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ABSTRACT OF THE DISSERTATION

Estimating Volatilizarion Rates and Gas/Liquid

Mass Transfer Coefficient in Aeration Systems
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The mass-transfer coefficients (K a’s) for oxygen and twenty volatile organic
compounds (VOCs) were simultaneousiy measured in bench-scale surface and bubble
column aeration systems under a range of hydrodynamic conditions. Henry’s
coefficients for selected compounds were measured using the Equilibrium Partitioning
in Closed System (EPICS) procedure, and compared to previously reported values.
Using these measurements, the ratio of gas-phase to liquid-phase mass transfer

coefficients and liquid-phase resistance were estimated using nonlinear regression.

A corrected W-value, called ¥,,, was proposed as a method for improving the
estimation of stripping rates for low volatility compounds. Good correlations between
predicted (using ‘¥',,) and measured (in experiments) values of K a of twenty VOCs

proves the validity of the ¥, concept.

In these experiments the ratio of gas-phase to liquid-phase mass transfer
coefficients was found to vary with the hydrodynamic conditions of the gas-phase and

liquid-phase, instead of being a fixed value as suggested by previous studies. Surface
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aeration experiments performed with constant air velocity resulted in a relatively con-
stant gas transfer coefficient. However, the air phase hydrodynamic condition in the
bubble column varied with the air flow rate. The ratios of gas-phase to liquid-phase
mass transfer coefficients in the bubble column (2.2 - 4.6) were much smaller than
those in the surface aeration experiments (38 - 110), indicating that gas-phase resis-

tance in the bubble column is much more significant than in surface aeration.

The use of a transfer parameter to predict volatilization rates of VOCs from
bubbie aeration has been confirmed by analysis of dimensionless parameters. Dimen-
sionless parameters incorporating the Henry’s coefficient (Hc) and the air flow-to-

liquid volume ratio were developed to predict the volatilization rate of VOCs.

Finally, the application of the ¥,,-concept was demonstrated by means of an
example for surface aeration and bubble column. The calculated results indicated that
the oxygen transfer rate of the bubble column is higher than that of surface aeration.
However, the volatilization rates of VOCs are greater with surface aeration than with
bubble column. These results can be attributed to the higher gas-phase resistance

which occurs in the bubble column.
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1. INTRODUCTION

Volatile organic compounds (VOCs) frequently contaminate waters and waste-
waters and can be stripped during treatment, particularly aeration, to generate air con-
taminants (Chang et al. 1987, Boyle et al. 1989). Many VOCs are non-biodegradable
in conventional wastewater treatment plants, and volatilization can become a
significant removal mechanism in the activated sludge process (Namkung and
Rittmann, 1987). Moreover, many of these substances are thought to be toxic, and
may pose health risks. Controlling VOC emissions from treatment plants therefore

has become an important environmental issues.

Many VOCs have been listed as priority pollutants (1979 Amendments to the
Clean Water Act) or toxicants (1980 Resources Conservation and Recovery Act, the
1986 Superfund Amendments and Reauthorization Act, and the 1986 Soft Drinking
Water Act Amendments). Additional regulation is pending in the amendments to the
Clean Air Act (S-1630), and emissions from Publicly Owned Treatment Works

(POTWs) have been specifically implicated (Baillod et al. 1990).

Among wastewater treatment facilities, aeration tanks are a significant source
of VOC emissions. Two types of aeration systems, surface aeration and diffused or
bubble aeration, are widely used to achieve oxygen transfer. The
volatilization/stripping rates of VOCs can be estimated by the two resistance model
which is broadly used to estimate oxygen transfer rate in the aeration systems. Previ-
ous research (Smith et al. 1980, 1981; Matter-Muller et al. 1981; Rathbun and Tai
1982, 1984; Mumford and Schnoor 1982; Roberts et al. 1983, 1984a; Truong and

Blackburn 1984; and Cadena et al. 1984) defined a proportional relationship of mass




transfer coefficients between VOCs and oxygen as ¥, which can be used to estimate
VOCs stripping rate from the oxygen transfer rate. This application, however, is only
valid for highly volatile compounds and may not be applied to less volatile com-
pounds. Thus, theoretical analyses of ém;ssions of low volatility compounds needs

further investigation.

In order to use the W-value concept, Mackay et al. (1979) suggested that strip-
ping of volatile organic compounds with Henry’s law coefficients higher than 5.00 x
1073 atm m> mol™}, or dimensionless Henry’s law coefficients of 0.20. at 20 °C is
controlled by liquid film resistance. Several researchers (Smith et al. 1980, 1981;
Matter-Muller et al. 1981; Rathbun and Tai 1982, 1984; and Truong and Blackburn
1984) adopted that criterion with minor modification. For these conditions, the gas
film resistance is negligible and the liquid film mass transfer coefficient is assumed to

be approximately equal to the overall mass transfer coefficient.

The relative importance of gas and liquid resistance is estimated by a ratio of
gas-film to liquid-film transfer coefficients (kg/ky ) with a reported average value of
150. The average ratio of 150 (range from 50 to 300) was introduced by Mackay and
Leionoen (1975) and Mackay et al. (1979). They estimated this value using kg for
water (1000-3000 cm hr!) and k; for O, (20 cm hr!) at the air and ocean surface
interface data provided by Liss and Slater (1974). This assumption has been widely

applied to aeration systems (Smith et al. 1980; Roberts et al. 1983).

This high ratio might be valid for natural bodies of water, but for more tur-
bulent aeration systems such as surface and bubble aeration systems, Munz and

Roberts (1984) demonstrated kg/k; to be closer to 20. They developed an indirect




approach of fitting overall mass transfer rate constants to the two-resistance model
with appropriate corrections for molecular diffusivities from Goodgame and Sher-
wood (1954). In such systems, the compounds must be quite volatile (Hc > 1.27 or
3.05 x 1072 atm m® mol™!) to ensure that a't least 95% of mass transfer resistance is in

liquid film in order to justify ignoring the gas film resistance.

In this study, a modification of ¥-value, corrected for liquid resistance and
referred to as ¥,,, was proposed as a method for predicting stripping rates of VOCs
with widely varying properties. Such a methodology improves the estimation of strip-
ping rates for intermediate and low-volatility compounds by eliminating the error

introduced by ignoring liquid resistance.

In a bench-scale surface aeration, mass transfer rates of twenty VOCs and oxy-
gen wransfer rates were simultaneously measured. From these measurements, ‘¥ was
determined over a range of hydrodynamic conditions to verify this methodology.
Finally, the relationship between stripping rates of VOCs and power input per unit

volume were conducted to develop a protocol for scale-up application.

In a bubble column, mass transfer rate, the degree of equilibrium or Henry’s
coefficient (Hc), were investigated. The value of Henry’s coefficient (Hc) is an
important factor for determining the degree of transfer rate, and literature values for
VOCs can differ by more than 50%. Therefore, Henry’s coefficient of twenty VOCs
were measured by Equilibrium Partitioning in Closed System (EPICS), and was com-
pared to the results of bubble column. The relationship between the degree of transfer

during bubble aeration and Henry’s coefficient for 20 VOCs were studied.




1.1 Choice of Organic Compounds

Table 1 shows the properties of organic compounds chosen for this study. Fig-
ure 1 plots log solubility versus log vapor pressure illustrating the properties of twenty
VOCs used. These 20 organic compounds span the range of volatility to simulate sys-
tems with liquid side resistance controlling to systems with both gas and liquid side
resistance. The values for S (solubility), P (vapor pressure), B.P. (boiling point) and
Hc (dimensionless Henry’s coefficients) in Table 1 were obtained form published data
(Mackay et al. 1979; Roberts et al. 1984, and Verschueren, 1977). The agreement in
values of P and S among various workers is quite good, but there are wide discrepan-
cies in values of Hc for some of the compounds. Values of Hc were chosen either on
the basis of agreement among various workers or the data judged to be most accurate.

Additionally, Henry’s law coefficients for selected compounds were measured.
1.2 Objectives

The objectives of this study were:

° To estimate the stripping rate of 20 organic compounds spanning a
wide range of Henry’s coefficients;

° To estimate the ratio of gas-phase and liquid-phase mass transfer
coefficients;

) To determine the fraction of liquid resistance to overall resistance for

20 VOC:s under different hydrodynamic conditions;

° To verify the modified approach (‘¥',) for correcting liquid resistance
and for predicting the stripping rate of wide range of compounds;

° To determine the degree of equilibrium of 20 VOCs in a bubble
column;

. To measure Henry’s coefficient in equilibrium experiments and in a




Table 1. Properties of twenty VOCs studied

Compounds Formula ABB MW. S P B.P. He | RT
(760 mmHg, 200C) grams j (mg/L) | (mmiHg)| (O () | (min)
1,2-Dichloroethene (cis) {CHCI=CHC1 IZDCE" 96.9 3500.0 | 206.02 60.3 | 0.170 4.6
Chloroform CHC13 CLF 1194 | 80000 | 160.00 | 61.7 | 0.160 | 52
1,1,1-Trichloroethane  {CCI3CH3 11ITCA{ 1334 { 7200 | 100.00 | 741 { 0530 | 55
Carbon Tetrachloride (CCl4 CT 153.8 | 800.0 90.00 765 | 1316 | 58
Benzene C6H6 BZ 78.1 1780.0 76.00 80.0 | 0.230 6.2
Trichloroethylene CC12=CHCI TCE 1314 | 11000 | 58.00 870 | 0250 | 76
Toluene C6H5-CH3 TLN 92.1 515.0 2200 | 1100 | 0230 | 106
Perchlorothylene CC12=CC12 PCE 1658 | 140.0 18.00 | 12101 0570 | 119
Ethylenebromide CH2BrCH2Br | EDB 1879 | 43100 | 11.00 | 131.6 | 0.041 | 128
Chlorobenzene C6eH5-Cl CBZ 1126 | 500.0 8.80 1320 0.150 | 141
Ethylbenzene C6H5-CH2CH] EBZ 1062 | 152.0 7.00 1360 { 0.260 | 14.6
1,3-Xylene (m) C6H4-(CH3)2 | MXY | 1062 | 146.0 6.00 1390 | 0240 | 149
1,2-Xylene (O) C6H4-CH3)2 | OXY 1062 | 213.0 5.00 1444 | 0180 | 159
Bromoform CHBr3 BF 2528 | 3033.0( 5.60 1495 | 0.041 | 164
Bromobenzene C6H5Br BBZ 1570 | 500.0 3.30 156.0 § 0.100 | 17.7
1,122-Tetrachloroethan¢ CHCI2CHCI2 {1122TCA| 1679 | 3100.0 6.50 146.2 { 0.042 18
1,3-Dichlorobenzene  |C6H4CI2 13DCB | 1470 | 111.0 1.49 1730 | 0.120 | 205
1,4-Dichlorobenzene  |C6H4Cl2 14DCB | 147.0 79.0 0.60 1740 { 0.110 | 20.8
1,2-Dichlorobenzene  [C6H4CI2 12DCB | 147.0 | 100.0 1.00 179.0 | 0.087 | 21.8
Naphthalene C10H8 NAPH | 1282 30.0 00109 | 2179 | 0.038 | 27.3
ABB: Abbreviation M.W.: Molecular Weight B.P.: Boiling Point

S: Solubility

P: Partial Pressure

Hc: Henry's Coefficient

R.T.: Retention Time in GC
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bubble column for 20 VOCs, and

To develop a simple mathematical model with these data to describe
VOCs removal in aeration systems typically found in water and waste-
water treatment plants.




2. LITERATURE REVIEW AND THEORETICAL DEVELOPMENT
2.1 Phase Equilibrium - Henry’s Coefficients

Henry’s Law has been widely used to express the equilibrium between air and

water phases in the dilute concentration range as shown in the following equation.

Cg

H= —
CL 1)

where Cg is the air phase concentration in equilibrium with the liquid phase concen-
tration, Cy.. The Henry’s coefficient is represented by H. In the literature, Henry’s
coefficient has been expressed in a variety of units. The three most common units to
express Henry’s coefficient are: (1) atm, (2) atm-m-/mole and (3) no unit (dimension-

less).

If the units of Henry’s coefficients are given in atmospheres (atm), then the

following equation is used:

Hi= 1
Xi @)

where Pi is vapor pressure of the solute i in equilibrium with mole fraction of the

solute 1 in water X; (mole/mole).

For units of atm-m>/mole, Henry’s coefficients are often defined as

_ __ Pifam]
C{ [mole m™] 3

where Pi is the vapor pressure of the solute 1 in equilibrium with the liquid phase con-

centration CE.




The dimensionless Henry’s coefficients can be estimated from the pure solute
nry p

vapor pressure and its solubility, and are defined as:

e Cglmg/L] _ 16.04PM
Cp[mg/L] TS - (4)

where
Ca = the equilibrium concentration in the gas phase for the liquid
concentration, Ci.
P =  vapor pressure of the pure solute in mm of Hg
M =  gram molecular weight of the solute
T =  temperature in °K
S =  solubility of the solute in water in mg/L.
The relation between the two forms of Henry's coefficient, Hc (dimensionless) and H

(atm-m>/mole), is given by

H
Hc= —
where
R = universal gas constant = 8.2 x 1073 [atm m® mol™! K]
T =  temperature [°K]

The larger the Henry’s coefficient, the greater the equilibrium concentration of
solute in the air. Thus, contaminants with large Henry’s coefficients are more easily
removed by aeration. However, it is experimentally difficult to determine Henry’s
coefficients, and the differences in published values are large. Mackay and Shiu

(1981) reviewed Henry’s coefficients for environmentally relevant chemicals and




found that considerable discrepancies exist in the literature, even for common chemi-

cals.

Platford (1977) and Nicholson et_al.-‘(1984) stated that Henry’s law coefficients
estimated from vapor pressure and solubility data may not be valid for the low solute
concentrations typically encountered in environmental engineering. Lalezary et al.
(1984) and Gossett and Lincoff (1981) reported increasing Henry’s coefficients with
increasing concentration. However, Munz and Roberts (1986, 1987) presented a
comprehensive study which contradicts previous reports. They made three conclu-

sions in their studies:

1. No effect of solute concentration on solute’s Henry’s coefficients was

observed up to solute-liquid mole fractions of = 10 3,

2. Very high cosolvent concentrations, in excess of = 10 g/L, are required

to reduce the solute’s Henry’s coefficients;

3. No change in Henry’s coefficient was observed in a multisolute system

up to a total mixture concentration of 375 mg/L.
2.1.1 Determination of Henry’s Coefficients

In order to accurately estimate the stripping rates and the degree of equilibrium
of VOCs in our bubble column experiments, accurate Henry’s coefficients of 20 com-

pounds were required.

Mackay and Shiu (1981) presented a comprehensive review of the common

methods for measuring Henry’s coefficients along with their respective advantages

10




and disadvantages. They cited three basic methods:
1. Use of vapor pressure and solubility data;

2. Direct measurement of air and aqueous concentrations in a system at

equilibrium, and

3. Measurement of relative changes in concentration within one phase,

while effecting a near-equilibrium exchange with the other phase.

The first method suffers from the lack of reliable solubility data because the
measurement of aqueous solubility of hydrophobic compounds is very difficult. The
second method usually is applied only to fairly high concentrations because of the
difficulty of sampling and analyzing the absolute values of the low concentrations typ-
ical of environmental levels in both phases. The third method, the batch air stripping
procedure presented by Mackay et al. (1979), was evaluated in our bubble column
test. This method occasionally suffers from experimental difficulty in achieving

equilibrium (Lincoff and Gossett, 1984).

More recently, Gossett (1987) presented a novel approach involving measure-
ment of liquid phase or gas headspace concentration ratios from pairs of sealed bottles
possessing differing liquid volumes, termed EPICS (Equilibrium Partitioning in
Closed Systems). The precision of this technique depends on the selected volume

ratio and can be controlled by proper experimental design.

Method 1 and 2 are not suitable for the low concentrations typically found in
environmental engineering. Method 3 requires equilibrium, which may be difficult to

achieve and verify. Roberts et al. (1982) reported that the Henry’s coefficients

11




measured with this technique depended upon turbulence, which may have been an
artifact of not obtaining equilibrium. The EPICS method was found to be suitable for
this study in terms of precision, simplicity, and the capability to handle large numbers
of samples in a reasonably short time. T;lerefore, the EPICS method was used with

analysis of the aqueous phase to measure Henry’s coefficients.
2.1.2 Derivation of EPICS’s Equations and A pplication

The EPICS procedure is based on closed-system mass balances developed by
Lincoff and Gossett (1984). The procedure is derived in the following paragraphs and
equations. The total mass of a volatile solute added to a serum bottle will be parti-

tioned between gas and liquid phases at equilibrium according to

M=Cy VL +Cg Vg =Cr VL + (HcC)Vg =CL(VL + He Vg) ©6)

where

CL = concentration of solute in the water (mg/L)

Co =  concentration of solute in the gas (mg/L)

Hc =  Henry’s coefficient (dimensionless),

M = total mass

Vo = volume of headspace in the bottle (L),

VL =  volume of liquid in the bottle (L).

If two bottles are prepared with differing liquid volumes, Vi ; and Vi3, equation (6)

can be written for each as follows:

M; =Cp; (VL1 +He Vgy) 7

12




M =Cpz (V12 + He Vi) )

If equation (7) is divided by M, and equation (8) divided by M, the left-hand sides of

each equation will be unity, allowing them to be equated, as follows:

(CL1/M)(VL1 +Hc Vg;) =(CLa/M)(Vi2 +He Vg2) )

Solving for Hc yields

_ VLZ_rle

Hc= ———
Ve1-Va2 (10)

C M
where r = [_Ci] [M—Z} Evaluation of Hc using equation (10) does not actually
L2 1

require that M; and M, be known; only that their ratio be known. This is a critical
point for reducing experimental error and laboratory time. It means that if a stock
solution of a solute is used to prepare EPICS bottles, it is not necessary to know the
actual concentration of the stock solution. A gravimetric measure of the relative
quantity of the stock added to the two EPICS bottles suffices. Similarly, a relative
measure of sample concentration, such as the ratios of peak heights or areas, can be
used in place of the absolute concent;ations, as long as the measurements are made in
the linear detection ranges of analytical instruments. Gravimetric measures are far
more precise than volumetric measures. Therefore, gravimetric analysis of the stock
masses were used to measure the mass differences in the stock solution (i.e., weighing

of a syringe or bottle just before and after rejection).
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2.2 Mass Transfer Models

Mass transfer of stripping/absorption is a first-order process. The
volatilization/stripping rate of volatile .organic compounds in natural water or an
engineered system can be estimated by the two-film model which is broadly used to
estimate oxygen transfer rate in the aeration systems. This theory assumes the con-
centration gradient is linear (see Figure 2). Solute is transported from the bulk of
liquid-film to film boundary, and then from the interface to the bulk of gas-film. The
mass transport flux can be expressed, in the form of Fick’s first law, as proportional to

the concentration difference and the interfacial area:

(amount of mass transferred) = k (area) (concentration difference) (11)

where the proportionality is summarized by k, called a mass transfer coefficient. This
expression makes practical sense. It shows that if the concentration difference is dou-
bled, the flux will double. It also suggests that if the area is doubled, the total rate of
mass transferred will be also double, but the flux per area will not change. If we

divide equation (11) by area, the mass transfer flux can be shown that

mass transfer flux = N = kg(Cg; — Cg) = kg, (Cp — Cy;) (12)

By introducing the volume of the liquid, V, into equation (11), the specific

mass transfer rate (mass/time/volume) can be stated as follows:

. dm , 1, dCL A
ﬁ tr f T ——— — ) T ce——— ——— — .
specific mass transfer rate = — ( V) " kp v (C - Cri)

(13)

14




Interface

CL = CG* / Hc
\--ﬂ\*\
C 1
liquid gas
CGi
\\\ C G -_— HC CL
‘~,.--.¥
liquid/gas
laminar films

Figure 2. Two-Film Theory with linear concentration gradient
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In most cases the interfacial area of contact, a = —\7, is difficult to determine,
so that a constant, K| a, is introduced. This constant has a value equal to the product

of ki and -‘%— (transfer area/volume). Substituting this constant into equation (13)

gives

dC,
5 - ka G -Cuw)
t (14)
In a laboratory experiment, C; and Cg are determined easily, whereas the
determination of Cy; and Cg; is almost impossible. It is more convenient to define

overall mass transfer coefficients based on overall concentration difference.

dCp .
% Kra(CL-Cp)
t (15)

L . e .
is the rate of volatlization (mass/volume-time). K, the overall mass

where

transfer coefficient based on the aqueous-film driving force. a is the area available for
mass transfer per volume. Cp is liquid-film concentration and CL. (= Cg/Hc) is the

concentration in water that would be in equilibrium with the air-film concentration.
2.2.1 Two-Film Theory

A major assumption in the Two-Film Theory (Lewis and Whitman, 1924) is
the additivity of resistances; the total resistance to mass transfer across the interface is
the sum of gas-film resistance plus liquid-film resistance. The general mathematical

expression for this process is as follows:
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K. ko Helg) (16)
where
Ky =  overall liquid-film mass transfer coefficient, [time™!]
ki, kg =  local liquid-film and gas-film mass transfer coefficient,
respectively, [time™]
He =  Henry’s law coefficient [dimensioniess]

The ratio of liquid to gas resistance can be rearranged as

kg
—HC(?L-)

=
Rg (17)

where

Ry, Rg = liquid, gas resistances, respectively [dimensionless]

Therefore, the percentage resistance in the liquid-film is given by

Rt Rp+Rg Rg ,,__1 (18)

Equation (17) shows that the relative importance of liquid and gas resistance

can be estimated by the ratio of kﬁ and He (Henry’s coefficient). The ratio of T(ki is
L L

a function of hydrodynamic conditions, and Hc is a property of the compound. In
order to show the interaction of the three parameters, a graph of the percentage resis-
tance in the liquid-film as a function of Hc and kg /kg is calculated from equation (1}) -
as shown in Figure 3. Compounds and conditions exhibiting both high Hc and kg/ kL,

in which liquid film control dominates, such as oxygen or 1,1,1 -TCA are in the upper
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right hand corner of the graph. Compounds and conditions characterized by low

values of Hc and t—G- in which gas film control is more important, such as
L

naphthalene, or 1,1,2,2- tetrachloroethane; bromoform, are shown in the lower left

hand comer of this graph.

