,qndB = Z (W, Nj>qu (53-26-—1)
ig=1

If basis function W, is used for weighting function IV, then
f})’[ - j 1\”11\"’1 IVIIVZ dB qb,i
fb,i +1 1’V21’Vl 1V21'V2 qb,H- 1

_AB[2 | 9b,i < _
- '2][f1b,-+1] (3=26-2)

where g, and g, ;,, is known normal flux for node i and i+ 1.

The functions Jo;and fy,, are added to the right hand side assembled global

vector,

| (c) Three Dimensional Problem

4
o1 7

1g=

‘The function f;; is added to the right hand side assembled global vector.




5.1.3.3  3rd type boundary ( mixed type )
-This is the case when the outflux of the concentration or phase is propor-
tional to the difference between the boundary concentration or pressure head

and the concentration of the surrounded area. That is :
dn=ky(C — Cyp) (5-28-1)

where k, is a proportionality coefficient.
This expression is incorporated into a generalized finite difference scheme as

follows:
dn=kyeC™ ! + (1 = )C" = Cy) (5-28-2)

This results in the following equations:

Jbi=— f Wa,dB = f Whky(eC™ 4 (1 - )" - Cp)dB
= f WhyeC™ lap - f Why(l — eXC" — Cp)dB

nb
- Z { = KN kgeC™ (W, Nod(ey(1 = exC — oy (5-29)
ig=1

nb
The matrix ¥ ¢ Wi N)(kye); is added to left assembled global matrix
ig=1

nb .
and the vector — ) ( W N k(1 — eXCn — C,)); is added to right side load
ig=1

vector,
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5.2 NONLINEARITY TREATMENT

As shown in the section 3.2, the system of equations is very dependent on
the component equations. To avoid a system of nonlinear algebraic equations,
the nonlinear terms at the new (unknown) time level must be estimated. It is
common practice to use the values of the nonlinear terms from the old time
level. To insure minimum error, some sort of iteration and error criteria are
required. If the approximate value of the unknowns cannot be estimated, or
if the nonlinearities are severe, a large number of iterations with excessive
computation time will result. Very careful selection of the step size for space
and time, and proper initial condition are required to reduce the i‘nstability
problems related to nonlinearity.

In the case of the dispersive transport, the stability problem is not so severc
as compared to the advective trahsport case, when the governing equations arc
approaching hyperbolic type. For the latter case, it will be necessary to use a
very small time step in addition to the upstream weighting scheme. This be-
comes a big problem in the highl‘y nonlinear case. To overcome this problem,
it was necessary to use the variable time and spatial step size. The variable
time step can be determined from the truncation error. The variable spatial
step size requires the algorithm-to find the sharp advancing front. If we com-
pute the gradient of the conccntfatiqn, then an abrupt change of the gradient
indicates the presence of a sharp advancing front. Near this location, smaller
step size is required.

To overcome the difficulty of the nonlinearity of the system, mass lumping,

upstream weighting and iteration techniques are used.
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5.2.1 Mass Lumping
In the evaluation of the time derivative of the mass matrix, d’agonalization

is performed to reduce the instability of the solution. Therefore,

< N, Nj> =0 for i#j : (5-30)

5.2.2  Iteration Scheme
To minimize the iteration and to use the variable time step, the method

proposed by Cooley (1983) is used as follows:
di=nNpk ap = max|dhl, B4V = wxdh+ k6

where,
dh = difference of the pressure head between new and old iteration level
k = index for iteration level

dh.x = maximum value of dh

dhk+1 ‘
S=—T3_ for k>0, =1 for k=0

k ;, k
W dhmax

we = 3+ for S>—1, —

e A - S < —1
3415 2157 7

k+1 e e
W =w for w <
J | dh

dha _ dha

_ dha
dah

e
or wo >
J dh

’
max l max max

where dha = maximum allqwablc dh in each iteration.

62




The convergence criteria is expressed by :

ldh| <e,+e,|h | 5 - 31)

€, = absolute convergence error &, = relative convergence error

The time step is controlled by :

dt=dtx(1 +f) for i<l 3-32-1)
dt . B
dt = 47 SJor i1 .. (53~32-2)

where, [ is the time changing factor.

 3.2.3  Element-wise Parameter Evaluation

Because the element matrix is computed by the integration of the basis
functions at Gaussian points over the clementary domain, the parameters in
each element matrix, such as relative permcability, fluid capacity, density ctc.,
should be evaluated over the elementary domain using the Gaussian points,
as shown in equations (5-4). Generally, this evaluation scheme is expressed

as follows :

nn
Ki= ) KNy (5-33)
g=1

where,
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K, = clement-wisc parameter at node j

K, = parameter at node ig

N, = basis function
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5.3 STABILITY AND ERROR ANALYSIS OF THE ALGORITHM

'In digital simulation, the continuous time and spatial domain should be
discretized and the variables evaluated at the nodal points along the time and
the spatial domain. All the algorithms of the governing equations are related
to the nodal points which are adjacent in spatial and time domain. Values of
the dependent variables not denoted at nodal points must be determined by
in'tcrpolation. |

There is no difference in the above sense whether the algorithm is finite el-
cment or finite difference. Even though in the finite clement method the basis
function is evaluatéd at each element and assembled later, the resulting global
matrix indicates that the basis function can be interpreted as a scheme choos-
ing different nodal points comparable to the finite difference method. If we can
cons'truct the nodal points relations in a fashion similar to the FDM, we can
apply the above method for stability and error analysis. Pinder and Gray
(1977) providcd\a detailed explanation of the stability and errors in the finite
clement method of the simple solute transport cquation by using the Fouricr
Series representation for the numerical and analytical solution. In this study,
the methodology developed by Karplus (1958) is used to insure a stable sol-
ution bccausc of its simplicity and clearness.

In FEM, even though the basis function is eva_luated at each eclement, be-
cause of the geometrical connectivity of the cach nodal point, the resulting
global matrix is banded for the one, two and three dimensional cases. This re-
sults because the governing cquation is only concerned about the points of the

adjacent nodes.




To provide a simple explanation, a onc dimensional case is used. Two and
three dimensional cases and different basis functions, such as quadratic or
hermitian polynomials can be implemented by expanding the following analy-

sis. For illustrative purposes, the simple solute transport is used as follows:

oC Jd ,n0C oC
= D - V-
ot ax " Ox ) ox

(5—34)

If a lincar basis function is used, then the resulting finite clement scheme is

nel _.a_C_l
Z _Ai[ 2 1 ] dt
. at

14 1] D[l -1] C | s s
+(2[_l i +—-—Ax 1 I ) C, =0 (5-35)
For the one dimensional case, to see the relation between a nodal point and its

adjacent points, assembling the two clement matrices as follows:
[ ac,
ot
2 1 0 oC
14 1 || ==
0 2 dat
dC;
dt |

C

-1 1 0 1 ~1 0 l

+(l[_1 0 1 ]JF_D_[“I 2 J) C{=0 (5-36)
From the above finite element analogue,
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1 6Cy  0C  8Cy, v
— 4 C..,—C.
6" ot " TTar AT max G- Gl
-L e i1 (5-37
=—1Ci it Gl (5-37)
Ax

The time derivatives are evaluated as follows, using the  method :

1 1 1
——LCH —chp+ 4 - chy+ () —clm+

GAr
v |
Sax L0(Crp1 — C)™ (1 - 6XCy - ¢ =
L_rociy - 20,4 et - OXCip — 2C;+ Co )] (5= 38)

sz

After rearranging cach term of the above equation in the form of Cf+! — Cr |
the summation of all the cocfficients should be less than 0 to satisfy the sta- !

bility criteria. Therefore, ' _i

b 4 DAt ! 4 ' ‘
—521 -0)-——<0 < < (5-139) |
A2 6A7 Ax?  31-6) P, T 3(1-0) |

where,

At _

C, = V—=— = Courant Number
Ax

P,= VA[;_ = Local Peclet Number

In using the above stability criteria, we should consider the Courant condition

also, because the system can be interpreted as the moving coordinate by the
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velocity component of the total derivative. The velocity should be within the
alread'y defined analogue. Therefore, VAt < Ax, which is same as C<l1.
The above FEM algorithm is very similar to the finite difference algorithm
except for the time derivative which is evaluated at three different sp;at'ial
points with t'he weighting factors 1, 4, 1.
Applying the above technique to generalized finite difference analogue, the

stability condition of generalized FDM is :

DAt !
<
Ax2  21-0)

(5 — 40)

The analogue of forward FEM and FDM is shown in Figure 8.

R+l
n s o
FDM
n+l - 'v
: |
time <. X, X
‘ FEM
spatial points
Figure 8: One dimensional analogue of FEM and FDM

The above approach for the stability analysis is not only simple but also
provides physical insight of the algorithm by constructing the finite differ-

cnce-like analogue.
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Chapter VI
SIMULATION OF SPECIFIC PROBLEMS

6.1 UNSATURATED GROUNDWATER FLOW SYSTEM

- To test the highly nonlinear property of the governing cquation, the steady
state drainage through an embankment problem by Cooley (1983) was used.
If capillary pressure is the dominant force of the system, then from the second

governing equation,

G, oh - g
(SWSWW M d) a - == V(K;V(Vhw +./.)) + = (6 -1 - l)
‘ Ly dt ~ Py

Sw =f(hw,ha) | (6—1-2)

The problem domain and data are shown in Figure 9.
To find the height of seepage face, the method suggested by Cooley (1983) was
uscd. As shown in Figure 10, the result matches well with the comparison by

Huyak‘om et al. (1986).
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f 1002 Rt
v Yn=0
I v T
: |
. bh=10-y [Vn=0atBs<ycion
| e
0 [ it ot
: . |h=o0atocy g
|
Beight of D
Seepage Tace Bs -5
! l h=2-y
£ ! I
1 'LIEN]

Physical Parameters

Saturated hydraulic conductivity K, = 0.01 m/day

Alr pressure head h, = 0.0m
Residual water saturation S = 0.2
- ! -
i Sy = —————jorh,, >0
Eftect;.we saturation e | [+ (@ fiot

Relative Permeability Kny=Sr m=4d

Numerical Data

Spatial step size Ax = | m, Ay

|
3

Error Criteria error = 0.0l m

Figure 9: Problem definition and data from Huyvakorn et al.(1986)
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10 m

Base Pressure Head

-
r) 2
3
o Present Model
X Result hy Huyakorn
o} 1 1 I 1

X Coordinate

Figure 10: Water table and base pressure head from Huvakorn et
al.(1986)
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6.2 MASS TRANSFER SYSTEM

6.2.1  One Dimensional Upstream Weighted FEM

By using the partitioning concepts in section 3-2-2

)
. T Y S S S S B _
Wy = H, w Wo=H,w,, wy=H, W, {6 -2)

Replacing the mass fraction of other phases by the partitioned values, the go-

verning equation becomes :

0

F(t-(fclw:;) = — V() + V(k3V(w)) + G (6 — 3)

where,

Kl = prwavo + Gopo + OapaHéo + psp.rH;o
Ky = 0, HLV, + 6,p,V, + 0,0, H 7

ao’” aq

53 = Bwpwavoszv + oopog:; + eapaHtilochl; Gl = ;gi

Even though the derivation of the governing cquation is from the composite

multiphase approach, the resulting equation is very similar to the solute

transport cquation for the one chemical case, which is :

A€ _ 2 picy_ Loc

- 6— 4
ot ax Py Tk 6=

Where k indicates the reaction rate.
Cven though there is a slight difference between the mass transfer cquation

and the solute transport cquation, the solute transport cquation can be used




as the basic structure of the governing cquation. Excluding the source term, |
the solute transport equation becomes same form as equation (5-34). Differ-

ential operator L(C) is defined as follow:

ac 9 ac
oC¢ 0. piCy . poC
9t axt )+

Ho= ox ox

(6 —5)

The independent variable, in this case concentration value C, is the summation
of the nodal concentration value multiplied by the basis function of each node.
Thatis C(t,x)= _HZ':NJ(:()CJ(t) . Because the finite difference scheme will be

j=
used for the time domain, the basis function N is only the funétion of x. Ifone
wants to also use the finite element method for the time domain, the basis
function should be a function of time and space (c.g. N(x,?)).

To minimize the weighted residual over thc whole spatial domain, let the
integral of the weighted residual be zero. jR(x)x W{x)=0 fori=I..np,
where residual R(x)= I(C)—0 .

The above equation is cxpressed as {R(x), Wfx)y =0

Integrating the above equation using Galerkin method and the rule of the in-

- tegration by parts, the finite element analoguc of solute transport equation is

- expressed as follow:

W; aNj

2
>, - —-N) + Dt o=

+ VW, C;

] (6 - 6)
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In cach clement, there are np sets of cquzitions depending on the total nodal
number of the each element, because the given function is evaluated at each
node by using cach nodal weighting function. If a lincar basis function is used
( that is when total nodal number of each element is two ), then the element
matrix is 2 by 2. For quadratic basis function the clement matrix is 3 by 3 and
if a hermitian basis function is us’cd (this is the case when the first derivative
of independent variable is also considered), the matrix is 4 by 2.

After computing the element matrices with respect to the time derivative
term (matrix ET), dispersive flux term (matrix ED), advective flux term (ma-
trix EV), the element matriccs are assembled for the whole elements. These
matrices are derived in next sections. The attained simultaneous equations are
solved at each time step. In a onc dimensional case, the global matrix is tri-
diagonal form, so the Thomas algorithm is used.

Along the tirﬁc domain, the generalized Crank-Nicholson method is used to
reduce the oscillation and smearing effect in the case of the convective trans-
port. To solve this problem, th-c upstream x\.’cighting technique is introduced
to the hermitian basis function.

Fogr finitc clement methods have been used in this disscrtation. They are
diffcrent by the basis functions: linear, quadratic, hermitian, upstream

weighted hermitian.

6.2.1.1 FEM with Linear Basis Function
The lincar basis functions for clement i and i-1 are shown in Figure 7.

Considering the Figure 7, from the lincar interpolation,
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X—X Xi-X X=X

. i—1 . i
C(x)= C; C.— C. = C 6 —
)= Gy (G —1}7\’,._—-/\—',-_—1 =AX, € AX, (6=7)
SO N _ ‘X’i _ 1‘, \, _ /Y_ 1‘,,'_1
» M T Ty T T A

By using the concept of linear mapping, the original global coordinates are
converted to the local coordinates, This transformation simplifics the compu-

tation procedure. The basis functions in the local domain are:

(6—38)

Here, node one in local domain corresponds to the inlet node in each element.
So, in clement i, Ny = N_,

Evaluating the clement matrices by using the local basis functions :

(NN NoNpL L AN 2
[N, v AN
EV] = dxll dxlli_l -1 1 692
LEVI= || 4v dN,  |==51 <1 (6-9-~2)
Ly, —2N 2
dx 2 dx 2

L

[ dN| dN|  dN, dN),

_ dx dx dx dx . Vl -1 _o_
[ED]‘f ANy dNy  dNy dNy | Ax[ | 6-9-3

dx dx dx dx

The clements of the matrices can be casily evaluated by using the local coor-

dinates. .




f N Nydx = f NINI%dé - _A% (6-10-1)
S

N, ANy df  dx l
I = S —10-2
f ax i J @& dx VST T (6-10-2)

“dN| dN, 1 del d dny
rEE——

1
= ¢ —_— 6—-10-3
dx dx d¢ dx d4¢ Ax - ( 0-3)

After assembling all the clement matrices and using the generalized Crank-

Nicholson scheme for the tinie derivative, the global matrix becomes:

dl{cy={n (6—11-1)

where,

[41= ) (—{ET] +«(V[EV] + D[ED])™! (6—11—2)

'+(—'—[En+(s— 1)(V[EV]+D[Eb])) €1 n (611 43)
At G,

¢= weighting factor in gencralized Crank-Nicholson scheme

6.2.1.2  FEM with Quadratic Basis Function

The derivation of the Galerkin form is very similar to the case of the linear

basis function except for the element matrices of the basis function. Thus, the

same algorithm is applicable to the boundary conditions. But if the problem
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is in two dimcnsional space, then the algorithm for the boundary condition is

dlffcrunt The global matrix is a banded matrix with a maximum band of 3,

50 tridiagonal algorithm cannot be used. An asymmetric banded matrix solver

is provided. To evaluate the integration of the basis function, the Lagrangian

polynomial and the character of the Beta function are used.

From Huyakorn and Pinder (1983), the Lagrangian basis function for node i

is-expressed as:

Ni(LiL)= V(L) $(Ly)

“Where,
X =0 1 x—-xl
Ly=f— = 270
l X~ X1 2 Smt1 — X
mL;—k + | | mly—k + 1

p : the number of nodes on the right side

q : the number of the nodes on the left side

So, for the quadratic element, the Lagrangian basis functions arc:
/Vl =L1(2L] —“l) 1\’2=4L1L2 IV = L;)(?_Lz— l)

dx Ax de Ax - dx  Ax

Figure 11 shows L,, L, and the quadratic basis function.
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~C(x,t)

. . \.__—’./
i 1+1 1+2

Element j

Figure 11: Quadratic basis function

By the concept of the standard Beta tunction,
. Axa'p!
JL? [,‘1-\_ — A.’Ca.b.

(a+b+ 1)

By using the above formula, the evaluation of the quadratic basis functions

can be casily implemented.

2 -
(N}, Ny = (L 2L, -l))z)zAxﬁ 6-15—1)
([/Vl 2 .
Coo VD= —dL ML, Ly =~ 2 (6_15-9
dx 3
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3= A'x (L= 4Ll —4L))y = % (6 15— 3)

dN 1 d N |
(
dx 7 dx

FNINI 1\"21'\11 /\’31\/1 4 2 —1
6—16—1)

[E]‘J:J. NN, N4yN, N3N, abc:—A—£ 2 16 2
N1N3 1\’21\’3 N3N3 -1 2 4

d/\’l N d[\’z N le

de 1 g 1 Ty

le v d/\’2 v dN, v 1.
] dx

dx 2 dx 2 dx "2

dn, dN, dN,
N N /

dx 3 dx13 dxlv3_J

N 1

(Ev)= |

([ -3 4 -
=< -4 0 4 (6— 16— 2)

[ ANy aNy ANy Ny vy v, ]

dx  dx dx dx dx dx
dn, dN, dN, dN, dN; dN,

dx dx dx dx dx dx
d[VI d1V3 din d1V3 d1V3 dl'V3

dx dx dx dx dx dx

dx

(0] = |

, 7 -8 |
=—— -8 16 -8 (6 — 16 — 3)
I -8 7

6.2.1.3 FEM with Hermitian Basis Function

-The approximating function is given by:

de
—_ A7 hVA _
C= G+ —=); (6—17)
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The basis function must be chosen to satisfy the continuity of itself ( C, conti-

nuity ) and the derivative at each node ( C, continuity ).

The finite element scheme is expressed by:

d de a/ Oj de dlvlj
“ — N c— v.) S
- <CjN0j+ e N i O(x D+ V¢ Cj ™ + T ~ o(x X0

2 2
d°Nyg;  dC; d°N,.
)j J lj
O (x—=x)=0 6— 18

Owing to the property of the delta function §(x — X;), the basis functions are

¢valuated at the Gaussian points.

’— NOl(xl) /Vl l(xl) 1V02(.X']) Nl ')(Xl)
ET] = < 6—19—1
LET] | Noi(¥2) Nyyx) Nop(xy) Npsfxy) ( )
[ any, dN| ANy, dN |,
——{x1)) ——(x)) x1) x))
[EV] _ dx d,\‘ (L‘C Ci.x (6 _ 19 _ 2)
dIVOl d/V] 1 ) (1N02 ) lez
| dx 2) dx 2 dx X2 dx x2)
!- (121}\,0] . dzz\’” (x (121\/02 (x (121\}"2 y
dx2 o dx?'ﬁ l dxz_\d l dx2 ! ‘
[ED]=—| ¢ ; ; ; (6~ 19— 3)
d_IVOI d"/Vl 1 p d /Voz p d"ivlz ’
— (X)) 5—(x2) 5 X2) —{x2)
dx dx dx dx ]

Figure 12 shows the Hermitian basis functions in the local coordinate.

Nor =025 - 1)¢ +2), Nyy= 0250+ 1 (& - 2) (6—20—1)
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Figure 12: Hermitian basis function

Mir=025¢ - D%+ 285wy = 025 + 1)%e DS 6-20-2

o o Do i3 6—21~1)
dx T 2ax s TSt 3), de - 2ax e T HE-3 (6-2

.d_lvﬂ_:-'_(-=—1)(3~+l) dN12=l(g'+l)(3’“-l) (6~21-2)
dx 477 ? dx 4 : - -
2 2
d JVOl 1 d /VOZ -1 )
7 =360, —2 = =L (6-22-1)
dx Ax~ dx Ax~
11’21\7“ B 1 65 ‘)) d_zl'\llq 1 f6_ + ,)) (6 79 ‘))
S R AR ©
The Gaussian points are x, = —0,57735 ¥y = 0.37735 . Therefore

81




_[08849 0.1314ax 0.
[E'”‘[o.u 1 0,

—0.03522A % '
0.03522A ] (6-23-1)

1151
8849 —0.1314Ax

—1] ]
Ein=| AY 028867 Ax  —0.28867
LEV]= —1 —-0.28867 1 —0.28867 (6 —23 - 2)
Ax Ax

[ED] = —1 [w3.4641 —2.7321Ax  3.4641 -—0.732le] (6— 23 — 3)

Ax2 34641  0.7321Ax  —3.4641 2.732[Ax

As shown above, Hermite basis FEM requires no integratio;'n of the basis
functions. The assembling process is the same as the lincar basis FEM éxccpt
for the shape of the element matrices, which is 4 by 2. Because of the two sets
of continuity, resulting assembled global matrix requires two more equations
to solve the system of the algebraic equations.

