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ABSTRACT OF THE DISSERTATION

Comp�ete Bio�ogica� Dech�orination

of Ch�orinated Ethy�enes to Non-toxic Ethy�ene

under Methanogenic Conditions

by

Chia-Ji Teng

Doctor of Phi�osophy in Civi� Engineering

University of Ca�ifornia, Los Ange�es, 1994

Professor Michae� K . Stenstrom, Chair

Perch�oroethy�ene-dech�orinating abi�ity was examined first in seven different s�udges,

pond sediment, methano�-enrichment cu�ture, and a mixture of Hyperion s�udge and

sediment. Hyperion s�udge was then chosen to conduct the treatabi�ity, dech�orination

progression, toxico�ogica� effect and semi-continuous operation tests for

perch�oroethy�ene (PCE), trich�oroethy�ene (TCE), 3 isomers of dich�oroethy�ene (DCE)

and viny� ch�oride (VC) . The effect of methano�, mixing and activated carbon addition

on PCE dech�orination was a�so eva�uated with Hyperion s�udge . Reductive

dech�orination of PCE through TCE to cis-DCE was observed in a�� anaerobic test

cu�tures . However, comp�ete dech�orination of PCE to ethy�ene (ETH) was on�y

observed in 6 s�udges and the concentrated methano�-enrichment cu�tures. This indicates

that PCE dech�orination may be a genera� characteristic of s�udges and different s�udges
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may vary in their potentia� to comp�ete�y dech�orinate PCE to ethy�ene . Comp�ete

dech�orination of a�� six ch�orinated ethy�enes to ethy�ene was a�so demonstrated in

Hyperion s�udge. Among them, PCE, TCE and cis-DCE were more �ike�y to produce

ethy�ene. From dech�orination progression test, it was further confirmed that a�� six

compounds may be dech�orinated to ethy�ene through an identica� co-metabo�ic route

(i .e . PCE -> TCE -> DCE -> VC -> ETH). The �ess ch�orinated ethy�enes seemed on�y

to uti�ize part of the route, whi�e the fu��y ch�orinated ethy�ene (PCE) uti�ized the who�e

route during the reductive dech�orination . For reductive dech�orination of each

ch�orinated compound, the tota� ethy�ene production increased with their initia�

concentration up to an upper �imit. However, 100% comp�ete dech�orination to ethy�ene

was never observed for a�� test ch�orinated compounds. On average, on�y about 30 to 40

percent of the cumu�ative�y added ch�orinated ethy�enes were recovered as ethy�ene in

�ong term semi-continuous operation. Excess added methano� or mixing conditions were

further demonstrated to be more favorab�e for methanogenesis and thereby inverse�y

affect the rate and extent of PCE dech�orination in acc�imated s�udge. Furthermore,

comp�ete dech�orination of PCE was a�so achieved in the bio�ogica� activated carbon

process (BAC) and the off�ine bio�ogica� regeneration process (OBR) .
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1 . INTRODUCTION

Perch�oroethy�ene (PCE) and trich�oroethy�ene (TCE) are two of the most

frequent�y identified contaminants in groundwaters . Since both are suspected human

carcinogens, thousands of sma�� drinking water systems which re�y on groundwater

sources may be jeopardized. Consequent�y, a feasib�e means of contro��ing or treating

ch�orinated ethy�enes in groundwaters is essentia� .

Perch�oroethy�ene and TCE are ha�ogenated a�iphatic hydrocarbons, a particu�ar

c�ass of chemica�s representing one of the most important categories of industria�

chemica�s with respect to production vo�umes, dispersion in the environment,

toxico�ogica� effects and popu�ation exposure . Both of them are wide�y used in

industria� degreasing so�vents, dry-c�eaning f�uids, and fumigants . The annua� wor�d

production vo�umes of PCE and TCE ( 1 .1 and 0.6 mi��ion tons, respective�y) are

among the 10 �eading compounds of the ha�ogenated a�iphatic hydrocarbons (Leisinger,

1983 ) . However, intensive wor�dwide app�ication and spi��s from industry have

resu�ted in extensive po��ution of the environment . Contamination by PCE and/or TCE

may occur in groundwater, surface water, soi�, and air . The majority of such

contamination is widespread in groundwaters because a significant fraction of these

chemica�s was discarded in waste dumps and then infi�trated into the groundwater

Westrick, Me��o and Thomas, 1984 ; Travis and Doty, 1990 ) . Concern about

groundwater contamination with PCE and/or TCE is growing because it is potentia��y

dangerous to human hea�th even in very �ow concentration .