Figure 4 shows fraction of liquid-phase resistance to total resistance as a func-
tion of ratios of gas-phase to liquid-phase mass transfer coefficients and Henry’s

coefficient and is useful for showing some interesting trends. The X-axis shows the

ratio of gas to liquid coefficients, kﬁ with lower values of kﬁ denoting high tur-
L L

bulence and higher values for kﬁ denoting low turbulence. For compounds with
L

higher Henry’s coefficient, Hc, such as oxygen, more resistance may be attributed to
liquid-film and the degree of turbulence does not affect the values of Ry /Ry. The

degree of turbulence affects liquid-film resistance dramatically for compounds with

lower values of Hc such as naphthalene. For high turbulence conditions, i.e. P of
L

20, the value is 23% for naphthalene and the liquid-film resistance increases to 69% in
lower turbulence conditions. The other two compounds shown in this graph also exhi-
bit the same tendencies.

This example shows the importance of the ratio of k& The principle of resis-
L

tance additivity cannot be used accurately unless the relative importance of two resis-

tances are properly estimated.
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The two-film theory predicts that the transfer coefficients are proportional to
the first power of the diffusivity. Later theories, proposed by Higbie (1935) and
Danckwerts (1951) conclude that the transfer coefficients are proportional to the
square root of diffusivity. Section 2.4.2 'dis-;:usses this difference in greater detail. For
the purposes of this dissertation the term two resistance theory will be used, which
assumes that the resistances of the two phases are additive, as in the two-film theory,
but that the transfer coefficients are proportional to the diffusivity to the n power, and

n is not equal to 1.0.
2.2.2 Surface Aeration

In surface aeration, liquid is brought into contact with large volumes of air
(i.e., Qg 1is large) and saturation condition of headspace may never be reached

. C
(Metcalf and Eddy, 1979). Then we can assume Cg =0 (i.e. C| = T—I%)' Therefore,

equation (18) can be integrated as follows:

C
In (==) = - Kpa(t -t
Cro (19)

where t, =0, C, = initial concentration. Thereafter, we can estimate Kja from a
log-linear regression of concentration ratio versus time.

2.2.3 Bubble Aeration

Mass transfer in a bubble column is a dynamic process in which the local
equilibrium concentration (to be considered in the driving force) changes as the bub-
ble rise though the liquid column. To model this process we can begin with the two-

film theory applied to gas-film concentration of a rising gas bubble and assume that:
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1. The overall mass transfer coefficient, Ky, is constant during an experi-

ment;

2. Equilibrium holds at the interface and is described by Henry’s Law;

3. Gas flow rate and temperature are constant;

4. The rising bubbles are distributed uniformly across the column;

5. Change of pressure and volume of the air bubbles are neglected;

6. The liquid-film is well mixed (homogeneous);

7. The liquid-film concentration is time-dependent but remains constant

during the residence time of a single bubble; and

8. The gas-film concentration is dependent on bubble residence time and

vertical position.

The mass balance for a single rising bubble can be expressed as:

dCq .
\ o - Kp(ApX(CL - CL)
t (20)
Vp, Ap = volumc[L3 ] and surface area [L?] of a single bubble, respectively.
Substituting the Henry’s law coefficient [Cg = C{ (Hc)] and rearranging equation (20)
yields:
dCL KL A, :
(CL-Ci) Hc Vq 1)
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dCi  _ Kra(Vy) ¢

(CL-Ct) QcHc ¢ (25)

Integrating equation (25) yields:

. Kra(Vy) |
In(C -Ci)=—(———=) —+C
n(CL-Cp)=—( Qq He )t, + 6

where C is the integration constant. With the initial condition that the bubbles contain
no VOCs at formation, then C[, = Cgy =0, and assuming that Cp, remains constant
during the residence time of a single bubble, the constant of the integration, C,

becomes In (Cp ). Equation (26) can be rewritten to obtain:

CL Kra(Vy) ¢
In(1 - =- —
a ( CL ) ( QG Hc te ) (27)

This equation can be used to predict the degree of bubble saturation as follows:

CL GCg Kpa(Vy) ¢
Sd=—=—=1-exp| - ——— (—
CL CG QG Hc T (28)
where
Sd = degree of saturation of VOCs in the bubble [dimensioniess]
At the free water surface, t = t,, then
o} Cs KLa(VL)]
Sd=——=———=1-exp| —
C. CLHc Qg He (29)

Roberts et al. (1982) defined the term in the square brackets of equation (29) as satura-

tion parameter ¢:
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The relationship between a single bubble and a series of bubbles can be

developed as follows:
Vg
" Qg
Vs = Zs—Z - Zs
t tr
Ay b L Ag VL VL

Vy VL nVy VL Vg Vo
where

Vs =  velocity of rising bubble [L/time],

n = number of bubbles,

Ap = nA, total surface area of all bubbles at any given time [L?],
Ap o . -1

a = v specific interfacial surface area {L™°],

L

Qg =  gas flow rate [L3/time],

VL = liquid volume [L?],

Vg = total volume of gas bubbles in the system [L3 1,

t =  retention time of the gas bubble rising through the liquid
[time],

ty =  total retention time of the gas bubble rising from diffuser to
free water surface {time],

Zs = submergence of the diffuser, relative to the liquid surface
(L],

Z = submergence of the bubble, relative to the liquid surface
[L].

Substituting equation (22) and (24) into equation (21) yields:

(22)

(23)

(24)




_ Kpra(Vy)
Hc(Qg) (30)

This parameter is constant for any particular experiment since Ky a, He, Qg and Vi,

are all constant. For very large values of ¢ the exit bubbles approach saturation.

Rearranging equation (23) one obtains:

L Zs—Z
r Zs (31)

Substituting equation (31) into equation (29), one obtains:

Co = CLHe( 1 - expl— 0Zs( Z;‘Z m

S (32)

or

Z
Co = CLHe(1 - exp(- ¢Zs(1 - —)]}
S (33)
Which describes the change in gas-film concentration of the organic compounds with

submergence Z.

C
Figure 5 indicates the degree of saturation ( C? ) of a volatile compound from

G

a batch reactor as a function of fraction of retention time or submergence and satura-

Kra(Vyp)

tion parameter —————.
P He(Qg)

Finally, we can use a liquid phase mass balance to describe the transfer of

organic compounds from liquid-film into the gas-film:
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in — out = accumulation

and after appropriate substitution

dC .
\43 —dt'L-=QG Car — Qg Cae
(34)

For the initial condition, we assume Cg; = 0; then the exit gas-film concentra-
tion, Cgg, is obtained by evaluating equation (30) at free water surface Z = (. Substi-

tuting the expression for Cgg from equation (33) into equation (34)

dC
VL —= =—Qg Cy He(1 — exp[— ¢Zs])

After integrating from t, to t and liquid-film concentration from Cj, to C; we obtain

In ( CC:, y=— Q‘\‘ILHC Sd(t - to)
(36)
where
Qg =  air flow rate [L? time™!]
VL = reactor volume [L3]

A plot of the negative log-linear regression of the concentration ratio versus

time gives the following slope:

Hc
slope = — R Sd
Vi (37)
Consequently,
slope
Sd= ————
_ Qg He (38)
Vi
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or

QgHc _  slope

The mass transfer coefficient for volatile compounds can be estimated from experi-

mental resuits by transforming equation (36) to the following:

Hc \Y
QHe | (1- (slope) —=

HeQg (40)

KLa =

Substituting equation (39) into equation (40) we obtain

—In(1-Sd) 1

Kpa=-—slope

We can define the term in the square brackets of equation (41) as transfer
parameter, fg, ,, which can be used to convert the slope of a log-linear regression of
concentration ratio versus time into the stripping rate. Thus, equation (41) can be

rearranged as:

Kia=-slope fx, , @

where

—In(1-Sd)

f = transfer parameter,
Kia parmete, b

Figure 6 shows the relationship predicted from equation (42) between the
degree of saturation of VOCs in the rising bubble and transfer parameter. It is useful

to define three cases depending upon the magnitude of Sd.
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2.2.3.1 Case l: For Sd <0.1

The transfer parameter equals 1.05 and for Sd = 0.1 and approaches 1 as Sd
approaches zero. Therefore, slope is approximately equal to Kpa. Equation (36) can
be reduced to obtain:

In (ECI-“—) =-Kpa(t—t,)
Lo (43)

Equation (43) is the same as equation (19) which has been used to estimate
Ky a for surface aeration. This represents the situation where the exit air is far from
saturation (less than 10%). This may be the case for large Hc (i.e. O;) or for large
Qg. In surface aeration the continuous and rapid renewal of fresh air above water sur-
face is provided, and the saturaton of bubbles is insignificant. Under these cir-

cumstances the stripping rate may be predicted from equation (43) directly.

2.2.3.2 Case 2: For Sd 2 0.99

Equation (36) can be simplified to become:

CL Q(;HC
1 =— -
n ( L ) Vi (t—1t) "

This represents the case where the exit gas is saturated (> 99%) with the vola-
tile compound being stripped. This may occur because of low values of Hc or long
bubble retention time. According to Matter-Muller et al. (1981), compounds that have
high Henry’s coefficient such as oxygen (Hc = 30.02) may require at least 30 meters

of tank depth to attain saturation (or equilibrium). Conversely, compounds with smail
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Henry’s coefficients, such as toluene (0.24) achieve saturation after rising less than 0.8
meter. Under these latter conditions equation (44) may be used as a procedure for
determining the Henry’s coefficient (Hc) as proposed by Mackay et al. (1979) and
described previously in Section 2.1.1 as Mcthod 3. Under these conditions the mass

transfer coefficient for Ky a cannot be determined accurately.

2.2.3.3 Case 3: 0.1 <Sd < 0.99

Most of the volatile compounds are in this case. The exit gas is partially
saturated with the volatile compound (between 10% to 99% saturation). Equations
(36) and (42) must be used to describe this situaton. In this case mass transfer rate for
volatile compounds depends on mass transfer rate coefficients as well as the degree of

saturation of the exit gas.
2.2.3.4 Summary of Degree of Saturation

There are two common ways to present the degree of saturation of rising bub-

bles with VOCs in the bubble column:

KpaVvVy ]
Qg He (45)

I. Sd=1-exp[~

\%
slopc(——L—)
G

5 Sd= slope _ _ Q
_ Qg 'Hc Hc (46)
VL
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According to equation (45), the degree of saturation (Sd) should never exceed

a(Vp
GI1C

1.0. As shown in Figure §, if ¢Zs or is higher than 5.0, saturation of the

exit gas bubble (Sd) would be greater than 99.33% but always less than 1.0. Con-
versely, if & Zs is lower than 0.1, saturation of the exit gas bubble should be less than
10%. If Sd is greater than 1.0, it indicates experimental error in measuring one or

more parameters, or an underestimate for Hc.
2.3 Diffusion Coefficients
2.3.1 Liquid Diffusion Coefficient

Theoretical and experimental investigations of molecular diffusion in binary
systems have been studied for almost a century. The Stokes-Einstein equation (as
cited by Sherwood, Pigford, and Wilke, 1975), based on a spherical solute molecular

moving through a column of solvent, is

Dag = kT

where r is the radius of the "spherical" solute, k is Boltzmann’s constant, and M is
viscosity of the solvent. Although this fixed relation was derived for a very special
situation, many authors have used the form as a starting point in developing correla-
tions for molecular diffusivity (Reid et al. 1987). Two widely used correlations are

described in the next sections.
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2.3.1.1 Othmer and Thakar Method

For dilute aqueous solutions Othmer and Thakar (1953) developed a correla-

tion as follows:
_ -4 v/=06
Dag =5.57 x 107" UV (48)

where

molal volume of solute A [cm?/mole]

<
>
[

7] =  viscosity of water [kg/m-sec]

The average error in using equation (48) for the estimation of Dag in aqueous

systems is 10 to 15 percent (Sherwood, Pigford, and Wilke, 1975).
2.3.1.2 Wilke-Chang Estimation Method

Wilke and Chang (1955) modified Stokes-Einstein equation to provide a pro-

cedure for estimating molecular diffusivity as follows:

Dap = 7.4 x 10°8[(Y Mg)%3 —TW]
upVa (49)
where

Dag =  mutual diffusion coefficient of solute A at very low concentration in
solvent B [cm?/sec],

Y = association parameter of B usually taken as 2.6 for water [dimension-
less],

Mg = molecular weight of the solvent [g/mole],

Up = viscosity of the solvent [cp],
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Va =  molal volume of the solute at its normal boiling point [cm>/mole], and

T =  temperature {K].

The association parameter Y is _introduccd to define the effective molecular
weight of the solvent with respect to the diffusion process. For nonassociated solvents
Y = 1 and for the water (associated solvent) Y = 2.6. The correlation represented by
equation (49) is satisfactory for estimation of diffusion coefficients in dilute solutions
with sufficient precision for most engineering purposes, i.e., about 10% average error

(Wilke and Chang, 1955).
2.3.2 Gas Diffusion Coefficient

The kinetic theory of gases, in which molecules are regarded as rigid spheres
performing elastic collisions, is well developed. For binary gas systems at low pres-

sures in the ideal-gas law a widely used expression (Reid et al. 1987) is:

g = 200266 T3/2
PMY3 odsQd (50)
where
D = diffusion coefficient [cmZ/sec],
T = absolute temperature (K],
M = 2ty
Ma = molecular weight of solute [g/moie],
Mg =  molecular weight of gas [g/mole],
P =  pressure [bar],
o = length [A °], and
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Ma = molecular weight of air {g/mole), and

pressure [bar].

o
it

2.4 Relation of Mass-Transfer Coefficient to Diffusivity
2.4.1 Dimensionless Analysis

The dimensionless analysis presented by Roberts et al. (1982) suggests that the

functional equation for forced-convection mass transfer is

Sh=c1 Re Sc*? (52)
where
kd . .
Sh = 5 Sherwood number [dimensionless],
Re = l\?—, Reynolds number {dimensionless}, and
Sc = —I\S'-, Schmidt number {dimensionless].
solving for k yields
k = cyuc? 2D y(€3-<2) pi—<3) 53)
where
d = characteristic length [L],
u = characteristic velocity [L/time],
\Y = kinematic viscosity of water [L2/time], and
D =  diffusivity of the solute [L,/dme].
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Qd =  diffusion collision integral {[dimensionless].

Qd is a function of temperature; it depends upon the choice of the intermolecu-
lar force between colliding molecules. o also depends upon the intermolecular force
selected. To use equation (50), an intermolecular force law must be chosen and the
constants Gap and {2d must be evaluated. Usually the Lennard-Jones potential (Reid
et al. 1987, pp. 582) is used to estimate these quantities. It is very important to
employ values of 05 and €2d obtained from the same source. Published values of
these parameters differ considerably, but using Gag and Qd estimates from the same

source often provide satisfactory results (Reid et al., 1987).

Several proposed semi-empirical corrections for estimating Dap in low pres-
sure binary systems have the general form of equation (50), with empirical constants
based on experimental data. Lugg (1968), in an extensive study of 147 vapors diffus-
ing in air, found that the Wilke and Lee (1955) and Chen and Othmer (Reid et al.,
1987) correlations fit best. However, the latter employs critical constants not avail-

able for all compounds.

The Wilke and Lee correction (1955) is used in this study, as follows:

Dag = {0.00303 — 0.00098 M2} } Liske

= {0. 3-0. Mag
AB AB PM%goigQd (51)
D = diffusion coefficient [cm?/sec],

=  absolute temperature (K],
1 1

M =  2(—=—+—)"1

AB ( My T M, P I
Y% N =  molecular weight of solute {g/mole),
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Equation (53) shows that the mass-transfer coefficient is a function of tur-
bulence, the kinematic viscosity, and the diffusion coefficient. Under known experi-
ment conditions (same temperature and hydrodynamic), the characteristic length, tur-
bulence, and kinematic viscosity of watcrfwill not vary with different organic com-
pounds. Therefore, we can assume that k; is only proportional to D", where n = 1-c3.
The exponent n of diffusivity coefficient will depend on which model is used and will

be discussed in the following section.

2.4.2 Comparison of exponent value of diffusivity with three mass transfer

models

The two-film model predicts the mass transfer coefficient’s dependence on the
first-power of molecular diffusion coefficient (Lewis and Whitman, 1924), that is
Ky =< D" where n = 1. Moreover, it usually neglects the effective film thickness which
may depend on the hydrodynamic conditions and surfactant effects. Other aeration
models, such as penetration theory (Higbie, 1935) and surface renewal (Danckwerts,
1951), predict that mass transfer across an air-water interface is proportional to the
square root of the molecular diffusion coefficient (n = 0.5). Therefore, the mass

transfer coefficient is related to the molecular diffusivity, D, by the expression
oc n
kp <D (54)

where D = molecular diffusion coefficient and 0.5<n < 1.0.

Under very turbulent conditions, n approaches 0.5 (surface-renewal model or penetra-
tion theory), while under less turbulent conditions n approaches 1.0 (two-film model).

Thus, the choice of a particular model to predict mass-transfer rates should depend on
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0.47 which is very close to value 0.50 commonly found in the literature. The data
support the concept of adding individual phase resistance, and suggest that overall

coefficients may be reliably calculated from the individual coefficients.
2.4.3.1 Gas-film side exponent: m

Several researchers have proposed values of gas-film exponent m from 0.61 to
1.0 (Mackay and Leinon, 1975; Mackay and Yeun, 1983) and suggested that m = 0.67
is the best estimate. Tamir and Merchuk (1978) have reported that the gas-film mass
transfer coefficient, kg, varies as the diffusivity, Dg, raised to the power of 0.684 (=
2/3). Yadav and Sharma (1979) showed that kg varies as D&’. Because gas phase
diffusivities are proportional to M3 according to the simple kinetic theory of gases
(Reid et al., 1987), one can use the following correlation in the absence of data on dif-

fusivity.
kg,i = ka,j(M;/M)' (58)
where
M;, M; = molecular weights of the solute i and j [g/mole]

2.4.3.2 Liquid-film side exponent: n

There is less data on the dependency of ki, on M (molecular weight). Matter-
Muller et al. (1981) reported ky o< M3 for hydrocarbons and chlorohydrocarbons.
Some experimenters have suggested exponent values for n. Rathbun and Tai (1981)
analyzed volatilization data for a number of chlorinated hydrocarbons presented by

Dilling (1977) to obtain a value of n = 1.19; however, the 95% confidence limits were
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the degree of turbulence in the system (Atlas et al. 1982).
2.4.3 The additivity of two-film resistance

The result of dimensional analysis and comparison of the three mass-transfer
models suggests that the mass transfer coefficients for VOCs as compared to the mass
transfer coefficient for oxygen, depend only on the diffusion coefficient of the com-
pounds. Therefore, we can propose that k; is proportional to D} and kg is propor-
tional to D&, where Dy, and Dg are the molecular diffusivities in water and air,

respectively.

Liquid-film side:

kL voc = ki 02 (Dr,voc/DrL,02)" (55)
Gas-film side:
kg voc = kg,02 (Dg,voc/Dg,02)™ (56)

If we substitute equations (55) and (56) into the two resistance equations (equation

16), we obtain:

1 1 1
= +
Kivoc  kpo2(Divoc/Dro2)®  (Hokeoz(Dgvoc/Deoz)™ (57)

The concept and validity of equation (57) has been confirmed by Goodgame
and Sherwood (1954) who measured transfer coefficients for vaporization of water
into air, and the absorption of carbon dioxide, ammonia, and acetone from air into
water. They assumed both exponent m and n to be equal to 0.5 and found that the

observed and calculated values of K agreed well, if these exponents were taken as
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+0.64. Tamir and Merchuk (1978 and 1979) found n = 0.632 based on data from eva-
porating several pure liquids into pure gases. Roberts and Daendliker (1983) meas-
ured k; o< D{%6 for six chlorinated and fluorinated hydrocarbons. Smith et al. (1980)
found ky, = D{6!. Mackay and Yeun (1'92;3) report values of n to be 0.5 and 0.67 and

suggest that ky, o< D?;So is the most reliable.