If we denote the global matrix as [4],

and let [ET] = -Al—t[ET], [EV]1=V [EV], [ED]=D [ED], then

A= ETyp+ BV + ED ) (6—24—1)
Ay o= ET| 5+ o(EV| ,+ ED, ) (6— 24 —2)
Adner2,2ner1 = ETy3+ e(EVy 3+ ED, 5) (6 —24 - 3)
et 2mer2= ETy y+ ((EVy 4+ ED, ) (6—24—4)

where ne is total element number.



6.2.1.4 FEM with Modified Hermitian Basis Function

'fhc Hermitian basis function can be modified by adding the asymmetric
upstream weighting term to the standard Hermitian basis function. Except for
the basis functions, the entire procedure is exactly the same as the case of the
FEM with Hermitian basis function. To evaluate the basis functions and their

first and second derivatives, the following equations are used.

Noy = 0252 = D& +2)+ RE) (6-25-1)
Nop = —0.25(¢ + )¢ — 2) - R¢) (6—25-2)
Nii=(025¢ - DXE +2) + G(f)}%x— (6—26—1)
Nip= (025 + DXE — 1)~ G(:))Azx— (6 — 26— 2)

The asymmetric weighting term F and G are subject to the following con-

straints :

dic) _ dG() _

@ 0 for {=—1 and (6 -27—1)

&) =G =

So, F and G are cvaluated by the fourth order polynomials as follow :
, _
A& =eye® =1 GE)=o &~ 1) (6—27-2)
The first derivatives are :

dNy; 1 5 2
de ,Ar((g—l)(3é+3)+l6a0g(£f - 1)) (6—-28—-1)
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dNo,

2_A (& +13E = 3)— 162022 - 1)) (6—-28-2)

dx
dz\,“. I ¥ . 2
= 7 B+ D+ dagEE - ) (6-29-1)
Wiz _ 1 X3¢ — 1) — 4o 82— | 6—~29-2
™ T(f‘*‘Xs_)—al(-) (6-29-2)

The second derivatives are :

"
dblv()l 1 )
3= ——{(62) + 16ay(3¢2 ~1)) (6 —30—1)
dx Ax
d /V02
———{(6 )+ 16ay(322 — 1)) (6—30—2)
dv?
-
C["/V“ 1
= A - D8 - 1) (5-31-1)
dx*© Ax
d° N
“—“—((3~=+1)—3a1(3§ — 1)) (6—-31-2)
dx

When ¢y = a; = 0, this case is same as the standard Hermite basis FEM. The
degree of upstrcam weighting depends upon the magnitude of the factor o, and

.

6.2.1.5  Finite Difference Method
To compare the solution of FEM, the generalized Crank-Nicholson mcthod

has been used for the FDM scheme, The derivation of the algorithm is not
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explained here, because of jts simplicity. The algorithm for thc boundary
condit.ions is explained below. Generally speaking, if Thomas algorithm can
be used for the solution of thvc systcm of equations, then boundary conditions
arc usually handled by the modification of the coefficient of the tridiagonal
term. Denoting the tridiagonal term as a4, b;, ¢; and the load vector as d;, the

boundary conditions are incorporated as follows -

(a) Ist type boundary
bl=l Cl=0 dI=CL (6—40‘—1)

Gp=0 by,=1 d,=Cp (6 — 40— 2)

(b) 2nd type boundary

This is the case when Z_C =C, or Cp
X

o

Using the concept of imaginary node ( node 0 or nodc np+1),

ox  2AKX, b Tax 28X, | R
C0= CZ_ZA-XIC[) C'IP'FI—'CHP—I-,_ZAHp—-lCR
Therefore,
G=cta, di=d+2AxC (6—41—1)
apr == a"p + Cnp, d”p = dﬂp - 2Ax"p__lcanR (6 - 4[ - 2)



(¢) 3rd type boundary

This is the case when —g£ =k(C,—C))
Gy — Go Cnp+l - Cnp—l
= k C - C s = k C - >
28x, = 2A%,, | HCrp= Cp)

So,
bl=bl—2AxlkLal, c1=cl+al, dl'——dl—*ZAxl(ZlkLCL (6—42— l)

b, = bnp— 2A. np—1KRC, np Anp = Ay, + €,

np np

by =y = 28, 16, kpCp (6 — 42— 2)

where, np = number of total nodal points.

6.2.2  Two Dimensional Upstream Weighted FEM

The formulation of the finite element scheme is explained as follows. Let
the differential operator be L(c)= _6£ + VVC - bvC .
Applying finite clement scheme, fL(C)lV‘(x,y)dR =0

where C = 2. CAON{x,y), W, = weighting function.
=
aC v 2 :
f—at—/\,dR + f(VVC — DVOWaR =0 (6 - 43)

Using integration by parts and summing over the whole discretized domain,

the equation (6-43) becomes:
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nel nn

ZZ[(H W, >—+ v, VNG + DAV, TG

e—lj—
= f WDVC-ndB] (6 - 44)

To handle the irregular geometry, coordinate transformation is performed by
the concept of the lincar mapping. Figure 6 showed the transformation of the
global coordinate to the local one. The lincar basis function is used along the
X and y axis direction. The assembling procedure is the same as the one dj-
mensional FEM except the element matrices. |
To test numerical oscillation in the case of the advective flux dominant

system, the simple solute transport equation is solved in one and two dimen-
sions. The onc dimensional result is same as the result by Pinder and Gray
| (1977). Problem domain and data are shown in Figure 13. The comparison
has been made for several basis functions in one and two dimensions in Figurc

14.



One Dimensicn

C =1 vn =
x =0 X =1
Two Dimension
c=1
Yy =1
Vn = Q
C =1
y =0
Vn = 0
Dispersive Coefficient D = 0.0001725
Velocity V = 0.369
Spatial Step Size dx = 0.02%
Time Step Size dt.= 0.025

Figure 13:

Problem data in solute transport system

dy

Q.025
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One and Two Dimensional Solute Transport
time=125 ep=0.5 w0=0.06 w1=0.02 D=0.0001725 V=0.369

sion

1.2
T
1 “
0.9
0.8
C
2 07
S
< 0.6
9
9 0.5
(o]
© 0.4
2.3
2.2
)
iy , |
) 2.2 - 0.4 0.6 0.8 1
X Direction
O UINEAR (1,2 &im) + QUADRATIC > HERMITE
3 MODIFIED HERMITE , < GCN FOM
Figurc 14: Comparison of several basis functions in one and two dimen-
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6.3 MULTIPHASE FLOW SYSTEM

If capillary pressure is dominant, then the governing equations are :

aSw ahw ~ = =
(SwSy + o h )_? = V(pw_éw(Vhw +iN+g, (6—4d5— 1)
ow :
aS, oh,, . - )
(Sosog + ¢p05/'2_'_)a—t = V(po}{:\o(Vho +J )) + 8o (6 —45- 2)
ow

Using the above system of equations, the multidimensional capability of the
code has been tested by simulating the small one, two and three dimensional
problems. Problem domain and data arc shown in Figure 15. Results of this
multidimensional problem are shown in Figure 16. Figure 17 shows the pa-

rameter dependency in a large two dimensional problem.
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EEICEL FAuN

Problem Domain

One Dimension

y = 4

Boundary Conditions

ih,

,',v=20 =0atx =

-
e}

A, =001, ~—% =0 arx
an

fniual Conditions

hw = 4 - x

i
o4
€

i
o
L

-~o

Physical Parameters

Saturated conductivity of water phase

Two Dimension

y =0

X =0 x = 2

ch,
0 hy=2, —==0Qatyv =
=4 h, =001, i‘_;i=t)azv=4
Jn ’
nw = 4 -y
No = hw -~ 9,3

Three Dimension

Yy =20

Sw

Ratio of viscosity between o0il and water phase Km

Ratio of density between oil and water phase P

It

1]
#
~

1.008 asday
0.5

1.2

Figure 15: Data of multidimensional multiphase flow problem
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One Dimensi

TIME=

tZay
Y/X J3.00
Q.00 Q0.20

Two Dimension

TIMEs

1Zmy
Y/X 0.00
4,00 Q.77
2.00 n.20
0.00 2.20

Three Dimens:

1
X
m

[ ]

1Z=1
Y/X 2.00
4.00 .17
2.00 J.20
0.00 2.20
1 Za2
/X J.00
4.00 2.77
2.00 J.20
0.00 J.20
Figure 16:

on

g.0100

3.0100

2.00
0.77
Q.20
Q.20

on

CQoomn ocouun

TIME=
1Z=1
Y/X 0.00
g.00 0.20
TiME=
1Zwy
Y/X 0.00
4.00 0.77
2.00 0.213
0.00 0.20
TIMEs
IZm
Y/X 9.00
4.00 Q.77
2.00 0.27
0.00 Q.20
1222
Y/X 2.00
4.00 Q.77
2.00 3.27
a.00 0.20

0.0541 TIMEw
122
2,00 L.0Q Y/X .00
0.21 Q.77 Q.00 0.20
0.0%20 TIME= o
1Z=1
2,00 Y/X g.00 2.
0.77 4.00 0.77 Q.
0.23 2.00 0.33 a.
0.20 0.00 0.20 Q.
3.0559 TIMEn
1 2=t
2.00 /X 2.00
Q.77 4.00 2.77
2.27 2.00 J.u0
¢.20 J.00 2.20
1222
2.00 rIX 7.00
2.77 4.00 2.77
J.a7 2.0 J.40
3.20 0.00 .20

0.1078

3.106%

.00
.17
.40
.20

.00

. Lo
.20

Soourn O,

Result of multidimensional multiphase tlow problem




Source of Contamination

tine = 2,97 days

Saturation Migration of TCE when Kyev = ieKew, Kamy o 0.014Kew
vith lst type 8.c.

Source of Contamination

— . —
A‘- 1.03 day

Slne = 2 (04 days

Saturation Migration or TCX vhen Xyew = Kew = Kxaw
vith lat type 8.¢,

! Figure 17: Parameter dependency of multiphase flow
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6.4 COMPOS[TE MULTIPHASE CONTAMINANT MIGRATION

Contammam migration is rclatn ely slower than the case of oj] recovery.

Thus, the second approach(capillary dominant) is used.

6.4.1  Composite Multiphase Flow

Primal variables are pressure head and saturation, as prescented in the fol-

lowing equations :

. aS ch, i Py—
Zl{g(p,gwésﬁsﬁl) + p ] WiVl + 557
o= =

; ; éw,i ,
= D AV, DIV(p ) + g PSupi—3 = (= Bl (6 46)
=1

Problem domain and data are shown in Figure 18. The result of saturation

migration is shown in Figure 19.
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hw =« @ - y

Source of Contaaination Ground Burtace

I —— T .
] ] ] l
. I l, nw = Hw - y}
! T - ho = hw + 1
i Ce
; ; \:’i"%hb .
. NPI.
1w s
hw &« Hw - y
b 3
¥ ¢
ho = hw = 1} ~
L}
L i
Tinite Rlemamt Nesh and Boundary ang Inltial Conditions
Physical Parameters
saturated conductivity of water phase = 0.504 m/day
Ratio of viscosity between oil and water phase: = 0.5
Ratio of density between oil and water phase = 1.2
Solubility of TCE into water phase = 1100 ppm
Residual Saturation = 0,2
capillary perssure and saturation relation
n = 1.98 1” = 5.2 zza = 11.0 1.y = 9.9
Dispersive Coefficent
Dw = 0.5574 Do = 0.2784 Da = 1.0034
Numerical data
Error criteria = 0.1nm
Time increasing factor = 0.1
Weighting factor of FDM = 0.68
Figurec 18: Data of composite multiphase contaminant migration prob-
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Source of Contamination

in
\\13{1

Cr,

Loy,
Do,
\'!‘.p »
Ty,

Saturstion of TCE phase at tike = 19.02 days
with 2nd type B.C. and Kxaw=Kyswsiaw

Source of Contamination

15,01 days

time= 19.02 days

Figure 19:

Migration of TCE Saturation S0 = 0.2
with 2nd type B.C. and KxSw=KyswKsw

Profile of saturation migration of TCE
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6.4.2 Corrtpo&ite Multiphase Contaminant Transport

'Thc cquations for saturation and pressure head terms are the same as in
scction 6.4.1. An additional primary variable is the mass fraction of species o
in the water phase. Arranging the governing equation with partitioning con-
cept with respect to this primal variable, the contaminant transport equation

is derived as follows:

0
Bl‘—(wl?/((pswpw + d’SopoH(())w + ¢Sapang +(1 - ¢)pngv))

== V(Wl(\)/(quwVw + ¢Sopngon + ¢SapangVa))
+ V(6S,p,DoVwy) + V($Su0, DV (Hg wo))

+V(BSpDIV(Hwo) + g0+ g2+ 2 (6 47)

< d
where, HS,, Hg,, He, = partitioning coefficients.
The transport of mass fraction is shown in Figure 20 for two cases; (1) first

type boundary condition and- large vertical fluid conductivity case; (2) second

type boundary condition and isotropic fluid conductivity case.
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T b S

Sourcas Of Contamination
| S

500 ppm

time = 10.06 days

11100 ppm

500 ppm
time = 25.00 days

Concentration of Dissolved TCR in Water
with 1lst type B.C. and Kyaw = 2¢Ksw, Kxsw = 0.0l¢Kaw

Source of Contamination

<00 ppl~ \

time =
10.00 days \

Figure 20:

Concentration of Dissoived TCE in Water
with 2nd type B.C. and Kysw = Kaw = Kxsw

Mass fraction profile of TCE species in water phase
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Chapter VII
CONCLUSIONS AND FUTURE RESEARCH

In this study, traditional groundwater flow and contaminant transport
cquations have been rearranged to explain many different problems by the
general comprehensive governing equation.

The governing equations have been developed from averaged parameters
which are not derived from a microscopic physical relation, and in this study
the groundwater system is very dependent on these average parameters.
Therefore, sensitivity analysis, 'sirﬁpliﬁcation and cstimation of these parame-
ters are important. The parameters, constitutive equations and partition con-
cepts of previous rcscafch have been addressed as broadly as possible, and
some of the evaluation techniques have been improved.

A multidimensional computer code was developed using the upstream
weighted quadrilateral element. The nurherical difficulties such as instability
and nonlincarity which results in extreme computation time have been over-
come by using upstrcam weighting, mass lumping, modified Picard iteration,
variable time steps, decoupling and cfficient coding using vector and parallel
processing.

Hypothetical contaminant migration was simulated in a saturated and un-

saturated system. The plots of these simulations arc shown in previous section.
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The specifics of each output of this dissertation are summarized in the follow-

ing scction.

7.1  UNSATURATED GROUNDWATER FLOW SYSTEM

To verify the procedur¢ and approach presented here, Huyakorn'’s (1986)
results were simulated, as shown in Figure 10. The results of the simulation
match Huyakorn’s (1986) results very well. The main difficulty of this simu-
lation was the location of the unknown scepage height, which was determined
using a moving first-type boundary conditjon. Cooley’s scheme (1983) was
used to find the location. 175 iterations were required to satisfy the error cri-

teria of 0.01 m.

7.2 MASS TRANSFER SYSTEM

The model was used t6 simulate a sharp advancing concentration front in
one and two dimensions. As shown in Figure 14, the upstream weighting
technique reduced the numerical oscillation of the sharp advancing front, but
introduced the numerical dissipation. The solute transport model works well
and is the basis of the more advanced system sucﬁ as composite multiphase
mass transfer. When the composite contaminant migration was simulated, the
time and spatial step size were first determined by the stability criteria of this

system.

100



7.3 MULTIPHASE FLOW SYSTEM

'Symmctrical problems were simulated in one, two and three dimensions.
The results were all identical. This provides verification of the multidimen-
sional aspects of the code. The verification of two dimensional multiphase
contaminant transport was im'plcmcvntcd in ficld scale. To observe the pa-v
rameter dependency of the model, the fluid conductivity was changed for se-
veral cases. The increased fluid conductivity enhanced the mobility of the
phases in roughly one-to-one rate. The derivative of this fluid conductivity acts
like an advective flux and numerical oscillation becbfnes a problem when the
derivative term is large, which causes convergence problems in the nonlinear
iteration.

The relative permeability depends on the saturation; therefore, if the
changing ratio of saturation is large, the relative permeability also causes a
convergence problem. Thercfore, to insure rapid convergence, the residual sa-
turation must be restricted. A value of 0.2 was used in this simulation.

The constant head pressure boundary acts as a forcing pressure from the
boundary. As shown in Figure 17, the river boundary of the water phase
slowed the downward migration of the oil phase, and the resulting saturation
profile of the oil phase is different from the conceptual model. If the second
type boundary condition is used in contaminant migration, the result is iden-
tical to conceptual model. Figurc 19 shows the above aspect.

The assembled global matrix of three dimensional FEM is at least two or-

g st

ders of magnitude larger than two dimensional casc; so cfficient matrix storage

scheme and matrix solver are imperative. Either asymmetric band matrix sol-
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Ver or the methodology suggested by Pelka and Peters (1986) for vector proc-
cssing can be used for this huge matrix. The simulation domain can be

reduced by a front tracking method.

74 COMPOSITE MULTIPHASE CONTAMINANT MIGRATION

As shown in Figure 20, the dissolved mass fraction of TCE species is large,
which confirms cmpirical field obscrvations that Suggest transport. of such
compounds must be solved using a composite multiphase approach. Both the
dissolved and immiscible TCE pose environmental problems. The movement
of mass fraction depends on the magnitude of the dispersive cocfficients. Be-
Causc the water phase velocity is small compared to the velocity of the oil

phase, the advective flux of mass fraction docs not cause stability problem.

75 PARAMETER SENSITIVITY IN SIMULATION

ficult to postulatc the appropriate value and range of‘ paramcters. The pitfalls

associated with certain parameters are discussed in this section.



7.5.1  Fluid Conductivity
Large values of fluid conductivity and relative permeability cause greater
numerical error, which results in more iterations, smaller time steps and spatial

increments and more computation time.

7.5.2  Saturation

The system of equations becomes singular at the region before tﬁc interface.
To overcome this problem, hypothétical non-zero values of the saturation de-
rivative and relative pcrrﬁcability arc requircd. In this rescarch, saturation

derivative ranging from 10~4 to 10~5 was required.

7.5.3  Density
As in the conceptual model, heavy oil migrates downward. And if density

is lighter than water phase, the oil phase is floating over the water phase.

7.5.;‘! Initial Conditions

‘The system is especially sensitive to the initial conditions of pressure head,
saturation and mass fraction. The rate of convergence is highly dependent
upon the proper set of initial conditions. Because of the dependency of the
saturation to capillary pressure head, the constitutive equation between satu-

ration and capillary head also effects the rate of convergence.
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7.5.5 Boundary Conditions .

' Contrary to many existing hypothetical simulation results, first type boun-
dary conditions cannot be used to obtain results similar to conceptual model.
For the field problems, it is appropriate to use the second type boundary con-
ditions if there is no first type boundary such as river near the source of con-

taminant.

7.6 OPTIMIZATION OF CODE WITH VECTOR AND PARALLEL
PROCESSING

Even though it was difficult to throughly optimize the code for vector pro-
cessing because of the severe nonlincarity of the given problem and of the re-
cursive relations between processes, the vectorization gave excellent results.
The computation time after vectorization was only one third of the time re-
quired for scalar processing. The following programming technique were used
to facilitate vectorization.

1. The dimension of all arrays was defined in descending order. ( A( np,

ne, na ), where np > ne > na)

2. About 80% of the computation time was spent in the evaluation of the
clement matrices. Therefore, the clement matricqs were cvaluated over
the whole domain, not over th.c cach clement, and asscmbl-cd later. This
facilitates vectorization, but increases the storage requirements.

3. In the case of multiple do-loobs, the inner-most do-loop was for the

largest array.
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4. The recursive variables were evaluated outside of the do-loops by using

redundant variables.