Groundwater represents more than 95 percent of a�� avai�ab�e freshwater in the

United States. Approximate�y 80 percent of a�� pub�ic water supp�iers in this country

1



re�y on groundwater for potab�e water sources, and about 96 percent of a�� water used

for rura� domestic purposes is obtained from groundwater . The continued va�ue of

groundwater as a future source of potab�e water wi�� depend on contro��ing

contaminants in groundwater, either through reduction of the source of the compounds

or through the rec�amation or treatment of groundwater supp�ies a�ready affected .

However, the effectiveness and widespread use of PCE and TCE in various app�ications

makes a major reduction in their use un�ike�y in the near future . Techniques most

frequent�y used for the treatment of contaminated groundwater inc�ude physica� and

chemica� processes (e.g., air stripping and adsorption). However, there is considerab�e

interest in bio�ogica� remediation processes, especia��y in anaerobic environments,

because they are capab�e of converting the heavi�y ch�orinated compounds to harm�ess

metabo�ites, rather than transferring them from one part of the environment to another .

Bio�ogica� techniques that comp�ete�y degrade contaminants without generating

toxic end products may be best suited for treating �arge vo�umes of contaminated

groundwaters and industria� wastewaters . For the ha�ogenated a�iphatic compounds,

there are three genera� kinds of initia� microbia� transformation they may undergo :

nuc�eophi�ic substitution, oxidation, and reductive deha�ogenation (Leisinger, 1983) .

Whi�e the former two transformations have been demonstrated under aerobic conditions,

reductive deha�ogenation is probab�y responsib�e for the anaerobic transformation of

ha�ogenated a�iphatic compounds . PCE and TCE, because of their vo�ati�ity, are difficu�t

to hand�e in aerobic systems . However, the anaerobic system is ab�e to prevent

vo�ati�ization of the added compounds . PCE dech�orination has been wide�y reported

under anaerobic conditions, but it is converted on�y to tri- and dich�orinated compounds

in most cases . These �ess ch�orinated compounds tend to persist �onger in anaerobic

2



environments than high�y ch�orinated compounds . However, if the environment

becomes aerobic, the �ess ch�orinated chemica�s may be degraded by aerobic bacteria .

Recent�y, a two-stage anaerobic-aerobic process was used to achieve comp�ete

destruction of ch�orinated a�iphatic hydrocarbons (Fathepure and Voge�, 1991); however

this process suffered from the high vo�ati�ization of chemica�s in the aerobic process . A

�ot of work must be done to prevent vo�ati�e �oss of such chemica�s from the treatment

system. The present study concentrates on the feasibi�ity of a comp�ete�y anaerobic

biotransformation of PCE and TCE to ethy�ene (ETH), a non-toxic and environmenta��y

acceptab�e product, by a sing�e-stage treatment process using anaerobic digested s�udge .

The conditions required for transformation by the digested s�udge are a�so reported . The

f�ow diagram for this research is depicted in Fig . 1 .

Because PCE and TCE are detected a�most everywhere in the environment, it

wou�d be a promising strategy to use existing wastewater treatment p�ants for the

rec�amation or treatment of groundwater contaminated with PCE and TCE. This cou�d

be accomp�ished in anaerobic s�udge digestors if degradabi�ity can be demonstrated .

3



Fig.1 F�ow diagram of the research
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2. LITERATURE REVIEW

Groundwater contamination with the organic so�vents PCE and TCE is a serious

prob�em, and concern about it is growing . Among various treatment techno�ogies

avai�ab�e to contro� groundwater contaminants, bio�ogica� treatment is a promising

method for comp�ete�y degrading these reca�citrant compounds . Environmenta�

contamination by PCE and TCE is of industria� origin and not due to natura� occurrence

of these compounds . These nove� chemica�s, to which microorganisms have not been

exposed in evo�utionary history, are not attacked by microbes and accumu�ate in the

environment. Such compounds are ca��ed xenobiotics since they are foreign to the

norma� environment . To se�ect bacteria capab�e of degrading previous�y nondegradab�e

xenobiotics, successfu� adaptation of a mixed microbia� popu�ation to metabo�ize the

reca�citrant xenobiotics is a prerequisite . Furthermore, reductive dech�orination of

ch�orinated a�iphatic compounds by microorganisms may not be sustainab�e un�ess an

additiona� carbon substrate is provided because it is a co-metabo�ic process (Fathepure

and Boyd, 1988a ) . Therefore, this review wi�� cover definitions of " xenobiotics and

reca�citrance ", " adaptation ", and " co-metabo�ism " first, then a summary of previous

research on biotransformation of PCE and TCE under both anaerobic and aerobic

conditions . Fina��y, the microbio�ogica� aspects of anaerobic digested s�udge wi�� be

presented .