2.5 Modified ¥-value for application of semivolatile and volatile compounds

According to the relation of mass-transfer coefficient to diffusivity, previous
studies (Smith et al. 1980, 1981; Matter-Muller et al. 1981; Rathbun and Tai 1982,
1984; Mumford and Schnoor 1982; Roberts et al. 1983, 1984a; Truong and Blackburn
1984; and Cadena et al. 1984) have defined the proportional relationship of mass

transfer coefficients between VOCs and oxygen as ‘P':

We kivoc _ ( DLvoc o o= Krvoc
kpoz Droz Kio2 (59)
where
b4 =  transfer constant proportionality coefficient, dimensionless,
krvoc.kLoz =  local mass transfer coefficient for VOC and O, {1/time],
Divoc.Dios =  liquid diffusivities for VOC and O, [L?/time], and
Krvoc,KiLo2 =  overall mass transfer coefficient for VOC and O, {1/time]j.

Rathbun and Tai (1980, 1981) found that this approach was useful for stream
flow. Studies in engineering systems have also shown to produce very good resuits
(Smith 1981; Roberts 1982, 1983, 1984a). This method is potentially very valuable

for engineering applications, since the oxygen transfer coefficients are often known.
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The VOCs mass transfer coefficients can be estimated using the ¥ value which is

estimated from known diffusivities.

The technique is only valid for highly volatile compounds in which liquid

phase resistance is almost equal to the total resistance. However, gas-film transport

becomes more important as turbulence increases and the Henry’s coefficient

decreases. In this study we are proposing the modified ¥-value (¥)), corrected by

accounting for liquid-film resistance, as a method of predicting stripping rates for

semi-volatile and volatile organic compounds (VOCs). The ¥-values corrected for

fraction of liquid resistance can be derived (the derivation is shown in Appendix A)

from the two-resistance model as follows:

where

K D R R
Py = LVOC =( Lvoc)n L —yp L
Kroz2 Dio2 Rt Rr
b2Y = modified ¥-value [dimensionless],
kia D
v = V€ _ (=Y )n (dimensionless], and
k1 a0, Dro2
Rr, Rt =  liquid and gas resistance, respectively [dimensionless].
Consequently,
Rt
¥Y=¥y —
M RL

(60)

(61)

We can apply equation (61) to estimate volatilization rate for compounds of

intermediate and low volatility as long as the mass transfer coefficient of oxygen and

fraction of liquid-film resistance are known.
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estimation of stripping rate for intermediate and low-volatility compounds by incor-
porating liquid resistance. In order to estimate volatilization rate of particular com-

pound conveniently, equation (60) can be rearranged as:

Drvoc RL Ry
Kirvoc =Kp02 ( 5 » R = Koz (P) e
LO2 T T (62)
Therefore,
Krvoc ='¥m Kroz (63)

2.6 Mixing and Scale-up of Surface Aeration
2.6.1 Characterization of Hydrodynamic Conditions

A surface aerator is characterized by the mechanical creation of large
liquid/gas interfaces by the impeller action in the creation of a hydraulic jump. The
associated oxygen transfer from the atmosphere is assumed to be a function of three

possible mechanisms (Schmidtke et al. 1977):

1. Entrainment of oxygen in the hydraulic jump,
2. Oxygen absorption from air bubbles, and
3. Oxygen absorption due to surface turbulence.

Eckenfelder et al. (1967) attempted to determine the amount of oxygen
transferred by the three mechanisms. He concluded that approximately 60% of the
oxygen transfer resulted from the liquid spray generated in the hydraulic jump and

40% from bubble entrainment and surface turbulence. Kishinevsky (1956) concluded
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that the amount of oxygen transfer from the free surface into the liquid by molecular

diffusion is negligible during conditions of high turbulence.

The hydrodynamic conditions of .surface aeration can be characterized by
interpreting power consumption. By means of dimensional analysis, the power con-
sumption of impellers (power number) can be correlated with the Reynolds number.

These numbers are described in the following sections.
2.6.2 Impeller Reynolds Number

The Reynolds number (Re), the ratio of inertia force in the impellers to viscous
forces in the fluid, can be used to represent the presence or absence of turbulence in an

impeller-stirred tank as follows:

Re= D2Np.
H (64)
where
N =  rotational speed [r/s],
Da =  impeller diameter, [m] or [ft],
P = fluid density, (kg/m’] or (Ib/ft*], and
m = viscosity, [Pa-s] or [Ib/ft’].

Flow in the tank is turbulent when Re > 10,000. Thus, viscosity alone is not a
valid indication of the type of flow to be expected. Schmidtke et al. (1977) divided
turbulence into two fluid regime regions: (1) high turbulence - where eddy diffusion is
the predominant mass transfer mechanism; (2) low turbulence - where molecular dif-

fusion is predominant. Between Re of 10,000 and approximately 10 is a transition
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range in which flow is turbulent at the impeller surface and laminar in remaining parts

of the tank; when Re < 10, flow is laminar only.
2.6.3 Power Number

Power number, relating to fluid density, fluid viscosity, rotational speed, power

input, and impeller diameter, is defined as:

g.P
Po= = Da>
pN"Da (65)
where
Po = power number [dimensionliess],
P =  power input [N-m/s] or [ft-1bf/s],
g = dimensional constant [32.2 (ft-1b)/(1bf-s2)] [g. = | when
using SI units], and
p =  density of liquid [mass/volume].

2.6.4 Power Measurement

In order to draw power curves for a reactor, it is necessary to measure power
input at various impeller speeds. A convenient and accurate procedure to determine
power is to measure the torque generated by the rotating agitator. The power can be

estimated from the torque as follows:
P=1w=1(2nN) (66)

where

P =  power input [lbs-in/s],




T =  torque imposed on impeller {lbs-in},

rotational velocity [radius/s], and

>
H

rotational speed [rpm].

In order to convert P to units of horsepower, when the units of T are [lb-ft], equation

(66) can be transformed to

P = t2rN)(—— (= )(——) (746) = (1.183 x 10~2) (xN)

127760 550 (67)
where
P = impeller horsepower {watt},
N = rotational speed [rpm], and
T =  torque imposed on impeller {lbs-in].

2.6.5 Power Consumption of Impellers

The power drawn by an impeller in a liquid mixing system is determined by its
rotational speed and geometry, as well as by the environment in which is operates.

Using dimensional analysis Holland and Chapman (1966) obtained

Po = c1(Re) (Fr)3 (68)

Equation (68) relates the power number Po to the Reynolds number, Re; the Froude
number, Fr, and a dimensionless shape factor, cl. The Reynolds and Froude numbers
represent ratio of inertial to viscous and gravitational forces. For nonvortexing sys-
tems, gravitational forces have a negligible effect, and the exponent c3 of the Froude

number is zero. Therefore, (Fr)‘:3 = 1 and equation (68) becomes
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- c2
Po=cli(Re) (69)

A plot of power number (Po) versus Reynolds number (Ng,) on log-log coor-
dinates is usually named a power curve.. An individual power curve is valid only for a
particular geometrical configuration, but is independent of reactor size. Figure 7 illus-
trates the typical power curve for impeller operating in baffled and unbaffled cylindri-
cal vessels. The power curve for baffled vessels explains some general principles. At
Reynolds numbers less than 10 (segment A-B), which is typical for laminar flow, the
power number is highly dependent of Reynolds number. As the Reynolds number
increases, the flow changes from laminar to turbulent (segment B-D). When the flow
becomes fully turbulent (segment D-E), the power curve becomes horizontal which
indicates the flow is independent of the Reynolds number and the power number is
essentially constant. Under constant power number, scale-up of mixing can be

achieved (Nagata, 1975).
2.6.6 Scale-up of Mixing

The scale-up equations for surface aeration are generally in terms of perfor-
mance indices such as power per unit volume (P/V), torque per unit volume (t/V), or
speed ratio (N2/N1). These are termed "transiation equations” (Uhl and Essen, 1987).
Translation equations, also called scale-up rules, have become popular in recent years.
Uhl and Essen (1987) suggested that the most frequently used relationships for scale-
up rule was constant power input per unit volume. It is often expressed as Hp/1000

gal.
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Hwang and Stenstrom (1983) conducted experiments in three geometrically
similar baffled cylindrical aeration tanks of 30 gal, 55 gal, and 200 gal liquid volumes
to develop scale-up equation which indicates that volumetric mass transfer coefficient

can be related to power input per unit volume as:

Ky agy = 0.032 (—5—)0-97

(70
where
Kiag; =  oxygen transfer coefficient [1/hr]
% =  power input per unit volume [watt/ m3]

Another relation, which is termed the "speed correlation,” appears to have
been first introduced by Rushton (1951). More recently Schmidtke et al. (1977) have
popularized this approach. They developed a scale-up equation for unbaffled, square,
surface turbine agitated, geometrically similar tanks. This relationship requires that

geometric similitude be strictly maintained. For constant impeller immersion simplex

(—;gl), HI = impeller immersion depth, DI = impeller diameter) in both model and pro-

totype, the scale-up is achieved when the overall oxygen transfer coefficient (Kj a) in

a model and prototype are equal. The scale-up transform becomes:

N2 _ (D2y065
D1

N1 (71)

where

NI,N2 = turbine impeller speed in model and prototype [time™!],
and
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D1,D2 =  turbine impeller diameter in model and prototype [L].
2.7 Flow Behavior of Air Bubbles in Bubble Column

Several workers (Hammerton and éamer, 1954; Haberman and Morton, 1956;
Fair et al., 1962; Barnhart, 1969; Akita and Yoshida, 1974; Grace et al., 1976) have
tried to correlate the mass-transfer coefficient, Ky, by the following parameters:
equivalent bubble diameter, dy, .; volumetric gas holdup ratio, €; bubble rising velo-
city, ug; fluid properties; geometry, etc. However, it is practically impossible to make
a single general correlation due to the multiplicity of factors and interactions (Roberts

et al. 1982). The major parameters of flow behavior are discussed in Section 2.7.1.
2.7.1 Shape and Motion of Bubbles

Haberman and Morton (1956) investigated the shape and motion of air bubbles
in various liquids and observed that as bubble size increased, a change of bubble
shape from spherical to ellipsoidal and from ellipsoidal to spherical cap occurred in ail

liquids. Barnhart (1969) correlated bubble shape and motion with Reynold’s number

as:

Re < 300 spherical bubbles act as rigid spheres

the rise is characterized as rectilinear motion,
300 <Re <4000  bubble has ellipsoidal shape

the rise is characterized as helical motion, and
Re > 4000 bubbles formed spherical caps

the rise is like rectilinear with rocking motion.
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Gamer and Hammerton (1954) observed phenomena of bubble shape and
motion from straight to helical at bubble diameter of 1 mm in water. In the helical or
zig-zag motion, the pitch and amplitude were both approximately two bubble diame-
ters. The size of the helix increased Witix bubble diameter up to 5 mm, when the
straight vertical rise interrupted the helical path. When bubble diameter was greater

than 8 mm, bubbles nearly always rose in straight lines.
2.7.2 Bubble Rise Velocity

Bubble rise velocity, i.e. the speed of movement of bubbles with respect to the
water, is a function of water quality, the size of the bubbles, and the hydrostatic pres-
sure. Haberman et al. (1954) derived bubble size velocity in tap water from Stoke’s
law as a function of the equivalent bubble diameter. For a bubble rising at its terminal

velocity, they defined the drag coefficient to be:

8 gre
Cp=— 3
3 3(u) (72)
where
Cp =  drag coefficient,
g =  gravitational constant,
Te =  equivalent radius of bubble, and
Us = terminal velocity of bubble.

Haberman and Morton (1954) obtained a constant drag coefficient of 2.6 for spherical
bubbles which could be rearranged to give an expression for terminal velocity of bub-

bles:
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ug = 1.02 (g re)* (73)

Their resuits are shown in Figure 8. According to Figure 8, u; is increasing up to 0.23
m/s with increasing equivalent diameter, until dy = 3.0 mm is reached. For dj .-
values from 3 to 8 mm the rising velocity remains constant at ug = 0.23 m/s.
Thereafter, the rise velocity is increasing steadily again to achieve a maximum value

of 0.35 m/s.
2.7.3 Gas Holdup

Gas holdup, the relative content of air dispersed in the water (€), is determined
by the ratio of air volume (Va) to the volume of water (V). For vertical walled vessels
this corresponds to the relative increase of the water depth without aeration (h) com-

pared to the total depth during aeration (ha):

oo Va _ (ha-h)

2.7.4 Specific Interfacial Area

The specific interfacial area a is defined as the ratio of the total interfacial area
A divided by the volume of water under aeration V:a= %— [m™1]. A is defined as the

surface area of all bubbles present in the water plus the area of the free surface. The
latter can generally be neglected compared to the bubble surface area. When the
number of air bubbles present in water (n) having a diameter (d,, ) and also the gas

holdup (g) are known, then the specific interfacial area (a) can be calculated:
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a= £
dy (75)

2.7.5 Mass-Transfer Coefficient and Air Flow Rate

The overall mass-transfer coefficient of oxygen, K, in pure or tap water is
related to the diameter of the air bubble by several workers (Coppock and Meiklejohn,
1951; Gamer and Hammerton, 1954; Calderbank and Moo-Young, 1961; Barnhart,
1969; Akita and Yoshida, 1974). Figure 9 shows the corresponding coefficient as a
function of the equivalent bubble diameter d,, . (Motarjemi et al. 1978). The mass-
transfer coefficient increases exponentially over bubble sizes from 0.2 to 2.0 mm and
gradually decreases thereafter to 5.0 mm diameter. Model equations for describing
the first part of this range (0.2 to 2.0 mm) have not yet been proposed. The size range

from 2.0 to 5.0 mm can be represented by the penetration theory (Higbie, 1935):

Ky = _D_]o.5=2{ D us ]0.5

Tt T (dp,e) (76)
where
D =  molecular diffusivity [m?/s],
t, = contact time of bubble during rise in water [s],
Ug = rise velocity of bubble in water {m/s], and
dp.e =  equivalent bubble diameter [m].

Jackson and Shen (1978) and Jackson and Hoech (1977) related K; a value to
the power of superficial air velocity, and found that the exponent varied from 1.08 and
1.13. Smith (cited by Schmidtke and Smith, 1983) developed a general dimensional

relationship relating key parameters directly to oxygen transfer coefficient (K agp), as
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follows:

KLaOZ =28.6 Q%86V—l.06280.724 (77)
where
Qc = air flow rate [volume/time],
\" = liquid volume [volume], and
Zs = diffuser depth [L].

Equation (77) predicted his data with a mean error of less than 8 percent. Eckenfelder

(1959) also derived a nondimensional expression for Ky ag; as follows:

6 Cc Qg(Zs)*"
Krag =
deV (78)
where
Qg =  air flow rate {volume/time],
Cc =  constant,
\"% = liquid volume [volume],
Zs =  diffuser depth [L], and
de =  equilibrium bubble diameter [L].

Since bubble diameter varies with gas flow rate over the range used in practice for the
same reactor liquid volume and diffuser depth, equations (77) and (78) can be

simplified as:

Kpa e QY (79)

Eckenfelder ( 1959) found that the value of k depended on diffuser type as follows:
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k = 0.71-0.77 for plate diffusers with full floor coverage,
0.78 for 4 nozzle spargers with centerline header,
0.45 for tube diffusers with one side header, and

0.8 - 1.0 for small orifice diffuser.

King (1955) independently derived equations based upon his experimental
observation using bench scale experimental facilities, which showed the rate of oxy-
gen transfer varied with (0.825 - 0.86) power of air flow rate, depending on liquid

depth and geometry.

56




3. MATERIALS AND METHODS
3.1 Oxygen Transfer Measurement

A standard method for the measﬂremcnt of oxygen transfer in clean water
developed by ASCE (1984) was used to measure the rate of oxygen transfer from dif-
fused and surface aerator to water. The test method was based upon removal of dis-
solved oxygen (DO) from the water volume by sodium sulfite followed by reoxygena-
tion to near the saturation level. These DO concentrations may be either sensed in situ
using membrane probes or measured by the Winkler or probe method applied to
pumped samples. The procedure is frequently called the nonsteady-state reaeration

method.

The data are then analyzed by a simplified mass transfer model to estimate the
apparent volumetric mass transfer coefficient, K a, and the equilibrium concentration,

C~. The basic model described in equation (18) can be integrated to obtain:

CL =C~Z - (C% - Cro)exp[-Kpa(t)] (80)
where
CL = DO concentration [mgL'3],
C. =  equilibrium DO concentrations, the concentration attained
as time approaches infinity [mgL'3],
CLo = DO concentration at time zero [mgL‘3 ], and
Kpa = apparent volumetric mass transfer coefficient, [time™!].

The recommended method to estimate the parameters K; a, C. and Co is the non-

linear regression (Stenstrom et al. 1988) based on the exponential form using
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unsteady-state test data. Libra (1991) has reviewed this technique with other tech-

niques and defined regions of power derivatives where different estimation methods

are applicable. At high power density in subsurface aeration systems the nonsteady-

state technique can introduce large errors due to gas side oxygen depletion. The range

of experimental conditions used in this study avoids this problem.

The empirical parameters o, § and 6 can be used to relate the oxygen transfer

rate (OTR) in the field to the standard oxygen transfer rate. Standard oxygen transfer

rate (SOTR) is defined as the amount of oxygen transferred to tap water at 20°C with

zero initial dissolved oxygen concentration under 760 mm Hg barometric pressure and

at 36% relative humidity. OTR is related to SOTR by:

Cc.-C
OTR = E—C—-—LJ 8T-2050TR
KLaww
o=
KL Acw
5= cZ: ww
Ceocw

e('r_zo) — KLa(T°C)

KLaoec)
where
Kia = volumetric mass transfer coefficient [time“1 1,
C. =  saturated DO concentrations [mgL‘3 1,
CL = desired DO concentration at time zero [mgL'3 1,
wwW = subscript indicating wastewater,
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cw subscript indicating clean water (or tap water), and

Kra(T)

K a at temperature T [time™].

Stenstrom and Gilbert (1981) provide a comprehensive review for o, {3, and 6 factors.
The value of 1.024 for © for test conditions close to 20°C has reached acceptability
and has been incorporated into the ASCE Standard (ASCE, 1984). The B factor, nor-
mally close to unity, can be determined by the Winkler test (Standard Methods, 16th
edition, 1985) if there are no test interferences, or can be correlated to total dissolved
solids concentration. The o factor is dependent on the aecration system, geometry,

power density as well as the wastewater characteristics.
3.2 Concerns Relating to the Use of Organics Mixtures

The use of solute mixtures and the presence of methanol may change experi-
mental conditions, such as Henry’s coefficients or a factors (see Section 2). Previous
research (Roberts, 1986, 1987) indicated no mutual effects of organic mixtures on the
Henry’s coefficients for PCE, TCE, 111-TCA, chloroform, and dichloromethane in an
aqueous mixture of the five compounds up to a total mixture concentration of 375
mg/L. Gossett (1987) verified that measurements of Henry’s coefficient using the
EPICS procedure on dilute, aqueous mixtures of solutes agree well with values
obtained for single solutes. In this study, the maximum total organic mixture concen-
tration was between 20 to 40 mg/L (in bubble column) and 10 to 140 mg/L (in EPICS)
which was below Robert’s experimental conditions. In order to meet the objectives of
this research, it was necessary to conduct experiments with aqueous-phase mixtures
containing 20 volatile compounds. Methanol was present in the systems, since it was

used as a solvent in preparation of the stock mixtures that were injected into the
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reactor or EPICS bottles.
3.3 Chemicals and Water

All volatile compounds were obtained from Aldrich Chemical Co. (St. Louis,
MO) and Fisher Scientific Co. (Pittsburgh, PA). Methanol was high performance

liquid chromatography grade from Fisher Scientific Co.

Truong and Blackburn (1984) have shown that the mass transfer coefficient of
tap water and de-ionized water (DI) were similar. For convenience, tap was was used
for all experiments, and was referred to as pure water. The conductivity of tap water
was about 450 to 500 umhos/cm. After adding sodium sulfide, the conductivity
increased to about 650 to 700 umhos/cm which was equal to 0.005 N KCl. Fresh tap
water was used for each experiment. Conductivity measurements were made with a

YSI glass probe, Model 3403 with cell constant 1.0 cm™!.
3.4 Surface Aeration Experimental Description
3.4.1 Reactor for Preliminary Experiments

The cylindrical plexiglass reactor shown on Figure 10 was used in the surface
aeration tests. The jacketed reactor was constructed of 40.00 cm long sections of con-
centric 23.50 cm diameter and 30.48 cm diameter plexiglass tubing. The reactor had a
total volume of 17.4 liters. A working volume of 14.0 liters with water depth 32.3 cm
was used in all preliminary experiments. A Haake KT 33 Circulating Water Bath cir-
culated through the water jacket at a rate of up to 77.5 liters per hour to maintain the
temperature in the reactor to within £ 0.3°C of the set point. The experimental condi-

tions were modified slightly during the project and the differences and reasons for the
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modifications are described in subsequent sections.

Agitation was provided by three axial flow impellers. The impellers were
mounted on a common shaft and located. at 6.35 cm, 28.49 cm, and 36.07 cm from the
bottom of the reactor. The middle impeller, located about 3.81 cm below the surface
of the liquid, assured adequate mixing of the bulk liquid at low speeds. The upper
impeller, located 3.81 cm above the water surface, served as a gas agitator to maintain
complete mixing in the headspace. The impellers were marine-type impellers pro-
vided by Michigan Industrial propellers (Grand Rapids, Michigan). The impellers
mounted below the water surface had a diameter of 12.7 cm and a width of 3.18 c¢m,
and the headspace impeller had diameter of 10.16 cm and a width of 2.54 cm. The
reactor’s cover contained a bearing to support the stirrer shaft to maintain consistent

shaft and impeller position throughout the tests.