7.7 FUTURE RESEARCH
This model is built upon the most current understanding of the multiphase,
multicomponent transport proc‘css and uses the best available techniques.
Nevertheless it should be considered as a development model which is useful
to gain practical insight of ground contamination process, as opposed to a
modecl for producing exact answers to spccific problems.
Fu.rthcr rescarch is necessary to better define t‘hc mechanisms and parame-
ters for the following specific functions of the model:
. Constitutive cquations | | |
a. Fluid conductivity
b. Relation between saturation and capillary pressure
c. Dispersion cocfficient
d. Chemical and biological cqhations
2. Numcrical mcthod
a. Front tracking procedurc and moving boundary
b. Adoptive mesh generation
¢. Boundary clement algorithm
Verification of the model with ficld data using a system idcntiﬁcatibn tech-

nique is also required.
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Appendix A

ALL SYMBOLS AND DEFINITIONS

C = concentration of a one species reaction

. : S : M . _om
C* = concentration of i species over fluid phases = U“ = S§,C. = d:‘
. : L M} -
C! = concentration of 1 species in « phase = U“ = P Wi
3
/
C, = Courant Number = VAt
Ax

D} = dispersive coefficient tensor of i species in « phase
D¢ ; = dispersive cocfficient tensor in direction i, j

longitudinal dispersion coefficient of i specics in « phase = oV,

-~
g
S

Il

., = transverse dispersion coefficient of i species in « phase = a},V,
' f, = changing factor for time step size

fo = fractional flow function in Buckley-Leverett problem

f,. = fraction of organic carbon |

g = gravity vector

g, = water pumping(-sign) or recharging( +sign) rate
gt = unit production rate of i spccics in « phase = —l-j‘;—
G. = production rate of i species in « phase

Iy = Known pressure head at bdundary

h, = pressure head of « phasc in equivalent water height
Py

PuE

hp, = capillary pressure head between f and « phase =

Pq
Pw

H, = total pressure head of « phase = £, +

a

y
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g
o
%

H,. = partition cocfficient of sorption based on organic carbon
H,, = octanol water partition coefficient
. _ . D W
ap = partition coefficient of j species between o and ff phase = —
‘Vﬁ

id = index for direction ( 1=x, 2 =y, 3=2)

f = unit vector in y dircction‘

[/], = Jacobian matrix at ig Gaussian point

k, = proportional cocfficient in third-type boundary conditions

k,, = coefficient of maximum rate of utilization in Monod equation
K, = half velocity coefficient in Monod equation

kg = reaction rate constant of i species in o phase

k = intrinsic permeability tensor

k. = reclative permcability of « phasc

PuE
Ha

K, = fluid conductivity of « phasc = £km
M, = mass of a phase

m} = mass of i species in o phase over unit volume
M = mass of i specics in o phasc

n = time step size

nel = total number of elements

nd = dimension of the problem

nn = total number of nodes in cach clement

na = total number of phascs excluding soil phase
n = unit normal vector

N; = basis function at node j

/

Ny ;e = local basis function in ¢ direction at node and ig Gaussian point
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N, 1 = local basis function in n direction at i node and ig Gaussian point

N ;e = local basis function in { direction at i node and ig Gaussian point

T

Nije = basis function at i node and ig Gaussian point = N, , ¥

n.dig

Neiig

» big
Py = pressure of « phase

P, = vapor pressure of trichloroethylene in air phase
VAx

P, = Peclet Number =

—_

- g = constant total flow in Buckley-Leverett problem

S, = substrate concentration in Monod equation

s turation of  oh U, U, 6,
= saturation of « phase = —% = _Z«_ _ Y«
: . UV ¢¥ _ S¢
Ss = cffective saturation of & phase = 2™
Sm - Sra

Sw = residual saturation of « phase

Sw = saturated saturation of g phase

Sup = speciﬁ—c storativity of porous matrix and phasc by f pressure head
S, = solubility of i Species in water phase

U = schematic clementary volume

U, = volume of a phasec

U, = void volume

Ve = velocity of « phase

Vi = microscopic velocity of i species in « phase
Ve = local velocity in ¢ direction at node 1

¥V, = local velocity in i direction at node 1

Vi = local velocity in { direction at node 1

- i A
e = mass fraction of i species in phase = =

IV, = weighting function at node j
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X' = concentration of active bacteria in Monod equation

14



GREEK LETTERS

« = index for phascs (water, oil, air, solid) pressure head

ow = CONStant in saturation equation between ojl and water capillary head
“ao = constant in saturation equation between air and oil capillary head
«f, = longitudinal dispersivity of i species in a phase

af, = transverse dispersivity of i species in o phase

«; = weighting factor in & direction

% = weighting factor in modified Hermitian Basis Function for node 1
@; = weighting factor in modified Hermitian Basis Function for node 2
&g = compressibility of « phase by B pressure head

f; = weighting factor in n dircction

¥: = weighting factor in ¢ direction

¢ = weighting factor for time domain in generalized FDM

&, = absolute convergence error

¢, = rclative convergence error

Q[S

6, = volumetric fraction of g phasc =

Ko = dynamic viscosity of « phase

Itm = ratio between viscosity of « phasc and water phase =

Py = density of a phase
Pq

w

Pr = density ratio between « and water phasc =

14

¢ = porosity of porous media = N7

bp = compressibility of porous matrix by i pressure head



Appendix B
MACROSCOPIC VOLUME AVERAGING TECHNIQUE

Considering the conservation rule of some unit property in the « phase

E . . .
e, = 7“ » the microscopic balance equation becomes as follows ¢

de -
== — V(e V%) + G% (B—1)
dt
de. — — -
== V(e,V,+ e, V5—e V )+ G% (B-2)

We can change the above microscopic equation into the MAacroscopic one over
the entire phase domain by applying the volume averaging technique, so the

above equation becomes ;

W) _ gy @GV, + eV, + 71— L [e (V, — i,y 7d
or TG Uy )G e Y

+0,G% (B—3)
()

Where bar indicates the averaged valuc.
(1) = advective flux
(2) = mecchanical dispersive flux = — D/Ve,
(3) = molecular diffusion = - D,Ve,

(4) = transfer between phases = f

(5) = production ratc
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(2) + (3) = dispersive flux = — DiVe,
To derive the governing equation of composite multiphase flow,

I. Replace the property e, by the density of specics i in phase « P

_ . Mass,  pi , ,

2. Use the concept of mass fraction, wh = =—,50 pl =p.w;
K Mass,  Pa

3. Usc Darcy’s law, V, = pmé'-é-z—(VPa —0ug);

4. Assemble all phases for species i.
a6 p.wi) ko . .
DG~ Vo e VP, = p ) = V(6,0,Di0]

a(espswj) _ i )
F—=E =36 (B9
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LIST OF PROGRAM
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//igpckim job
// exec fortelt,level =n,rc = 5m.rg =9m,option = ‘vector(report)’,
// parm.go="debug,noxutlow’

*// exec fortvelg,parm.go = ‘noxuflow’,rg =9m

CMGM

Composite Multiphase Groundwater Model

Oct. 1989

Kim, Joon Hyun

Department of Civil Engincering

University of California, Los Angeles

purpose

traditional groundwater flow
multiphasc flow problem
composite multiphase flow
contaminant migration
irregular gcometry ‘
complex boundary condition
constitutive cquations
biological and chemical reactions
paramcter identification
paramcter simplification

pre and post processor
vector processing

OOOOCOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOG

method

o060 o000

multidimensional bilinear finite element method in space

119



OOOOOOGOOOOOOOOOOOGCO

COOCOOOOOOOOOOOOOOOOOOO

(¢ BN o TN o]

o

5.

generalized finite difference method in time
modified picard itcration for nonlinearity
clement wise evaulation of parameters
decoupling of system of equations

Structure

. Main : main program
. input : input data (input,binput)

. paramcter

a. partit : partition cocfficients

b. disper : dispersive coefficients

g}

- densit @ density of cach phase
d. porsit : porosity of spatial domain

. dsat :saturation and rclative pcrmeability

[#]

f. veloc : velocity of cach phase

. cocff : cocfficient of mass transport cq’'n

aa

h. sourit : point source or sink

. fem : finite clement scheme (femh,femc)

a. asem : assembling clement matrices (asemh,aseme)
b. clemen : evaluation of element matrices

c. basis : basis functions (basisl,basis2,basis3)

d. weigh : weighting functions (weighl,weigh? weigh3)

e. boun : boundary conditions
(boundl,bouncl,boun12,[)0111122,1)0un32)

f. solve : asymmetric band matrix solver

output : print out result (outp,output)
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OPOOOOOOOOOOOOOOOOOOOO

[nput and Output Files

1. CMGM.DAT : input data file
. CMGM.OUT : output file for head and saturation

|48

3. CMGM.DEB : debug file

4. CMGM.PL1 : plot file for water saturation
5. CMGM.PL2 : plot file for oil saturation

6. CMGM.PL3 : plot file for mass fraction -

7. CMGM.PL4 : plot file for concentration

.. this is the main program ...

implicit rcal*8 (a-h,0-z)
parameter (ndm=2,nsm =2,nam = 3,nnm =4 npm=1 12)

dimension h(npm,nam),oldh(npm,nam),ijk(npm,nnm)
dimension
&agh(npm,45,nsm,nam),fh(npm,nsm,nam),
&age(npm,d5),fe(npm)

dimension X(npm),y(npm),z(npm)

dimension

,&bn(nnm,nnm),bnd(ndm,nnm,nnm),bndr(ndm,nnm,nnm),

&bnr(ndm,nnm,nnm),

&dnr(npm,ndm,nnm,nnm),wdn(ndm,nnm,nnm),dwdn(ndm,nnm.,nnm)

&dji(npm,nam,nam,nnm),dct(npm,nnm)
dimension gp(ndm,nnm),cn(ndm,nnm)

dimension
&sat(’npm,nam),oldsat(npm,nam),dsh(npm,nam,nam),



&rk(npm,nam,ndm,ndm)

.dimension rn(npm) .

dimension wm(npm,nsm,4),oldwm(npm,nsm_.4),c(npm),oldc(npm)
dimension rho(npm.4),rhor(nam) :

dimension source(npm,nsm,nam)

common /iset/ nclmax,npmax,ijk,ihalf'b,iband,imax,
ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp

common /sctl/ tmax,timc,dt,cp,axi,acta,rgr,ptimc,dptimc,

S pltime,dpltim,ere,wold, wnew ,

common /space/ X,y,z

common /bas/ bn,bnd,bndr,bnr,dnr,dji,dct,wdn,dwdn

common /points/ gp,cn

common /dens/ rho,rhor
common /part/ wm,oldwm
common /part2/ c,oldc
common /poro/ rn
common /sour/ sourcc

call input(oldh,btime)
call porsit
call densit
call disper
call sourit

(@]

... initialize pressure head ...

do 10 ia=1,namp
do 10 ip=1,npmax
h(ip,ia) =oldh(ip,ia)
10 continue

C :
do 15 ip=I,npmax
oldc(ip) =0.d0
c(ip) =0.d0
15  continue
C

- do 17 is=1,nsmp
do 17 ia=1,namp
do 17 ip=1,npmax
oldwm(ip,is,ia) =0.d0
wm(ip,is,ia) =0.d0
17 . continue
C



C... evaluate the basis function before time advanced ...

if(ndmp.eq.1) call basis]
i{ndmp.cq.2) call basis?
if{(ndmp.cq.3) call basis3

(@]

time =time + dt

OO~

... debug ..

(@]

if(time.le.dt) then
write(3,*)
write(3,*) ‘basis function’
write(3,1000) ((bn(in,jn),jn = l,nnmp),in = l,nnmp)
1000 format(4(/del 5.3))
write(3,*)
write(3,*) “derivative of basis function’
do20ie=1,2
do 20 id = I;ndmp
write(3,*) ‘ie,id = ic,id
write(3,1000) ((dnr(ic,id,in,jn),jn =l,nnmp),in = I,nnmp)
20 continuce

endif
c
if(time.gt.tmax) goto 2
C ’
C... change of boundary conditions ...
c
if(time.ge.btime) call binput(btime)
C
C... finite element scheme ..
[o4
c
call f‘cmh(h,oldh,sat,oldsat)
Cc
call fcmc(h,o]dh,'sat,oldsat)
c

o

.. print out head and saturation at cach printing step ...
it‘(timc.gc.ptimc) then
ptime = ptime + dptime
call output(h,sat)
endif
C... reset primal variables ...

dod0ia= l,namp



ik M IR

do 40 ip=1,npmax
‘'oldh(ip,ia) = h(ip,ia)
continue '

do 45 ip=1,npmax
olde(ip) =c(ip)
continue

do 50 is=I,nsmp

do 50 ia=[,namp

do 50 ip=1,npmax
oldwm(ip,is,ia) = wm(ip,is,ia)

continue

goto 1

stop
end

124



[N ¢ QOO0

S OO0

subroutine input(hi,btime)

. this subroutine inputs and prints out data...

implicit real*$ (a-h,0-2)
parameter (ndm =2 nsm = 2,nam=3,nnm= 4,npm=112)

dimension hi(npm,nam),x(npm),y(npm),z(npm),gc(3),ijk(npm,nnm)

dimension

&nbel (nam),nbc2(nam),nbc3(nam),nocbl (npm,nam),nocb3(npm,nam),
&nocb2(npm,nam,nnm),hbc 1 (npm,nam),hbc3(npm,num), ‘
&hbcz(npm,nam,nnm),xkbc3(npm,nam)

dimension gp(ndm,nnm),cn(ndm,nnm)
dimension px(41,41 ).py(41,41)
dimcension rn(npm),rn| (npm,nam)

character*80 gtitle,potitl,
&title,ctitl] etitll htitl,ttitle,btitle,b] titl,b2titl,b3titl

common /iset/ nclmax,npmax,ijk,ihalfb,iband,imax,
ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp

common /sctl/ tmax,time,dt,ep,axi,aeta,rgr,ptime,dptime,

S pltimc,dpltim,crc,\vold,wncw

common /space/ X,y,z

common /points/ gp,cn

common /axis/ px,py

common /ib/ indb1,indb2,indb3
common /ibl/ nbel,nocbl
common /bl/ penalt,hbel
common /ib2/ nbe2,noch?
common /b2/ hbe2

common /ib3/ nbe3,nocb3
common /b3/ hbe3,xkbe3

common /poro/ rn



c
c

O

©

wold =0.5d0
wnew =0.5d0
axi=0.6
acta=0.6

read(1,1000) title
write(2,1100) title

write(3,1100) title

write(7,1100) title

read(1,*) ndmp,nsmp,namp,nnmp,nclmax,npmax
write(2,1200) ndmp,nsmp,namp,nnmp,nelmax,npmax
write(3,1200) ndmp,nsmp,namp,nnmp,nclmax,npmax
write(7,1200) ndmp,nsmp,namp,nnmp,nclmax,npmax

read(1,1000) ttitle

rcad(1,*) fmax,timc,dt,ep,ptime,dptimc,pltime,dpltim,
‘ ipX,ipy,npx,npy,npz,rgr

write(3,1900) tmax,timc,dt,cp,ptimc,dptimc,pltimc,dpltim,
S axi,acta,ipx,ipy,npx,npy,npz

31 npp=npmax-1
" Nnpp=npmax-|

--- coordinates of gaussian and corner points ...

read(1,1000) gtitle

write(3,1100) gtitle

read(l1,*) ((gp(id,in),in = l,nnmp),id = l,ndmp)
write(3,2100) ((gp(id,in),in = l,nnmp),id = l,ndmp)
read(1,*) ((cn(id,in),in = I,nnmp),id = I,ndmp)
write(3,2100) ((en(id,in),in = l,nnmp),id = l,ndmp)

-~ global coordinates of the nodes ...

npz=|
ip=0
read(1,1000) ctitl|
write(3,1100) ctitll
read(1,*) index,fx,fy,fz
write(3,*) index,Ix,fy,fz
if(index.gt.0) then
do 20 iz=1,npz
do 20 ix=1,npx
do 20 iy = L,npy
ip=ip+1
X(ip) = fx*(ix-1)



¥(ip) =fy*(iy-1)
20 z(ip) =fz*(iz-1)
clse 4
do 25 ip=1,npmax
read(1,*) ith,(gc(i),i= I,ndmp)
X(ip) =gc(1)*fx
y(ip) =gc(2)*fy
25 z(ip) =gc(3)*fz
endif
write(3,1300) (ip,x(ip),y(ip)?z(ip),ip = 1,npmax)
c
C... sct coordintes of the axis for print out ...
c
k=0
do 30 i=1,npx
do 30 j=1I,npy
k=k+1
Px(i,j) =x(k)
30 py(i,j) = y(k)
c
C... clement connectivity of cach element ..,

read(1,1000) ctitll

write(3,1100) etitl]

read(1,*) (j,(ijk(ie,i),i = l,nnmp),ie = l,nelmax)
write(3,1400) (ip,(ijk(ic,i),i = l,anmp),ic = 1,nelmax)

... find the half band width of the global matrix
from the element conncctivities ..,

o oo

thalfb=0
do 40 nel =1 ,nelmax
do 50 i=1,nnmp
ijki =ijk(nel,i)
do 50 j=1,nnmp
ijkj =ijk(ncl,j)
ijKij = ijkj-ijki
if(ijkij.gt.ihalfb) ihalfb = jjkij
50 continue
40 continue
iband =ihalfb*2 + |
write(3,*)
write(3,*) ‘thalfb,iband = “,thalfb,iband
c
C... pressure head of each phase ...

(@]

heafac=0.d0



read(1,1000) htitl
. Write(3,1100) htitl
read(1,*) indexc,fpw,fpo
if(indexc.gt.0) then
do 60 ip = I,npmax
hi(ip,1) =fpw
60 hi(ip,2) =fpo
else
read(1,*) (ii,hi(ip,l),hi(ip,2),ip = |,npmax)
do 70 ip = l,npmax
hi(ip,1) = fpw*hi(ip,1)
c write(6,*) hi(ip,1)
70 - hi(ip,2) =fpo*(hi(ip,2) + heafac)
endif

write(3,*) ‘initial water pressure head’
call outp(hi,1,3)

write(3,*) “initial oil pressure head’
call outp(hi,2,3)

c
C... porosity of geologic domain ...
C
read(1,1000) potitl
C  write(3,1100) potitl
read(l,*) indexn,facn
if(indexn.gt.0) then
do 72 ip=1,npmax
rn(ip) =facn
72 continue
else
read(1,*) (ii,rn(ip),ip = l,npmax)
do 74 ip=1,npmax
rn(ip) =facn*rn(ip)
74 continue
endif
c

write(3,*) ‘porosity of domain’
do 76 ip=1,npmax
rnl(ip,1)=rn(ip)
76  continue
call outp(rni,1,3)
C .
C... boundary conditions ...
c .
read(1,1000) btitle
write(3,1100) btitle
read(1,*) indbl,indb2,indb3,btime

128



write(3.2000) indbl,inde,indblbtimc

@]

- Ist type boundary conditions ...

Qo

if{indbl.cq.1) then

do 30 iwo=12

read(1,1000) bltit]

write(3,1100) bltit] ‘

read(l,*) nbel(iwo),penalt

write(3,*) ’nbcl,pcnalt=’,nbcl(i\\'o),pcnalt

nb =nbel(iwo) _

rcad(1,*) (nocbl(ip,iwo),hbcl(ip,iwo),ip =1,nb)

write(3,1630) (nocb| (ip,iwo),hbel (ip,iwo),ip =1 ,nb)
80 continue

endif
c
C... 2nd type boundary conditions ...
C

if{indb2.cq.1) then
do 90 iwo = 1,2
read(1,1000) b2tit]
write(3,1100) b2titl
read(l,*) nbe2(iwo)
nb = nbe2(iwo)
write(3,*) ‘nbe2 = ,nb
read(l,*) ((nocb2(ip,iwo,ib),
S hbe2(ip,iwo,ib),ib = I,nnmp/2),ip = 1,nb)
write(3,1800) ((nocbz(ip,iwo,ib),
.S hch(ip,iwo,ib),ib =l,nnmp/2),ip = I,nb)
90  continuc

endif
c
C... 3rd type boundary conditions ...
c

if(indb3.cq.1) then
do 100 k=12
read(1,1000) b3tit]
write(3,1100) b3tit]
read(1,*) nbe3(k)
nb =nbe3(k)
write(3,*) ‘nbe3 = nb
read(1,*) (nocb3(ip,k),.\'kbc3(ip,k),hbc3(ip,k),ip =1,nb)
write(3,1600) (nocb3(ip,iw0),xkb03(ip,iwo),hbc3(ip,iwo),ip =1,nb)
100 continue ‘
endif
c
1000 format(a80)
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1100 format(/a80;)
1200 format(/t2,'ndmp = ",i2,t10,'nsmp = Li2,t18, namp =",i2,
& t26,'nnmp =",i2,t34,'nelmax = 15,630, npmax =",i5)
1300 format(i5,315.5) ' :
1400 format(5i5)
1600 format(/3(i5,2f7.4,3x))
1650 format(/5(i5,7.4,2x))
1800 format(/6(i5,f7.4))
1900 format(/t2,'tmax = ,£10.4,120,'time = f| 0.4,t40,’dt =" f10.4,
+ /t2,’ep =",10.4,t20, ptime = 10.4,t40,"dptime =,£10.4
+ /t2,’pltime =,£10.4,t20,"dpltim = f10.4
+ /t2,’axi=",f10.4,t20,’acta = f10.4
+ /t2,'ipx =",i5,t15,"ipy = ",15,t30,'npx = ",15,t40,'npy =",i3,
& t50,'npz=",i5)
2000 format(/t2,'indbl =" i5,t1 5,/indb2="i5,t30,’indb3 = i3,
& t45,’btime = f10.4)) :
2100 format(/t2,4f10.6)
c
C

rcturn
end
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subroutine binput(btime)

- this subroutine input changed boundary conditions ...

implicit real*s (a-h,0-2)
paramcter (ndm =2 nsm = 2,nam =3 nnm =4,npm=112)

dimension

&nbel (nam),nbcz(nam),nbc3(nam),noeb 1 (npm,nam),nocb3(npm,nam),
&nocbl(npm,nam,nnm),hbc l (npm,nam),hbc3(npm,nam),
&hbe2(npm,nam,nnm),xkbc3(npm,nam)

character*80 btitle,bltitl,b2tit] b3tit]

common /sctl/ tmax,timc,dt,ep,zlxi,acta,rgr,ptimc,dptimc,
S - pltimc,dpl[im,crc,wold,wncw

common /ib/ indbl,indb2,indb3
common /ibl/ nbel nocbl
common /bl/ penalt,hbel
common /ib2/ nbe2 noeb2
common /b2/ hbe2

common /ib3/ nbe3,noeb3
common /b3/ hbe3,xkbe3

read(1,100) btitle

read(l,*) indbl,indb2,indb3,btime,dt
write(3,150) btitle

write(3,1000) indbl ,indb2,indb3

if(indbl.ne.1) goto 250

do 240 iwo=1,2

read(1,100) bltitl

rcad(l,*) nbel(iwo),penalt

nb =nbel(iwo)

read(1,*) (nocbl(ip,iwo),hbcl(ip,iwo),ip =1,nb)
write(3,100) bltitl

write(3,*) ‘nbel,penalt = ,nbel(iwo),penalt
write(3,650) (nocbl(ip,iwo),hbcl(ip,i\vo),ip =1,nb)