2.1 . Xenobiotics and reca�citrance

A xenobiotic compound is a chemica� to which microorganisms have not been

exposed in evo�utionary history (Leisinger, 1983) . Hence, most of the anthropogenic
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compounds (e.g . PCE, TCE, etc .) which do not occur natura��y are categorized as

xenobiotics. Most xenobiotics are not degraded under circumstances apparent�y

adequate for microbia� growth . This �eads to their accumu�ation in the environment, i .e .

to persistence or reca�citrance of the chemica� . However, the reca�citrance of a given

compound may a�so be due to inso�ubi�ity, or �imited adsorption onto biomass, or

inhibition to microorganisms at the high concentration . At the enzymatic �eve�, the

compound may not be degraded because it is unab�e to enter the ce�� or the organism

does not possess the appropriate enzyme (Painter and King, 1985) . But it is be�ieved

that a�� organic compounds can be eventua��y biodegraded . A process, i.e. adaptation by

which a mixed popu�ation of microorganisms deve�ops the abi�ity to degrade a substrate

hitherto not biodegradab�e, must be performed .

2.2 . Adaptation

Adaptation is a process to se�ect bacteria capab�e of degrading previous�y

nondegradab�e xenobiotics (Leisinger, 1983). It a�so covers the situation in which the

popu�ations deve�op to�erance to inhibitory substances (Painter and King, 1985) .

Therefore, determining if popu�ations in anaerobic digested s�udge can adapt to degrade

PCE and TCE (nove� compounds) is a prerequisite for this study . There are two genera�

mechanisms by which acquisition of new degradative abi�ities can be achieved ; first, the

adaptation of existing catabo�ic enzymes and, second, the evo�ution of comp�ete

metabo�ic progressions (Painter and King, 1985) . Usua��y, mixed microbia� popu�ations

of many different species have a much greater probabi�ity of adapting to the degradation

of new substrates than a sing�e species . In most instances, the adaptation is the resu�t of

co��ective activity of a metabo�ica��y structured community . Except for this, nothing has
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been reported as to why the various periods of adaptation were adopted and no agreed

ways of adaptation exist . Litt�e is known about the effects of factors such as time and

pattern of exposure, concentration of the test substance, presence of other substrates, on

the adaptive processes (Painter and King, 1985) . After acc�imation is achieved, the

acc�imated cu�tures can be further enriched to increase rates in degrading previous�y

nondegradab�e xenobiotics .

2.3. Co-metabo�ism

Co-metabo�ism is the transformation of a non-growth substrate in the ob�igate

presence of a growth substrate or another transformab�e compound (Da�ton and Stir�ing,

1982). Compared to the traditiona� biodegradation, it is a new phenomenon in which an

organism grows on one substrate, but a�so has the abi�ity to transform one or more other

compounds, perhaps through on�y a few steps, without being ab�e to derive energy or

growth from the process. A�though co-metabo�izing organisms do not derive benefits

from the metabo�ism of non-growth substrates, co-metabo�ism is thought to occur

wide�y in nature and is probab�y more significant in the degradation of xenobiotics

(Leisinger,1983). Co-metabo�ism can resu�t from a simu�taneous attack on the growth

and non-growth substrates by the same enzyme or sequence of enzymes. It may a�so

occur through the activity of enzymes not direct�y associated with the catabo�ism of the

growth substrate (Painter and King, 1985) . Genera��y speaking, co-metabo�ic

transformation in the environment does not necessari�y resu�t in the comp�ete oxidation

of xenobiotics but may �ead to the accumu�ation of transformation products with

increased or decreased toxicity as compared to the origina� compound (A�exander,

1981). However, if the co-metabo�ic intermediate product from the xenobiotic by one
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species can be comp�ete�y oxidized for growth by another species, comp�ete

minera�ization may be achieved .

For this reason, biodegradation of PCE and TCE can be considered comp�ete if

the carbon ske�eton is converted to non-toxic metabo�ites and the ch�orine is returned to

the minera� state . Another issue re�ated to co-metabo�ism is that co-metabo�ism of

xenobiotics (e.g . PCE and TCE) usua��y occurs at a much s�ower rate than metabo�ism

of growth substrates. When readi�y uti�izab�e carbon sources are offered to these

microorganisms together with xenobiotics, no se�ective pressure exists for growth on

the xenobiotic compounds .