The driven system consisted of two parts, a permanent magnetic DC motor-
generator (Motomatic by Electro-Craft Co.) and a solid state electronic controller
(Master Servodyne by Cole Palmer, Chicago, IL). The motor and controller provide a
signal which is related to the torque. The manufacturer’s calibration charts were used
to obtain torques. The impeller rotational speed was monitored by a General Radio
Company stroboscope, type 1531-A. The speed can be varied from zero to 1725 pm
and the direction of flow is reversible. To assure adequate mixing and avoid vortex
motion, four 7/8 in. (9.0% of the tank diameter) stainless steel baffles were inserted
into the tank 90° apart. The use of baffles results in large top-to-bottom circulation

without vortexing or severely unbalanced fluid forces on the impeller shaft.
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3.4.2 Modified Surface Aeration Reactor I

The experiments performed in the modified reactor I were similar to those in
the preliminary experiments. However, .thc cover was elevated 5.08 cm above the top
of the reactor in order to allow access of large volumes of air to avoid the VOC head-
space saturation problem. A 10.16 cm diameter personal fan (Krups, Model 952) was
used to increase air circulation in the reactor’s headspace. The air velocity above
water surface was measured by an Air Velocity Meter (Kurz Instrument Inc., Series
440). The air velocity above the water surface ranged between 0.3 and 0.6 m/s (meter

per second).

3.4.3 Modified Surface Aeration Reactor II

The difference between modified reactors I and II were water volume, location
of impellers, and the size of fan (velocity of wind speed). The working volume of
water was increased to 16.0 liters with a water depth of 36.83 cm. The location of
impellers were changed to 6.35 cm, 30.48 cm, and 40.00 cm from the bottom of the
reactor. The middle impeller was located 7.62 cm below the surface of the liquid.
The upper impeller was located 3.18 cm above the water surface. A 40.64 cm fan
(Dayton, Model 14C508D) was used to increase air circulation in the reactor’s head-

space. The wind velocity above the water surface ranged between 1.5 and 2.4 m/s.
3.4.4 Experimental Procedures of Surface Aeration

The impeller speed was first adjusted to the desired value by means of a stro-
boscope. After the water had been equilibrated to a constant temperature of 20°C, the

oxygen was removed using sodium sulfide with a cobalt chloride catalyst. The cobalt
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chloride dose was less than 0.5 mg/L. Theoretically, 7.9 mg/L of sodium sulfide is
required for each mg/L of oxygen present. Since it was common practice to add 1.5 to
2.0 times of this amount to ensure complete deoxygenation, about 14 mg/L per mg of

DO was used.

The target compounds were dissolved in methanol and approximately 5 ml
was introduced with a pipette which provided approximately 1.0 - 2.0 mg/L initial
concentration of each VOC in the surface aeration. The initial sample was taken after
1 minute of mixing. Next, 15 to 20 additional samples were taken. The sampling
intervals were shorter at the beginning of a test due to the larger driving force. The
samples were taken from the reactor with a 25 mi pipette and then transferred into two
9 ml hypovials and sealed with teflon-faced rubber septa. The vials were chilled to 4
°C on the day of collection and maintained at that temperature until analysis. Samples
were allowed be allowed to warm to ambient temperature before analysis. Analysis

was usually completed within one day after sampling.

The oxygen concentration in the reactor was measured continuously with a
dissolved oxygen (DO) probe (Yellow Springs Instruments, Model 58) with a standard
membrane and plotted on a strip chart recorder. At the end of each test three water
samples were taken and analyzed for DO by the Winkler method. For data analysis

mean values of initial and final temperature and liquid volume were used.




3.5 Bubble Column Experimental Description
3.5.1 Bubble Column

Figure 11 shows the bubble colutm; which consisted of a 91.44 cm high, 20.32
cm plexiglass cylindrical column equipped with a bubble diffuser to introduce the air.
Air diffuser stones supplied by Fisher Scientific Co. were used and were composed of
fused crystalline alimina grains with an average pore size of 60 pm. The liquid
volume was kept at a constant volume of 20.1 liters and air flow rates varied from 0.8
scth (standard cubic feet per hour) to 5.4 scth (2.52 L/min). The air flow was meas-
ured and controlled by Cole Parmer Model 3216-45G aluminum flowmeter with FM

102-05 flow tube (1/8" flow tube with glass float).

The dissolved oxygen concentration was measured with a YSI Model 58 dis-
solved oxygen meter with probe hanging upside down at 1/3 of submergence. In
order to avoid excessive evaporation, the air was passed through a humidifier and then
directed to the diffuser at the bottom of the column. The humidifier was made of 7.62
cm diameter and 91.44 cm height of clear PVC pipe filled with approximately 76.2 cm

height of water equipped with air diffuser stones (same as used in the bubble column).

Both bubble column and humidifier were immersed in a water bath to maintain
a constant water temperature of 20 £ 0.3 °C. A Haake KT 33 Circulating System

which circulated the water bath was used to maintain the desired temperature.
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3.5.2 Experimental Procedures for the Bubble Column

Before the test, the bubble column was washed with tap water thoroughly and
dried overnight with a fan. Tap water was transferred into the column to the desired
volume on the day before the experiment. During filling, a small air flow (approxi-
mately 0.27 scfh) was used to provide mixing and to avoid water entering the diffuser

stone and air line.

After the water temperature reached 20°C the air flow was adjusted to the
desired rate. Next, sodium sulfide and cobalt chloride were added to deoxygenate the
water. The column was then spiked with the stock solution of twenty volatile com-
pounds after the oxygen was reduced to almost zero. The target compounds were dis-
solved in methanol and approximately 5 ml was introduced with a pipette, which pro-
vided approximately 1.0 - 2.0 mg/L initial concentration of each VOC in the bubble
column. The sampling procedure was the same as in the surface aeration tests and the
sampling point was within 2 cm of the oxygen probe tip. The initial sample was taken
after 3 minutes of bubbling. Next, 15 to 20 additional samples were taken as before.
The sampling intervals were shorter at the beginning of a test due to a larger driving

force.

3.5.3 Measurement of Bubble Diameter

Bubble diameter was measured using photography and is similar to the pro-
cedure described by Masutani (1988). A clear acrylic 1 ft x 1 ft x 3 ft box was used as
an aeration vessel to determine bubble sizes. Bubbles were formed in an aeration

vessel under conditions identical to the bubble column and were photographed using a
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35 mm SLR camera fitted with a 55 mm macro lens. A ruler with 0.4 mm graduations
was included in each photograph and served as a reference measurement. Bubbles
were successfully captured at a shutter speed of 1/125 second with an automatic elec-
tronic flash for each flow rate. Bubble dia;neters were measured from projected slide
images with suitable correction factors for enlargement. All bubbles in a 2.54 cm

square template were measured.
3.6 Determination of Hc by EPICS Method

Four methods for determination of Henry’s coefficients were compared in Sec-
tion 2.1.2. The Equilibrium Partitioning in Closed System (EPICS) method (Gossett,
1987) was selected for its superior precision and simplicity, and its analytical require-
ments, which allowed the analysis of large numbers of samples in a reasonably short

time.
3.6.1 Sensitivity Analysis of the Volume Ratio in the EPICS Procedure

In order to maximize the precision of the EPICS procedure, it was necessary to

analyze the effects of the volume ratio of the bottles pairs. A sensitivity analysis was

made to determine the minimum error in analysis —AHE Figures 12, 13, and 14 show

the sensitivity of the volume ratio for different Henry’s coefficient values (1.2, 0.2,
0.01). Thus, for a Henry’s coefficient of 1.2, a volume ratio of 5 is required, whereas a
volume ratio of 200 is requisite for Hc = 0.01. For a compound of intermediate vola-
tility (Hc = 0.2), it is necessary to have a volume ratio of 10. The volume ratio of 10
was used to measure Hc in this study, since the largest serum bottle available had the

volume of 120 + 0.5 ml and the analytical balance had a capacity of 160 g with preci-
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sion of 0.0001 g. The resuits for low volatility compounds with Henry’s coefficient
less than 0.04, such as naphthalene, EDB, bromoform, 1,1,2,2-TCA could have higher

coefficient of variation (CV) than 7.5%.
3.6.2 Procedures of Measurement of Henry’s Coefficient

For each Hc determination, 3 sets of 2 serum bottles, with 120 + 0.5 ml of
internal volume, were used. In order to maintain a volume ratio of 10, three of these
bottles had liquid volumes about 10 ml; liquid contents of the remaining three bottles
were about 100 ml. Deionized water was used as dilution water. After placing a
known volume of water in a bottle, it was sealed with teflon-faced seals and aluminum
crimp caps. The mixtures of compounds were injected under the water surface using a
precision syringe. The serum bottles were weighed just before and after injection. The
volume of liquid was determined gravimetrically because of its superior accuracy and
precision. Next, the bottles were then shaken (at 2500 rpm) for 4 hours. At the end of
shaking, serum bottles were placed in constant temperature water bath for 2 hours and

then analyzed by purge-and-trap/GC.

Equilibrium was experimentally verified by analysis of a special series of bot-
tles. Equilibrium in low liquid volume systems is very rapid, but high liquid volume
systems take longer (Lincoff et al., 1984). Therefore, the experiment was performed
using a high liquid volume with 20 VOCs to ensure that equilibrium would be attained
for all compounds used. Fifty pL of stock soluton containing 20 VOCs was injected
into seven serum bottles containing 100 ml of distilled water. The bottles were then
sealed and placed in a shaker table at 2500 RPM. At the end of each period of shak-

ing, each serum bottle was placed in a 20°C water bath for 2 hours and then analyzed
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by GC. The following liquid concentrations were measured at times ranging from 2
min. to 1378 min. The resuits of this experiment, shown in Figures 15 and 16, indi-
cate that complete equilibrium was approached within about 30 min. The high
fluctuation for naphthalene indicates a ;:arry-over problem in the purge-and-trap
sampler. The area corresponding to concentration in some compounds decreased
slightly with elapsed time which implies the solute leaked from the bottles or

adsorbed onto the glass or Teflon.
3.7 Organic Analysis - Analysis Procedure

The volatile compounds were analyzed by gas chromatograph having a purge-
and-trap and flame-ionization detector (FID), which was used to provide both qualita-
tive and quantitative information. The flame-ionization detector was chosen over an

electron capture detector (ECD) since FID has a greater dynamic range.

The purge-and-trap device was a Tekmar Model 00-996367-00 set with the
following program: 11 minutes purge, 4 minutes desorb, and 12 minutes bake time.
The purge-and-trap device was attached to a Hewlett-Packard Model 5890 GC
equipped with a flame-ionization detector (FID). Before initial use, the trap was con-
ditioned overnight at 180°C by backflushing with an inert gas flow of at least 20
ml/min. During purging the trap was vented to the room, and not to the analytical
column. Prior to beginning analysis each day, the trap was conditioned for 10 minutes

at 180°C with backflushing.

The GC capillary column was a J&W (Folsom, CA) DB-624 with a 1.8 um

film thickness and the dimensions of 30 m by 0.32 mm diameter. GC time and tem-
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perature program were as follows: 35°C initial temperature, 150 °C final temperature,
S minutes initial hold, 1 minute final hold time, and a 5°C/min temperature program.
GC and purge-and-trap gases flow rate were controlled as follows: helium carrier gas
at 20.0 ml/min, hydrogen combustion ga.; at 47.2 ml/min, and dry air purge gas at
314.8 ml/min. The Hewlett-Packard Model 3396A integrator used to record GC out-
put had the following settings: attenuation of 4, chart speed of 0.5 cm/min, peak width
of 0.04, area rejection of 3,000 and threshold of -1. Retention times of the twenty
volatile compounds used in this research for these GC conditions are listed in Table 1.
The typical plot of 20 VOCs analyzed by an HP 5890 GC and integrated by an HP
3396 integrator is shown in Figure 17. Figure 18 shows the concentrations of 20

VOC:s versus elapsed time during surface aeration.

Prior to the analysis of samples, three compounds were used as external stan-
dards. Carbon tetrachloride (CCly), benzene, and bromoform were injected into the
purge-and-trap at a concentration of 0.5 mg/L. each. A maximum acceptable error

(MAE) for these compounds should be less than 10%. The MAE was defined as:

(A—A1)

MAE (%) = — x 100
(85)
where
A =  current integrated area from integrator corresponding to
concentration, and
Ai = initial integrated area from integrator corresponding to con-

centration.
This criterion must be demonstrated before analyzing every set of test (about 20 sam-

ples). If the maximum acceptable error for any external standards was higher than
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10%, the system (including purge-and-trap device, GC, helium, hydrogen, and air)

were checked. The demonstration was performed again until the criterion was met.

3.7.1 Carry-Over Problem in Analysis Procedure

During analysis, the carry-over problem in the purge-and-trap sampler was
found for naphthalene was, stated in Section 3.6.2. Several purge sample cleaning
methods were developed in order to reduce this problem. The results are given in
Table 2. The best results with carry-over of 3% were obtained by putting the purge
sampler in the oven at 150°C for 15 min., followed by flushing with air for 10 min.

This procedure was carried out through all the experiments.

3.8 Statistical Analysis

The mathematical expression of the two-resistance model with appropriate

correction of diffusivity (equation 57) can be rearranged as follows:

— n m
X=AY"+WBZ (86)

where

X = (Krvoc)™,
= (Drvoc/DrLo2)?,
Z = (Dgvoc/Dgoz)!,
w - L
Hc
1
A = ,
kLoz
1
B = R
kcoz

77




Table 2 Comparison of cleaning méthod for purge sampler

Test No. | Clean Method Original Carry-Over C-0* (%)
Intergrated area{ Intergrated area

A-1 |Pentane 2173842 419055 19.3
A-4  |Methanol 1541070 515530 33.5
A9 Air* 1351006 197779 14.6
B-2 |Oven#+air 2780901 120408 4.3

B-7 |Oven#+air 1604603 48721 3.0

B-8 |Oven 30min 1789305 365866 20.4
B9 |AIr 1377819 236870 17.2
B-11 |Air 1245888 127859 10.3

* Percentage of carry-over

** flush with air for 10 min

# put in the oven (temperature 150 degree C) for 10 min
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n =  power of liquid diffusivity,
m =  power of gas diffusivity, and
A koo

B kroo

From equation (86), there were four knowns: X, Y, Z, W, and four unknowns:
A, B, m, n. In the analysis, oxygen was used as the reference compound since it was
the most volatile of the chosen compounds, and because oxygen transfer rates are gen-
erally known at wastewater treatment plants. We can assume that the overall oxygen
of overall transfer coefficient was equal to the liquid film transfer coefficient. There-
fore, A is known and there are three unknowns: B (the inverse of the gas film transfer
coefficient of oxygen), m, and n to be estimated using three-parameter nonlinear

regression.

The nonlinear regression (NLIN) procedure from SAS (Statistical Analysis
System, 1982 edition) was used to fit the parameters of a nonlinear model by least-

squares best fit. A typical program is shown in Appendix B.

The procedure was evaluated using Roberts’ (1983) data. The additional
degree of freedom (20 compounds used in this study, as compared to 6 compounds

used by Roberts) provided better estimates of the parameters.

After a grid of values was specified, NLIN evaluates the residual sum of
squares at each combination of values to determine the best set of values to start the
iterative algorithm. The iterative algorithm regresses the residuals of the partial

derivatives of the model with respect to the parameters until convergence is obtained.
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4. RESULTS AND DISCUSSION
4.1 Resuits of Determination of Henry’s Coefficient
4.1.1 Result of Measurement of Henry’§ Coefficient

Measured mean values of Henry’s coefficient are shown in Table 3, along with
observed coefficients of variation (CVs). The value shown in each test (Q12, Q14,
and Q15) is the average value of nine sets of data. The results reported here are based
upon studies in which mixtures of 20 compounds in methanol were used. In this
investigation, tests Q12, Q14, and Q15 were carried out with the volume ratio of 10;
this ratio was the largest our equipment allowed. The CVs values for test Q12, Q14,
and Q15 were between 1.1% and 10.0%. Table 3 shows that the precision of EPICS
procedure decreases as Hc decreases, except for CCly. The high CVs of CCly is due
to its lower GC response which produces higher deviation. The reduced precision and
disagreement for these semi-volatile compounds was explained in Section 3.6.1. The
volume ratio of 10 is satisfactory for Hc of 0.2 or greater. For low volatility com-
pounds, greater precision in the EPICS procedure can be reached as the volume ratio

is increased.

Present and previously reported Hc values for 20 VOCs are summarized in
Table 4. The consistency of the data from this study is generally good. Mackay and
Shiu (1991) have compiled estimates of Hc from a number of sources and found wide
variations. In this study, among the low volatlity compounds, the values of bro-
moform and EDB are a little bit lower than previous studies and literature data,

whereas 1,1,2,2-TCA and naphthalene are very close to previous data. Mackay and
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Table 3. Results of measurement of Henry's coefficients by EPICS

Compounds | Test-Q12# Test-Q14# Test-Q15# Mean STDEV* % CVz
12DCE 0.140 0.136 ) 0.136 0.138 0.0025 1.8
CLF 0.133 0.136 0.132 0.134 0.0019 14
111TCA 0.526 0.508 0.523 0.519 0.0097 1.9
CCl4 1.261 1.400 1.287 1.316 0.0739 5.6
Benzene 0.198 0.195 0.194 0.196 0.0021 1.1
TCE 0.276 0.247 0.266 0.263 0.0147 5.6
Toluene 0.215 0.209 0.208 0.211 0.0036 1.7
PCE 0.573 0.562 0.560 0.565 0.0071 1.3
EDB 0.022 0.020 0.021 0.021 0.0011 5.1
CBZ 0.124 0.121 0.118 0.121 0.0032 2.6
EBZ 0.256 0.251 0.245 0.251 0.0055 22
m-xylene 0.230 0.224 0.219 0.224 0.0056 25
O-xylene 0.159 0.153 0.150 0.154 0.0045 2.9
Bromoform 0.022 0.019 0.020 0.020 0.0018 8.8
BBZ 0.076 0.082 0.075 0.078 0.0037 4.7
1122TCA 0.021 0.025 0.023 0.023 0.0022 9.7
13DCB 0.100 0.118 0.108 0.109 0.0091 8.3
14DCB 0.086 0.098 0.090 0.091 0.0061 6.7
12DCB 0.067 0.073 0.070 0.070 0.0028 3.9
Naphthalene 0.016 0.020 0.018 0.018 0.0018  10.0

# Average of nine sets of data
*STDEV = standard deviation

# % CV = Percentage of coefficient of variation
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Shiu (1981) pointed out that the vapor pressure of naphthalene (a polynuclear
aromatic) is very small and less accurately known, thus Hc values have wide error
limits. They suggested the preferred method of obtaining reliable data for polynuclear
aromatic compounds is to measure solubiiity, vapor pressure, and Hc and to check the
internal consistency of the values. The vapor pressure of naphthalene is between
0.0109 and 0.0311 (kPa) and the solubility is between 22.0 and 34.4 (mg/L) (Mackay
and Shiu, 1981). Usually, values of 0.0109 (kPa) and 34.4 (mg/L) predict an Hc value
of 0.018. If we use the vapor pressure as 0.0311 (kPa) and a solubility of 22.0 (mg/L),
the Hc value is four times higher. Henry’s coefficient of low volatility compounds are
rarely reported in the literature and the published values have wide variations. The
higher estimates of Hc for low volatility compounds were used to provide a better fit

the mass-transfer model for the bubble column.
4.1.2 Experimental Error of Determination of Henry’s Coefficient

Random errors include analytical error and the precision of the volume meas-
urements, Vi and V. Potential systematic errors inciude (a) incomplete equilibrium
between the gas and liquid phase, (b) leaks from the bottles, (c) absorption (diffusion)
of the solutes into the Teflon polymer matrix, and (d) adsorpton of the solute onto

glass or Teflon.

Findings from adsorption experiments by Munz and Roberts (1986) indicate
that 1-2% of the C,Cl¢ mass might have adsorbed onto the walls of the experimental
vessels over the duraton of an experiment (4-5 hour). Similarly,
absorption/desorption experiments with CCly suggest that most solutes will absorb or

diffuse into Teflon in substantial amounts if given enough time. However, they are
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confident that none of these potential systematic errors (a-d) had a significant
influence on their experimental data. This suggests that the largest sources of error are

the GC procedure and the analysis of volume ratios.
4.2 Results of Surface Aeration Experiments
4.2.1 Hydrodynamic Condition of Surface Aeration

The mixing conditions in the baffied surface aeration reactor were measured to
facilitate scale-up. Figure 19 shows the power number as a function of the Reynolds
number for the surface aerator reactor. Figure 19 can be separated into a turbulent and
a transitional region, which is similar to the typical trend shown in Figure 7. In the
range of Reynolds number between 60,000 and 130,000, the power number remains
almost constant as 0.4; complete mixing can be assumed. The power number
decreases slightly with the decrease of turbulence as a Reynolds number below
60,000; suggesting that the reactor is in a transition range. In the transition range, the
molecular diffusion may have influence over certain degree of mass-transfer rate;

thus, mass-transfer rate is expected to be much lower than that of complete mixing.
4.2.2 The Dependence of Oxygen KLa on Power Input

The K a-value of oxygen for the modified surface reactor II increased from

0.23 to 7.2 (1/hr) as the impeller speed was performed from 150 to 500 rpm. Figure

20 shows the dependence of log (-\I;) on the impeller speed (N). The correlation is

given by
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P 2.0475x 106 (N)*11
v (87)

where

% specific power input [watym’], and
N

= rotational speed [rpm].