240  continue

250 if(indb2.nc.1) goto 270

do 260 iwo=1,2
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read(1,100) b2tit}
read(1,*) nbe2(iwo)
nb = nbe2(iwo)
read(l,*) ((noeb2(ip,iwo,ib),ib = | ,nnm/2),
& (h be2(ip,iwo,ib),ib = | M, 2),ip = ,nb)
write(3,100) b2titl
write(3,*) ‘nbe2 =" nb
write(3,800) ((noeb2(ip,iwo,ib),ib =] ,nnm/2),
& (hbe2(ip,iwo,ib),ib = L,nnm/2),ip=1,nb)
260 continue
c
270 if(indb3.ne.1) goto 290
do 280 k=1,2
read(1,100) b3titl
read(l,*) nbe3(k)
nb =nbe3(k) ’
rcad(l,*) (nocb3(ip,k),xkbe3(ip,k),hbc3(ip,k),ip =1,nb)
write(3,100) b3tit]
write(3,*) ‘nbe3 =" nb
write(3,600) (nocb3(ip,iwo),xkbc3(ip,iwo),hbc3(ip,iwo),ip =1,nb)
280  continue ‘
C
100 format(a80)
150 format(/a80;)
600 f()rmat(/’S(i5,2010.3))
650 f()rmat(/S(iS,clS.S))
800 format(/4(2i5,2e10.3))
1000 format(/t10,'indb] = $15,t30,'indb2 =",i5,t50, indb3 = "15/)
c
290 recturn
end
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subroutine partit(sat)

. this subroutine computes the instant equilibrium relations between

every spicies of the four phases ...

implicit real*§ (a-h,0-2)
parameter (ndm =2 nsm=2,nam = 3nnm=4npm=| [2)

dimension wm(npm,nsm,4),01(1\\'m(npm,nsm,4),ijk(npm,nn m),rhor(nam)
dimension sat(npm,nam),c(npm),oldc(npm),rn(npm),rho(npm,cl)

common /isct/ nclmax,npmax,ijk,ihalﬂ),iband,imax,
ipx,ipy,np.\',npy,ndmp,nsmp,namp,nnmp

common /sctl/ tmax,timc,dt,cp,axi,acta,rgr,ptimc,dptimc,

S = pltimc,dpltim,erc,wold,wncw

common /part/ wm,oldwm

common /part2/ c,oldc

common /poro/ ran

common /dens/ rho,rhor

Sro =O.3O
hwoo=1.1012¢-3

naml =namp + 1

do 10 ip=1,npmax
wm(ip,1,1)=1.d0
wm(ip,2,2) =1.d0
oldwm(ip,1,1) =1.d0
oldwm(ip,2,2) =1.d0
if(sat(ip,2).gt.sro) then
wm(ip,2,1) =wm(ip,2,2)*hwoo
wm(ip,1,1) = 1.d0-wm(ip,2,1)
oldwm(ip,2,1) =wm(ip,2,1)
oldwm(ip,1,1) =wm(ip,l,1)
c(ip) =wm(ip,2,1)
c(ip) =wm(ip,2,l)"‘rn(ip)*rho(ip,l)*sat(ip,l)
cndif :

wm(ip,2,3) =wm(ip,2, 1 )*hgwo

wm(ip,2,3)=0.d0
rkd=t'()c*dcxp(-0.56"‘dlog(wm(ip,z,l))+3.64) o
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c wm(ip,2,4) =wm(ip,2,1)*rkd
cw  write(3,100) wm(’ip,l,l),wm(ip.2,l),wm(ip,l,2),wm(ip,2,2),

cw S wm(ip,3,2),wm(ip,4,2)
10 continue
c
c
C.. debug ..
. .
if(time.le.dt) then
write(3,*)
write(3,*) ‘mass fraction’
do30ip=1,3

write(3,*) ‘ip=",ip
write(3,1000) ((wm(ip,is,ia),ia = l,naml),is =1,nsmp)
1000 format(8f8.3)
30  continue
endif
c .
return
end




C
C L]
C .
C

subroutine disper
c
C... this subroutine computes the hydrodynamic dispersion coefficient
¢ of every speicies in three phascs. ...
c
C

implicit real*8 (a-h,0-z)

parameter (ndm =2,nsm =2 nam = 3,;nnm=4,npm =1 12)
c

dimension ijk(npm,nnm),rd(npm,nsm,nam,ndm,ndm)
C

common /isct/ nclmax,npmax,ijk,ihalﬂ),iband,imax,

S ip.\',ipy,npx,npy,ndmp,nsmp,namp,nnmp

common /sctl/ tmax,timc,dt,cp,axi,acta,rgr,ptimc,dptimc,

S pltime,dpltim,cre,wold, wnew
C

common /disp/ rd
c

rdfac=1.00d0
C

do 10 is=1I,nsmp

do 10 ia=1,namp
do 10 id=1,ndmp
do 10 jd =1,ndmp
do 10 ip=I,npmax
rd(ip,is,ia,id,jd) =0.d0

10 continue
c

do 20 id = I,ndmp
do 20 is=I,nsmp
do 20 ip=1,npmax
rd(ip,is,1,id,id) = 0.5574*rdfac
rd(ip,is,2,id,id) =0.2787*rdfac
rd(ip,is,3,id,id) = 1.0034*rdfac
20  continue

c
C... debug ...
c
write(3,*)
write(3,*) “dispersion cocfficients of water, oil, gas phase’
write(3,*) ‘rdfac =" rdfac
write(3,1000) rd(1,1,1,1 ,l),rd(l,2,2,1,1),1‘«!(1,2,3,1,1)
c




1000 format(/3c13.5)
C

return
end

136




C
c
c
subroutine densit -
c
C... this subroutine computes the densitics of four phases from
¢ the thermodynamic relations.
¢ density is depending on pressure, compressibility and
C temperature....
c
c
implicit rcal*8 (a-h,0-2)
parameter (ndm =2,nsm =2,nam =3,nnm = 4,npm=112)
c
dimension ijk(npm;nnm),rho(npm,4),rhor(nam),h(npm,nam)
dimension drh(npm,4,nam)
C
common /isct/ nclmax,npmax,ijk,ihalfb,iband,imax,
ipx,ipy,npx,npy,ndmp,nsmp,nnmp,nnmp
common /setl/ tmax,timc,dt,cp,axi,aeta,rgr,ptime,dptimc,
hY pltimc,dpltim,crc,wold,wnew
c

common /dens/ rho,rhor
¢l common jdens/ rho,rhor,drh
c
do 10 ia= l,namp
rhor(ia) =0.d0
do 10 ip =I,npmax
rho(ip,ia) =0.d0
do 10 ja=1,namo
drh(ip,ia,ja) =0.d0
10 continue
c
rhor(1)=1.d0
rhor(2)=1.2d0
c
c3l rhor(2)=1.2d0
cd rhor(2) =1.d0
c
do 20 ip=1,npmax
rho(ip,1) =1000.d0
rho(ip,2) = 1200.d0
rho(ip,3) =1.205d0
rho(ip,4) = 1200.d0
20 continue
c
C
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C... debug ...

C

"if(time.le.dt) then

write(3,*)

write(3,*) “density of water phase’
call outp(rho,1,3)

write(3,*) “density of oil phase’
call outp(rho,2,3)

write(3,*) ‘density of air phase’
call outp(rho,3,3)

endif

return
end
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subroutine porsit

this subroutine computes the porosity variation
by pressure head

implicit real*§ (a-h,0-2)
parameter (ndm =2 nsm = 2,nam=3nnm =4,npm=112)

dimension rn(npm),rnl(npm,nam),ijk(npm,nnm)
dimension dnh(npm,nam)

- common /iset/ nclmax,npmax,ijk,ilwlfb,iband,imax,

S ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp

common /sctl/ tmax,timc,dt,cp,axi,acta,rgr,ptimc,dptimc,
pltimc,dpltim,crc,woldgvncw

common /poro/ rn

common /poro/ rn,dnh

do 5ia=1,namp
do 5 ip=1I,npmax
dnh(ip,ia)=0.d0
continue

... debug .,

if(time.eq.-1) then
write(3,*) ‘porosity of domain’
do 76 ip=1,npmax
rnl(ip,1) = rn(ip)
continue
call outp(rnl,1,3)
cndif

return
end
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subroutine dsat(h,oldh,sat,oldsat,sh,rk)

. this subroutine compute the saturations and saturation derivatives

of 3 phases from the capillary head
relative permeability is computed from the saturation values...

umplicit real*8 (a-h,0-z)
paramcter (ndm =2,nsm =2,nam =3,nnm =4,npm=112)

dimension \
&h(npm,nam),oldh(npm,nam),
&how(npm),hao(npm),haw(npm),hocr(npm),satt(npm),
&.\'(npm),y(npm),z(npm),ijk(npm,nnm),rkr(npm,nam)

dimension
&sat(npm,nam),oldsat(npm,nam),sh(npm,nam,nam),
&rk(npm,nam,ndm,ndm)

dimcnsion rn(npm),dnh(npm,nam)

common /isct/ nclmax,npmax,ijk,ihalﬂ),iband,imax,

S ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /setl/ tmax,time,dt,cp,axi,actu,rgr,ptimc,dptimc,
S pltime,dpltim erc,wold,wnew

common /space/ X,y,z

common /poro/ rn

.. Initialize saturation derivatives wrt capillary head ...

do 5ia=1,namp
do 5 ja=1I,namp
do 5ip=1,npm
sh(ip,ia,ja) =0.d0

. initialize fluid conductivity ...

do 6 ia=1l,namp
do 6 id=1,ndmp
do 6 jd =1,ndmp
do 6 ip=1,npm
rk(ip,ia,id,jd) =0.d0
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... required coefticients ...

write(3,%)

write(3,*) “water pressure’
call outp(h,1,3)

write(3,%)

write(3,*) “oil pressure’
call outp(h,2,3)

dthfac = l¢-5
atm=0.d0
rksw=0.5
rmuo=0.5

alaw =35.2d0
alao=11.d0

alow =9.9d0
Xn=1.8*%].]

beow =alow/alaw
beao =alao/alaw
xm=1.d0-1.d0/xn

ssw=0.80
stw=0.20
$s0=0.80
sro=0.20
ssa =0.60.
sra=0.00
sst=1.00

srt=0.40

FREREE saturation and fluid conductivity *#***

do 15 i=1,npmax
how(i) =h(i,2)-h(i,1)
hao(i) = atm-h(i,2)
haw(i) =atm-h(i,1)
hocr(i) = beow/(beow + beao) *h(i,1)

c... in the case of two phase saturation ...

C

c
20

if(h(i,2).le.hocr(i)) goto 20
goto 30

if(haw(i).1c.0.d0) then
sat(i,]) =ssw
clse
sat(i,1) = (ssw-srw)*(1. + (alaw* haw(i))**xn)**(-xm) + srw
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endif
Ssat(i,2) =sro
satt(i) = sat(i,1) +sat(i,2
se = (sat(i,1)-srw)/(1-srw) .
sh(i,1,1)= (Xn-1)*se**(1/xm)*(1.-(sc)* *(1/xm))**xm*
S alaw*(ssw-srw)*rn(j) :
sh(i,1,2) =-dthfac
sh(i,2,1) =dthfac
sh(i,2,2) =-dthfac
oxm=1./xm
dse = ((1-se**oxm))**xm ‘
rkr(i,1) = dsqrt(se)*((1-dse))**2
rkr(i,2) =dthfac
croy  rkr(i,l) =(sat(i,1))**2
croy  rkr(i,2) = l-rkr(i,1)

goto 40
c
¢ three phase saturation
c

30 if(hao(i).le.0.d0) then
satt(i) =sst

clse
satt(i) = (sst-srt)*(1. + (alao*hao(i))**xn)* *(-xm) + srt
endif :

c write(3,*) hao(i),how(i)

if(thow(i).lc.0.d0) then

sat(i, 1) =ssw

else ‘
sat(i,1) = (ssw-srw)*(1. + (alow*how(i))**xn)* *(-xm) +srw
endif
sat(i,2) =satt(i)-sat(i,1)
if(sat(i,2).It.sro) sat(i,2) =sro
s¢ = (sat(i,1)-srw)/(1.d0-srw)
sh(i,1,1) =(xn-1 D¥Fse**¥(1/xm)*(1 ~(se)**(1/xm))**xm*

S alow*(ssw-srw)*rn(i)
sh(i,1,2) =-sh(i,1,1)
- oxm=]./xm

dse=((1-se**0xm))**xm
rkr(i, 1) = dsqrt(sc)*((1-dsc))**2
croy  rkr(i,I) =(sat(i,1))**2
sct = (satt(i)-srt)/(1.d0-srt)
sh(i,2,2) = (xn-1 DEset**(1/xm)*(1 .-(sct)* *(1/xm))**xm*
S alao*(sst-srt)*rn(i) +sh(i, 1 1)

sh(i,2,1) =sh(i,1,2)

dset =dabs(sct-se)

dsett =((I-set**oxm))**xm
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rkr(1.2) =dsqrt(dset)*((dse- -dsctt))**2

croy  rkr(i.2) = I-rkr(i,1)

C
40
C

sat(i,3) = 1.d0-sat(i,1)-sat(i,2)

¢ fluid conductivity at saturation and viscosity of oil/water

c
cd
cd

c31

oo
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rk(i, 1,1, 1) = rkr(i,1)*rksw
rk(i,2,1,1) = rkr(i,2) *rksw

rk(i, 1,1,1) = rkr(i, ) *rksw*2.00
rl\(l,.,,l 1) =rkr(i,2)*rksw/rmuo*2.00

rk(i,1,2,2) =rkr(i,1)*rksw*2.00
rk(i,2,2,2) = rkr(l 2)*rksw/rmuo*2.00

rk(i,1,1,1) =rkr(i,1) *rksw*0.10
rk(i,1,2,2) = rkr(i,1)*rksw*2.0
rk(i,2,1,1) =rkr(i,2)*rksw/rmuo*0.10
rk(i,2,2,2) = rkr(i,2)*rksw/rmuo*2.0

if(rkr(i, l) gt.1.d0) rkr(i, l) 1.d0
if(rkr(i,2).gt.1.d0) rkr(i,2) = 1.d0

rk(i,1,1,1) =rkr(i,1 ) *rksw
rk(i, l,_,_) =rkr(i,])*rksw
rk(i,2,1,1) =rkr(i,2)*rksw/rmuo
rk(i,2,2,2) = rkr(i,2)*rksw/rmuo

continuc
endif

.. dcbug ...

if(time.le.dt) then

do 200i=1,10

write(3,*) ‘sat,ip =i
write(3,1000) (sat(l 13) 1a=1,namp)
\\lltL(3 *) shyip ="

write(3,1000) ((sh(i,ia,ja),ja = 1,n 1mp) ia=1] n

¢ 200 continue

C

cendif

cl000 format(3el5.5)
c
c
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¢4100  continue
¢

‘return
cnd
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subroutine veloc(h,rk,sat,vel)

o

.. this subroutine computes local and global velocity of cach phase ...

(@]

implicit real*8 (a-h,0-z)
paramecter (ndm=2,nsm=2,nam=3,nnm=4,npm=112)

dimension
&vel(npm,nam,ndm,nnm),velp(npm,nam),weifp(npm,nam),
&ijk(npm,nnm),h(npm,nam),
&rkg(npm,nam,ndm,ndm,nnm)

dimcnsion
&bn(nnm,nnm),bnd(ndm,nnm,nnm),bndr(ndm,nnm,nnm),
&bnr(ndm,nnm,nnm),
&dnr(npm,ndm,nnm,nnm),wdn(ndm,nnm,nnm),dwdn(ndm,nnm,nnm),
&dj(nam,nam),dji(npm,nam,nam,nnm),det(npm,nnm),
&w(npm,nam,nnm,nnm),dwr(npm,nam,ndm,nnm,nnm),
&weif(npm,nam,ndm,nnm)

dimension
&sat(npm,nam),oldsat(npm,nam),dsh(npm,nam,nam),
&rk(npm,nam,ndm,ndm)

dimension rn(npm),dnh(npm,nam)

dimension rho(npm,4),rhor(nam),drh(npm,4,nam)

common /isct/ nelmax,npmax,ijk,ihalfb,iband,imax,

S ipX,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sc¢tl/ tmax,time,dt,cp,axi,aeta,rgr,ptime,dptime,
S pltime,dpltim,erc,wold wnew

common /bas/ bn,bnd,bndr,bnr,dnr,dji,dct,wdn,dwdn
common jwci/ w,dwr,weif

common /poro/ rn
common /dens/ rho,rhor

... initialize global and local velocity ...

[eEN e RN RN ¢ TN o

do 10 ia=1l,namp
do 10 id=I,ndmp
do 10i=1,nnmp




do 10 ic = I,nclmax

vel(ie,ia,id,i) =0.d0

weif(ie,ia,id,i) =0.d0
10 continue

c
C... element wise evaluation of flujd conductivity ...
c
do 30 ja=l,namp
do 30 id = I,ndmp
do 30 jd= l,ndmp
do 30 i=1,nnmp
do 30 ie=1,nclmax

30 rkg(ic,ia,id,jd,i) =0.d0
c

do 40 ia=1,namp
do 40 id =1,ndmp
do 40 jd =1,ndmp
do 40 i=1I,nnmp
do 40 ig= I,nnmp
do 40 ie = I,nelmax
ijkig =1ijk(ic,ig)
th= rn(ijkig)*sat(ijkig,ia)
rkg(ic,ia,id,jd,i) = rk(ijkig,ia,id Jd)/th*bn(i,ig)
& +rkg(ic,ia,id,jd,i)
C  write(3,*) 'kx= ’,rkg(ic,ia,id,jd,i),rk(ijkig,ia,id,jd),ie
40 continue
c ,
C... global velocity ...
c
do 50 ia=1,namp
do 30 in= I,nnmp
do 60 id =1,ndmp
do 60 jd=1,ndmp
do 60 ig=1,nnmp
c write(3,*) ‘ia,in,id,jd,ig = “Jia,in,id,jd,ig
do 60 ic=1,nelmax
- ijkig =1jk(ie,ig)
vel(ie,ia,id,in) = vel(ie,ia,id,in)
& -rkg(ic,ia,id,jd,in)*dnr(ie,jd,ig,in)*h(ijkig,ia)
c write(3,*) ‘vel = "Jie,vel(ic,ia,id,in)
60  continue
50 continue
c
do 65 ia=1,namp
do 65 in=1,nnmp
c write(3,*) ‘ia,in =" ia,in
do 65 ie =1,nelmax
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vel(ie,ia,2,in) = \'cl(ic,ia,2,in)-rkg(ic,ia,2,2,in)*rh0r(ia)
c31 . \'cl(ic,ia,l,in)=\'c'l(ic,ia,l,in)-rkg(ie,ia,l,l,in)*rhor(ia)
c32 \'cl(ic,ia,2,in)=\'el(ic,ia,2,in)-rkg(ic,ia,2,2,in)*rhor(ia)
C write(3,*) ‘vel =’,vel(ic,ia,1,in) :

65 continuc

o

REEE weighting factor **##%*

O OO0 6

do 70 ia=1l,namp
do 70 ic=1,nelmax

dnom =dabs(vel(ic,ia,1,1)) + dabs(vel(ic,ia,1,2))
if{dnom.eq.0.d0) then

weif(ic,ia,1,1) =0.d0
clse

weif(ic,ia,1,1) = axi*(vel(ic,ia,1,1) + vel(ie,ia,1,2))/dnom
endif
weif(ie,ia, 1,2) = weif(ic,ia, 1,1)

dnom = dabs(vel(ie,ia,1,3)) + dabs(vel(ic,ia,1,4))
if{dnom.cq.0.d0) then

weif(ie,ia,1,3) =0.d0
clse -

weif(ic,ia, 1,3) = axi*(vel(ic,ia, | ,3) + vel(ie,ia,1,4))/dnom
cndif
weif(ic,ia, I ,4) = weil(ic,ia, 1,3)

dnom = dabs(vel(ie,ia,2,1)) + dabs(vel(ie,ia,2,4))
if(dnom.cq.0.d0) then

weif(ic,ia,2,1) =0.d0
clsc '
weif(ie,ia,2,1) = axi*(vel(ic,ia,2,1) + vel(ic,ia,2,4))/dnom
cndif
weif(ic,ia,2,4) = weif(ic,ia,2, 1)

dnom = dabs(vel(ie,ia,2,2)) + dabs(vel(ic,ia,2,3))
if(dnom.cq.0.d0) then :
weif(ic,ia,2,2) =0.d0
clse
weif(ic,ia,2,2) = axi*(vel(ic,ia,2,2) + vel(ic,ia,2,3)) ‘dnom
cndif _
weif(ic,ia,2,3) = weif(ic,ia, 2,2

70 continue
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... debug ...