2.4. PCE-degradative abi�ity

PCE is persistent in aerobic environments but degraded in anaerobic

environments. Reductive deha�ogenation is an important biodegradation mechanism for

ha�ogenated compounds under anaerobic conditions. Reductive dech�orination (i.e. the

rep�acement of ch�orine with hydrogen) of PCE is wide�y reported under a variety of

anaerobic environments inc�uding methanogenic fixed-fi�m reactors (Bouwer and

McCarty, 1983 ; Voge� and McCarty, 1985; Fathepure and Voge�, 1991), anaerobic soi�s

(Doo�ey-Dana, Foge� and Find�ay, 1989), muck (Parsons et a� ., 1984), mixed

methanogenic enrichments (Fathepure et a� ., 1987 ; Freedman and Gossett, 1989), and

10% anaerobic sewage s�udge (Fathepure and Boyd, 1988b) . In most cases, PCE was

on�y partia��y dech�orinated to TCE or cis-DCE . The observed characteristics of

reductive dech�orination of PCE are: (1) it typica��y occurs in a fashion of sequentia�

remova� of ch�orine substituents from PCE ; (2) the dech�orination rate decreases as the
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number of ch�orine atoms per mo�ecu�e decreases, and (3) reductive dech�orination is

not sustainab�e un�ess a carbon substrate is provided because PCE dech�orination by

anaerobic bacteria is a co-metabo�ic process (Fathepure and Boyd, 1988a) .

2.4.1. Carbon source

During methanogenic co-metabo�ism of PCE, e�ectrons generated during the

formation of methane may be diverted to PCE for reductive dech�orination . Hence, the

primary carbon substrate is very �ike�y to be the source of reducing equiva�ents for both

methane formation and reductive dech�orination . Fathepure and Boyd (1988a) showed

that the reductive dech�orination of PCE is direct�y proportiona� to the concentration of

the primary carbon substrate and the number of methy� moieties associated with the

primary substrate. This indicates dependence of PCE degradation on the methane-

yie�ding capacity of a particu�ar primary substrate . From a study on the dependence of

PCE dech�orination on methanogenic substrate consumption, Fathepure and Boyd

showed that adequate quantities of a carbon source and CH4 biosynthesis were

necessary for reductive dech�orination to occur . No additiona� dech�orination (TCE

formation ) was noted in experimenta� bott�es after the substrate, methano�, was

exhausted and CH4 production ceased .

Fathepure and Boyd a�so found that different substrates (i.e ., acetate, methano�,

methy�amine, and trimethy�amine) affect the extent of PCE dech�orination due to

different growth rates of methanogens . The appropriate substrate shou�d provide

conditions under which the most extensive reductive dech�orination can occur .

Freedman and Gossett (1989) demonstrated that methano� provides the greatest ethy�ene
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production in dech�orination of PCE . Acetate, formate, g�ucose, or hydrogen were not

as effective. The higher dech�orination rate may be re�ated to the greater reducing power

of methano� metabo�ism (six reducing equiva�ents) than acetate metabo�ism (two

reducing equiva�ents) .

Furthermore, the extent of PCE dech�orination a�so depends on the concentration

of ce�� mass (Fathepure and Boyd, 1988b) . No change in the remova� efficiencies of the

ha�ogenated hydrocarbons was observed whi�e the feed substrate (acetate) was

decreased (Bouwer and McCarty, 1983) . They suggested that the remova�s were more a

function of organism concentration than of the quantity of the primary substrate .

2.4 .2 . Sequentia� transformation

The principa� intermediate in the anaerobic biotransformation of PCE is TCE . If

continued, TCE can be further transformed to dich�oroethy�ene (DCE) and then to viny�

ch�oride (VC) by sequentia� reductive dech�orination . Each ch�orine is rep�aced by

hydrogen. Fathepure and Voge� (1991) have shown that a significant amount of PCE

underwent reductive dech�orination to �ess ch�orinated products within a 37 .5-h

hydrau�ic residence time . Freedman and Gossett (1989) a�so indicated that it took on�y

2-3 days to convert PCE to VC, but, to further degrade VC to ethy�ene or CO 2 required

a much �onger retention time . The dech�orination of VC to ethy�ene was s�ow and on�y

partia��y comp�eted . In a fo��ow-up study (DiStefano, Gossett, and Zinder, 1991),

dech�orinating high concentrations (330 µM) of PCE to ethy�ene and sma�� amounts of

VC was achieved in a mixed anaerobic methano�-PCE enrichment cu�ture . In genera�,

the re�ative rate of dech�orination decreases as ch�orine atoms are sequentia��y removed .
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Thus, the transformation products of PCE, such as TCE, DCE, and VC with �ess

ch�orine atoms per mo�ecu�e, tend to persist �onger in anaerobic environments than PCE .