This agrees well with equation (65) that the specific power input is proportional to
third power of the impeller speed. The power input is between 0.13 and 8.0 watts
which is equivalent to a range of specific power input from 8 to 500 wat/m>. Paulson
(1979) reported that the specific power input ranges from 8 to 60 watt/m® (0.04 to 0.3
hp/1000 gal) in the municipal activated sludge systems. Industrial activated sludge
system power input may be much higher, up to 800 watym® (Libra, 1991). The range

of specific power input used in this study covers the typical range in practice.

Figure 21 shows the oxygen transfer rate as a function of power input. Below,
a specific power input of 30 watt/m> (Reynolds number less than 60,000), the tur-
bulence is in the transition range. With very high power input (250 waw/m® < P/V <
500 watt/m> ), the aerator created a continuous sheet of spray and entrained air bubbles
which increased the rate of oxygen transfer dramatically. Eckenfelder et al. (1967)
reported that 60% of oxygen transfer came from liquid spray and 40% from tur-
bulence entrainment. With high air entrainment, the mass-transfer model changes
from pure surface aeration to a combinaton of diffused and surface aeration.
Currently, no relationship exists to quanttatively describe this phenomenon. There-

fore, this high power density region was excluded from further analysis.
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Using a power input range of 30 wat/m®> < (P/V) < 250 watt/m> Kozinski and

King (1966) predicted that the mass-transfer coefficient (K a) should be proportional

to (-{}7)1/3 for surface aeration at an unbroken liquid surface. Kozinski and King

(1966) summarized twelve studies and reported Ky a = (-i-),—)n with n ranging from 0.2

to 0.4 at an unbroken air-water interface. Figure 22 shows the correlation between the
Kpa-value and unit volume of power input generates for the completely turbulent

range (Nre > 60,000). The correlation is given by
Kpa=0.167 ()04
M (88)

where

oxygen transfer coefficient [1/hr], and

Kpa

-% power input per unit volume [watt/m’].

The n-value of this experiment is 0.48 as shown in equation (88) which is in

approximate agreement with the observation reported by Kozinski and King (1966).

For impellers, the square root of power per unit volume divided by the viscos-

ity is related to the mean velocity gradient, G. The equation is given by:

G= [uiv]o.s .

where

Q
il

mean velocity gradient {1/sec],

power requirement [watt] or [1b-ft/sec],
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A" = reactor volume [m3 Jor [ft3], and

dynamic viscosity [N-sec/m?] or [Ib-sec/ft?].

=
]

Figure 23 shows the dependence of log (G) on the impeller speed. For stan-
dard temperature (20°C), viscosity of water should be the same; hence, the square root
of power per unit volume is proportional to G-value. Therefore, velocity gradient (G)

can be used to correlate with Ky ag; as well. The correlation (Figure 24) is given by:

_ 091
Ky a = 0.00843 (G) ©0)

The velocity gradient in typical activated sludge plants ranges from 90 to 220 (1/sec)
(Parker et al., 1970). The range of G-value used to correlate Kya in this study is

between 180 to 500 (1/sec).
4.2.3 Determination of Volatilization Rate of VOCs

The mass-transfer rate equation (91) was employed to estimate volatilization

rate of VOCs and expressed as follows:

In [-EL—} =—-Kpa(t—ty)

Cuo (91)

C
Using equation (91), a semi-log plot of —C—L— versus (t — t,) can obtain a slope of Ky a.
Lo

A typical plot for the results of an experiment with toluene is shown in Figure 25.
Using this technique, an estimate of the initial concentration is critical for the accu-
racy of the Kpa-value. Equation (91) can be transformed from logarithmic to

exponential form as follows:
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Figure 23. Correlation between velocty gradient and rotational speed
in surface aeration
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Figure 24. Correlation of oxygen transfer coefficient (K, a) to velocity gradient (G)

in surface aeration
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Cp =Cp, exp(Kpa (t—1t,)) (92)

Using the exponential form of the mass transfer rate equation and a two-parameter
estimate nonlinear regression, the concentration change over time can be used to
determine mass-transfer coefficient (Kya) and inidal concentration (Cy,) directly.
This technique provides greater precision since the entire data set is used to estimate

CLo» as opposed to a single data point. A typical plot is shown in Figure 26.

Up to this point, the question is whether to run a two-parameter estimate
regression (exponential equation) or a one-parameter estimate regression (logarithmic
equation). Roberts et al. (1982) studied these two techniques and concluded that nei-
ther technique was superior. For convenience, two-parameter estimate technique was.
chosen for the data analysis using the Kaleidagraph graphics package (Abelbeck

Software, Version 2.0.2, October 1989) using the Exponential Least Squares Fit.

—y = 0.051149 + -0.015141x R= 0.99915

In(C, /C,

[ : : 5 g

-5 J;lllelllli‘llllilllliillJilJLli
i

0 50 100 150 200 250 300
Time (Min)

Figure 25. Typical plot of linear-regression (Toluene in surface aeration)
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Figure 26. Typical plot of non-linear regression (Toluene at surface aeration)

4.2.3.1 Results of Modified Reactor I

The mass transfer coefficient data conducted in the modified reactor I are
shown in Figure 27. The resuits show that 20 VOCs can be divided into two groups:
less and highly voiatile compounds. The turbulence created by the impeller speed
(235 rpm to 505 rpm) effects the highly VOCs (Hc > 0.15) and oxygen. The impeller
speed has little effect on the low volatility compounds. such as 1,2-DCB, 1,4-DCB,
bromobenzene, EDB. 1,1,2,2,TCA, bromoform, and naphthalene. For the less volatile
compounds, wind speed (1 to 2 fps) above the water surface was not sufficient to
prevent headspace saturation. Saturation in the headspace above the water surface

occurred for the less volatile compounds. In order to provide enough air flow for reac-
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tor and avoid headspace saturation problem, the reactor was modified to increase air

velocity to 2.41 m/s. The location of impeller and liquid volume was also modified.
4.2.3.2 Results of Modified Reactor II

Table 5 shows the mass-transfer coefficient of twenty VOCs and oxygen per-
formed at various impeiler speeds (150 - 500 rpm). The specific power input
(watt/m3 ) is also shown. All of the experiments were carried out with baffles and sur-
face air speed was above 1.5 ~ 2.4 m/s. Figures 28 and 29 show the dependence of
the mass wansfer coefficient (Ky a) on the specific power input. As can be seen from

Figures 28 and 29, mass-transfer coefficient (K a) increases with power input. In

P . . . -
general, as v increases Kja increases for a given Hc, and as volatility (or Hc)

. . : P
increases, Kj a increases for a given v

Trends in the data of Table 5 can be seen in Figure 30 as well. For specific
power input between 30 watt/m® and 350 watt/m3, the correlation of mass-transfer
coefficient (K a) of individual 20 VOCs to specific power input are shown in Figure

31 and Appendix D. The nonlinear regression is a simple power series of the form

KLa =b [E_}m

v 93)

Table 6 shows the parameters b and m for the 20 VOCs. Figure 32 shows b
and m as a function of Henry’s coefficient (Hc). The b-value is nearly inversely pro-
portional to the Henry’s coefficient. The power of m-value is between 0.26 and 0.43
which falls within the presented value of 0.20 - 0.40 by Kozinski and King (1966).

The m-value curve appears to be a power function of Henry’s coefficient. The most
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o NTCA ——y=(.13557 * x(041553) R= 099487
e CIF — -y=0.15185*x"(0.38202) R=0.99569
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Figure 31. Correlation of mass transfer coefficient to specific power input
(111TCA, CLF)
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Table 6. Summary of parameters b and m for

relating KLa = b (P/V)"m in surface aeration

Compounds Hc b m
111TCA 0.530 0.1360 0.4155
PCE 0.570 0.1485 0.3967
CT 1.122 0.1419 0.4333
TCE 0.250 0.1752 0.3783
EBZ 0.260 0.1540 0.3864
12DCE 0.170 0.1901 0.3641
MXY 0.240 0.1396 0.4054
OXY 0.180 0.1458 0.3979
TLN 0.230 0.1703 0.3756
BZ 0.230 0.1647 0.3806
CLF 0.160 0.1519 0.3820
CBZ 0.150 0.1698 0.3728
13DCB 0.120 0.1627 0.3640
12DCB 0.087 0.1652 0.3536
14DCB 0.110 0.1683 0.3581
BBZ 0.100 0.1754 0.3563
BF 0.041 0.1665 0.3139
EDB 0.041 0.1864 0.3114
1122TCA 0.042 0.1844 0.2628
NAPH 0.038 0.1477 0.3175
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Figure 32. Parameters b and m for relating K;a = b (P/V o

as a function of Henry's coefficient
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dramatic effects are seen for Hc less than 0.2 which are near the steepest portion of the
curve. It is suggested that gas phase mass transfer resistance becomes more important

as Hc decreases, especially for He less than 0.2.

In Figure 33 and Appendix E, Kjayoc versus G-value for 20 VOCs are
deveioped for generalization, but the power of G-correlation (0.52 - 0.86) is about two
times of specific power input (0.26 - 0.43) (Table 7). The curve of b and m versus
Henry’s coefficient (Hc) for G-value are plotted in Figure 34. The general tendency

of b and m are similar in both diagrams (Figures 32 and 34).

4.2.4 Estimating the Ratio of Gas-Film to Liquid-Film Mass Transfer
Coefficients
: . : kga .
The ratios of gas to liquid mass-transfer coefficients (H) were estimated by
L
fitting overall mass transfer coefficients of 20 VOCs to the two-film model with
appropriate corrections for molecular diffusivities (equation 57). The data were

analyzed by three-parameter nonlinear regression procedure described in Section 3.8.

a
A summary of ratios of gas to liquid mass-transfer coefficients (—kk-G—a-) over the
L

range of hydrodynamic conditions are listed in Table 8 and plotted in Figure 35. The

a
ratio of EG—a was between 38 and 110 for experiments performed in the specific
L

3 . a . .
power input of 30 to 500 waw/m>. The estimated value of Y in our experiments
La
kga

was smaller than the widely assumed range from 50 to 300 (average ratio of T
L
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o 111TCA—y = 0.0076532 * x(0.83112) R= 0.99487

o CLF — -V = 0.010808 * x4(0.76409) R= 0.99569
18T
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Figure 33. Correlation of mass transfer coefficient to velocity gradient
in surface aeration (111TCA, CLF)
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Table 7. Summary of parameters b and m for

relating KLa = b (G)*m in surface aeration

Compounds Hc b m
111TCA 0.53 0.0077 0.8311
PCE 0.57 0.0095 0.7935
CT 1.122 0.0071 0.8667
TCE 0.25 0.0128 0.7566
EBZ 0.26 0.0106 0.7729
12DCE 0.17 0.0153 0.7283
MXY 0.24 0.0085 0.8108
0) ¢ 0.18 0.0093 0.7958
TLN 0.23 0.0127 0.7513
BZ 0.23 0.0118 0.7612
CLF 0.16 0.0108 0.7641
CBZ 0.15 0.0129 0.7457
13DCB 0.12 0.0131 0.7281
12DCB 0.087 0.0143 0.7073
14DCB 0.11 0.0141 0.7163
BBZ 0.1 0.0149 0.7127
BF 0.041 0.019 0.6278
EDB 0.041 0.0216 0.6229
1122TCA 0.042 0.0299 0.5256
NAPH 0.038 0.0164 0.635
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bvalues  ——y - 0017413 + -0.014201x R= 0.66176
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1 .
[ ., e i ———' m-valﬁes
0.8 e g T : i
- e ¢
sl
L ‘: 3 i
0.6 : :
O
0.4+
0.2
i _i lf)-valuesfij
Bro-aoins o
0

Dt N ' | 1 hl 1 l]
I l I

! |
0 0.2 0.4 0.6 0.8 1 1.2

Henry's Coefficient (Hc)

Figure 34. Parameters of b and m for relating K/ a=b G as function of

Henry's coefficient in surface aeration
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Table 8. Ratios of gas-phase to liquid-phase mass transfer

coefficients in surface.aeration

Speedi# P/V Re* kGa/kLa kGa

(RPM) (watt/m3) (=) (=) (m/hr)
200 30.8 5.16E+04 110.0 117.0
235 50.2 6.08E+04 101.6 121.9
275 80.7 7.14E+04 88.6 137.0
325 133.7 8.45E+04 70.8 126.4
350 137.6 9.11E+04 69.2 136.5
375 206.0 9.77E+04 62.3 135.2
400 250.4 1.04E+05 54.8 125.4
420 290.1 1.10E+05 50.8 116.8
450 357.3 1.17E+05 46.7 135.0
475 420.7 1.24E+05 39.2 119.0
500 492.0 1.31E+05 38.5 133.7

# Speed = Rotational speed

* Re = Reynold Number
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E +—y = 205.36 + -62.548log(x) R= 0.99688 |
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Figure 35. Correlation between K Ga/ KLa and specific power input (W/m)

in surface aeration

108




150) (Mackay and Leionoen, 1975; Mackay at al. 1979). However, this range was
higher than the 20 to 60 range reported in Robert’s work (1984). Concurrent work by

Libra (1991) using stirred tank reactor with a turbine aerator (in a closed system) over

a
a very wide range of power input (30 watt/m® ~ 3000 watt/m°>) found the kﬁa- ratio
L

to be as low as 0.1. The finding suggests that the ratio wiil be highly dependent upon

experimental conditions, such as reactor geometry and aerator type.
4.2.4.1 The Effect of Windspeed on kGa/kLa

Mackay and Yeun (1983) correlated gas and liquid mass-transfer coefficients
with windspeed by measuring volatilization rates in a 6-m wind-wave tank for 11
VOC:s of varying Henry’s law constants. Their data also confirmed the validity of the
two-resistance model and show that no interaction occurs when solutes are volatilized
simultaneously. They showed that gas mass-transfer coefficients are proportional to

friction velocity which relates to windspeed through the drag coefficient. Roberts’

a
work (1984) demonstrated that the ratio of T(kG—a in the aeration systems was depen-
L

dent on turbulence of liquid phase in terms of Reynold’s number. Therefore,
windspeed and turbulence in the air and water bulk phase can be used as the hydro-

dynamic parameter for gas and liquid mass-transfer coefficient, respectively. It may

a
be concluded that the ratio of gas to liquid mass-transfer coefficient (EG—a) shouid
L

depend upon the hydrodynamic conditions produced by windspeed in the air phase as
well as mixing of the water phase. The ratio is not fixed. Experiments performed
with the windspeeds of 1.8 to 2.4 m/s and specific power input between 30 and 500

watt/m?, gas mass-transfer coefficients (kga) in Table 8 are plotted in Figure 36. The
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mean value of gas mass-transfer coefficient (kga) in this work is 126 * 7. This resuit
agrees with the concept proposed by Mackay and Yeun (1983), in which the gas

mass-transfer coefficient (kga) depends on windspeed above the water surface.

4.2.4.2 Correlation of kGa/kLa to P/V

a
Roberts et al. (1984a) have correlated the ratio of T(kG—- to Reynoids number as

La
follows:
a
log [ﬁ-} =- 123 log (Re) + 7.06
kia (94)
The correlation for this study (Figure 37) is given as:
a
log [—kG—-] =- 1.18 log (Re) + 7.66
kia (95)

Comparing equations (94) and (95), the correlation performed in this study is very
close to Roberts’. This is not surprising, since Roberts et al. (1984) conducted their
experiments in a fume hood with linear air velocities on the order of 2 m/s (6.6 fps) in
the vicinity of the surface aeration reactor which is similar to this experiment with

windspeed of 1.8 - 2.4 (m/s). Therefore, the kga shouid be relatively constant due to

. . kga . .
nearly constant windspeed above the water surface. Thus, the ratio of k—— in this
La

study depends on the hydrodynamic condition of the liquid phase in terms of Re or

—5—. However, in the domain of high turbulence, Re is independent of oxygen transfer

a
or power input; therefore, Re is not a good parameter to relate the ratio of a
L
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Specific power input (%) would be a better parameter to correlate the ratio. The

a
correlation of the ratio of —k—G—— to id (watt/m?) is shown in Figure 38. The equation

kLa \%
takes the form
a
log [—k‘i-] =~ 0.397 log (=) + 2.68
kLa v (96)

4.2.5 Resuits of Modification of ¥-value: ‘Pm-value

The ratios of can be used to determine the fraction of liquid to overall

La

R
mass transfer resistance (R—L) for different hydrodynamic conditions using equation
T

(18). The ¥-value incorporating the fraction of liquid to overall mass-transfer resis-
tance can be applied to estimate the stripping rate for a wide range of organic com-

pounds using equations (60) and (62).

A summary of ‘¥ and ¥,,-values at each impeller speed (235 rpm - 425 rpm) is

R
shown in Table 9. Since ¥, =¥ %, the difference between ¥ and ¥, is a com-
T

R R
parison of the significance of R—L The —li-L_ of twenty VOCs versus the specific
T T

R

power input are plotted in Figures 39a and 39b. For a given —\l-;— EI-'- decreases with
T

R
decreasing He. For a given Hc, R—L- is inversely proportional to —5— The gas-phase
T

resistance has very little effect on highly volatile compounds, such as oxygen, CCly,

111 TCA, and PCE. The gas-phase resistance has a significant effect on the com-
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1.9+

1.8

log (koa/ k, a)

1.7 1

1.6+

15.lll'!llllll'lll'lll'lll'lll

log (watt/m’)

Figure 38. Correlation of log (kGa/ k a) to log (P/V) in surface aeration
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pounds with Hc below 0.2, especially for low volatility compounds, such as 1,4-DCB,
1,2-DCB, EDB, bromoform, 1,1,2,2-TCA, and naphthalene. The impact of gas phase

resistance increases in increasing P/V.

It is interesting to review predicted K a’s and measured K a’s. Equation (62)

shows the predicted equation for K ayoc

D R
KLavoc =[ LVOC]“ = K20,
Dio2 / Rt (97)
Ry . : . :
The parameters n and . were estimated using the nonlinear regression pro-
T

cedure from SAS (Statistical Analysis System, 1982 edition) to estimate the parame-

ters by least squares best fit.

Figure 40 shows the results for measured and predicted Ky a at 200 rpm (31
watt/m’). Appendix F shows the result from 50 to 300 wat/m>. Tables 10a and 10b
show the predicted and measured Ky a’s for all impeller speed from 235 to 425 rpm
(31-310 watt/m3). Good correlations were observed. The regression line slopes are
all very close to 1.0, but the intercepts decrease slightly with increasing power input,
giving a consistent overestimation of Kjagy at the higher power input used. The
overestimation of Kj ag; may arise from entrainment of air bubbles which increases
the oxygen transfer. However, the increase of Kjaygc is not proportional to the

increase of Ky ap, due to saturation of VOCs in the air phase.

The average discrepancy between measured and predicted values of Kpa of
twenty VOCs for nine sets of experiments was 5.8% (Table 10a). These errors may

arise from the measurement of Kjagpy and Kpayoc and the estimation of liquid
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diffusivity. The estimation of liquid diffusivity has an error of 10-15% (Reid et al.
1986; Sherwood et al. 1977). The results (Tables 10a and 10b and Figure 40 and
Appendix F) indicate that liquid diffusivity of chloroform and PCE are too great,
whereas that of bromoform and bromobenzene are too small. The use of ‘¥, to esti-
mate Ky a depends on the accurate estimation of diffusivity. However, values of dif-
fusivities of organic compounds are seldom reported in the literature, and the equa-
tions given by Stokes-Einstein (equation 47) or Wilke-Chang (equation 49) provide

only approximations.

The original definition of ¥ is only useful for highly volatile compounds. The
modification of ¥ (¥,-value) corrected for liquid resistance can be used to improve
the estimation of stripping rates for intermediate and low-volatility compounds as
long as the oxygen transfer coefficient and liquid-phase resistance are known. It is
concluded that the estimation method (\¥,,) presented in this study works reasonably

well.
4.2.6 Estimation of Liquid and Gas Diffusivities

Smith et al. (1980) suggested using the estimation method to calculate the dif-
fusion coefficient for two principal reasons. First, in the case where some diffusion
coefficients were known and the others had to be estimated, forming a mixed-ratio
might bias the results. Second, in the case where all diffusivities were experimentally
determined, there was still a large potential error. Rathbun (1978) assumed that film
theory obtained (n=1) and calculated a (Dpyoc/Dyro,) ratio for ethylene by using
liquid diffusion coefficients for oxygen and ethylene which were measured by several

investigators. When data for oxygen and ethylene measured by the same investigators
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were used, the ratio was 0.77. If liquid diffusion coefficients measured by different
investigators were used, the ratio varied from 0.57 to 0.96. This is a wider range than
the range predicted by using the estimated values of the diffusion coefficients. There-

fore, estimated diffusion coefficients werc‘used for this study.
4.2.6.1 Liquid Diffusivity

Liquid diffusion coefficients were calculated with modified Wilke-Chang esti-
mation method, equation (49), with associated parameter ¢ = 2.26 for water. Equation
(49) was selected because its form is closely related to the Stokes-Einstein equation

(equation 47).