BN o]

if(time.le.-1) then
write(3,%)
do 220 ia=1I,namp
do 220 id=1,ndmp
do 222 in=1l,nnmp
write(3,*) ‘ia,id,in =",ia,id,in
do 224 ic=1,nclmax
ip =ijk(ie,in)
velp(ip,ia) = vel(ie,ia,id,in)
weifp(ip,ia) = weif(ic,ia,id,in)
224 continue
write(3,*) ‘velocity’
call outp(velp,ia,3)
write(3,*) “weighting factor’
call outp(weifp,ia,3)

222 continuc
220 continuc
endif
c
C
return
end
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o

subroutine cocff(sat,vel)

. this subroutine compute the coefficients for multispecics mass

balance equation ...

implicit rcal*$ (a-h,0-2)
parameter (ndm =2,nsm =2,nam = 3,anm=4,npm=1 12)

dimcension ckl(npm),ckZ(npm,ndm),ck3(npm,ndm,ndm),cg(npm)
dimension \'cl(npm,nam,ndm,ﬁnm),ijk(npm,nnm) '

dimension ‘
&sat(npm,nam),rk(npm,nam,ndm,ndm),rd(npm,nsm,nam,ndm,ndm)
dimension rn(npm)

dimension rho(npm,4),rhor(nam)

dimension source(npm,nsm,nam)

common /isct/ nclmax,npmax,ijk,ihalfb,iband,imax,

& ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,timc,dt,ep,axi,aeta,rgr,ptimc,dptimc,
& pltime,dpltim,erc,wold,wnew

common /dens/ rho,rhor
common /poro/ rn

common /sour/ source
common /disp/ rd

common /cocf/ ckl,ck2,ck3,cg

| hawo =0.01

hswo =0.01

.. initialize ...

do 2 ip=1,npmax
ckl(ip)y=0.d0
continue

do 4id=1,ndmp

do 4 jd=1,ndmp
do 4 ip=1,npmax
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ck3(ip,id,jd) =0.d0
4, continue
c

do 10 ip=1,npmax

cki(ip)y=1
I ckl(ip)=(1.d0 +sat(ip,3)*rho(ip,3),-’sat(ip,l)/rho(ip, )*hawo
cl & +(l-rn(ip))"‘rho(ip,4)/rn(ip)/sat(ip,l)/rho(ip,l)*hswo)
¢ & *rn(ip)*sat(ip,1)*rho(ip,1) _
l
C

c

0 continue

do 20 id =I,ndmp
do 20 ip=1,npmax
ck3(ip,id,id) =rd(ip,2,1,id,id)
cl ck3(ip,id,id)=rd(ip,2,l,id,id)*(l.dO
cl & +rd(ip,2,3,id,id)*sat(ip,3)*rho(ip,S)*hawo
cl &/rd(ip,2,l,id,id);’sat(ip,l)/rho(ip,l))
¢ & *rn(ip)*sat(ip,1)*rho(ip,1)
20 continue
c
¢ write(3,%) ’ckl(ll),ck3(ll,l,l)=’,ckl(ll),ck3(ll,l,l)
C
return
end
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subroutine sourit

... this subroutinc computes the point sources
such as pumping, recharging, chemical, biological reaction

o 00000

implicit real*8 (a-h,0-z)
parameter (ndm=2,nsm=2,nam =3,nnm =4,npm=112)

dimension source(npm,nsm,nam),ijk(npm,nnm),sour{(npm,nam)

[g]

common /iset/ nelmax,npmax,ijk,ihalfb,iband,imax,

S ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,timc,dt,cp,axi,acta,rgr,ptimc,dptimc,
S pltime,dpltim,erc,wold,wnew

common /sour/ source

do 5 is=1,nsmp
do 5 ia=1,namp
do 5 ip=I,npmax
source(ip,is,ia) =0.d0
continue

source(1,1,1)=13.d0

... debug ..

OO 060 w;g

if(time.le.-1) then
write(3,*)
write(3,*) ‘point source’
do 30 is=1,nsmp
write(3,*) ‘is="is
do 50 ia=1,namp
write(3,*) ‘ia="a
do 60 ip =1,npmax
sourl(ip,ia) =source(ip,is,ia)
60  continuc
call outp(sourl ,ia,3)
50 continue
endif

return
end
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c4
c31
c

c

C

subroutine femh(h,oldh,sat,oldsat)

.. this subroutine is for finite element scheme about

pressure head ...

implicit recal*8 (a-h,0-2)
parameter (ndm =2,nsm =2 nam=3,nnm = 4,npm=112)

dimension
&ugh(npm,45,nsm,nam),f‘h(npm,nsm,num),l‘n(npm,nsm),
&h(npm,nam),oldh(npm,nam),d h(npm,nam),hiter(npm,nam),
&x(npm),y(npm),z(npm),ijk(npm,nnm),sat(npm,nam),oldsat(n pm,nam),
&ramda(z),ramdao(’?.),ramdas(Z),dpmax(2),dpmaxo(2),s(2),adh(z),
&ab(npm,45),tb(npm)

common /iset/ nclmax,npmax,ijk,ihalfb,ibancl,imax,

: ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,timc,dt,cp,axi,acta,rgr,ptimc,dptimc,
S pltime,dpltim,crc,wold,wnew

common /space/ X,y,z

common /part2/ c,oldc

.. iteration critcria ...

ercc =0.005d0
ercc=0.010d40

crcc=0.10d0
adh(1)=10.d0
adh(2)=10.d0

" ercre =crcc*0.01

crcab =erce
imin=4
imax=3

imaxx =30
timefa=0.10

if(time.eq.dt) write(2,1000) imax,axi,ep,wold

1000 formut(t2,’imux,wcight,cp,wo]d =",i3,3f7.4)

do 10 ia=1,namp
do 10 ip=1,npmax




hiter(ip,ia) =oldh(ip,ia)

10 continue
c
C
C
C  **®EX picard iteration ***k*
C
iter=0
20 iter=iter+1
C .
C increase or decrease time step
C
if(iter.lt.imin) dt =dt*(1 + timefa)
if(iter.gt.imax) dt=dt/(1 + timefa)
C
if(iter.gt.imaxx) goto 999
C

C... compute global matrix anLl load vector
call asemh(h,oldh,sat,oldsat,agh,fh)

C... initialize load vector ...

do 25 is=1[,nsmp

do 25 ip=1,npmax

25 fn(ip,is) = 0.d0
c

do 30 is=I,nsmp
c
if(is.cq.1) iaa =2
if(is.cq.2) iaa =1
C
¢... load vector ...
c

do 40 ip=1,npmax
fn(ip,is) = fh(ip,is,1) + fh(ip,is,2)
do 40 j=1,iband
Ji=ip+j-(ihalfb + 1)
if(jj.1t.1) goto 40
if(jj.gt.npmax) goto 40
fn(ip,is) =-agh(ip,j,is,iaa)*h(jj,iaa) + fn(ip,is)
40 continuc
c
do 45 ip=1,npmax
45 fb(ip) = fn(ip,is)
c




c... banded ag matrix for water species in water phase ...
c
" do 30 j=1,iband
do 50 ip=1I,npmax
0 ab(ip,j) = agh(ip,j,is,is)

if(time.le.dt) then

write(3,*)

write(3,*) ‘is=",is

write(3,*) ‘global banded matrix’

write(3,1500) ((ab(ip,j),j=1,3),ip = 1,3)
1500 format(3c9.2)
c32 write(3,1500) ((ab(ip,j),j=1 9ip =1,6)
¢32 1500 format(9c9.2)
c3l write(3,1500) ((ab(ip,j).j= 1,3),ip=1,3)
c31 1500  format(3e9.2)

endif
C
C... solve for water pressure head ...
C .
call solve(l,ab,fb,npmax,ihalfb)
c
call solve(2,ab,fb,npmax,ihalfb)
c
C... store the solution in pressure head h(ip,is) ...
c

do 60" ip=1,npmax

h(ip,is) = fb(ip)
60 continue

c
c... debug ...
c
if(time.le.dt) then
write(3,*)
writc(3,*) “is,iteration =" is, iter
call outp(h,is,3)
endif
C
30 continue
c
C... cooly’s iteration scheme ...
C

do 65 is=1,nsmp
dpmax(is) =-10e6




do 70 ip=1,npmax

c h(ip,is) = (wnew*h(ip,is) + wold*oldh(ip,is))/(wnmv +wold)

dh(ip,is) = h(ip,is)-hiter(ip,is)
abdh =dabs(dh(ip,is)) .
if(abdh.gt.dpmax(is)) dpmax(is) =abdh
70 continuc
if(iter.eq.1) then

s(is) = 1.d0
clse

s(is) = dpmax(is)/ramd ao(is)/dpmaxo(is)
endif

if(s(is).ge.~1.d0) then
ramdas(is) = (3 +s(is))/(3 + dabs(s(is)))
clse
ramdas(is) = 0.5/(dabs(s(is)))
cndif
adpp = adh(is)/dpmax(is)
if(ramdas(is).lc.adpp) then
ramdac(is) = ramdas(is)
clse
ramda(is) =adpp
endif

do 80 ip = I,npmax
h(ip,is) = ramda(is)*dh(ip,is) + hiter(ip,is)
30 continuc

... debug ...

if(time.le.dt) then
write(3,*)
write(3,*) “is,iteration = ’i8,iter
call outp(h,is,3)

cndif

OOOOOOOGO

65 continuc

¢30 continue

c

C... resct the variables ...

C
do 90 is=I,nsmp
ramdao(is) = ramdas(is)
dpmaxo(is) = dpmax(is)
do 90 ip = 1,npmax

hiter(ip,is) = h(ip,is)
90 continug
c
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.. check the error criteria ...

Qoo

if(time.le.dt) then
write(3,2000) dt,timc,itcr,dpmax(l),dpmax(2)

endif

do 100 ia=1,namp

do 100 ip=Il,npmax

cre =crere*dabs(oldh(ip,ia)) + ercab
cd erc =e¢rcab
if(dpmax(ia).gt.crc) goto 20

100 continue
c
¢ time step, time, maximum iteration, maximum error of water & oil head
c
999 continue
¢ if(time.ge.ptime) then

write(3,2000) dt,time,iter,dpmax(1),dpmax(2) N
¢ endif ’
cd if(iter.It.imin) dt =dt*(1 +timefa)
cd if(iter.gt.imax) dt=dt/(1 + timefa)
2000 format(’dt,time,iter,dp=’,2t'10.3,i5,2f10.6)
c

return
cnd
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C
c
subroutine femc(h,oldh,sat,oldsat)
c
c... this subroutine is for finite element scheme
¢ about mass fraction ...
c
c
implicit rcal*8 (a-h,0-z) .
parameter (ndm=2,nsm=2,nam =3,nnm=4,npm=112)
c
dimension
&h(npm,nam),oldh(npm,nam),sat(npm,nam),oldsat(npm,nam),
&age(npm,435).fe(npm),wm(npm,nsm,4),c(npm),oldc(npm),
&ab(npm,45),fb(npm),wmp(npm,nam),ijk(npm,nnm),oldwm(npm,nsm,d4),
&rn(npm),rho(npm,4),rhor(nam)
Cc
common /iset/ nclmax,npmax,ijk,ihalfb,iband,imax,
S ipx,ipy,npX,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,time,dt,ep,axi,acta,rgr,ptime,dptime,
S pltime,dpltim,erc,wold,wnew
common /part/ wm,oldwm
common /part2/ c,oldc
common /poro/ rn
common /dcns/ rho,rhor
c _
¢... computc global matrix and load vector
c
call asemc(h,oldh,sat,oldsat,agc,fc)
c
c

do 45 ip=1,npmax
45 fb(ip) = fc(ip)

C
c... banded ag matrix for oil specics in water phase ...
c
do 50 j=1,iband

do 50 ip = l,npmax
50 ab(ip,) =ageip,)
C
¢... dcbug ...
c

if(time.le.dt) then
write(3,*)
write(3,*) ‘is=",is
write(3,*) ‘global banded matrix’
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write(3,1500) ((ab(ip.j),j=1,3),ip= 1,3)
1500 format(3¢9.2)
c32’ write(3,1500) ((ab(ip.j),j=1,9),ip = 1,6)
€32 1500 format(9¢9.2) ,
c31 write(3,1500) ((ab(ip.j),j =1,3),ip=1,3)
c31 1500  format(3c¢9.2)

endif
c
C... solve for mass fraction ...
v
call solve(l ,ab,fb,npmax,ihalfb)
Cc
call solve(2,ab,fb,npmax,ihalfb)
C
C... store the solution in mass fraction w(ip,2,1) ...
c

do 60 ip=1,npmax
c(ip) = tb(ip)
wm(ip,2,1) =c(ip)
cl wm(ip,2,1) = c(ip)/rn(ip)/rho(ip, )/sat(ip,1)
wmp(ip,2) = fb(ip
60  continuc
C

C... debug ...
c

if(time.le.dt) then
write(3,*)
call outp(wmp,2,3)
endif
c
30 continue
c
C

return
end




o o0

oo

subroutine asemh(h,oldh,sat,oldsat,agh,fh)

. this subroutinc asscmbles the clement matrices

about pressure head ...

implicit rcal*8 (a-h,0-z)
parameter (ndm =2,nsm = 2,nam =3,anm =4,npm=112)

dimension
&agh(npm,45,nsm,nam),fh(npm,nsm,nam),
&h(npm,nam).oldh(npm,nam),dh(npm,nam),
&c(npm),oldc(npm),
&x(npm),y(npm),z(npm),ijk(npm,nnm),fc(npm,nsm,nam,nnm)

dimension
&cth(npm,nsm,nam,nnm,nnm),ckh(npm,nsm,nam,ndm,ndm,nnm,nnm),
&ctm(npm,nam,nnm,nnm),ckm(npm,nam,ndm,nnm,nnm),
&ete(npm,nnm,nnm),ckc(npm,ndm,nnm,nnm),;

&ede(npm,ndm,nd m,nnm,nnm),egh(npm,nsm,nam,ndm,nd m,nnm,nnm),
&edm(npm,nsm,nam,ndm,ndm,nnm,nnm), &cs(npm,nnm,nnm)

dimension velp(npm,nam),weifp(npm,nam),
&weif(npm,nam,ndm,nnm),vel(npm,nam,ndm,n nm)

dimension
&w(npm,nam,nnm,nnm),dwr(npm,nam,ndm,nnm,nnm),
&bn(nnm,nnm),bnd(ndm,nnm,nnm),bndr(ndm,nnm,nnm),
&bnr(ndm,nnm,nnm),
&dnr(npm,ndm,nnm,nnm),dji(npm,nam,nam,nnm),dct(npm,nnm),
&wdn(ndm,nnm,nnm),dwdn(ndm,nnm,nnm),sh(npm,nam,nam)

dimension
&sut(npm,nam),oldsat(npm,num),dsh(npm,nam,nam),
&rk(npm,nam,ndm,ndm)

dimension rn(npm),dnh(npm,nam) :

dimension wm(npm,nsm,4),0ldwm(npm,nsm,4),\\'mp(npm,num)
dimension rho(npm,4),rhor(nam),drh(npm,4,nam)

dimension source(npm,nsm,nam)

common /isct/ nelmax,npmax,ijk,ihalfb,iband,imax,

& IpX,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,time,dt,ep,axi,acta,rgr,ptime,dptime,
& pltime,dpltim,erc,wold,wnew




common /space/ X,y,z

c
* common /ib; indbl,indb2,indb3
c .
common /bas/ bn,bnd,bndr,bnr,dnr,dji,dct,wdn,dwdn
common ;wei/ w,dwr,weif
c
common /dens; rho,rhor
common /part/ wm.oldwm
common /part2/ c,oldc
common /poro/ rn
common /sour/ source
c

C... weighting factor for generalized fdm ...
C

eps=cp-1.d0
C
c... initialize the matrix ag and vector f ...
c
do 5 is=1,nsmp
do 5 ia=1,namp
do 5 j=1,iband
do 5 ip=1,npmax
agh(ip,j,is,ia) =0.d0
fh(ip,is,ia) =0.d0
5  continuc
c
C... saturation wrt capillary head & relative permeability ...
c
call dsat(h,oldh,sat,oldsat,sh,rk)
call partit(sat)
C
C... velocity of cach phase
¢ and weighting factor for upstream weighting ...
c

call veloc(h,rk,sat,vel)
write(3,*) ‘jeeral =",vel(1,1,1,1)

.. debug ...

if(time.le.dt) then
write(3,*)
do 20 ia=1,namp
do 22 in=1l.nnmp
write(3,*) “ia,in =" ia,in
do 24 ic=I,nclmax
ip =ijk(ic,in)

COCOOOOOOOO

160




c velp(ip,ia) = vel(ic.ia,1,in)

c . Wweifp(ip,ia) = weif(ic,ia, 1 ,in i
c24 continue ‘
c write(3,*) ‘velocity”

c call outp(velp,ia,3)

c write(3,*) ‘weighting factor’

c call outp(weifp,ia,3)

c22 continue
¢20 continue
cndif

C

c

C... dcbug ...
c

do 7 ip=1,npmax
wmp(ip,2) =wm(ip,2,1)
7 continue

if(time.le.dt) then
write(3,*) ‘water saturation’
call outp(sat,1,3)
write(3,*) ‘oil saturation’
-call outp(sat,2,3)
write(3,*)'water pressure’
call 6utp(h,2,3)
write(3,*) oil pressure’
call outp(h,2,3)
write(3,*)’'mass fraction’
call outp(wmp,2,3)

endif

(o @]

- cvaluate the weighting functions and its derivatives

Qo

if(ndmp.cq.1) call weighl
if(tndmp.eq.2) call weigh2
it(ndmp.eq.3) call weigh3

o o0

*REE* assembling procedure **#*%*

... compute element matrices ...

Q0O o000

call clcmcn(cth,ctm,ctc,ckh,ckm',ckc,cgh,cdm,cdc,cs,sh,rk,sat,\'cl)

@]

cl elemen(eth,ekh,egh,edm,es,sc,nel)
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c31

debug ...

if{time.le.dt) then

do 30 ic=1,neclmax

write(3,*) ‘element =", ie

write(3,*) ‘et

write(3,2000) ((cth(ie,l,1,i,j),j= l,nnmp),i = [,nnmp)
write(3,2000) ((cth(ic,1,2,i,j),j = l,nnmp),i=1,nnmp)
write(3,2000) ((eth(ie.2,1,i,j),j={,nnmp),i=1,nnmp)
write(3,2000) ((cth(ic,2,2,i,j),j= l,nnmp),i = l,nnmp)
write(3,*) ek’

write(3,2000) ((ckh(ie,1,1,1,1,i,j),j= l,nanmp),i=1,nnmp)
write(3,2000) ((ckh(ie.1,2,1,1,i,j),j= l,nnmp),i=1,nnmp)
write(3,2000) ((ckh(ie,2,1,1,1,i,)),j = I,nnmp),i= 1,nnmp)
write(3,2000) ((ckh(ie,2,2,1,1,i,j),j= l,nnmp),i= I,nnmp)
write(3,*) ‘cg’

write(3,2000) (egh(ie,l,1,2,2,j,j),j = 1,nnmp)
write(3,2000) (egh(ic,2,2,2,2,i,j),j = l,nnmp)

2000 format(4f10.3)
30  continue

endif

.. assemble clement matrices to form banded global form ag ...

do 50 is=1,nsmp
do 50 ia=1,namp
do 50 i=1,nnmp
do 50 j=1,nnmp
do 50 ie=1,nclmax
ijki =ijk(ie,i)
ijkj=ijk(ic,j)
ji=ijkj + (ihalfb + I)-ijki
if(ji.le.0) goto 50
if(jiigt.iband) goto 50
agh(ijki,ji,is,ia) = agh(ijki,ji,is,ia) + cth(ic,is,ia,i,j) +
S cp*(ckh(ic,is,ia,1,1,i,j) + ckh(ic,is,ia,2,2,i,))
S cp*(ckh(ic,is,ia,1,1,i,j))

c32 S cp*(ckh(ic,is,ia,l,1,1,]) +ckh(ie,is,ia,2,2,i,j))

30

c

C...