A bio�ogica� process for remediation of groundwater contaminated with PCE and

TCE can on�y be app�ied if the transformation products are environmenta��y acceptab�e

(Bouwer and McCarty, 1983) . Conversion of PCE to TCE or �ess ch�orinated a�kenes

is of �itt�e or no benefit . Trich�oroethy�ene, cis-1,2-DCE, trans-�,2-DCE and VC are

a�so regu�ated under the 1989 Safe Drinking Water Act Amendments . In order to

achieve the comp�ete dech�orination of PCE, many researchers have attempted to coup�e

anaerobic processes fo��owed by aerobic processes, because the �ess ch�orinated

compounds are more �ike�y to be degraded by aerobic bacteria . However, PCE and its

biotransformation products are very vo�ati�e and hence wou�d be difficu�t to hand�e in

aerobic systems where aeration and stripping are possib�e . For anaerobic bio�ogica�

treatment to be usefu� and feasib�e, a�� of the possib�e intermediates from the reductive

dech�orination of PCE have to be further degraded . Recent�y, DiStefano et a� ., (1991)

showed that viny� ch�oride, the most resistant intermediate of reductive dech�orination of

PCE, can be further degraded to ethy�ene, a nonch�orinated and environmenta��y

acceptab�e product under anaerobic conditions . This resu�t suggests that reductive

dech�orination under anaerobic conditions may be best suited for treating PCE and TCE

contamination in groundwaters and industria� eff�uents .

2.4.3. Cu�tures

Methanogens / methanogenesis p�ay an important ro�e in the anaerobic

dech�orination of PCE . Fathepure and coworkers (1987 ; 1988a,b) demonstrated that
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pure cu�tures of two methanogenic bacteria (Methanosarcina strains) were ab�e to

convert PCE to TCE . Various other methanogenic environments were used to achieve

the biotransformation of PCE . The reductive dech�orination of PCE may be caused by a

member(s) of a methanogenic consortium, such as strain DCB-1, a ch�orobenzoate-

dech�orinating organism iso�ated from a methanogenic consortium that was ab�e to

degrade 3-ch�orobenzoate (Fathepure and Boyd, 1987), and/or by methanogens

themse�ves . PCE dech�orination occurred in both pure cu�ture and in a methanogenic

consortium. In pure cu�ture, on�y a re�ative�y sma�� fraction of PCE underwent reductive

dech�orination. This is consistent with the genera� observation that anaerobes are �ess

active against xenobiotics in pure cu�ture. In addition, the different strains of

methanogens and ce�� mass cou�d a�so significant�y affect the extent of dech�orination .

Genera��y, even though both the methanogens be�ong to the same genus, they differ in

their abi�ity to dech�orinate PCE . Severa� studies (Bouwer and McCarty, 1983a,b ; Voge�

and McCarty, 1985) a�so found more rapid dech�orination under methanogenic

conditions than under su�fate-reducing environments and denitrifying conditions .

2.5. Degradabi�ity of TCE and �ess ch�orinated compounds

As stated ear�ier, TCE and �ower ch�orinated compounds may sti�� undergo

reductive dech�orination but at much s�ower rates . Under aerobic conditions these

compounds are a�so genera��y persistent in natura� environments. However, certain

aerobic microorganisms (e.g . methanotrophs) may degrade these �ess ch�orinated

compounds via oxidative mechanisms which are ineffective for heavi�y ch�orinated

compounds such as PCE. Aerobic environments have �itt�e chance to remediate waters

contaminated with a mixture of ch�orinated ethy�enes .
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Under aerobic conditions in the presence of methane, TCE was bio�ogica��y

oxdized to CO2 (Wi�son et a� ., 1985) . The mechanism is TCE oxidation to

trich�oroethene epoxide by methane monooxygenase and then rapid hydro�ysis (Foge� et

a�., 1986). This biodegradation process did not produce other vo�ati�e ch�orinated

compounds, and the degradation rates decreased for more-ch�orinated compounds .

Viny� ch�oride was degraded more rapid�y than TCE, and PCE was not degraded at a�� .

2.6. Microbio�ogica� aspects of anaerobic digested s�udge

Methanogens / methanogenesis may be invo�ved in reductive dech�orination in

anaerobic communities . Anaerobic s�udge digestors are important methanogenic sites

where favorab�e growth conditions exist . Many anaerobic organisms are invo�ved in

anaerobic digestion. A common feature of anaerobic digestion is the formation of

methane. This gas formation in anaerobic digestors is a syntrophic process depending

upon the action of severa� types of anaerobic bacteria . The mechanism invo�ved in this

process inc�udes four steps : (1) hydro�ysis, (2) acidogenesis, (3) acetification, and (4)

methanogenesis. Biodegradab�e organic compounds are first hydro�yzed and degraded

to simp�er compounds by a variety of facu�tative and anaerobic organisms . These

simp�er compounds are subsequent�y transformed to short-chain fatty acids, carbon

dioxide and hydrogen gas by other non-methanogenic acidogens . Fatty acids are then

metabo�ized by hydrogen-producing acetogenic bacteria to acetate and hydrogen . These

organisms are unab�e to grow at partia� pressures of hydrogen >10 -3 atm., therefore

their maintenance within the methanogenic consortium depends on the continued

remova� of hydrogen by methanogens. Some hydrogen may be converted to acetate by

hydrogen-consuming acetogens in this step. In the fina� step, methane is generated
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most�y from acetate by the acetic�astic methanogens. Part of the methane production can

be derived from hydrogen and carbon dioxide by hydrogenotrophic methanogens

(Levett, 1990) .