The solute molar volume at the normal boiling point, V4, used in equation
(49), was estimated with the Tyn and Calus correlation (T&C) increments (Reid et al.
1987). T&C increments were used because they provided molar volume for the com-
pounds studied between the predictions of Le Bas additive method and the predictions
of Schroeder increments. A table showing the estimated liquid molar volumes with
the three methods and the corresponding diffusion coefficients, also using diverse
methods, is given in Table C-1 of Appendix C. The values of the diffusion
coefficients obtained using various alternative estimating approaches are summarized

in Table C-2 of Appendix C.
4.2.6.2 Gas Diffusivity

The Wilke and Lee (Reid et al. 1987) correction was used in this study to esti-
mate gas diffusivities. The solute molar volume at the normal boiling point (V, ) used

in equation (51) was estimated with the Tyn and Calus correlation (T&C) increments
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(Reid et al. 1987). The Lennard-Jones potential procedure (Reid et al. 1987, pp. 582)
was used to estimate Gag and Qg4 (diffusion collision integral) which was described
previously in Section 2.3. The values of the diffusion coefficients obtained using vari-

ous alternative estimating approaches are summarized in Table C-3 of Appendix C.
4.2.7 The Effect of Liquid Volume and Water Temperature Change on KLa

A potential error in the estimation of Kj a is the change of volume in the reac-
tor due to sampling and evaporation. The decrease in volume due to sampling was
approximately 2.3%. The volume loss due to evaporation depended on the test time,
air temperature, relative humidity, and wind velocity. The effect of evaporation on
the volume loss was estimated by a commonly used empirical mass transfer equation
developed by Meyer (Viessman et al. 1972). The equation is based primarily on the
concept of the turbulent transfer of water vapor (by eddy motion) from an evaporating

surface to the atmosphere. This equation takes the form

_ - w
E=C(eo—ea)(1+ 10)

(98)
where

E =  the daily evaporation in inches depth,

eoandea =  the saturation vapor pressure at water surface temperature
and the vapor pressure of air, respectively,

\' =  the wind velocity in mph measured about 25 ft above the
water surface, and

C = an empirical coefficient.

For daily estimates of an ordinary lake, C is approximately 0.36. For wet soil surface,

small puddles, and shallow pans, the value of C is approximately 0.50.
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Water temperature of 20°C and air temperature of 25°C, wind speed of 5 mph
(7.3 fps), relative humidity of 50%, and the C-value of 0.36 were used to estimate the
evaporation rate of water. The estimated evaporation rate is about (.17 mm/hr. For
short runs (1 hr) the evaporation is 0.06% .‘of total volume, whereas for long runs (12
hrs) the volume loss is 0.55%. The maximum volume loss due to sampling (2.3%)
and evaporation (0.55%) is about 2.85%. It is believed that the effect of volume loss

on Kj a-value is insignificant.

Changes in water temperature also affect the Ky a-value since the diffusion
coefficient and viscosity change with temperature. Because the oxygen concentration
CL, is temperature dependent, it is necessary to have the same initial and final tem-
perature. It is crucial to keep the reactor at constant temperature during the test. For
short tests (1 hr), fluctuations were less than 0.1 °C, whereas for a long run (12 hrs),
the temperature varied + 0.5 °C. Roberts et al. (1984) indicates that the higher tem-
perature variation caused slightly greater scatter of the data, but the effect on the r?-

value of the regression may not be detectable.
4.3 Results of Bubble Aeration Experiments
4.3.1 Flow Behavior of Bubble Column

Table 11 shows that the average diameter of bubbles ranges from 1.67 to 3.65
mm and varies with the change of air flow rate (AFR) (1.09 scth to 5.03 scfh). The
corresponding standard deviations vary from 0.51 to 0.77 mm, the coefficients of vari-
ation are from 14.7 to 30.7%. Estimated Reynolds numbers fall in the range of 30 <

Re < 84, using the rise velocities given in Figure 8. Measurements were made at half
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Table 11: Results of bubble size measurements

Test air flow bubble Standard | Coeff. of | Reynold
No. rate diameter |Deviation| variation | Number
unit scth mm mm % (-)
1 1.09 1.67 0.51 30.5 30.1
2 1.64 1.93 0.54 28.0 38.6
3 2.29 2.28 0.68 29.8 48.0
4 2.99 3.21 0.59 18.4 73.8
5 3.67 2.94 0.63 214 67.6
6 4.37 3.15 0.67 21.3 72.5
7 5.03 3.65 0.54 14.8 84.0
8 4.37 3.22 0.77 23.9 74.0
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of the diffuser depth of submergence. The correlation between bubble diameter and

air flow rate is plotted in Figure 41. The relationship is as follows:

- 0.50
dp = 1.5725 (Qg) ) (99)
where
dp = bubble diameter [mm], and
Qa = air flow rate (scfh)

This correlation was employed to determine bubble diameter corresponding to experi-

mental air flow rates.

The gas holdup ratio, €, can be approximated with the Akita and Yoshida

(1974) correlation using the relevant values of the gas flow rate (Qg):

ono _ _1 [<4QG)/(n d;%)] [gdcp}l,g [gaz pz)m

€ =
8.887 g d% () p,z (100)
where
€ = air holdup ratio [dimensionless],
Qg = air flow rate [m?/sec],
dc = column diameter [m],
g = gravity force [9.8 m/sec? at 20°C],
p =  water density [980 kg/m® at 20°C],
c =  surface tension [0.0728 N/m at 20°C], and
M = viscosity [0.001 N s /m® at 20°C].
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Figure 41. Correlation between bubble diameter and air flow rate
in bubble column
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The values of € corresponding to the experimental air flow rates range from
0.09% to 0.34%. Equation (75) was used to estimate the specific interfacial area (a).
The results of gas hold-up, wall-effect, superficial velocity, bubble diameter, and
interfacial area in this study are listed in T;ble 12. Oxygen transfer coefficient (K a),
interfacial area (a), and mass-transfer coefficient (K ) versus specific air flow rate

(Q/V) are plotted in Figure 42. The correlation between a and specific air flow rate is

as follows:
a=2.65 [22) 0.39
VL (101)
where
A
a = interfacial area = E - oul ,
dy VL
—(—26— = specific air flow rate [/hr],
VL

Atal = total surface area [m?],

dy = diameter of air bubble [m], and

VL = liquid volume [m3 ].

It is interesting to note in Figure 42 and Table 12 that the order of interfacial
area (3.2 - 5.76 1/m) is nearly two times that of Ky (1.67 - 2.67 m/hr) for a given Kj a.
Figure 42 indicates that the increase in the rate of mass transfer is mainly dependent
on an increase in the interfacial area (a) and is only secondarily dependent on
increases in K. Akita and Yoshida (1974) have related K;_ to the square root of dy
for a constant temperature and surface tension. In this study, Ky is proportional to dy

raised to a power of 0.73 (Figure 43) which agrees reasonably well with the correla-
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Figure 43. Correlation of mass-transfer coefficient (KL) to bubble diameter
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tion of Akita and Yoshida (1974).

Wall effects can bias results obtained in small scale reactors such as the ones
used in this-dissertation. According to Clift et al. (1978), the following conditions

should apply to ensure that wall effects have negligible influence:

N <0.08 +0.02 log (Re) for0.1 <Re <100 (102)

n <0.12 for Re> 100 (103)

where 11 =dy/d., ratio of bubble diameter to column diameter. Using the bubble
diameters and corresponding Reynolds numbers from this study, the range of 0.0084 <
N < 0.0175 is obtained, which is at least six times smaller than required (n <0.11).

Therefore, it is concluded that wall effects were negligible in these studies.
4.3.2 Determination of Volatilization Rate

The mass-transfer equation (36) describing the volatilization rate of VOCs in

the bubble column was derived in Section 2 and is repreated here:

CL Qg He
In =- Sd(t-1)

where

Qg = air flow rate [L? time™!],
VL = reactor volume [L3], and
Sd = degree of saturation [dimensionless].

The procedure to estimate the volatilization rate of VOCs in the bubble column is dif-

ferent from the surface aeration and is briefly described as follows:
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where

According to equation (36), a plot of the negative log-linear regression of con-

C
centration ratio In (EL—) versus time (t — t,) gives the "slope" as follows:
Lo

Hc
Qg sd

slope =—
Vi 37)

According to equation (36), Sd can be determined by

lope—L
slope—
gg= Slope  _ " Qu
_ QgHc Hc (38)

VL

Equation (42) can be used to convert the "slope" of a log-linear regression of
concentration ratio versus time into the stripping rate via transfer parameter.

The equation is as follows:

Kia =-slope fk,, . @

—In(1-Sd)

fx. . = transfer parameter,
Kea €r parameter. Sd

Figure 44 shows the correlation between transfer parameter (fg,,) and degree of

saturation (Sd). The stripping rate can be calculated using Figure 44 via transfer

parameter, as long as the degree of saturation of VOCs is estimated by the "slope" and

Hc.
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The methodology developed in this study was used to estimate K a-values of
twenty VOCs. Tables 13, 14, and 15 summarize slope, Sd, and Ky a-values of twenty
VOCs and oxygen from experiments using different air flow rates from 1.15 scfh to
5.10 scth. It was anticipated that highe; Henry’s coefficients correspond to higher
mass-transfer coefficients. This trend can be seen in Figures 45a and 45b which show

%

the dependence of Kpa on the specific air flow rate ( v

Qe
). In general, as —
A
increases, Ki a increases for a given Hc, and as volatility (or Hc) increases, Kia

. . G
increases for a given ~

The resuits from Tables 15 for Ky a at different air flow rates can be correlated

to produce a simple power function of the form, Y = b X™. The individual plots of
Qe — :
Kia versus ~ for twenty compounds are shown in Figure 46 and Appendix G. The

values of b and m are listed in Table 16. The correlation of b and m with Hc are plot-
ted in Figure 47. The m-values of the power function are all very close to 1.0 over a

range of Hc from 0.04 to 30.2. The nearly constant m-values of 1.0 indicate that the
relationship between K a and %—G is linear. The increase of b-values with Hc for He
< 1.2 imply that higher Henry’s coefficients correspond to higher mass-transfer

coefficients.

Figure 48 shows the percentages of the mean values of Sd for each compound
versus the Hc. As can be seen in Figure 48, Sd increases with decreasing Hc. This
implies that the gas-phase resistance becomes increasingly significant as Hc decreases

for a given specific air flow rate. Table 14 shows that the coefficient of variation (CV)
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Table 16. Summary of parameters b and m-value for relating

KLa=b(Q/ V)f‘m’in bubble column

Compounds He b m
02 30.200 3.568 0.764
CT 1.122 1.799 0.851
PCE 0.570 1.025 0.967
111TCA 0.530 1.229 0.919
TCE 0.250 0.647 1.072
EBZ 0.260 0.572 1.093
MCY 0.240 1.171 0.658
TLN 0.230 0.753 0.833
BZ 0.226 0.562 0.963
OXY 0.181 0.465 0.927
12DCE 0.166 0.470 0.933
CLF 0.156 0.514 0.881
CBZ 0.146 0.463 0.904
BBZ 0.098 0.388 0.810
13DCB 0.120 0.384 0.926
14DCB 0.110 0.393 0.922
12DCB 0.087 0.338 0.972
EDB 0.041 0.107 0.810
BF 0.041 0.046 1.245
1122TCA 0.042 0.121 0.663
NAPH 0.038 0.053 1.110
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of Sd is very high for low volatility compounds, such as EDB (8.9%), bromoform
(11.8%), 1,1,2,2-TCA (22.4%), and naphthalene (16%). The accuracy of Sd depends
on the slope of a log-linear regression of concentration ratio versus time which is
obtained from the change of concentratio;x with elapsed time. The reason for these
high values for low volatility compounds can be explained by Figure 49. Figure 49
shows change of concentration versus time performed in the test number of BC12
with air flow rates of 1.75 scth. Highly volatile compounds, such as CCl; and 111
TCA, were stripped completely within 150 min., whereas only 10% of naphthalene
was removed in 150 min. Due to very low initial concentrations (usually less than 2
mg/L) and very short sampling intervals, the experimental precision for low volatility

VOCs is less than that of high volatility VOCs.

4.3.3 Estimating the Ratio of kGa/kLa

a
The procedure used to estimate the ratio of l;G—a was described in the surface
L

. . : kga .
aeration results section. A summary of the ratios of o over the range of specific air
La

flow rate in bubble column is listed in Table 17 and plotted in Figure 50. The ratios of

a
% were relatively constant between 2.2 to 4.6 for experiments performed with
L

specific air flow rates from 2.47 to 7.19 (1/hr). The ratios in the bubble column were
much smaller than those in surface aeration experiments. This implies that the gas-

phase resistance in the bubble column is extremely important and must be considered.
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Table 17. Summary of gas-phase and liquid-phase mass transfer

coefficients and its ratio in bubble column

specific air | oxygen transfer | gas transfer | gas/liquid mass
flow rate coefficients coefficients | transfer ratio
Abbreviation Q/vV KLa -O2 kGa kGa/kLa
run\unit (1/hr) (1/hr) (m/hr) (=)
BC9 7.19 15.43 40.00 2.59
BC15 6.16 14.50 36.63 2.53
BC11 6.27 14.70 34.49 2.35
BC3 5.68 14.72 47.60 3.23
BC4 5.28 12.62 45.45 3.60
BC5 5.28 11.82 36.90 3.12
BCé6 5.18 15.38 34.20 2.22
BC10 4.68 11.09 29.40 2.65
BC14 4.21 11.20 25.20 2.25
BC7 3.35 9.55 25.50 2.67
BCl1 3.23 7.34 21.23 2.89
BC16 2.75 7.80 35.97 4.61
BC12 2.47 7.11 16.23 - 228
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Figure 50. Correlation between ratios of gas-phase to liquid-phase
mass transfer coefficient to specfic air flow rate
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4.3.3.1 The Effect of Superficial Velocity on kGa

The surface aeration experiments performed with consistent windspeeds of 1.8
to 2.4 (m/s) resulted in a relatively constant value of gas transfer coefficient (kga) of
126. However, the air phase hydrodynamic conditions in the bubble column varied
with the air flow rate which created the different superficial velocity (v; = air flow
rate/column cross section area). The superficial velocities created in this study ranged
from 0.044 to 0.128 (cm/sec), which produced kga’s ranging from 16 to 48. Accord-
ingly, the kga-values are proportional to v0993 (Figure 51). The correlation denotes

that kga increases with increasing vs. Figure 52 shows that kga is proportional to

. . . kga
ki a, thus, there is a relative constant of ratio of o
La

4.3.4 Results of Modification of ¥-value: ‘Pm-value

i kga ) . .
The ratios of —— were used to estimate the fraction of liquid to overall mass
La

transfer resistance for different specific air flow rates using equation (13). Thus, the

¥-value incorporating the fraction of liquid resistance was used to determine the strip-

ping rate of VOCs.

A summary of ¥ and V,,-values for ten experiments are listed in Table 18.
Figure 53 shows a comparison of ¥ and ¥, -values for ten experiments. The value of

¥ seems almost constant for twenty VOCs with different Hc’s, whereas, W, -values

R
decrease with decreasing Hc. Since ¥, =¥ R—L, the difference between ¥ and ¥,
T

R R
can be illustrated by a comparison of the significance of T{‘L' (Table 19). The -Ri of
T T
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Figure 51. Correlation between gas-phase transfer coefficient and superficial velocity
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Figure 52. Plot of liquid-phase mass transfer coefficient versus

gas-phase mass transfer coefficient
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R
twenty VOCs versus Hc are plotted in Figure 54. El:_ decreases with decreasing Hc
T

which is the same as the trend in ¥,. The gas-phase resistance has very little effect
on highly volatile compounds, such as oxygen and CCly. However, the gas-phase
resistance has a significant effect on the compounds with Hc below 0.6 in this study.
The results show that ‘¥ is only valid when liquid-phase resistance is the predominant

mass transfer mechanism.

A comparison of measured and predicted Kj a of twenty VOCs for specific air
flow rates from 1.75 to 5.10 scth is shown in Tables 20a and 20b. Figure 55 and
Appendix H show predicted versus measured Ky a at each specific air flow rate. Good
correlations were observed. Regression line slopes are from 0.9 to 1.08 which are all
pretty close to 1.0. All the intercepts are exceptionally high with a range from 0.13 to
0.56, given by an overestimation of K; ap; or underestimation of Kj ayoc due to the

saturation phenomenon of VOCs in the bubbles.

The discrepancy between measured and predicted values of Kja of sixteen
compounds (excluding EDB, bromoform, 1,1,2,2-TCA, and naphthalene) were large
(from 13% to 34.2%). The major explanation for large variance is due to the high
value of the intercepts. Other errors may arise form the experimental method used for
measuring Kj ag; and Kpayoc, and errors in estimates for liquid diffusivity, which

were discussed in the surface aeration section (Section 4.2.5).

4.3.5 Estimating Stripping Rate by Dimensionless Parameters
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Blackbum et al. (1984) have incorporated Henry’s law coefficients and the air
flow-to-liquid volume ratios to directly estimate the stripping rate in a 6 ft high, 6 in.
diameter bubble column. They used the dimensionless Henry’s law coefficient and
experimental determined stripping rate pa;'ameters to correlate the dimensionless rela-

tionship. Unfortunately, they used slope as Ky a. In such a situation, their correlation

is:

VL
Slope — =b (Hc)™
Qe (104)
where
\%3 = liquid volume 1in the reactor [L],
Qg = air flow rate [L/hr], and
bandm =  power function constant.

If we compare equation (104) with equation (38), the b-value in equation (104)

corresponds to Sd in equation (38) and m = 1. Put in another way, the slope of [Slope

\%
—L versus Hc] is the degree of saturation (Sd). Table 21 summarizes a dimension-
G

less parameter [Slope l] for twenty VOCs in 14 experiments. The correlation of

[Slope —é—] to He for 14 sets of experiments for VOCs with Hc < 0.30 is shown in Fig-
ure 56 along with plots of linear and nonlinear (power) functions. These equations are
as follows:

Linear correlation:
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v
Slope —= =0.003 + 0.91 (Hc)
Qg (105)

Nonlinear correlation:

v
Slope —= = 0.83 (Hc)®*
Qg (106)

The intercept of 0.003 in equation (105) and the m-value of 0.94 in equation (106)
may be caused by the systematic or experimental error. The slopes of linear and non-
linear regressions are 0.91 and 0.83 which correspond to 91% and 83% of saturation
of VOCs in bubbles. Blackburn’s results for pure water, b = 1.0 and m = 0.9 with 11
data points yields a correlation coefficient, r*, of 0.991. It should be noted that Black-
burn et al. (1984) selected toluene (Hc = 0.23), 1,3 dichlorobenzene (Hc = 0.11),
methylethyl ketone (Hc =9.4 x 10™%), and phenol (Hc = 1.37 x 1073) for fitting the
model. The volatility of these compounds are very low. For a 6 ft long bubble
column, most of these low volatility compounds should nearly approach saturation.
Then, we can assume Sd = 1.0 which fits Blackburn’s result of b-value of 1.0. If we
correlate equation (104) with higher volatility compounds, we obtain an Sd of 60%
and 74% for lihear and power function, respectively (Figure 57). The method
developed by Blackburn et al. (1984) offers a simpler approach for estimating strip-
ping rates. As a matter of fact, they did not estimate stripping rate, but the slope of
the negative log-linear regression of concentration ratio versus time. However, the b-
value of the power function is not a constant; it depends on Sd of the VOCs. The

determination of Sd depends on the volatility of VOCs, which is related to Hc.
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If we substitute equation (37) into equation (42), two dimensionless parame-

\%
ters [Kpa -—L—] and Hc can be related to form an equation as follows:

Qg
Kia —YI-‘— =—In(1 — Sd)Hc
Qg (107)
where
Kira = mass-transfer coefficient {1/hr],
Hc = Henry’s coefficient [dimensionless],
VL = liquid volume in the reactor (L],
Qg = air flow rate {L/hr],
band m =  power function constant, and
-In (1-Sd) = saturation parameter {dimensionless]

Comparing equation (107) with the power function of form Y = b X™, the b-
value is [-In (1-Sd)] and m = 1.0. Roberts et al. (1983) have defined [-In (1-Sd)] as a

saturation parameter. The data from 14 experiments in this study (Table 22) is shown
in Figure 58 along with plots of linear and power functions for relating K a —é— and

Hc. The correlation of linear and power function with Hc < 0.27 for [-In(1-Sd)] are
2.47 and 2.87 which corresponds to 91.6% and 94.3% degree of saturation for 14 runs
of experiments. A comparison of methods determination of Sd between equations

(104) and (107) is listed in Table 23.

According to the result of the linear function, the Sd-value obtained by equa-
tion (104) agreed well with equation (107). The difference is only 0.6%. For power

function, the Sd-values obtained with equations (104) and (107) have high deviation
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of 11.3%. The linear function has taken out the intercept of correlation which may

come from experimental error; however, the power function includes the experimental

error which generates higher discrepancy.