C

continue
assemble clement matrices to form r.h.s. vector f ...

do 70 i=1,nnmp
do 75 ie=1,nelmax
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fe(ic,1,1,1)=0.d0
fe(ic,1,2,i) =0.d0
" ofe(ie,2,1,i) =0.d0
fe(ie,2,2,1) =0.d0

75 continue

c3l & -(egh(ie,is,ia,1,1,i,j) + (eth(ie,is,ia,i,})
c32 & -(cgh(ic,is,ia,l1,2,i,j) + egh(ie,is,ia,2,2,i,)))
c & +(cth(ie,is,ia,i,j)

c2 & ~(cgh(ic,is,ia,1,2,i,)) +cgh(ic,is,ia,2,2,1,)))
c & +(cth(ie,is,ia,i,))

c

do 80 j=1,nnmp
do 80 is=1,nsmp
~do 80 ia=1,namp
do 80 ie = 1,nelmax
ijkj =ijk(ic,j)
fe(ic,is,ia,i) = fe(ie,is,ia, i)
& -(egh(ie,is,ia,1,2,1,j) + egh(ic,is,ia,2,2,i,j)) + (eth(ic,is,ia,i,j)
& +cps*(ckh(ic,is,ia,l,l,i,j)+ckh(ic,is,ia,2,2‘,i,j)))*oldh(ijkj,ia)
€31 & +eps*(ckh(ic,is,ia, 1,1,1,j)))*oldh(ijkj,ia)
c32 & +cps*(ckh(ic,is,ia,l,l,i,j)+ckh(ic,is,ia,Z,Z,i,j)))”‘oldh(ijkj,ia)
¢ & -ctmic,ia,i,))*(wm(ijkj,is,ia)-oldwm(ijkj,is,ia))
¢ & -(ckm(ic,ia,1,i,j))*wm(ijkj,is.ia)
€32 & -(ekm(ie,ia,1,i,)) +ekm(ie,ia,2,i,j))*wm(ijkj,is,ia)
c32 & -(cdm(ic,is,ia,1,1,i,)) +cdm(ie,is,ia,2,2,1,)))
¢ & -(edm(ic,is,ia,l1,1,1,])
¢ & *wm(ijkj,is,ia)
& +es(ic,i,j)*source(ijkj,is,ia)
¢ & -es(ie,i,)*(1-rn(ijkj))*rho(ijkj,4)
¢ & *(wm(ijkj,is,4)-oldwm(ijkj,is,4))/dt
80 continuc
do 90 is=1,nsmp
do 90 ia=l,namp
do 90 ic = 1,nclmax
ijki =ijk(ic,i)
fh(ijki,is,ia) = fh(ijki,is,ia) + fe(ic,is,ia,i)

90 continue

70 continuc

c

C

C... print the banded global matrix & load vector of each specics ...
c

¢ if(time.le.dt) then

¢ write(3,*) “assembled global banded matrix’

¢ do 100 is=1,nsmp

c do 100 ia=l,namp
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c write(3,*) ‘species,phase =",is,ia

c write(3,1000) ((agh(ip,j,is,ia),j= 1,10).ip=1,6)
C write(3.*) ‘load vector’

C write(3,1000) (fh(ip,is,ia),ip=1,6)

¢l00 continue

endif

*Hxxx force boundary conditions **#**

OO0 o000

- do 105 is=1,nsmp
if(indbl.eq.1) call boundI(agh,fh,is,is)
if(indb2.cq.l.and.ndmp.cq.1) call boun2(th,is,is)
if(indb2.eq.1.and.ndmp.eq.2) call boun22(fh,is,is)
if{indb2.cq.1.and.ndmp.eq.3) call boun32(fh,is,is)
05 continue

if(time.le.dt) then

l
c

C... print the banded global matrix & load vector of each species ...
Cc

c

write(3,*) “assembled global banded matrix after b.c.’

c
¢ do110is=1nsmp

c do 110 ia=1,namp

c write(3,*) species, phasc =",is,ia

c write(3,1000) ((agh(ip,j,is,ia),j= 1,10),ip=1,6)
c write(3,*) ‘load vector’

C write(3,1000) (fh(ip,is,ia),ip = 1,6)

cl10, continuc

c

c1000 format(10e9.2)

¢ cndif

c
C

return
end
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subroutine asemc(h,oldh,sat,oldsat,agc,fc)

. this subroutine assembles the clement matrices

about mass fraction ...

implicit real*$ (a-h,0-z)
paramcter (ndm =2,nsm =2,nam = 3,nnm =4,npm =112)

dimension
&age(npm,45),fc(npm),fec(npm,nnm),
&h(npm,nam),oldh(npm,nam),dh(npm,nam),
&c(npm),oldc(npm),
&x(npm),y(npm),z(npm),ijk(npm,nnm),fe(npm,nsm,nam,nnm)

dimension
&cth(npm,nsm,nam,nnm,nnm),ckh(npm,nsm,nam,ndm,ndm,nnm,nnm),
&etm(npm,nam,nnm,nnm),ekm(npm,nam,ndm,nnm,nnm),
&ctc(npm,nnm,nnm),ckc(npm,ndm,nnm,nnm),
&cdc(npm,rLdm,ndm,nnm,nnm),cgh(npm,nsm,nam,ndm,ndm,nnm,nnm),
&edm(npm,nsm,nam,ndm,ndm,nnm,nnm),cs(npm,nnm,nnm) = -

dimension velp(npm,nam),weifp(npm,nam),
&weif(npm,nam,ndm,nnm),vel(npm,nam,ndm,nnm)

dimension
&w(npm,nam,nnm,nnm),dwr(npm,nam,ndm,nnm,nnm),
&bn(nnm,nnm),bnd(ndm,nnm,nnm),bndr(ndm,nnm,nnm),
&bnr(ndm,nnm,nnm),
&dm(npm,ndm,nnm,nnm),djl(npm,nam,nam,nnm),dct(npm,nnm),
&wdn(ndm,nnm,nnm),dwdn(ndm,nnm,nnm),sh(npm,nam,nam)

dimension

&sat(npm,nam),oldsat(npm,namy, dsh(npm nam,nam),
&rk(npm,nam,ndm,ndm)

dimension rn(npm),dnh(npm,nam) :

dimension wm(npm,nsm,4),oldwm(npm,nsm,4),wmp(npm,nam)
dimension rho(npm,4),rhor(nam),drh(npm,4,nam)

dimension source(npm,nsm,nam)

common /isct/ nelmax,npmax,ijk,ihalfb,iband,imax,

& IpX,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,time,dt,ep,axi,acta,rgr,ptime,dptime,
& pltime,dpltim,erc,wold,wnew
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common /space; X,y,Z
common ;ib; indbl,indb2.indb3

common /bas/ bn,bnd,bndr,bnr,dnr,dji,det,wdn,dwdn
common ;wel/ w,dwr,weif

(9]

common /dcns/ rho,rhor
common /part/ wm,oldwm
common /part2/ c,oldc
common /poro/ rn
common ;/sour/ source

(@]

. weighting factor for gencralized fdm ...

(el o

cps =cp-1.d0

o

. initialize the matrix agc and vector fc ...

(@]

do 5 j=1,iband
do 5 ip=1,npmax
age(ip,j) =0.d0
fe(ip) =0.d0
continue

.. Saturation wrt capillary hcad & relative permceability ...

OO0 0 WL

call dsat(h,oldh,sat,oldsat,sh,rk)
call partit(sat)

.. velocity of each phase
and weighting factor for upstream weighting ...

o o000

call veloc(h,rk,sat,vel)
.. dcbug ...

if(time.le.dt) then
write(3,*)
do 20 ia=1,namp
do 22 in=1I,nnmp
write(3,*) ‘ia,in =",ia,in
do 24 ic=I,nclmax
1p =1ijk(ic,in)
velp(ip.ia) = vel(ic,ia, 1 ,in)
weifp(ip,ia) = weif(ic,ia, 1,in)
c24 continue

OC00000660600606

166

i P




c write(3,*) velocity’

¢ call outp(velp,ia,3)

c write(3,¥) “weighting factor’
C call outp(weifp,ia,3)

c22 continue
¢20 continue

¢ endif

c

c... debug ...
C

do 7 ip=1,npmax
wmp(ip,2) =wm(ip,2,1)
continue

~

if(time.le.dt) then
write(3,*) “water saturation’
call outp(sat,1,3)
write(3,*) ‘oil saturation’
call outp(sat,2,3)
write(3,*) water pressure’
call outp(h,2,3)
write(3,*) oil pressure’
call outp(h,2,3)
write(3,*)’'mass fraction’
call outp(wmp,2,3)

cndif

o

... evaluate the weighting functions and its derivatives ...

a6 G

if(ndmp.eq.1) call weighl
if(ndmp.cq.2) call weigh?2
it(ndmp.cq.3) call weigh3

(@]

rEEE assembling procedure **k*k

4

... compute clement matrices ...

coo0o000O0

call clcmcn(cth,ctm,ctc,ckh,ckm,ckc,cgh,cdm,cdc,cs,sh,rk,sut,vcl)

... debug ...

O 0000

if(time.le.dt) then
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C do 30 ic=1,nelmax

Cc write(3,¥) ‘clement =", ie

C “write(3,*) ‘ete’

C write(3,2000) ((ete(ic,i,j).j=I,nnmp),i = I,nnmp)

c write(3,*) ‘cke’

c write(3,2000) ((eke(ie,1,i,j),j=[,nnmp),i=1,nnmp)

C write(3,2000) ((ekc(ie,2,i,j),j = l,nnmp),i= 1,nnmp)

C write(3,*) ‘cdc’

c write(3,2000) ((edc(ie,1,1,i,j),j=1,anmp),i = 1,nnmp)
c

write(3,2000) ((edc(ic,2,2,i,j),j=I,nnmp),i = I,nnmp)
¢ 2000 format(4f10.3) :
¢ 30 continue

c endif

c

C

c... assemble clement matrices to form banded global form ag ...
c

do 57 i=1,nnmp
do 37 j=1,nnmp
do 57 ic=1,nclmax
ijki =1ijk(ie,i)
ijkj =1jk(ic,])
ji=1ijkj + (thalfb + D-ijki
il(ji.le.0) goto 57
if(ji.gt.iband) goto 57
age(ijki,ji) = age(ijki,ji) + cte(ic,i,j)
S +ep*(cke(ie,l,i,)) +eke(ie,2,i.))
S +ede(ie,1,1,i,j) +ede(ie,2,2,1,))
c3l S +ep*(cke(ie,l,i,j)
c3t S +edce(ie,l,1,i,j)
c32 S +ep*(eke(ie,1,i,j) +ekc(ie,2,1,))
c32 §  +edc(ie,t,1,i,j) +edce(ie,2,2,i,))
57  continuc
c
C... assemble clement matrices to form r.h.s. vector fc ...
C
do 292 i=1,nnmp
do 295 iec=1,nelmax
fec(ie,i) =0.d0
295 continue
C
do 297 j=1,nnmp
do 297 ic=1,nelmax
ijkj =ijk(ic.})
fec(ic,i) = fec(ic,i)
& +(cte(ic,i,))
& +eps*(ekce(ie, 1,i,j) +eke(ie,2,i,))
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& +edc(ie,1,1,1,)) +edce(ic,2,2,1.j))) *oldc(ijkj)
c3l & +eps*(eke(ie,l,i,))
c31" & +ede(ie,l,1,i,))))*olde(ijkj)
c32 & +LpS*(LkC(lC 1 l])+LkC(lL,H,I J)
c32 & +ede(ie,l, 1i,j) +ede(ie,2,2,i,)))* Oldt,(ljk])
& +es(ic, 1,]) (SOUICL(UI\], 1) +source(ijkj,2,2) +source(ijkj,2,3))
297 continue
do 298 ic=1,nelmax
ijki=1jk(ic,i)
fe(ijki) = fe(ijki) + fec(ic, i)
298 continue
292 continue

OO0 G O0O000000000O0

c
c
¢... print the banded global matrix & load vector of each species ...
c
¢ if(time.le.dt) then
¢ write(3,*) “assembled global banded matrix’
C write(3,*) ‘species,phase =",is,ia
c write(3,1000) ((age(ip,j),j=1 10) ip=1,6)
c write(3,*) “load vector’
c write(3,1000) (fc(ip), 1p~l ,6)
c endif
c
c
c  ***** force boundary conditions *****°
c
C
if(indbl.cq.1) call bouncl(age,fc,sat)
.. print the banded global matrix & load vector of each species ...
if(time.le.dt) then
write(3,*) ‘assembled global banded matrix after b.c.’
write(3,*) ‘species, phase =’ is,ia
write(3,1000) ((age(ip,j),j=1,10),ip=1,6)
write(3,*) ‘load vector’
write(3,1000) (fe(ip),ip =1,6)
1000 format(10¢9.2)
endif
return
cnd
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subroutine elcmen
& (eth,etm,etc,ckh,ckm,eke,cgh,edm, ede,e ,cs,sh,rk,sat,vel)

. this subroutine construct element matrices
by gaussian intcgration ..

oG ooao0

implicit real*8 (a-h,0-2)
parameter (ndm =2,nsm=2,nam=3,nnm=4,npm=112)

dimension
&x(npm),y(npm),z(npm),ijk(npm,nnm),vel(npm,nam,ndm,nnm),
&eth(npm,nsm,nam,nnm,nnm),ckh(npm,nsm,nam,ndm,ndm,nnm,nnm),
&etm(npm,nam,nnm,nnm),ckm(npm,nam,ndm,nnm,nnm),
&ete(npm,nnm,nnm),ckc(npm,ndm,nnm,nnm),
&ces(npm,nnm,nnm),ct(nnm,nnm),ek(nnm,nnm),cd(nnm,nnm),
&egh(npm,nsm,nam,ndm,ndm,nnm,nnm),cdc(npm,ndm,ndm,nnm,nnm),
&edm(npm,nsm,nam,ndm,ndm,nnm,nnm)

dimension
&bn(nnm,nnm),bnd(ndm,nnm,nnm),bndr(ndm,nnm nnm)
&bnr(ndm,nnm,nnm),

&dnr(npm,ndm,nnm,nnm),
&dj(nam,nam),dji(npm,nam,nam,nnm),det(npm,nnm),
&wdn(ndm,nnm,nnm),dwdn(ndm,nnm,nnm)

dimension
&w(npm,nam,nnm,nnm),dwr(npm,nam,ndm,nnm,nnm),
&weif(npm,nam,ndm,nnm)

dimension rkg(npm,nsm,nam,ndm,ndm,nnm)

dimension rkmg(npm,nam,ndm,nnm)

dimension sc(npm,nsm,nam,nam),scg(npm,nsm,nam,nam,nnm)
dimension shmg(npm,nam,nnm)

dimension sh(npm,nam,nam),shg(npm,nsm,nam,nam,nnm)
dimension
&rd(npm,nsm,nam,ndm,ndm),rdg(npm,nsm,nam,ndm,ndm,nnm)

dimension
&sat(npm,nam),oldsat(npm,nam),dsh(npm,nam,nam),
&rk(npm,nam,ndm,ndm)
- dimension wm(npm,nsm,4),oldwm(npm,nsm,4)
dimension rho(npm,4),rhor(nam),drh(npm,d4,nam)
dimension rn(npm),dnh(npm,nam)
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dimension ckl (npm),ck2(npm_.ndm),ck3(npm_.ndm,ndm),cg(npm)
dimension
&c“klg(npm,nnm),cng(npm,ndm,nnm),ck3g(npm,ndm,ndm,nnm)

c .
common /iset/ nelmax,npmax,ijk,ihalfb,iband imax,
S IpX,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /setl/ tmax.time,dt,ep,axi,aeta,rgr,ptime,dptime,
S pltime,dpltim,erc,wold,wnew
common ;/space;/ X,v,z
common ;bas/ bn,bnd,bndr,bnr,dnr,dji,det,wdn,dwdn
common /wei/ w,dwr,weif

c
common /dens/ rho,rhor
common /part/ wm,oldwm
common /poro/ rn
common /disp/ rd
common /cocf/ ckl,ck2,ck3,cg

c

¢... parameter for multispecics eq'n ...

C
call coeff(sat,vel)

c

c... initialize element matrices ...

c

do 10 is=1,nsmp
do 10 ia=1,namp
do 10 i=1,nnmp
do 10 j=1,nnmp
do 10 id =1,ndmp
do 10 jd=1,ndmp
do 10 ie=1,nelmax
- et(1,))=0.d0
ek(i,j)=0.d0
cd(i,j)=0.d0
es(ie,i,j) =0.d0
cth(ie,is,ia,i,j) =0.d0
ctm(ic,ia,i,j) = 0.d0
ete(ie,i,j) =0.d0
ekh(ie,is,ia,id,jd,i,j) =0.d0
ckm(ic,ia,id,i,j) =0.d0
cke(ie,id,i,j) =0.d0
cgh(ie,is,ia,id,jd,i,j) =0.d0
cdm(ie,is,ia,id,jd,i,j) =0.d0
cdc(ie,id,jd,i,j) =0.d0
10 continue
c
c
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*H*E* clement wise evaluation of parameters **#*

o OO

do 13 is=1,nsmp
do I3 ia=1I,namp
do 15 ja=1,nam
do 13 i=1,nnmp
do 15id=1,ndmp
do 15 jd=1,ndmp
do 15 ie=1I,nelmax
shg(ie,is,ia,ja,i) = 0.d0
shmg(ic,ia,i) =0.d0
rdg(ie,is,ia,id.jd,i) =0.d0
rkmg(ic.ia,id,i) =0.d0
rkg(ic,is,ia,id,jd,i) =0.d0
cklg(ie,i)=0.d0
ck2g(ie,id,i) =0.d0
ck3g(ie,id,jd,i)=0.d0
continue

n

if(time.lc.~1) then

write(3,*)

write(3,*) “velocity’

do 17 id=1,ndmp

do 17 ia=1,namp

do 17 ic=1,nclmax

write(3,1100) id,ia,ie,(vel(ic,ia,id,in),in = I,nnmp)
17 continuce ‘
1100 format('id,ia,ie =",3i4,8¢c14.5)
write(3,*) :
write(3,*) ‘kl”
write(3,1200) (ip,ckI(ip),ip = I,npmax)
1200 format(5(" ip=",i3,c14.3))
write(3,*) :
write(3,*) 'k3’
do 18 id=1,ndmp
do 18 jd=1,ndmp
write(3,*) “id,jd =",id,jd
write(3,1200) (ip,ck3(ip,id,jd),ip = I,npmax)

continuce

endif

Q006G 06000 —

O0C6 0006060600006 0000C0
= .

do 20 i=1,nnmp
do 30 ig=1,nnmp

do 32 ie=1,nclmax
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ijkig =ijk(ie,ig)
cklg(ic,) =cklg(ic,i) + ck(ijkig)*bn(i,ig)
32 ‘continue
C
c
do 34 id=1,ndmp
do 34 ie=1,nelmax
ijki=ijk(ic,i)
ck2g(ic,id,i) =ck2g(ic,id,i) + vel(ic, I JAd,i)*bn(i,ig)
C ck2g(ic,id,i) =ck2g(ic,id,i) + vel(ic, | id,1)*bn(i,ig)
¢ & *rn(ijki)*sat(ijki,1)*rho(ijki,1)
34 continue

if(time.le.-1) then

write(3,%)

write(3,*) k2’

do 35 id =1,ndmp

do 35 ic= l,nelmax

write(3,1100) id, 1 ,ie,(ck2g(ie,id,in),in = I,nnmp)
35  continue

endif

COoOO00000000

do 36 id =1,ndmp
do 36 jd=1,ndmp
do 36 ic=1,nelmax
1jkig = ijk(ic,ig)
ck3g(ic,id,jd,i) = ck3g(ic,id.jd,i) + ck3(ijkig,id,jd)* bn(i,ig)
36 continue

... derivative of saturation wrt capillary head ...

o000

do 40 is=1,nsmp
do 40 ia=I,namp
C write(3,*) ijkig,is,ia,wm(ijkig,is,ia)
do 40 ja=1,namp
do 40 ic = 1,nelmax
ijkig = ijk(ie,ig)
shg(ic,is,ia,ja,i) =shg(ic,is,ia,ja,i)
& +rh()(ijkig,ia)*wm(ijkig,is,ia)*sh(ijkig,iu,ja)*bn(i,ig)
40 continuc
c

do 45 ia=1,namp
C write(3,*) ijkig,ia,sat(ijkig,ia)
do 45 ic=1,nelmax
ijkig =ijk(ie,ig)

173




shmg(ie,ia.i) =shmg(ie,ia,i)
& +ln(ljk|“) xhu(ul\w ia)*sat(ijkig,ia)*bn(i,ig)
45 . continue

. fluid conductivity ...

[T eI o

do 30 is = I,nsmp
do 30 ia =I,namp
do 30 id =1.ndmp
do 30 jd=1,ndmp
do 30 ic=1I,nclmax

Ijklg“l]k(lL ig)
rkg(ie,is.ia,id Jd i) —lk"(lL is,ia,id,jd,i)
& - brhogijkig,ia)*wm(ijKig,is,ia)’ ll\(ljl\lg,ld id,jd)*bn(i,ig)
50 continue

do ]
I ndmp
= 1,nclmax
Jl\ ig uk(ic ig)
rl\mﬂ(u is,jd,i) =rkmg(ic,ia,jd,i)
& - Hrho(ijkig,ia)*vel(ie,ia,jd,i) *ba(i,ig)
-continue

'
'—'" S
(]

N

.. dispersive cocfTicients ..