Genera��y, the methanogenic bacteria are very substrate specific and are

dependent on the non-methanogenic bacteria for their supp�y of substrate (Grady and

Lim, 1980). Within digestors, methanogenesis occurs at an optimum rate in the range of

pH 6-8. The optimum temperature for mesophi�ic digestion is 40°C . The mu�tistep

nature of anaerobic digestion is depicted in Fig. 2. In anaerobic s�udge, many kinds of

non-methanogenic bacteria may form hydrogen . Genera��y, this hydrogen serves as a

source of the reductant required for reductive dech�orination of PCE and its partia��y

dech�orinated intermediates if suitab�e enzyme(s) exist to divert hydrogen to

dech�orinating processes .

Many dech�orinating bacteria potentia��y exist in anaerobic digestors .

Methanogenic bacteria are an important group of anaerobic bacteria with dech�orinating

capacity . Because of their extreme habitat diversity, these bacteria may be present in

s�udge digestors . However, sewage s�udges from different sources vary in their

potentia� to dech�orinate various substrates (She�ton and Tiedje, 1984)
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Fig. 2 Mu�tistep nature of anaerobic digestion of organic matter
(Levett,1990)

Comp�ex organic matter

Proteins

	

Carbohydrate

	

Lipids

Hydro�ysis
(c�ostridia)

Amino acids

	

Sugars

	

Fatty acids

Acidification
(acetogens)

(H2 producing acetogens &
H2-consuming acetogens)

Acetification

(acetic�astic methanogens)

Methanogenesis

	

/

	

H2O

C02

Acetate

Intermediate products

Acetate, propionate, butyrate, H2. C02

1 5

CH4

H2/C02



3. MATERIALS and METHODS

3.1. Chemica�s

The ha�ogenated organic compounds used were reagent-grade

tetrach�oroethy�ene (PCE), tich�oroethy�ene (TCE), cis-dich�oroethy�ene (cis-DCE),

trans-dich�oroethy�ene (trans-DCE), 1 .1-dich�oroethy�ene (1 .1-DCE), and viny� ch�oride

(V.C .) . A�� of them were purchased from A�drich Chemica� Co ., Mi�waukee,

Wisconsin, at >99% purity except V.C., which was obtained from F�uka Company,

Ronkon Koma, New York. The fo��owing non-ch�orinated chemica�s were used :

methane (A�drich Co .), ethane (A�drich Co.), and ethy�ene (ETH ; A�drich Co.), and

methano� (Fisher Scientific Co ., Pittsburgh, Pa.) .

3.2. Fresh s�udge and pond sediment

Fresh anaerobic digested s�udge for PCE-dech�orinating abi�ity test at the outset

was obtained from the anaerobic digestor at the Hyperion Wastewater Treatment P�ant,

LA., CA., and Chino Basin Wastewater Treatment P�ant (RP2), Chino, CA . Both of

the p�ants receive more than 70% of their wastewater from residentia� sources. The

retention times of the anaerobic digestor are about 15 and 30 days for Hyperion and

Chino Basin, respective�y . The anaerobic s�udge typica��y contains about 20,000 mg of

so�ids per �iter of mixed �iquid . Un�ess otherwise stated, the s�udge samp�es used in

various tests throughout the course of this study were prepared as fo��ows . After

transport to the �aboratory, fresh s�udge (100 mL) was dispensed into 120 mL capacity

serum bott�es in an anaerobic hood. The serum bott�e was then sea�ed with a Tef�on-
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�ined rubber septum (Supe�co, Inc ., Be�fonte, PA) and an a�uminum crimp cap . These

s�udge samp�es contained no detectab�e �eve�s of PCE . A�� experiments were conducted

at 35°C under quiescent conditions. Fresh anaerobic pond sediment was obtained from

the botanica� garden at UCLA and transfered into serum bott�es as described above .