Table 23. Comparison of equations (104) and (107) for determinination of Sd

Linear Power Diff. (%) Equation
Sd (%) 91.6 94.3 27 107
5d (%) 91.0 83.0 8.0 104
Diff. (%) 0.6 11.3 - -

Note: Sd = Degree of saturation

Diff. = Difference

The method developed in this work has been confirmed by analysis of dimen-
sioniess parameters. The dimensioniess parameter analysis incorporates the Henry's
coefficient and the air flow-to-liquid volume ratio to directly yieid the stripping rate

constant. Equation (107) estimates the stripping rate constant from Henry’s

coefficient of VOCs following the form of K; a % = b Hc™. The values of the strip-

ping rate constant (K a) predicted from this methodology agree reasonably weil with

dimensionless analysis. This proves the validity of the developed methodology.
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4.3.6 The Effect of Temperature on KLa
4.3.6.1 Effect of Change of Water Temperature on K; a

Because the diffusion coefficient and the viscosity vary with temperature,
changes in water temperature may influence the Ky a-vaiue. Since the oxygen concen-
tration C{, is temperature dependent, it is essential to keep the reactor at constant tem-
perature during the test. For short tests (30 min), fluctuations were less than 0.1 °C;
whereas, for long runs (4 hrs), the temperature varied + 0.3 °C. As stated in the sur-
face aeration secudon, the temperature variation may cause slight, perhaps undetectable

scatter in the results.

4.3.6.2 Effect of Change of Air Bubble Temperature on KLA

It is necessary to evaiuate the effect of air bubble temperature on oxygen
ransfer coefficient (Kp a) and saturadon concentration (Cs*). Inidally the temperatre
was held constant (20°C) and the values of Kj a and Cs* were determined for various
air flow rates (1.15 to 5.10 scfth). Thereafter, the air flow rate was held constant at

3.75 scfh in order to examine the effect of air bubble temperature on K; a and Cs*.

A summary of the Ky a’s and Cs*’s for experiments performed at temperatures
of 15.0, 20.0, and 24.4 °C are listed in Table 24 and plotted in Figure 59. The mean

values of Ky a at 15.0 °C and 22.4 °C are 12.44 (1/hr) and 12.71 (1/hr) which are not
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significantly different from the average values of 12.38 (1/hr) obtained at 20 °C. Such
small differences of Ky a between 15 °C and 24.4 °C are not significant compared to
experimental errors at 20 °C. Itis concluded that the effect of air temperature change

of £ 5 °C on Ky a and Cs* was not significant.
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Table 24. Effect of air bubble temperature on oxygen transfer
coefficient and saturation oxygen concentration

Test No Air Temp. Cs* KLa

ATS8 200C 9.10 12.16
AT9 200C 9.07 12.31
ATI10 200C 9.04 12.97
BC4 200C 8.97 12.62
BC5 200C 9.01 11.83
Mean 9.04 12.38
Stdev 0.05 0.44
% CV 0.54 3.54
AT14 15.0C 8.97 12.65
ATI15 150C 9.03 12.17
AT16 150C 8.99 12.50
Mean 8.99 1244
Stdev 0.03 0.24
% CV 0.33 1.96
ATI11 244C 9.06 12.76
ATI12 244C 9.07 12.57
AT13 244C 9.02 12.82
Mean 9.05 12.71
Stdev 0.03 0.13
% CV 0.32 1.03

Air Temp. = Air Bubble Temperature
Stdev = Standard Deviation
% CV = Coefficient Variation (%)
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5. ENGINEERING SIGNIFICANCE

The objective of this section is to show the appiication of the novel methodol-
ogy - ¥, concept by means of an example from surface (SA) and bubble column
(BC) aeration in the activated sludge process of a wastewater treatment plant. The
stripping rates of twenty VOCs for both SA and BC were compared for a range of

specific power input between 15 and 80 watt/m>.

¥, is defined in equation (60) and is repeated here as follows:

D R R
‘I’m=[ LVOC]n L _y L

Doz J Rr Rt (60)

Equation (60) indicates that ¥, depends not only on the diffusivity, but also on the
fraction of liquid resistance to total resistance. The concept of ¥ ,-value can be used
to determine the stripping rates of volatile and semi-volatile compounds, if the oxygen
transfer coefficient and hydrodynamic conditions are known for a specific aeration
basin. These calculations assume that adsorption and biodegradation are not

significant.
5.1 Estimating Stripping Rates in Surface Aeration

Surface aeration systems are rated in terms of their oxygen transfer rate
expressed as kilograms of oxygen per kilowatt-hour under standard conditions. Stan-
dard conditions exist when the temperature is 20°C, 760 mm Hg, the dissolved oxygen
is 0.0 mg/L, and the test liquid is tap water. Testing and rating are normally done
under nonsteady-state conditions using fresh water, deaerated with sodium sulfite.

Commercial size surface aerators now available range in efficiency from 1.2 to 2.4
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[Kg O2/Kw-h] (Metcalf and Eddy, 1979). According to equation (15), the oxygen

transfer coefficient can be calculated from:

Kia= Nc P
La= -
CS* V (108)

where

Nc = oxygen transfer rate (kg O,/Kw-h],

P =  brake power of acrator [Kw],

\" = volume of basin [m°], and

Cs* =  oxygen saturation concentration (kg 0, /m’] for 20°C, 760

mm Hg,

= 9.17x 1073 [kg O,/m’].

Therefore, the relationship between the K; a and the specific power input is in the fol-

lowing range:
1.2 1 [P] [P}
Kpa)g, = —1=0.13|—
Ko, = 7 x 10 1000 LV v (109)
2.4 1 [P] [P}
Kpra)o, = —1 =0.26{—
(Kao, 9.17 x 107 1000 LV N (110)

where the units of (K a)o, and (VP)- are [hr'l] and [watt/m3], respectively.

Roberts et al. (1983), conducted lab experiments using a batch laboratory

apparatus with a liquid volume of 0.0073 m? over the specific power range 10 < —5- <

200 wat/m®, found the following relationship:

(Ka)o, = 0.09 [ﬂ]

\ (111)
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where the units of (K a)o, and ( TP’-) are [hr!] and [wat/m’], respectively.

In order to compare our results with laboratory-scale bubble column, equation
(111) of laboratory-scale surface aeratior{ relationship was used to estimate Kja of
oxygen. Table 25 shows the results of ¥ ,,-value of twenty VOCs in surface aeration.
The K a of oxygen incorporating ‘¥, was used to estimate Kj a of VOCs. The K a
of oxygen and twenty VOCs are shown in Table 26. In order to estimate the fraction
of liquid resistance, the kga-value of 128 obtained in Section 4.2.4 and K a of oxygen
interpreted from specific power input (equation 111) were used to estimate the ratio of
_}fG_a
Kpa’

5.2 Estimating Stripping Rates in Bubble Column

The program, developed by ASCE for nonlinear estimation of oxygen transfer
parameters, was used to estimate standard oxygen transfer efficiency (SOTE) of
experimental air flow in this study. Table 27 shows the results of P/V, SOTE
corresponding to experimental air flow rate. The oxygen-transfer efficiencies were
between 10.5% and 6.9% for air flow rates from 1.15 to 5.10 scfth. Figure 60 shows
that SOTE decreases with increasing air flow rate. The higher air flow produces
bigger air bubbles which results in smaller specific surface area. According to
Metcalf and Eddy (1979), the oxygen-transfer efficiency of medium-bubble is
between 6% and 15%. Therefore, medium-bubble size refers to the experimental air
flow rate used in this study. Reported oxygen transfer efficiency of bubble diffused
aeration systems range from 0.6 - 1.2 [kg O,/Kw-h] for medium-bubble (Metcalf and

Eddy, 1979, pp. 497). The value of 1.0 [kg O,/Kw-h] was selected to correlate
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Table 27. Oxygen transfer performance in bubble column

Test Flowrate KLa-02 SOTR SOTE Power P/V*
No. (scth) (1/hr)  (Ib/hr) (%) (watt)  (watt/m3)
BC9 5.10 1543 0.0061 6.92 2.77 1379
BC15 4.37 14.50 0.0054 7.12 2.46 122.2
BC11 445 14.70 0.0055 7.25 2.50 124.2
BC3 4.03 14.72 0.0061 8.71 277 1379
BC4 3.75 12.62 0.0050 7.65 227 113.1
BC5 3.75 11.82 0.0047 7.28 2.14 106.3
BC6 3.68 13.38 0.0050 7.93 227 113.1
BC10 3.32 11.09 0.0044 7.67 2.00 99.5
BC14 2.99 11.20 0.0040 8.13 1.82 90.5
BC7 2.38 9.55 0.0038 9.56 1.73 85.9
BC1 2.29 7.34 0.0035 8.79 1.59 79.1
BC16 1.95 7.80 0.0032 9.71 1.46 725
BC12 1.75 7.11 0.0028 9.36 1.27 63.3
BC8 1.15 5.35 0.0021 1047 0.95 47.5

* Assuming SAE = 1.0 kg O2/Kw-h

SOTR = Standard Oxygen Transfer Rate
SOTE = Standard Oxygen Transfer Efficiency

Liquid volume = 20.1 Liters
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Figure 60. Standard oxygen transfer efficiency (SOTE) versus air flow rate
in bubble column
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(Kra)o, to (%). The correlation between (K a)o, and (—5—) is shown in Figure 61

and given by:

(K)o, =0.0915( |14

v (112)

Equation (112) was used to estimate the K a of oxygen in the bubble column.
Table 28 shows the results of W,,-value of twenty VOCs. As was done for surface
aeration, the Ky a of oxygen incorporating ¥, was used to estimate Kya of VOCs.
The results of Kj a of oxygen and VOCs are shown in Table 29. As was stated in the
results in the bubble column section, kga is proportional to superficial velocity (vg).

The correlation between kga and v, plotted in Figure 62 was used to determine the

a
in order to estimate the fraction of liquid resistance.
La

ratio of

5.3 A Comparison of Stripping Rate Between Surface Aeration and Bubble

Column

Typical selected stripping rates for ten VOCs from surface aeration (SA) and
bubble column (BC) are plotted in Figure 63 and Appendix K. The calculated results
indicate that the rate of oxygen transfer of BC is better than that of SA; whereas, the
stripping rates of VOCs from SA are higher than that from BC, except for the most
volatile compound studied, CCly. The volatility of CCl, is high enough in the given
hydrodynamic condition. Consequently, the gas-resistance is not very significant to
limit the stripping rate of CCly in the bubble column. However, the stripping rate of
CCly during SA is still higher than that from BC for a given oxygen transfer rate.

According to Figure 63 and Appendix K, it is apparent that stripping rates for VOCs
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Table 28. Psi-m value of twenty VOCs in bubble column (calculation)

Compounds 02 CT PCE INTCA TCE EBZ MXY TLN 8Z OXY 12DCE CLF CBZ BBZ 13DCB14DCB12DCB EDB BF 1122TCA NAPH

He=> 13002 1.122 0565 0525 0252 026 0236 023 0226 0.181 0.166 0.16 0.146 0099 0124 0.108 0.087 0.041 0041 0042 0.038

r/v DL =>]1971 0862 0834 0.844 0899 0.708 0.706 0.787 0.892 0.706 0.977 0938 08 0775 0727 071 0725 0908 0865 0763 0.668

(w/md)|¥=>]105 066 065 065 068 060 060 063 067 060 070 0.69 064 063 061 0.60 061 068 066 062 (.58

Ratio
15 1.7 1155 044 032 031 021 019 017 018 0.19 014 016 015 013 009 011 009 008 005 004 004 004
20 19 [2.09 045 033 032 021 0.19 018 0.19 020 015 017 0.6 014 010 011 010 008 005 005 005 004
25 19 ]2.63 045 034 033 022 020 019 020 021 016 017 016 014 010 012 010 009 005 005 005 004
30 20 1319 046 035 034 023 021 019 020 021 016 0.18 0.17 0.15 0.10 012 0.1 0.09 0.05 o.om., 005 004
35 21 (374 046 035 034 023 021 020 021 022 017 018 0.17 015 011 013 011 009 005 005 005 0.04
40 22 1430 047 036 035 024 022 020 021 022 017 019 0.18 0.15 011 033 011 0.10 006 005 005 004
45 22 |487 047 036 035 0.24 022 021 021 023 017 019 0.18 0.16 0.11 013 012 010 006 005 0.05 005
50 23 |543 048 037 036 025 022 021 022 023 018 0.19 0.18 0.16 0.12 013 012 010 006 006 005 005
55 23 16.00 048 037 036 025 023 021 022 023 018 020 019 016 012 014 012 010 006 0.06 006 0.05
60 24 1657 048 037 036 025 023 022 022 024 018 020 019 0.16 0.12 014 012 010 006 006 006 005
65 24 |7.15 048 038 037 026 023 022 023 024 018 020 0.19 0.17 012 014 012 011 006 006 006 005
70 25 1772 049 038 037 026 023 022 023 024 018 020 0.20 0.17 0.12 014 013 0.11 006 006 006 005
75 25 |830 049 038 037 026 024 022 023 024 019 021 0.20 017 0.12 014 013 011 006 006 0.06 005

80 25 |888 049 038 037 0.26 024 022 023 025 019 021 020 0.17 013 015 013 011 006 006 006 0.05
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Figure 62. Correiation between kGA and specific power input (P/V) in bubble column
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Figure 63. Comparison of mass transfer coefficient of oxygen and TCE
in surface aeration (SA) and bubble column (BC)
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are greater with SA than with BC. These results can be attributed to the higher gas-

resistance which occurs in the bubble column.

For a given aeration tank, the rate of oxygen transfer can be determined by its
performance via SOTE. Thereafter, the rate of oxygen transfer can be used to predict
the stripping rates of VOCs by means of the novel concept of ‘¥,,. The example given
in this section is based upon laboratory experiments. The model needs to be verified

with field measurements at a full-scale treatment plant.
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6. CONCLUSIONS

6.1 Henry’s Coefficient

Four techniques were compared/ for determining dimensionless Henry’s
coefficient (Hc), and the Equilibrium Partitioning in Closed Systems (EPICS) method
with analysis of the aqueous phase was selected for its superior precision, simplicity,
and the capacity to handle large numbers of samples in a reasonably short time. Prior
to performing EPICS tests, the time required to approach equilibrium was determined.
Resuits showed that complete equilibrium for twenty volatile organic compounds

(VOCs) was achieved within about 30 min. on a shaker table at 2500 RPM.

A sensitivity analysis of EPICS volume ratio to the change of Hc for three
Hc-values (1.2, 0.2, and 0.01) was performed to determine the volume ratios to
minimize errors (Figure 64). For Hc of 1.2, a volume ratio of 5 was required to pro-
duce a coefficient of variation (CV) less than 5%; whereas, a volume ratio of 50 was
essential for Hc of 0.04. A volume ratio of 10 was satisfactory for Hc of 0.2. For low
volatility compounds, greater precision in the EPICS procedure can be attained as the
volume ratio is increased. Experiments were carried out with the volume ratio of 10,
since the largest serum bottle available had a volume of 120 + (.5 ml and the analyti-
cal balance had a capacity of 160 g with precision of 0.0001 g. The resuits show that
the precision of the EPICS procedure decreases as Hc decreases, except for CCly.
The high CVs of CCly are due to its lower GC response which produces higher devia-

tions.
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Figure 64. Correlation of volume ratio within EPICS bottles pair to Henry's coefficient
based upon less than 7.5 % of (AH/H) caused by a 5% error
of liquid-phase concentration ratio (AR/R, R = Cw1/Cw2)
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The previously reported and new estimates Hc data for twenty VOCs are sum-
marized in Table 3 and plotted in Figure 65. The consistency of the data from this
study for most of the compounds is noted. Mackay and Shiu (1981) compiled values
from a number of sources and found widc-‘ variations. In particular, the Hc-values of
low volatility compounds are rarely reported in the literature and published values
have wide variations. In this study, the higher Hc-values for low volatility compounds

were used to better fit the mass-transfer model of the bubble column.

6.2 Surface Aeration

In bench-scale surface aeration, the mass-transfer coefficient for oxygen and

a
twenty VOCs were simultaneously measured. Using these measurement, the Py
La

a
ratios were used
kLa

ratios were determined by nonlinear regression. Thereafter, the

Ry
to estimate the fraction of liquid phase resistance to total resistance (E—). The ¥p,-
T

values were used to predict the stripping rates for twenty VOCs over a range of hydro-
dynamic conditions in order to verify the novel concept. Finally, the relationship
between stripping rates of VOCs and specific power input were determined as a proto-

col for scale-up application. The following conclusions are made:

1. . The hydrodynamic condition during surface aeration was expressed in terms of
specific power input (%) and velocity gradient (G). At the unbroken water

surface, the mass transfer coefficient (Kpa) of oxygen was proportional to

(-\!;-)0'45 and G%%!, respectively. The K a of twenty VOCs was proportional
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to (%)“, with n ranging from 0.26 to 0.43. The n-value of oxygen and twenty

VOCs were very close to the reported range of 0.20 and 0.40 by Kozinski and

King (1966).

R
2. For a given TI;-, TQ_L- decreases with increasing Hc. The gas-phase resistance
T

has a very significant effect for compounds with Hc < 0.2 under the hydro-

R
dynamic conditions used in this work (Figure 66). EE significantly decreases
T

with increasin —I:-
LY

R
3. Y ,-value, estimated from R—L' and the liquid diffusivity of VOCs, was used to
T

predict the stripping rates for twenty VOCs over a range of hydrodynamic con-
ditions using the Kja of oxygen. Good correlations between estimated and
measured values of Ky a of twenty VOCs were observed (Figure 67), which

proves the validity of ¥, concept.

4. It is necessary to have sufficient air flow in the headspace for removal of
VOCs from the liquid phase, especially for low volatility compounds. The
results obtained from one series of experiments suggest that covering aeration

tanks may reduce the volatilization rate of VOCs.
6.3 Bubble-Column

The developed methodology, transfer parameter {-In(1-Ds)/Sd], was used to

estimate the mass-transfer coefficient of twenty VOCs (Sd represents degree of satura-
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a R
tion of bubbles). As was done in surface aeration, the parameters %, -R—L—, ¥, and
L T

prediction of the stripping rates of twenty VOCs were estimated. The conclusions,

based on the results of the bubble-column experiments, are as follows:

1. The flow behavior of the bubble column, such as the air holdup ratio (g),
specific interfacial area (a), wall effects, bubble diameters, and Ky -values were
studied in order to quantify the hydrodynamic conditions. The dependence of
interfacial area (a) and K -values on AFR were correlated. The increase in the
rate of mass transfer was mainly dependent on an increase in the interfacial

area (a) and was only secondarily dependent on increased K; -values (Figure

68).

2. The Ky a’s of twenty VOCs at different air flow rates were correlated to pro-
duce a simple power function of the form, Y = b X™. The m-values of the

power function were all very close to 1.0 over a range of Hc from 0.04 to 30.2,

which indicates that the relationship between K; a and 3—0 is linear (Figure
L

69). The increase of b-value for twenty VOCs implies that higher Henry’s

coefficient corresponds to higher mass-transfer coefficients.

3. Gas-phase resistance becomes increasingly significant as Hc decreases for a
given specific air flow rate. Figure 70 shows that Sd increases with decreasing

Hc.

4, The value of ¥ is approximately constant for twenty VOCs with different He’s

and various specific power inputs; whereas, ¥, -values decrease with decreas-
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R
ing Hc (the same trend as for R—;‘_ (Figure 71). The results show that using ¥

is only valid when liquid-phase resistance is the predominant mass transfer
resistance. Good correlations between estimated and measured values of K; a

of twenty VOCs were observed when using the ‘¥, parameters (Figure 72).

The developed methodology, use of transfer parameter to predict stripping rate
of VOCs, has been confirmed by analysis of dimensionless parameters. Use of

dimensionless parameters to predict the stripping rate of VOCs incorporates

the Hc and the air flow-to-liquid volume ratio and has the form: K a -Q—L- =b
G

Hc™. However, the value of b is not a constant, and depends on Sd of the
VOCs in the bubble column. The data from Table 22 is shown in Figure 73
along with plots of linear and power functions. The correlation of linear and
power function with Hc < 0.27 for b = - In (1-Sd) are 2.47 and 2.87 which
corresponds to 91.6% and 94.3% degree of saturation for 14 runs of experi-

ments.

6.4 Estimating the Ratio of kGa/kLa in Surface Aeration and Bubble Column

a
Figures 74 and 75 show that kga and -l;ia- ratios in surface aeration and bub-
L

a
ble column, respectively. The ratio of —I;—G— should rely on the hydrodynamic condi-

La

tions of windspeed in the air phase and mixing condition in the water, phase, instead

of being a fixed value as suggested by previous studies. The surface aeration experi-

ments performed with constant windspeeds of 1.8 to 2.4 (m/s) resuited in a relatively

constant gas transfer coefficient (kga) of 128. However, the air phase hydrodynamic
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condition in the bubble column varied with the air flow rate which resulted in different
superficial velocides (vs). The kga’s were between 16 and 48 which resuited from the

change of v-values from 0.044 to 0.128 (cm/sec).