[N N o NV

do 60 is=1,nsmp
do 60 ia=I,namp
do 60 id=1,ndmp
do 60 jd=1,ndmp
do 60 ic=1,nelmax
kg = ijl\(i(_ ig)
rdg(ic,is,ia ld,]d 1) = rdg(ic,is,ia,id,jd,i)
& +1d(uklg,1s 1a,id,jd)*bn(, W)
& “m(ukl 1) *sat(ijkig,ia)*rho(ijkig,ia)
60) continue

LS

0 continue

. debug ...

o el ¢

if(time.le.dt) then
do 70 ic = [ ,nelmax
do 70 ii=1,nnmp
ijkig = ijK(ic,ii)
do 80 is=l,nsmp
write(3,*) ‘nel,is,ijkig =" ic,is,ijkig

oo oco oo
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c write(3,*) 'sh’

v write(3,1000) ((sh(ijkig,ia,ja).ja = l,namp),ia = 1,namp)

v ‘write(3,*) ‘shg’

c write(3,1000) ((shg(ic,is,ia,ja,ii),ja = l,namp),ia = I,namp)
c1000 format(3(;3c9.2))

c

c do 90 ia=1,namp

c write(3,*) ‘rk,ia="ia

c write(3,2000) ((rk(ijkig,ia,id,jd),jd = I,ndmp),id = 1,ndmp)
C write(3,*) ‘rkg,ia="ia

C write(3,2000) ((rkg(ie,is,ia,id,jd,ii),jd = l,ndmp),id = 1,ndmp)
c2000  format(3(;/3¢9.2))

c90 continuc

c

¢80 continue

c70 continuce

c endif

c

20 continue

c

c

¢c  FFEE computation of clement matrices ***

¢

c

C... €5 matrix ...

c

do 95 ig=1,nnmp
do 95 i=1,nnmp
do 95 j=1,nnmp
do 95 ic=1,nclmax
es(ie,i,j) = es(ie,i,j) + bn(i,ig)*bn(j,ig)*det(ic,ig)
95 continue

c
do 100 ig = I,nnmp
do 100 i=l,nnmp

c _

C... ctc matrix ...

c

do 103 j=1,namp
do 103 ic = 1,nclmax
cte(ie, 1)) = cte(ic,i,j)
& +(cklg(ic,j))
& *det(ie,ig)*bn(j,ig)*bn(i,ig),dt

C ct(i,j) = ctc(ic,i,))

¢ & j/(cKlg(ic,j))/det(ie,ig
c & *dt
103 continue




@]

.. ¢kc matrix ...

oo
o .

do 105 j=1I,nnmp
do 10> id = I,ndmp
do 105 ic =1,nelmax
cke(ie.id,i.j) =eke(ie,id,i,j)
¢ & +det(ic,ig)*bn(i,ig)
& +ck2g(ic,id j)*det(ic,ig)*w(ie, 1,i,ig)
- & *dnr(ie,id,},ig)
¢ & *dwr(ie,ia,id,j,ig)
c ck(i,j) =cke(ie,id,i,j)
¢ & jdet(ic,ig)
croy write(3,*) ‘ck =",ek(i,))
105  continue
c
C... cdc matrix ...
c
do 107 j=1,nnmp
do 107 id =1,ndmp
do 107 jd=1,ndmp
do 107 ic=1,nelmax
ede(ie,id,jd,i.j) = edc(ie,id ,jd,i,j)
& +ck3g(ic,id.jd,j)*det(ie,ig)*dnr(ic,jd,j,ig)
¢ & *dnr(ie,id,i,ig)
& *dwr(ie, 1,id,1,ig)
¢ ed(i,j) =cdc(ie,id,jd,i,))
¢ &  jck3g(ie,id,jd,j)/det(ic,ig)
croy write(3,*) ‘ed =",ed(i,j)
107 continue

C
v

do 100 ia=1,namp
c
C... ctm matrix ...
C

do 102 j=I,nnmp
do 102 ie =1,nelmax
etm(ie,ia,i,j) =ctm(ie,ia,i,j)
& + (shmg(ic,ia,j)) ‘
& *det(ic,ig)*bn(i,ig)*bn(j,ig)/dt
102 continue
c
... ckm matrix ...
c

do 104 j=1,nnmp
do 104 ie = 1,nelmax
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ckm(ic,ia,id,1,j) =ckm(ic,ia,id,i.j)
& +rkmg(ie,ia.id,j)*det(ic,ig) *bn(i,ig)
& *dnr(ie,id,j.ig)
¢ & *dwr(ic,ia,id,i,ig)
104  continuc

C
do 100 is=l,nsmp

C ‘ -

C ¢t matrix

C

do 110 ie=1I,nclmax
ethic,is,ia,i,i) = cth(ic,is,ia,i,i)
& +(shf,(ic is,1,ia,i) +shg(ic,is,2,ia,i) + shg(ie,is,3,ia,i))
& *det(ic, i )*bn(x ig)*bn(i,ig)/dt
110 continue

C
C
do 100 j=1,nnmp
do 100 id =1,ndmp
c

C... cg matrix ...
C
cd cg(ic,is,ia,l,1,i,)) = eg(ic,is,ia,1,1,1,j) + rkg(ic,is,ia,1,1,))*0
3l cgic,is,ia, 1, 1,i,)) =eg(ie,is,ia, 1, 1,i,j) + rkg(ie,is,ia, 1,1,))
€32 cg(ie,is,ia,id,2,i,j) = cg(ic,is,ia 1d,.., i) +rkg(ieis,ia,id,2,p)
c2 cg(ie,is,ia 1d,2,1,]) cg(ic,is,ia,id,2,i,j) +rkg(ie,is,ia,id,2,))
c
do 120 ic=1 nlea‘(

cgh(ic,is,ia,id,2,i,j) = egh(ic,is,ia,id,2,i,j) + rkg(ic,is,ia,id,2,])

& *dnr(lc 1d 1 12) rhor(ia) l‘bn(J ig)*det(ie,ig)
¢ & *dnr(ie,id,i,ig)*rhor(ia)*bn(j,ig)*det(ie,ig)
c & *det(ie, 1g)"dnr(1c,&,1 ig)*rhor(ia)
¢ & *det(ie,ig)*dwr(ic,ia,2,i,ig)*rhor(ia)
120 continue

c \
do 100 jd =1,ndmp
C
C... ¢k matrix ...
c
do 130 ic=1,ncImax
ckhfic,is,ia i(l,jd 1,j) =ckh(ic,is,ia,id,jd,i,j)
& + rkg(lc is,1a,1d,jd,j) *det(ic, ig )"dm(lc Jd,),ig)
& *dnr(ic,id,1,ig)
¢ & *dwr(ic,ia,id,i,ig)
C ‘
C... cd matrix ...
C
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edm(ie.is,ia,id,jd,i.j) =edm(ic,is,ia,id,jd,i,j)
& + rdg(ic,is.ia,id,jd,j)*dct(ic,ig)*dnr(ic,jd,j,ig)
& *dnr(ie,id.i,ig)
& *dwr(ic,ia,id,i,ig)
30 continuc

C

l

C

100 continue
c

¢ write(3,*) ‘et,ck,cd ="ct(l,1),ek(1,1),ed(1,1)
¢

return
end
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oo

C
subroutine basisl

C

C... this subroutine evaluates one dimensional basis functions

¢ and the jacobian matrix, its determinant and inverse ..

c
implicit real*8 (a-h,0-2)
parameter (ndm =2,nsm =2,nam =3,nnm =d4d,npm=112)

. .
dimension
&x(npm),y(npm),z(npm),ijk(npm,nnm),xc(nnm),yc(nnm),zc(nnm),
&en(ndm,nnm),gp(ndm,nnm)

c
dimension ‘
&bn(nnm,nnm),bnd(ndm,nnm,nnm),bndr(ndm,nnm,nnm),
&bnr(ndm,nnm,nnm),dnr(npm,ndm,nnm,nnm),
&dj(nam,nam),dji(npm,nam,nam,nnm),dct(npm,nnm),
&wdn(ndm,nnm,nnm),dwdn(ndm,nnm,nnm) '

C .
common /isct/ nclmux,npmax,ijk,ihulfb,iband,imux,
S ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,time,dt,cp,axi,acta,rgr,ptimc,dptimc,
S pltime,dpltim,crc,wold,wnew
common /space/ X,z
common /bas/ bn,bnd,bndr,bar,dnr,dji,det,wdn,dwdn
common /points/ gp,cn '

c
do 10 ig=1,2

dol3i=1,2

c

C... dircctional component of basis function ...

Cc _

bnd(l,i,ig) =0.5*%(1.d0 +cn(1,i) *gp(1,ig))

c

c... basis function bn(i,ig) ... ~

c

bn(i,ig) =bnd(l,i,ig)

croy  write(3,*) ‘bn =",bn(i,ig)

c ,

c... derivative of directional component bndr = dnxidxi

c

bndr(1,i,ig) =0.5%cn(1,i)
croy write(3,*) ‘bndr =",bndr(1,i,ig)

C
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¢... derivative of basis function bnr = dndxi ...
" bor(l,i,ig) = bndr(l,i,ig)
¢... additional component for upstream weighting ...

wdn(l,1,ig) =0.75*cn(1,i)*(1-gp(1.ig)**2)
dwdn(1,1,ig) = 1.5*cn(1,1)*(-gp(1,ig))

c
15 continue
. :
C... clement coordinates ...
C

do 20 nel=1,nclmax
c

do30i=1,2
ijki =1jk(ncl,i)
xe(i) = x(ijki)
30 continue

c
c
C... computc the clements of jacobian matrix ...
c
dod0i=1,1
do 40 j=1,1
40 dj(i,j) =0.d0
c
do50i=1,2
dj(1,1)=dj(1,1) + bnr(1,i,ig)*xe(i)
50 continuc
c
... compute the determinant of jacobian matrix ...
c

det(nel,ig) =dj(1,1)
croy write(3,*) ‘det =",ncl,ig,dct(ncl,ig)
c
if(det(nel,ig).cq.0) then
write(6,*) ‘determinant 0, so stop’

stop
cndif
C
rdet = 1.d0/dct(nel,ig)
C

c... evaluate the inverse of the jacobian matrix ...

dji(nel,1,1,ig) =rdet
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¢... evaluate the derivative of global basis functions ...
c
~ do'60i=1,2
dnr(nel,1,i,ig) =dji(ncl,1,1,ig)*bnr(l,i,ig).
croy write(3,*) ‘dnr =",dnr(ncl,1,i,ig)
60 continuc

c
20 continue
C

10 continue
c

999 return

cnd
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C

¢

c
subroutinc basis2

c

¢... this subroutine evaluates two dimensional basis functions and

¢ the jacobian matrix, its determinant and inverse ...

c

c .
implicit real*8 (a-h,0-2)
paramcter (ndm =2,nsm=2,nam =3,nnm = 4,npm=112)

c «
dimension ‘
&x(npm),y(npm),z(npm),ijk(npm,nnm),xc(nnm),yc(nnm),zc(nnm)

C
dimension cn(ndm,nnm),gp(ndm,nnm)

c
dimension
&bn(nnm,nnm),bnd(ndm,nnm,nnm),bndr(ndm,nnm,nnm),
&bnr(ndm,nnm,nnm), .
&dnr(npm,mim,nnm,nnm),wdn(ndm,nnm,nnm),dwcln(ndm,nnm,nnm),
&dj(num,num),dji(npm,nam,nam,nnm),dct(npm,nnm)

C
common /isct/ nelmax,npmax,ijk,ihalfb,iband,imax,

ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /setl/ tmax,timc,dt,cp,axi,acta,rgr,ptime,dptimc,
S pltime,dpltim,erc,wold,wnew
common /space/ X,y,z
common /bas/ bn,bnd,bndr,bnr,dnr,dji,det,wdn,dwdn
common /points/ gp,cn
, ¢ :
do10ig=1,4
dol5i=14

C .

¢... dircctional component of basis function ...

C

bnd(1,i,ig) =0.5*(1.d0 +cn(1,i)*gp(1,ig))
bnd(2,i,ig) =0.5*(1.d0 +cn(2,i)*gp(2,ig))

¢... basis function bn(i,ig) ...

C '
bn(i,ig) = bnd(1,i,ig)*bnd(2,i,ig
C . .
c... derivative of directional component bndr = dnxidxi ...
c

bndr(l,i,ig) =0.5*cn(1,i)

182




bndr(2,i,ig) =0.5*cn(2,1)

c
¢... derivative of basis function bnr = dndxj ...
bnr(l,i,ig) =bndr(l,i,ig)*bnd(2,i,ig
bnr(2,i,ig) = bndr(2,i,ig)*bnd(1,i,ig)
c .
¢... additional component for upstream weighting ..
C . .
wdn(l,i,ig) =0.75*cn(1,i)*(1-gp(l Jig)**2)
wdn(2,i,ig) =0.75*cn(2,i)*( -gp(2,ig)**2)
dwdn(l,i,ig) =1.5*cn(l 1)*(-gp(l,ig))
dwdn(2,i,ig) = 1.5%cn(2,i)*(-gp(2,ig))
3>  continue
... tlement coordinates ...

TGO G —G

do 20 ncl=1,nelmax

do30i=1,4
ijki =ijk(nel,i)
xe(i) = x(ijki)
ye(i) = y(ijki)
30  continue

c
C
C... compute the clements of jacobian matrix ...
¢
dod0i=1,2
do40j=1,2
40 dj(i,j) =0.do
C
c
do30i=14
dj(1,1) =dj(1,1) + bar(l,i,ig)*xe(i)
dj(1,2) =dj(1,2) + bnr(l,i,ig)*ye(i)
dj(2,1) =dj@2,D +bnr(2,1,ig)*xe(i)
dj(2,2) =dj(2,2) + bnr(2,i,ig)*ye(i)
50  continue
C . .
C... compute the determinant of jacobian matrix ...
o ,

det(nel,ig) =dj(1 ,l)’*dj(2;2)-(ij(l 2)*dj(2,1)
write(3,*) ‘nelig,det = “neliig,det(nel,ig)

... debug ...

[T o I o T o
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¢ if(time.cq. -1) then
¢ write(3,") ‘time.ncl,ig,det,dj xe,ye’
¢ write(3,1000) time,nel,ig, dct(ml 1g).
c & di(1,1),dj(1,2).dj(2 l)dJ( 2),.
c & xe(1),ye(1),xe(2).ve(2) \C(?) VL(3) xe(d),ye(d)
c000 format(/f10.4,2i5,f10.4/4110.4,810.4)
¢ endif
C
C
if(det(nel,i i g).cq.0) then
write(3,*) “determinant 0, so stop’
stop
cndif
c
rdet = 1.d0/det(nel,ig)
C
c... evaluate the inverse of the jacobian matrix ...
c
dji(nel,1,1,ig) = rdet*dj(2, ”)
dji(nel, 1,2,10) =-rdet*dj(1,2
dji(nel,2,1,ig) =-rdet*dj(2,1)
dji(nel,2,2,ig) = rdet*dj(1,1)
c _
C... evaluate the derivative of global basis functions ...
¢ .
do 60 i=1,4
dnr(nel,l ng,)—djl(ncl L, 1,ig)*bnr(1,i,ig)
& +dji(ncl, l,_,lg)"hm(Z,l,l
dnr(nel,2,i,ig) = dji(nel,2,1 xg)*bnr(l 1,ig)
& +dji(nel,2,2,ig)*bnr(2,i,ig)
60 continue ‘
c
20  continue
c
10 continue
c
c
999 rcturn
end
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subroutine basis3

.. this subroutine evaluates three dimensional basis functions

and the jacobian matrix, its determinant and inversc ...

implicit real*8 (a-h,0-2)
parameter (ndm =2,nsm =2,nam =3,nnm =4,npm = | 12)

dimension
&x(npm),y(npm),z(npm),ijk(npm,nnm),xe(nnm),ye(nnm),ze(nnm)

dimension cn(ndm,nnm),gp(ndm,nnm)

dimension
&bn(nnm,nnm),bnd(ndm,nnm,nnm),bndr(ndm,nnm,nnm),
&bnr(ndm,nnm,nnm),
&dnr(npm,ndm,nnm,nnm),wdn(ndm,nnm,nnm),dwdn(ndm,nnm,nnm),
&dj(nam,nam),dji(npm,nam,nam,nnm),det(npm,nnm)

common /iset/ nelmax,npmax,ijk,ihalfb,iband,imax,

S ipX,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,time,dt,cp,axi,acta,rgr,ptime,dptime,
S pltime,dpltim,erc,wold,wnew

common /space/ X,y,Z
common /bas/ bn,bnd,bndr,bnr,dnr,dji,dct,wdn,dwdn
common /points/ gp,cn \

do10ig=1,8
do15i=1,8

... dircctional component of basis function ...

bnd(l,i,ig) = 0.5*(1.d0 +cn(l,i) *gp(1,ig))
bnd(2,i,ig) = 0.5*(1.d0 +cn(2,i)*gp(2,ig))
bnd(3,i,ig) = 0.5*(1.d0 +cn(3,0)*gp(3,ig))

.. basis function bn(i,ig) ...

bn(i,ig) =bnd(1,i,ig)*bnd(2,i,ig)*bnd(3,i.ig) ’

.. derivative of directional component bndr = dnxidxi ...

bndr(l,i.ig) =0.5*cn(1,i)




bndr(2,i,ig) =0.5*cn(2.)
bndr(3,i,ig) =0.5%cn(3,i)

(¢}

.. derivative of basis function bnr = dndxi ...

oo

bnr(l,i,ig) = bndr(l,i,ig)*bnd(2,1,ig)*bnd(3,1.ig)
bnr(2,1,ig) = bnd(1,1,ig)*bndr(2,i,ig)*bnd(3,1,ig)
bnr(3,1,ig) = bnd(1,1,ig)*bnd(2,1,ig)*bndr(3,i,ig)

C

c... additional component for upstrcam weighting ...

c
wdn(1,i,ig) =0.75*cn(1,i)*(1-gp(l,ig)**2)
wdn(2,i,ig) =0.75*cn(2,i)*(1-gp(2,ig)**2)
wdn(3,i,ig) =0.75*cn(3,1)*(1-gp(3,ig)**2)
dwdn(l,i,ig) = 1.5*cn(1,i)*(-gp(1,ig))
dwdn(2,1,ig) = 1.5*%cn(2,0)*(-gp(2,ig))
dwdn(3,i,ig) = 1.5*cn(3,1)*(-gp(3,ig))

c

15 continue

C

c

C... clement coordinates ...

c

do 20 ncl=I,nclmax

do30i=1,8
ijki =ijk(nel,i)
xe(i) = x(ijki)
ye(i) = y(ijki)
ze(1) = z(ijki)
30 continue

C
c

c... compute the clements of jacobian matrix ...
c

dodi=13
dod0j=1,3

40 dj(i,j) =0.d0

c

c

do30i=1,38
dj(1,1)=dj(1,1) + bar(1,i,ig) *xe(i)
dj(1,2) =dj(1,2) + bnr(L,i,ig)*ye(i)
dj(1,3) =dj(1,3) + bnr(1,i,ig)*ze(i)
dj(2,1) =dj(2,1) + bnr(2,i,ig)*xe(i)
dj(2,2) =dj(2.2) + bar(2,i,ig) *ye(i)
dj(2,3) =dj(2,3) + bnr(2,i,ig) *ze(i)
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dj(3,1)=dj(3,1) + bnr(3,i,ig)*xe(i)
dj(3.2) =dj(3.2) + bnr(3,i,ig)*ye(i)
"dj(3,3) =dj(3,3) + bnr(3,1,ig)*ze(1)

50  continuc
c
... compute the determinant of jacobian matrix ... ‘
C
det(nel,ig) = dj(1,1)*(dj(2,2)*dj(3,3)-dj(2,3)*dj(3,2))
& -dj(1,2)*(dj(2,1)*dj(3,3)-dj(2,3)*dj(3,1))
& +dj(1,3)*(dj(2,1)*dj(3,2)-dj(2,2)*d}(3,1))
C
if(det(ncl,ig).cq.0) then
write(6,*) ‘determinant 0, so stop’
stop :
cndif
c
rdet = 1.d0/det(nel,ig)
c
¢... cvaluate the inverse of the jacobian matrix ...
° .
dji(nel,1,1,ig) = rdct*(dj(2,2)*dj(3,3)-dj(2,3)"‘dj(3,2))
dji(nel,1,2,ig) =-rdet*(dj(1,2)*dj(3,3)-dj(1,3)*d}j(3,2))
dji(nel,1,3,ig) = rdet*(dj(1,2)*dj(2,3)-dj(1,3)*dj(2,2))
(l]l(m,l,._,l,ig_,)=-rdct*(dj(2 1)*dj(3,3)-dj(2,3)*dj(3,1))
dji(nel,2,2,ig) = rdet*(dj(1,1)*dj(3,3)-dj(1,3)*dj(3,1))
dji(nel,2,3,ig) = -rdet*(dj(1,1)*d}(2,3)-dj(1,3)*dj(2,1))
dji(nel,3,1,ig) = rdet*(dj(2,1)*dj(3,2)-dj(2,2)*dj(3, l))
dji(nel,3,2,ig) = -rdet*(dj(1,1)*dj(3,2)-dj(1,2)*dj(3,1))
dji(nel,3,3,ig) = rdet*(dj(1,1)*dj(2,2)-dj(1,2)*dj(2,1))
C
c... evaluate the derivative of global basis functions ...
c
do 60 i=1,nnmp
dnr(nel,1,1,ig) =dji(nel,1,1,ig)*bnr(1,i,ig)
& +dji(nel, 1,2,ig)*bnr(2,i,ig)
& +dji(nel,1,3,ig)*bnr(3,i,ig)
dnl(ncLEJJg)—-dp(nch_,lig)*bnr(liié)
& +dji(nel,2,2,ig)*bnr(2,i,ig)
& +dji(nel,2,3,ig)*bnr(3,i,ig)
dnr(nel,3,i,ig) = dji(nel,3,1,ig)*bnr(1,i,ig)
& +dji(nel,3,2,ig)*bnr(2,i.ig)
& +dji(nel,3,3,ig)*bnr(3,i,ig)
60  continuc
c
20 continuc
c

10 continue
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C
999 return
end
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subroutine weighl

.. this subroutinc evaluates one dimensional weighting function

and its derivative ...

implicit real*8 (a-h,0-z)
paramcter (ndm =2,nsm =2,nam =3,nnm = 4,npm=112)

dimension
&ijk(npm,nnm),wcit‘(npm,nam,ndm,nnm),
&w(’npm,nam,nnm,nnm),wd(nam,ndm,nnm,nnm),
&\\'dr(nam,ndm,nnm,nnm),dwr(npm,nam,ndm,nnm,nnm)

dimension
&bn(nnm,nnm).bnd(ndm,nnm,nnm),bndr(ndm,nnm,nnm),
&bnr(ndm,nnm,nnm),
&dnr(npm,ndm,nnm,nn‘m),dj(nam,nam),dji(npm,nam,nam,nnm),
&\vdn(ndm,nnm,nnm),dwdn(ndm,nnm,nnm),dct(npm,nnm)

common /iset/ nelmax,npmax,ijk,ihalfb,iband,imax,

S ipX,ipy,npX,npy,ndmp,nsmp,namp,nnmp
common /setl/ tmax,time,dt,cp,axi,acta,rgr,ptimc,dptimc,
S pltime,dpltim,crc,wold,wnesw

common /bas/ bn,bnd,bndr,bnr,dnr,dji,det,wdn,dwdn
common /wei/ w,dwr,weif

. ¢valuate the local weighting functions ...

write(3,*) ‘wxi(i),w(i)’ -

do 10 ia=1,namp

do10i=1.2

do 10ig=1,2

do 10 nel=1,nclmax
wd(ia,1,1,ig) = bnd(1,i,ig)-0.6*wdn(l,i,ig)
wd(ia,1,i,ig) =bnd(1,i,ig) + weif(nel,ia, 1 LDFwdn(lLi,ig
w(nel,ia,i,ig) = wd(ia,l,i,ig)

writc(3,i00) wdn(l,iig),dwdn(l,i,ig),weif(nel,ia,1,i) .