After PCE-dech�orinating abi�ity was demonstrated in the above cu�tures, five

more s�udges obtained from different wastewater treatment p�ants in Ca�ifornia were

examined to determine if PCE dech�orination was a genera� characteristic of anaerobic

s�udges. These five wastewater treatment p�ants are :

1 . Termina� Is�and Wastewater Treatment P�ant, San Pedro, CA .,

2. Chino Basin Wastewater Treatment P�ant (RP1), Rancho Cucamonga, CA.,

3. A�varado Wastewater Treatment P�ant, Union, CA .,

4. Va�encia Wastewater Treatment P�ant, Va�encia, CA ., and

5. JWPCP Wastewater Treatment P�ant, Carson, CA .

3.3. Methano�-enrichment cu�ture

An anaerobic methaogenic methano�-enrichment cu�ture was deve�oped in two

2.1-�iter Er�enmeyer f�asks on stir p�ates . Initia��y, 630 m� of digested s�udge obtained

from an anaerobic digester (Hyperion Wastewater Treatment P�ant, Los Ange�es, CA)

was used to seed each f�ask . Temperature was contro��ed at 35 °C. Each f�ask was fed a

non-steri�e so�ution (Tab�e 1) containing 100 mM methano� as the carbon source. Both

f�asks were comp�ete�y mixed and operated semi-continuous�y (refed dai�y) . The dai�y

feed vo�ume was increased gradua��y from 200 m� to 2000 m� . The mixing in both
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f�asks was discontinued for 3 hours prior to dai�y feeding to a��ow the biomass to sett�e

and �imit biomass wash-out.

After 6 months of operation, the MLSS in both f�asks had increased to

approximate�y 5000 mg/L and the MLVSS was 65-75 % of that. The methane

production was about 65-70% of tota� gas production .

3.4. Anaerobic nutrient medium

To maintain the activity of the anaerobic s�udge used in various dech�orination

tests, an anaerobic minera� medium (modified from Freedman and Gossett, 1989) p�us

50% of supernatant of fresh Hyperion anaerobic digestor s�udge was prepared and used

whenever the nutrients in the s�udge treatment system needed rep�enishing . The

anaerobic medium was made up of 50% deionized water and 50% fresh s�udge

supernatant. The supernatant was obtained by centrifuging the s�udge �iquid at 3500 rpm

for 20 minutes. The minera� materia�s in the medium consisted of ( per �iter of �iquid

medium) : NH4C1, 0 .20 g; K2HP04 . 3H20, 0.01 g; KH2PO4, 0.055 g; MgC12 .6H2O,

0.20 g; trace meta� so�ution (per �iter, 0 .1 g of MnC12 .4H2O; 0.17 g of CoC12 .6H2O;

0.10 g of ZnC12; 0.20 g of CaC12 ; 0.019 g of H3BO4 ; 0.05 g of NiC12 .6H2O; and

0.020 g of Na2Mo04 . 2H2O, adjusted to pH 7 with NaOH or HCI), 10 m� ; resazurin,

0.001 g; Na2S •9H2O, 0.50 g; FeC12 .4H20, 0.10 g; NaHCO3, 5 .0 g; and yeast extract,

0.50 g. The first six components were boi�ed with deionized water and s�udge

supernatant to remove oxygen, and then coo�ed under an N2 purge. After coo�ing, the

remaining components except sodium su�fide were added and the purge gas was
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switched to C02/N2 (20%/80%). The medium was autoc�aved and stored in 120 m�-

serum bott�es unti� they were needed. Sodium su�fide was then added before use .

Tab�e 1 : Composition of Feed So�ution (Voge� and McCarty, 1985)

Organics

Methano�

	

3200

Note: 6N HC1 was used to adjust pH to 7 .2 - 7.4
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Compound Concentration (mg/�iter)

Inorganics

NaHCO3 3360

NH4C1 215

MgS04.7H2O 150

K2HPO4 60

CaC12 25

KC� 25

FeC12 5 .0

CoC12 0 .5

NiC12 0.25



3.5 . Ana�ysis

3.5.1 . Purgeab�e ch�orinated compounds

Parent compounds (PCE/TCE) and dech�orinated products (TCE, DCE and VC)

in the experimenta� serum bott�es were identified and quantified using a 5890A Hew�ett-

Parkard gas chromatograph equipped with a f�ame ionization detector (FID) and a

purge-and-trap device (Tekmar Mode� LSC-2, Cincinnati, Ohio) . The bott�es were

vigorous�y shaken by hand and then centrifuged 5 min. at 3500rpm. before each time

samp�ing. Water samp�es (5 mL) were prepared by adding 100 µL of supernatant to 4 .9

mL of deionized water . 100 µL of supernatant was taken from each bott�e with a 100-

µL syringe and then transferred into a 5-mL gas-tight syringe in which 4 .9 mL of

deionized water has been fi��ed . Samp�es (5 mL) were purged onto a Tenax TA

absorbent trap (Supe�co Co ., Cat. No. 2-0294M) with he�ium (40 mL/min for 8 min)

and desorbed (180°C for 4 min) onto a DB-624 capi��ary co�umn (30 m by 0 .53-mm

inner diameter, J&W Scientific Co., Fo�som, CA). The carrier gas was he�ium (8 to 10

m�/min). The temperature program was as fo��ows : the initia� temperature was 35°C

with a 5 min ho�d, then increased to 70 °C at 5 °C/min, with a fina� ho�d of 1 min at

70°C. The detector temperature was 200°C. The air and hydrogen gas f�ow rates to the

FID were 310 and 31 m�/min, respective�y . Identification and quantification of

chemica�s was accomp�ished by comparison to carefu��y prepared externa� standards .