Accordingly, the kga-value is approximately proportional to the vy in the bub-

ble column. Since kga is proportional to ky a in the bubble column, there is a rela-

: : kga : kga - .
tively constant ratio of T However, the ratio of a decreases with increasing
L La

specific power input or Reynolds number due to the nearly constant Kga-value. The

. . kga .
correlation between the ratio of o and the Reynolds number for surface aeration is
La

very close to that of Roberts (1984), because both experiments were performed with

a
the same windspeed of 1.8 - 2.4 (m/s). The ratios of % in the bubble column (2.2-
L

4.6) were much smaller than those in the surface aeration experiments (38-110). This
implies that the gas-phase resistance in the bubble column is much more important

than it is in the surface aeration.
6.5 Engineering Significance

The ¥,, concept can be used to estimate volatilizatdon of low volatility com-
pounds. Simpie extrapolation of ¥ may greatly overestimate VOC stripping. The
results show that using aeration systems which have low values of kga, as compared

to kg a (i.e. fine bubble diffusers) minimize VOC losses.
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Appendix A: Derivation of ‘', for VOCs:
The general mathematical expression for the Two-Resistance model is as

follows:
Kivoc = 771 1 1 (A-1)
kvoc " Hekgyoc
where
KLVOC = Overall liquid-film mass transfer coefficient [ time '1]

krvoc, kegyvoc = local liquid—film and gas -film mass transfer coefficients,

respectively [ time "]

Hc = Henry's law constant [dimensionless]

The fraction of liquid-film resistance to total resistance was previously

derived as equation (13), repeated here:

RL RL 1 1
R: = RIRC = - (a-2)
T L+Rg Rg 1
1+R + kC
L He—=
kL

Multiplication of both sides of equation (A-1) by Kvoc gives:

Ky voc 1 Ry,
voc - K = Ry (43
LVOC LVOC T
1+ He k
CXgvoc

Previously studies was defined the proportional relationship of local VOCs

and oxygen mass transfer coefficients as ‘¥':
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kivoc Drvocn

¥ = Koz - Diop ) (A-4)
where
b = local mass-transfer coefficient proportionality
[dimensionless]
Divoc:Drop =  liquid diffusivilities for VOC and O2 (L2/time]

The proportional relationship of overall VOCs and oxygen mass transfer

coefficients can be expressed as LI’M:

Kivoce
Y, = —0—— (A-5)
M~ Ko

Because kLOZ = KL02' then

K
Wy = (A~6)
LO2

<
[

Multiplying the numerator and denominator into equation (A-6) by kpyoc

gives

kivoc Kivoc
- (A-7)
M kto, krvoce

Substituting equation (A-3) and (A-4) into equation (A-7) results in:

Drvocn Rp Ry
\P = (*) A = \IJ - (A'S)
M Dio; © Ry Ry
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Appendix B

NOTE:
NOTE :

NOTE:

VI EWN -

-

SAS(R) LOG 0S SAS 5.18 ° MVS/XA JOB IGPCCHU1 STEP GO

COPYRIGHT (C) 1984,1988 SAS INSTITUTE INC., CARY, N.C. 27512, U.S.A.

THE .IOR IGPCCHU1 HAS RFFN RIIN UNNDFR RELEASE 5.18 OF SAS AT THE UNIVERSITY OF
CALIFORNIA, LOS ANGELES (0127u003).

SAS OPTIONS SPECIFIED ARE:

SORT=25

DATA A B;

INFILE R375AREA;

INPUT DL DG HC KL;

iD= 1;

IF _N_=1' THEN OUTPUT A; ELSE OUTPUT B;

INFILE R375AREA 1S:
DSNAME={GPCCHU.R375AREA,
UNIT=DISK,VOL=SER=DATA80,DISP=SHR,
OCB=(BLKS1ZE=6160,LRECL=80,RECFM=f8)

21 LINES WERE READ FROM INFILE R375AREA.

OATA SET WORK.A HAS 1 OBSERVATIONS AND 5 VARIABLES. 1066 OBS/TRK.
DATA SET WORK.B HAS 20 OBSERVATIONS AND 5 VARIABLES. 1066 0OBS/TRK.
THE DATA STATEMENT USED 0.04 SECONDS AND 808K.

DATA A; SET A; RENAME DL=DLREF DG=DGREF HC=HCREF KL=KLREF;

DATA SET WORK.A HAS 1 OBSERVATIONS AND S VARIABLES. 1066 OBS/TRK.
THE DATA STATEMENT USED 0.02 SECONDS AND 7u8K.

DATA C; MERGE B A; BY 1D;
DLIR = DL/DLREF; OGIR = DG/DGREF;

DATA SET WORK.C HAS 20 OBSERVATIONS AND 11 VARIABLES. 510 0BS/TRK.
THE DATA STATEMENT USED 0.02 SECONDS AND 796K.

DATA D; SET C; X=1/KL; Y=1/DLIR; Z=1/DGIR; W=1/HC;

DATA SET WORK.D HAS 20 OBSERVATIONS AND 15 VARIABLES. 378 OBS/TRK.,
THE DATA STATEMENT USED 0.02 SECONDS AND 748K.

PROC NLIN BEST=50 PLOT:
PARMS A = 0.42 70 0.48 BY 0.01,
8 = 0.0075 TO 0.0085 BY 0.0001,
MN = 0.4 TO 0.9 BY 0.05;
MODEL X = A®Y®H#MN + B#WHZH#MN
DER.A = Y#%*MN;:
DER.B = WH#Z##MN;
DER.MN = LOG{MN)*(ARYHEMN + BHy#Z#EMN) .
OUTPUT OUT=S5A R=YR PARMS=A B MN:
THE DATA SET WORK.S5A HAS 20 OBSERVATIONS AND 19 VARIABLES. 300 0OBS/TRK.
THE PROCEDURE NLIN USED 4.58 SECONDS AND 1148K AND PRINTED PAGES 1 TO 3.

DATA S5A6; SET S5A;
l1A = 1/A; B = 1/8;
RUN;

SAS INSTITUTE INC.
SAS CIRCLE

PO BOX 8000

CARY, N.C. 27512-8000
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Appendix B

SAS
NON~L | NEAR LEAST SQUARES GRID SEARCH DEPENDENT VARIABLE X
A 8 MN RESIDUAL sS
0.48 0.0082 0.50 0.0682104269587
0.48 0.0083 0.50 0.0682665102272
0.48 0.0081 0.50 0.0684097291080
0.48 0.0084 0.50 0.0685779789136
0.48 0.0080 0.50 0.0688644166751
0.48 0.0085 0.50 0.0691448330177
0.48 0.0079 0.50 0.069574L896600
0.48 0.0078 0.50 0.0705399480627
0.48 0.0077 0.50 0.0717607918832
0.46 0.0077 0.55 0.0726557054701
0.46 0.0078 0.55 0.0726783347238
0.46 0.0076 0.55 0.0729167454650
0.46 0.0079 0.55 0.0729846332260
0.47 0.0085 0.50 0.0730692010522
0.47 0.0075 0.55 0.0732272569719
0.48 0.0076 0.50 0.0732370211215
0.46 0.0075 0.55 0.073L4614547085
0.46 0.0080 0.55 0.0735746009769
0.u47 0.0084 0.50 0.0736756366625
0.47 0.0076 0.55 0.0739757465u450
0.46 0.0081 0.55 0.0744482379763
0.47 0.0083 0.50 0.074537L4576906
0.u48 0.0075 0.50 0.0749686357777
0.47 0.0077 0.55 0.0750079053667
0.u6 0.0082 0.55 0.0756055u442243
0.47 0.0082 0.50 0.07565u66U41365
0.47 0.0078 0.55 0.0763237334370
0.47 0.0081 0.50 0.0770272560002
0.46 0.0083 0.55 0.0770465197209
0.45 0.0082 0.55 0.0773220030379
0.45 0.0081 0.55 0.0774578956066
0.45 0.0083 0.55 0.0774697797179
0.45 0.0080 0.55 0.077877457u4238
0.45 0.0084 0.55 0.0779012256u465
0.47 0.0079 0.55 0.0779232307559
0.45 0.0079 0.55 0.078580688u4895
0.45 0.0085 0.55 0.0786163u408236
0.47 0.0080 0.50 0.0786552332817
SAS
NON-L INEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE X
SOURCE DF SUM Of SQUARES MEAN SQUARE
REGRESSI0ON 2 16.715459749 8.357729875
RES IDUAL 18 0.067580940 0.003754497
UNCORRECTED TOTAL 20 16.783040689
(CORRECTED TOTAL) 19 0.496126u484
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONF IDENCE [INTERVAL
LOWER UPPER
A 0.4853987344 0.01329124083 0.45747505810 0.51332241068
B 0.0079800115 0.00081663273 0.00626434116 0.00969568187
MN 0.5000000000 0.00000000000 0.50000000000 0.50000000000
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Appendix C

Calculations of Gas and Liquid Diffusivity




Table C-1. Liquid molar volumes at the normal boiling point

Vb [cm3/mole]
T&C ~ Schroeder Le Bas Expt.#
compounds { B.P. MW. V¢ Values
02 32.00 73.4 257 25.6 256 27.90
12DCE 4750 9694 2255 82.8 - 84.0 86.0
PCE 121.00 16583  290.0 107.7 119.0 1280
CT 76.50 153.80 276.0 103.0 105.0 113.2 102.00
111TCA 7410 13341  283.0 105.8 1085 1145
TCE §7.00 13139  256.0 95.2 101.5 107.1
BZ 80.00 78.11  259.0 96.4 840 1110
EBZ 136.00 106.20 374.0 141.6 126.0 1554
TLN 110.00 9213 316.0 118.7 1050 1332
MXY 139.00 106.16 376.0 142.4 1260 1554
0).4¢ 14440 106.17  369.0 139.7 126.0 1554
CBZ 132.00 11260 308.0 115.6 101.5 1319
CLF 61.70 11940  239.0 88.6 87.0 923
13DCB 173.00 147.00 359.0 135.7 1190 1528
12DCB 179.00 147.00  360.0 136.1 119.0 1528
14DCB 174.00 147.00 3720 140.9 1190 1528
BBZ 156.00 157.02  324.0 121.9 108.5 134.3
BF 14950 25280 272.0 101.5 108.5 99.5
NAPH 21790 12820  410.0 156.0 126.0 1776
EDB 13160 187.88  252.0 93.7 91.0 91.0
1122TCA 146.20 167.90 332.0 125.0 140.0 135.4

Notes: B. P. = boiling point (C); T + C = Tyn and Calus vorrelation;

Ve = critical point [cm3/mole], M.W. =molecular weight, [g/mole]

Expt.#=experimental
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Table C-2. Infinite dilution diffusion coefficients in water

(Wilke-Change Method)
DL x 100,000 [cm/s] at 20 C
Y =2.60 Y=226
Vb from Vb from

Compounds| T&C Schroeder Le Bas Expt*| T&C Schroeder Le Bas Expt*
02 211 2.12 212 201 197 1.98 198 188
12DCE 1.05 1.04 1.02 0.98 0.97 0.96

PCE 0.89 0.84 0.81 0.83 0.79 0.75

CCl4 0.92 0.91 0.87 092 086 0.85 0.81 0.86
111TCA 0.90 0.89 0.86 0.84 0.83 0.80

TCE 0.96 0.93 0.90 0.90 0.86 0.84

BZ 0.96 1.04 0.88 0.89 0.97 0.82

EBZ 0.76 0.81 0.72 0.71 0.76 0.67

TLN 0.84 0.91 0.79 0.79 0.85 0.73

MXY 0.76 0.81 0.72 0.71 0.76 0.67

OoxXY 0.77 0.81 0.72 0.71 0.76 0.67

CBZ 0.86 0.93 0.79 0.80 0.86 0.74

CLF 1.01 1.02 0.98 0.94 0.95 0.92
13DCB 0.78 0.84 0.73 0.73 0.79 0.68
12DCB 0.78 0.84 0.73 0.73 0.79 0.68
14DCB 0.76 0.84 0.73 0.71 0.79 0.68

BBZ 0.83 0.89 0.78 0.77 0.83 0.73

BF 0.93 0.89 0.94 0.87 0.83 0.88
NAPH 0.72 0.81 0.66 0.67 0.76 0.62

EDB 0.97 0.99 0.99 0.91 0.92 0.92
1122TCA 0.82 0.76 0.78 0.76 0.71 0.73

Note: Expt.* = experimental values
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Table C-3. Infinite gas difusivities for twenty VOCs and oxygen

DG x 100 [cm2/sec]

Vb from
Compounds T&C Schroeder Le Bas
02 21.315 21.344 21.344
12DCE 9.447 9.392 9.306
PCE 7.770 7.461 7.240
CCl4 8.158 8.095 7.852
111TCA 8.176 8.091 7.916
TCE 8.475 8.260 8.083
BZ 8.946 9.446 8.450
EBZ 7.151 7.509 6.877
TLN 7.923 8.330 7.555
MXY 7.123 7.497 6.866
10),0¢ 7.162 7.476 6.847
CBZ 7.752 8.171 7.340
CLF 8.928 8.992 8.784
13DCB 6.941 7.329 6.603
12DCB 6.912 7.307 6.583
14DCB 6.830 7.325 6.600
BBZ 7.283 7.637 6.995
BF 7.650 7.445 7.710
NAPH 6.480 7.087 6.130
EDB 8.105 8.198 8.198
1122TCA 7.208 6.876 6.973

218




Appendix D
Correlation of mass transfer coefficient to specific power input

in surface aeration
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o PCE ——y = 0.14846 * x*(0.39673) R= 0.99627

o CBZ — -y =0.16984 * x4(0.37282) R= 0.99547
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Figure D1. Correlation of mass transfer coefficient to specific power input (PCE,CBZ)

o CCL4  ——y _ 014195 * x4(0.43334) R= 0.99783

o 13DCB — -y = 0.16268 * x*(0.36401) R= 0.99558
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Figure D2. Correlation of mass transfer coefficient to specific power input (CT, 13DCB)
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o TCE ——y = 0.17523 * x~(0.3783) R= 0.99144

e 12DCB — -y = 0.16523 * x(0.35364) R= 0.99604
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Figure D3. Correlation of mass transfer coefficient to specific power input (TCE,12DCB)
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o BZ ——y = 0.15399 * x*(0.38641) R= 0.99277

o 14DCB  — -y = 0.16828 * x(0.3581) R= 0.99565
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Figure D4. Correlation of mass transfer coeffiicient to specific power input (EBZ, 14DCB)
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o 12DCE ——y = 0.19005 * x*(0.36414) R= 0.99583
‘8 e BBZ — -y = 0.17537 * x*{0.35633) R= 0.99596
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Figure D5. Correlation of mass transfer coefficient to specific power input (12DCE, BBZ)

o 13-XYLENE(M)  ——y = 0.13958 * x*(0.40539) R= 0.99514
e FF — -y = 0.16648 * x*(0.31389) R= 0.99748

1.6 i

—h
o~

[\

—t
o

e
®

(@]
(o]

Mass transfer coefficient (1/hr)

-llll llIllllllllllllllll‘lllllllllllllll

] i 1 ] i ] 1
0 50 100 150 200 250 300 350 400

P/V (watt/m’)
Figure D6. Correlation of mass transfer coefficient to specific power input (MXY, BF)
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o 12-XYLENE(Q) ——y = 0.14577 * x(0.39788) R= 0.98981
e EDB — -y = 0.18644 * xA(0.31143) R= 0.99722
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Figure D7. Correlation of mass transfer coefficient to specific power input (OXY, EDB)

o TOLUENE ——y = 0.17033 * x*{0.37565) R= 0.99565
e 1122TCA — -y = 0.18436 * x*(0.26278) R= 0.98228
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Figure D8. Correlation of mass transfer coefficient to specific power input (TLN, 1122TCA)
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o 12-XYLENE{O) ——y = 0.14577 * x*(0.39788) R= 0.98981

o EDB — -y = 0.18644 * x*(0.31143) R= 0.99722
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Figure D7. Correlation of mass transfer coefficient to specific power input (OXY, EDB)
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o By . 0.16467 * x*(0.38058) R= 0.99457
o NAPH — -y =0.14774 * x*(0.31747) R= 0.99677
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Figure D9. Correlation of mass transfer coefficient to specific power input (BZ, NAPH)
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Appendix E
Correlation of mass transfer coefficient to velocity gradient

in surface aeration
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o PCE —y = 0.0095451 * x*(0.79351) R= 0.99627

o CBZ — -y =10.012884 * x*(0.74568) R= 0.99547
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Figure E1. Correiation of mass transfer coefficient to specific power input

2.0

1.5

1.0

in surface aeration (PCE, CBZ)

CCL4 ——y = 0.0070847 * x*(0.86673) R= 0.99783
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Figure E2. Correlation of mass transfer coefficient to velocity gradient

in surface aeration (CT, 13DCB)
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Figure E3. Correlation of mass transfer coefficient to velocity gradient
in surface aeration (TCE, 12DCB)
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Figure E4. Correlation of mass transfer coefficient to velocity gradient
in surface aeration (EBZ,13DCB)

227




KLa (1/hr)

KLa (1/hr)

—
o)

1.6
1.4
1.2
1.0
0.8

0.6
0.4

1.4

1.2

1.0

0.8

0.6

0.4

o 12DCE ——y =0.015309 * x*(0.72832) R= 0.99583

e BBZ — -y =0.014911 * x*(0.7127) R= 0.99597
F : ' é %
S
: L
: . .
r ; ; e
L : : ) L S
: S
F yed
I
n L
s L i S S .S 1 l I L b i J 1 2 ) 1 ‘ L Lo ) i b 1 1 i’y J
| 1 N 1

100 200 300 400 500 600 700

G (1/sec)

Figure E5. Correlation of mass transfer coefficient to velocity gradient

in surface aeration (12DCE,BBZ)
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Figure E6. Correlation of mass transfer coefficient to velocity gradient

in surface aeration (MXY,BF)
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Figure E7. Correlation of mass transfer coefficient to velocity gradient
in surface aeration (OXY,EDB)
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Figure EB. Correlation of mass transfer coefficient to velocity gradient
in surface aeration (TLN,1122TCA)
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Figure E9. Correlation of mass transfer coefficient to velocity gradient
in surface aeration (BZ,NAPH)
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Appendix F
Comparison between estimated and measured mass transfer coefficient

in surface aeration
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Figure F1. Comparison between estimated and measured mass transfer coefficient
in surface aeration (235 rpm)
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Figure F2. Comparison between estimated and measured mass transfer coefficients
in surface aeration (325rpm)
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Figure F3. Comparison of estimated and measured mass transfer coefficients

in surface aeration (350rpm)
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Figure F4. Comparison between estimated and measured mass transfer coefficients

in surface aeration (375rpm)
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Figure F6. Comparison between estimated and measured mass transfer coefficients

in surface aeration (420rpm)
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Appendix G
Correlation of mass transfer coefficient to specific air flow rate

in bubble column
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O PCE (0.565) y = 1.0246 * x*(0.96725) R= 0.96904
¢ o-xylene (0.181) | — -y = 0.46538 * x*(0.9274) R= 0.92053
a 1,4-DCB (0.108) | - — -y = 0.39341 * x4(0.92229) R= 0.94114
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Figure G1. Correlation of mass transfer coefficient to specific air flow rate
(PCE, OXY,14DCB)
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Figure G2. Correlation of mass transfer coefficient to specific air flow rate
(111TCA,12DCE,12DCB)
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Figure G3. Correlation of mass transfer coefficient to specific air flow rate
(TCE,CLF,EDB)
O Ethylbenzene (0.26) |y _ 057208 * x7(1.0925) R= 0.97995
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Figure G4. Correlation of mass transfer coefficient to specific air flow rate
(EBZ,CBZ,BF)
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O m-xylene (0.236) ——y = 1.1708 * x*(0.65769) R= 0.92764
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Figure G5. Correlation of mass transfer coefficient to specific air flow rate
(MXY,BBZ,1122TCA)
O Toluene (0.23) ——y = 0.75315 " x*(0.8334) R= 0.96553
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Figure G6. Correlation of mass transfer coefficient to specific air flow rate
(TLN,13DCB,NAPH)
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Appendix H
Comparison between estimated and measured mass transfer coefficients

in bubble column
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Figure H1. Comparison between estimated and measured mass transfer coefficient
in bubble column (BC15, specific air flow rate = 6.16 1/hr)
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Figure H2. Comparison between estimated and measured mass transfer coefficient
in bubble column (BCS, specific air flow rate = 5.28 1/hr)
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Figure H3. Comparison between estimated and measured mass transfer coefficients
in bubble column (BC120, specific air flow rate = 4.68 L'hr)
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Figure H4. Comparison between estimated and measured mass transfer coefficients
in bubble column (BC7, specific air flor rate = 3.55 1/hr)
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Figure H5. Comparison between estimated and measured mass transfer coefficients
in bubble column (BC14, specific air flow rate = 4.21 1/hr)
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Appendix K
Comparison of mass transfer coefficients of oxygen and

volatile organic compounds in surface aeration and bubble column
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Figure K1. Comparison of mass transfer coefficients of oxygen and CC "
in surface aeration (SA) and bubble column (BC)
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Figure K2. Comparison of mass transfer coefficients of oxygen and PCE
in surface aeration (SA) and bubble column (BC)
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Figure K4. Comparison between mass transfer coefficients of oxygen and EBZ
in surface aeration (SA) and bubble column (BC)
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Figure K5. Compariosn between mass transfer coefficients of oxygen and MXY
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Figure Ké. Comparison between mass transfer coefficients of oxygen and Benzene
in surface aeration (SA) and bubble column (BC).
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Figure K7. Comparison between mass transfer coefficient of oxygen and toluene
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Figure K8. Comparison between mass transfer coefficient of oxygen and 13DCB
in surface aeration (SA) and bubble column (BC)
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Figure K9. Comparison between mass transfer coefficient of oxygen and naphthalene
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