¢l00 format("'wdn,dwdn,weif =",3¢10.3)

C

C..

- evaluate the derivatives of the local weighting functions ...
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write(3,*) “dwdxi(i)’

o000

wdr(ia, 1,i,ig) = bnr(1,1,ig)-0.6*dwdn(1 1,ig)
wdr(ia, 1,i,ig) =bnr(1,i,ig) + weif(nel,ia, 1 J)*dwdn(l,i,ig)

c
c... evaluate the derivatives of the global weighting functions ...
c
dwr(ncl,ia, 1,i,ig) = dji(nel,1,1,ig)*wdr(ia, 1 JL,ig)
c _
10 continue
C
c
return
end
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subroutine weigh?2

. this subroutine evaluates two dimensional weighting functions
and their derivative ...

00060

implicit rcal*8 (a-h,0-z)
parameter (ndm =2,nsm =2,nam = 3,nnm =d,npm=112)

dimension

&ijk(npm,nnm),weif(npm,nam,ndm,nnm),
&w(npm,nam,nnm,nnm),wd(nam,ndm,nnm,nnm),
&wdr(nam,ndm,nnm,nnm),dwr(npm,nam,ndm,nnm,nnm)

dimension
&bn(nnm,nnm),bnd(ndm,nnm,nnm),bndr(ndm,nnm,nnm),
&bnr{(ndm,nnm,nnm),
&dnr(npm,ndm,nnm,nnm),dj(nam,nam),dji(npm,nam,nam,nnm),
&wdn(ndm,nnm,nnm),dwdn(ndm,nnm,nnm),det(npm,nnm)

common /isct/ nelmax,npmax,ijk,ihalfb,iband,imax,

S ipX,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,time,dt,ep,axi,aeta,rgr,ptime,dptime,
S pltime,dpltim,erc,wold,wnew

common /bas/ bn,bnd,bndr,bnr,dnr,dji,det,wdn,dwdn
common /wei/ w,dwr,weif

.. cvaluate the local weighting functions ...

write(3,*) “wxi(i),weta(i),w(i)’

OOO_GOO

do 10 ia=1,namp
do10i1=14
do 10 ig=14
do 10 nel=1,neclmax -
wd(ia, L,i,ig) = bnd(1,i,ig) + weif(ncl,ia, 1,i)*wdn(1,i,ig)
wd(ia,2,i,ig) = bnd(2,i,ig) + weif(nel,ia,2,i)*wdn(2,i,ig
w(nel,ia,i,ig) = wd(ia, 1 ,i,ig)*wd(ia,2,i,ig)
C
c write(3,100) wd(ia, 1,i,ig),wd(ia,2,i,ig),w(ncl,ia,i,ig)
cl100  format(3¢10.3)
c
c... evaluate the derivatives of the local weighting functions ...
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C

c
10
v
c

write(3,*) ‘dwdxi(i),dwdeta(i)’

wdr(ia,l,i,ig) = bnd(’ i,ig)*(bnr(1,i,ig

& weif(nel,ia,1,i)*dwdn(1, 11 ))
wdr(ia,2,i,ig) = bnd(1,1,ig)*(bnr(2,i, 1g) +
& weif(nel,ia,2,i)*dwdn(2,i,ig))

.. evaluate the derivatives of the global weighting functions ..

dwr(ncelia,1,i,ig) =dji(nel,1,1,ig)*wdr(ia,1 ,1.1g)

& +dji(nel,1,2,ig)*wdr(ia,2,i,ig)
dwr(nel,ia,2 1,w)~d]1(ml 2,1,ig)*wdr(ia,1,i,ig)
& +dji(nel,2,2, 10)*\\'dr(1a,2,1 1g)
continue
return
end
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C
c

@

subroutine weigh3

... this subroutine evaluates three dimensional weighting function

and their derivatives ...

implicit real*$ (a-h,0-z)
parameter (ndm=2,nsm =2,nam =3,nnm = 4,npm=112)

dimension
&ijk(npm,nnm),\vcif(npm,nam,ndm,nnm),
&w(npm,nam,nnm,nnm),wd(nam,ndm,nnm,nnm),
&wdr(nam,ndm,nnm,nnm),dwr(npm,nam,ndm,nnm,nnm)

dimension®
&bn(nnm,nnm),bnd(ndm,rmm,nnm),bndr(ndm,nnm,nnm),
&bnr(ndm,nnm,nnm),
&dnr(npm,ndm,nnm,nnm),dji(npm,nam,nam,nnm),
&wdn(ndm,nnm,nnm),dwdn(ndm,nnm,nnm),dct(npm,nnm)

common /isct/ nelmax,npmax,ijk,ihalfb,iband,imax,

S ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,timc,dt,cp,axi,acta,rgr,ptimc,dptime,
S pltime,dpltim,erc,wold,wnew

common /bas/ bn,bnd,bnclr,bnr,dnr,dji,dct,\\-'dn,dwdn
common /wei/ w,dwr,wcif

.. evaluate the local weighting functions ...

write(3,*) “wxi(i),weta(i),w(i)’

do 10 ta=I,namp

do10i=1,8

do 10ig=1,8

do 10 nel = I,nelmax : :
wd(ia, 1,i,ig) =bnd(1,i,ig) + weif(nel,ia, 1 JD*wdn(l,i,ig)
wd(ia,2,i,ig) =bnd(2,i,ig) + weif(nel,ia,2,i)*wdn(2,i,ig)
wd(ia,3,i,ig) =bnd(3,i,ig) + weif(nel,ia,3,iy*wdn(3,i,ig)
w(nel,ia,i,ig) =wd(ia,1 $Lig)*wd(ia,2,1,ig)*wd(ia,3,i,ig)

write(3,100) wd(ia,l,i,ig),\vd(izl,2,i,ig),w(ncl,in,i,ig) '

cl00 format(3cl0.3)

C
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c... evaluate the derivatives of the local weighting functions ...
v
C write(3,*) ‘dwdxi(i),dwdeta(i)’
v
wdr(ia,l,i,ig) =bnd(2,i,ig)*bnd(3,i 10) (bnr(l i,1g)
& weif(nel,ia, 1,i)* d\\dn(l 1,ig))
wdr(ia,2,i,ig) =bnd(l,i,ig)*bnd(3,i 12)*(bnr(2,i,ig) +
& weif(nel, 13,2,1) "dwdn(z 1,ig))
wdr(ia,3,i,ig) = bnd(l,i,ig)*bnd(2.i,i ) (bnr(3,i,ig
& weif(nel,ia,3,i)*dwdn(3,1,ig))
c
c... cvaluate the derivatives of the global weighting functions ...
dwr(nel,ia,1,i,ig) = dji(nel,1,1,ig)* \vdr(m 1,i,ig)
& +dji(nel,1,2,ig)*wdr(ia.2,i,ig)
& +dji(m,1 1,3,ig)*wdr(ia,3,i,ig)
dwr(nel,ia,2,i,ig) = d]l(l’lCl,_,l ig)"‘wdr(ia,l,i,ig)
& +dji(nel,2,2,ig)*wdr(ia,2,i,ig)
& +djl(l’1t.1 2,3,ig)*wdr(ia,3,i,ig)
dwr(nel,ia,3,i,ig) =dji(nel,3,1,ig)*wdr(ia,1,i,ig)
& +dji(nel,3,2,ig)*wdr(ia,2,i,ig)
& +dji(nel,3,3,ig)*wdr(ia,3,i,ig)
10 continue
c
c
return
cnd
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subroutine boundI(agh,th,is,ia)

.. this subroutinc cvaluates first-type boundary conditions
- about pressure head ... '

< h=hbel(i) >

nbel : total number of nodes on st boundary
nocbI(i) :node number of Ist boundary

hbel(i)  : value of head on boundary point nocbl(i)
penalt  : penalty value

implicit real*8 (a-h,0-z)
parameter (ndm =2,nsm=2,nam=3,nnm = 4,npm=112)

dimcnsion
&agh(npm,45,nsm,nam),f‘h(npm,nsm,nam),ijk(npm,nnm),
&noebl(npm,nam),hbel(npm,nam),nbel (nam),h(npm,nam)

common /iset/ nclmax,npmax,ijk,ihalfb,iband,imax,
S ipx,ipy,np.\',npy,ndmp,nsmp,namp,nnmp

common /ibl/ nbel,nocbl
common /bl/ pecnalt,hbel

do 10 ip=1,nbel(ia)

j=nocbl(ip,is) »

agh(j,ihalfb + 1is,ia) = agh(j,ihalfb + 1,is,ia) + penalt
fh(j,is,ia) =fh(j,is,ia) + penalt*hbel(ip,ia)

write(3,*) *hbe,i=",hbel(ip,ia),ip

continue

write(3,%) ‘hbel(1,1),agh(2,2,1,18) =", hbel(1,1),agh(2,2,1,18)

return
cend
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subroutine bouncl(age,fc,sat)

.. this subroutine evaluates first-type boundary conditions

for mass fraction ...
< wm=wmbel(i) >
penalt : penalty value

implicit real*8 (a-h,0-z)
parameter (ndm =2,nsm =2,nam =3,nnm =4,npm = 1 12)

dimension
&agc(npm,45),fc(npm),ijk(npm,nnm),c(npm),oldc(npm),
&wm(npm,nsm,4),oldwm(npm,nsm,4),sat(npm,nam),
&rn(npm),rho(npm,4),rhor(nam)

common /isct/ nelmax,npmax,ijk,ihalfb,iband,imax,
S ipX,ipy,npx,npy,ndmp,nsmp,namp,anmp

common /part/ wm,oldwm
common /part2/ ¢,oldc
common /poro; rn
common /dens/ rho,rhor

hwoo=1.1012¢-3
sro=0.30
penalt = 100000000.

~do 10 ip=I,npmax

if(sat(ip,2).gt.sro) then

wm(ip,2,1) =wm(ip,2,2)*hwoo
c(ip)=wm(ip,2,1) -
c(ip)=wm(ip,2,l)*rn(ip)*sat(ip,l)*rho(-ip,l)
age(ip,ihalfb + 1) =age(ip,ihalfb + 1) + penalt
fe(ip) =fc(ip) + penalt*c(ip)

write(3,*) “fc,c,i=",fc(j),c(ip),ip

cndif

10 continue

C

return
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subroutine bounl2(fh,is,ia)
.. this subroutinc evaluates onc dimensional second-type
boundary conditions ... ‘

< dh/dx=hbe2(i) >

nbc2 : total number of nodes on 2nd boundary
nocb2(i) : node number of 2nd boundary
hbe2(i)  : value of flux on noeb2(i)

cocoocoo00co0o000e

implicit real*8 (a-h,0-z)
parameter (ndm =2,nsm =2 nam =3,nnm =4,npm=112)

(@]

dimension
&l‘h(npm,nsm,nam),ijk(npm,n'nm),.\'(npm),y(npm),z(npm),‘
&nocb2(npm,nam,nnm),h be2(npm,nam,nnm),nbe2(nam)

common /iset/ nclmax,npmax,ijk,ihalfb,iband,imax,

S ip.\',ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,timc,dt,cp,zlxi,ucta,rgr,ptimc,dptimc,
S pltime,dpltim,crc,wold,wnew

common /space/ X,y,z

common /ib2/ nbe2,noebh2
common /b2/ hbe2

O o

write(3,*) fh(noeb2(ip,ia,1),is,ia)
do 10 ip=,nbe2(ia)
fh(nocb2(ip,ia,l),is,ia) = fh(noeb2(ip,ia, 1),is,ia) + hbe2(ip,ia,l)
10 continue
¢ write(3,*) fh(noeb2(ip,ia,1),is,ia)
c
return
cnd
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subroutinc boun22(fh,is,ia)

.. this subroutinc cvaluates two dimensional sccond-type
boundary conditions ...

oo

< dh/dx =hbe2(i) >

nbe2 : total number of nodes on 2nd boundary
nocb2(i) : node number of 2nd boundary
hbe2(i) : value of flux on noeb2(i)

OO0 000606006066

implicit rcal*8 (a-h,0-z)
parameter (ndm =2,nsm=2,nam=3,nnm=4,npm=112)

dimension
&th(npm,nsm,nam),ijk(npm,nam),x(npm),y(npm),z(npm),
&nocb2(npm,nam,nnm),hbe2(npm,nam,nnm),nbe2(nam)

common /iset/ nelmax,npmax,ijk,ihalfb,iband,imax,

S ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /sctl/ tmax,time,dt,ep,axi,acta,rgr,ptime,dptime,
S pltime,dpltim,erc,wold,wnew

common /space/ X,Y,Z

common /ib2/ nbe2,noeb2
common /b2/ hbe2

do 10 ip=1,nbc2(ia)
db =dsqrt((x(noecb2(ip,ia,I))-x(noecb2(ip,ia,2)))**2

&  +(y(nocb2(ip,ia,l))-y(nocb2(ip.ia,2)))**2)
dh =0.5d0*(hbe2(ip,ia,1) + hbe2(ip,ia,2))
fh(noeb2(ip,ia,1),is,ia) = fh(noeb2(ip,ia,1),is,ia) + 0.5d0*db*dh
fh(nocb2(ip,ia,2),is,ia) = fh(nocb2(ip,ia,2),is,ia) + 0.5d0*db*dh

10 continue
C
return
cnd
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subroutine boun32(fh,is,ia)

.. this subroutine evaluates three dimensional second-type
boundary conditions ...

< dh/dx=hbe2(i) >

nbe¢?2 : total number of nodes on 2nd boundary
nocb2(i) : node number of 2nd boundary
hbe2(i) : value of flux on noeb2(i)

implicit real*8 (a-h,0-z)
parameter (ndm = 2,nsm =2,nam =3,nnm =4,npm = 112)

dimension
&th(npm,nsm,nam),ijk(npm,nnm),x(npm),y(npm),z(npm),
&noceb2(npm,nam,nnm),hbe2(npm,nam,nnm),nbe2(nam)

common /isct/ nclmax,npmakx,ijk,ihalfb,iband,imax,
ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp

common /setl/ tmax,time,dt,ep,axi,acta,rgr,ptime,dptime,

S pltime,dpltim,crc,wold,wnew

common /space/ X,¥,Z :

common /ib2/ nbe2,nocb?2
common /b2/ hbe2

do 10 ip=1,nbe2(ia)
db =dabs((x(nocb2(ip,ia,1))-x(noch2(ip,ia,2)))

& *(y(noeb2(ip,ia,1))-y(noeb2(ip,ia,4))))

-dh=0.25d0*(hbe2(ip,ia,l) + hbe2(ip,ia,2)

& + hbe2(ip,ia,3) +hbe2(ip,ia,4))
th(nocb2(ip,ia,1),is,ia) = fh(noeb2(ip,ia, 1),is,ia) + 0.23d0*db*dh
fh(noeb2(ip,ia,2),is,ia) = fh(noeb2(ip,ia,2),is,ia) + 0.25d0*db*dh
fh(nocb2(ip.ia,3),is,ia) = fh(noeb2(ip,ia,3),is,ia) + 0.25d0*db*dh
fh(noeb2(ip,ia,4),is,ia) = fh(nocb2(ip,ia,4),is,ia) + 0.25d0*db*dh

10 continue

FCtUTH




cnd
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c
subroutine solve(kkk,b,r,neq,ihalfb)

c

¢... this subroutine solves asymmetric band matrix

¢ using Doolittle mcthod ...

C

C

c

¢ kkk=1 triangularizes the band matrix b

¢ kkk=2 solves for right side r, solution returns in r

C

implicit real*8 (a-h,0-z)
parameter (ndm =2nsm=2nam=3,nnm=4,npm=112)

c
dimension b(npm,45),r(npm)
v
nrs =ncq-1
ihbp =ihalfb +1
if (kkk.cq.2) go to 30
C
c... triangularize matrix using doolittle method ...
c

do 10 k=1,nrs
pivot =b(k,ihbp)
kk=k+1
kc=ihbp
do 20 i=kk,neq
ke =ke-1
if(kc.le.0) go to 10
¢ =-b(i,kc)/pivot
b(ikc)=c
ki=kc+1
lim =kc +ihalfb
do 20 j=Kki,lim
jc=thbp +j-kc
c write(3,*) b(’,i,,",j,") = ",b(i,),c =",¢,"b(k,jc)",b(j,kc)
20 b(1,j) =b(i,j) +c*b(k,jc)
10 continue

go to 100
C
c... modify load vector r ...
c

30 nn=necq+]l
iband =2*ihalfb + 1
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do 40 1=2,ncq
. Jc=ihbp-i+1

=1
if (jc.le.0) go'to 50
£o to 60
50 je=1
ji=i-ihbp +1
60  sum=0.0

do 70 j=jc,ihalfb

sum =sum + b(i,j)*r(ji)
70 ji=ji+1
40 r(i)=r(i) +sum

C
¢... back solution ...

(o]

r(neq) =r(ncq)/b(neq,ihbp)
do 80 iback =2,ncq
i=nn-iback
ip=i
kr=ihbp +1
mr = min0O(iband,ihalfb +iback)
sum =0.0
do 90 j=kr,mr
jp=jp+l1
90  sum=sum +b(i,j)*r(jp)
80 (i) =(r(i)-sum)/b(i,ihbp)

100 return
end
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C
C ]
C
subroutine output(h,sat)
c
C... this subroutine prints out results of simulation ...
C
c
C
implicit real*8 (a-h,0-z)
parameter (ndm =2,nsm =2,nam =3,nnm = 4,npm=112)
c :
dimension h(npm,nam),sat(npm,nam),ijk(npm,nnm)
dimension wm(npm,nsm,4),oldwm(’npm,nsm,4),wmp(npm,nam)
c
common /iset/ nelmax,npmax,ijk,ihalfb,iband,imax,
S ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp
common /setl/ tmax,time,dt,cp,axi,acta,rgr,ptimc,dptimc,
S pltime,dpltim,erc,wold,wnew
common /part/ wm,oldwm
c
write(2,1000) time
write(9,1000) time
write(10,1000) time
c
c
do 10 is=1,nsmp
write(6 +is,1000) time
c
C... pressure head ...
c
write(2,*) ‘pressure’
write(2,*) ‘is="is
call outp(h,is,2
c
C... saturation ...
C
write(2,*) ‘saturation’
call outp(sat,is,2)
C
C... plot oil saturation in file *.plt ..
c
call outp(sat,is,6 + is)
c
10 continuc
c .




C... plot mass fraction of tce species in water phasc ...
C
do 20 ip=I,npmax
wmp(ip,2) =wm(ip,2,1)*1000
20 continuc
call outp(wmp,2,9)

... plot concentration of tce species in water phase
over clementary volume ...

oo

do 30 ip=1,npmax
wmp(ip,2) =sat(ip,1)*wm(ip,2,1)* 1000
30 continuc
call outp(wmp,2,10)

c
1000 format(/t10,’time = ",f10.4/)
c

return

cend

o
O
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subroutine outp(h,ia,iw)

this subroutine plot results ...

implicit real*$ (a-h,0-z)
parameter (ndm =2,nsm=2,nam = 3,nnm=4,npm=1 12)

dimension h(npm,nam),px(41,41),py(41,41),ph(4l,41),ijk(npm,nnm)

common /iset/ nelmax,npmax,ijk,ihaltb,iband ,Jimax,

S ipx,ipy,npx,npy,ndmp,nsmp,namp,nnmp

30

- 40

C

common /axis/ px,py

kk=0
do 10i=1,npx
do 10 j=1,npy
kKk=kk+1
ph(i,j) = h(kk,ia)

write(iw,*) ‘iz=1"
write(iw,1000) (px(i,1),i = 1,npX,ipx)
do 20 j=npy,l,ipy
write(iw,2000) py(1,j),(ph(i,j),i =1 PX,ipX)

if(ndmp.cq.3) then
do 30 i=1,npx
do 30 j=1,npy
kk=Kkk+1
ph(i,j) =h(kk,ia)

write(iw,*) ‘iz=2"
write(iw,1000) (px(i,1),i = l,npx,ipx)
do 40 j=npy,l,ipy
write(iw,2000) py(1,j),(ph(i,),i = l,npx,ipx) -
cndif

1000 format(t4,’y/x’,t8,227.2)
2000 format(22f7.2)

C

return
cnd

//£0.ft01f001 dd dsn = igpeckim.cmgm.dat,disp = old




/720.ft021001 dd dsn = igpckim.cmgm.out,disp =old
//20.ft031001 dd dsn = igpckim.cmgm.deb,disp = old
//20.t07001 dd dsn =igpckim.cmgm.pll,disp = old
/801108001 dd dsn = igpckim.cmgm.pl2,disp = old
/7£0.11091001 dd dsn = igpekim.cmgm.pl3,disp = old
//20.ft10f001 dd dsn = igpekim.cmgm.pld4,disp = old