The output signa� was recorded using a Hew�ett-Packard Mode� 3392 integrator .

Retention times and detection �imits for each compound of interest in this research under

these GC conditions are �isted in Tab�e 2 . Lower detection �imits are possib�e with the
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ana�ytica� system used, but the va�ues given in Tab�e 2 are adequate for the purposes of

these experiments .

In order to eva�uate the accuracy of the ana�ytica� method, contro� bott�es were

prepared with 50 µcoo� of each tested chemica� per 100 mL and incubated for at �east 12

hours. Both �iquid and gas samp�es were ana�yzed as described above, and the tota�

mass was compared to the added mass to ca�cu�ate the percent recovery for each

chemica�. The ana�ytica� method yie�ded resu�ts that were within +1-5% of the correct

amount of tested chemica� added in each bott�e .

Tab�e 2 : Retention Times and Detection Limits
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Parameter Formu�a Retention time(min) Detection �imit(p.g/L)

Pech�oroethy�ene C12C=CC12 9.99 0.7

Trich�oroethy�ene C12C=CHCI 5 .80 0.5

Cis- 1,2-dich�oroethy�ene C1HC=CHCI 3 .35 0.5

Trans-�,2- C1HC=CHCI 2 .35 0.3

dich�oroethy�ene

1 . 1 -dich�oroethy�ene C12C=CH2 1 .87 0.5

Viny� ch�oride CIHC=CH2 1 .56 0.3



3.5.2. Methane and ethy�ene

The methane and ethy�ene concentrations in the headspace of the serum bott�es

were measured by a Varian 3760 gas chromatograph equipped with a f�ame ionization

detector and a g�ass co�umn packed with 80/100 Porapak Q. The carrier gas was he�ium

at a f�ow rate of 30 mL/min . A 100-µL gas-tight syringe was used to remove 100-µL

gas samp�e for ana�ysis .

3.6. Experiments

Un�ess otherwise indicated, bio�ogica� experiments in this research were

conducted with 120 mL serum bott�es fi��ed with 100 mL of fresh digested s�udge that

were sea�ed with Tef�on-�ined rubber septa and a�uminum crimp caps .

3.6.1 . PCE-dech�orinating abi�ity test

At first, PCE-dech�orinating abi�ity of severa� cu�tures obtained from different

anaerobic habitats were tested. The tested cu�tures inc�uded:

1 . Hyperion digested s�udge .

2. Pond sediment.

3 . Mixture (1 :1) of Hyperion digested s�udge and pond sediment .

4. Chino Basin (RP2) digested s�udge .

5. Methano�-enrichment cu�ture .
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The experiments were carried out in 120 m� serum bott�es containing 100 m� of

tested cu�ture �iquid. Methano� was used as the carbon source and the e�ectron donor .

The tests of Hyperion s�udge, pond sediment and their mixture were started with a �ow

PCE concentration (2.5 µmo� / L in �iquid phase) . The PCE concentration was achieved

by adding 0.3 µmo�es of PCE to each bott�e. Once the added PCE was consumed, fresh

PCE was added. After 28 days of operation, the amount of PCE added to each bott�e

was increased to test the dech�orinating abi�ity under higher PCE concentrations . In

testing of each of these three cu�tures, three different amounts (2.5, 25, and 123 µmo�)

of methano� were used in separate bott�es to observe differences in PCE dech�orination .

For the Chino Basin s�udge test, 369 and 4920 µmo�es of methano� (in tota�)

were app�ied to two separate bott�es containing a high initia� PCE concentration (49

µmo�es per bott�e). In the third bott�e containing a �ow initia� PCE concentration (0 .6

µmo�es per bott�e), 369 µmo�es of methano� (in tota�) was used . Two s�udge samp�es

obtained from two different digestors at the Chino Basin Treatment P�ant (RP2) were

tested. Identica� experiments for each of these s�udge samp�es were conducted.

The dech�orinating abi�ity of methano�-enrichment cu�tures was investigated in

the presence of methano� and hydrogen as the e�ectron donor. Three bott�es were

prepared for the methano�-enrichment cu�ture test . The first bott�e contained 49 µmo�es

of PCE and 123 µmo�es of methano� . The same amount of PCE and methano� was used

in the second bott�e but a�so under a H2/C02 (80 :20) atmosphere. In the third bott�e, 49

µmo�es of VC gas was incubated with 123 µmo�es of methano� .
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To eva�uate if PCE dech�orination was a genera� characteristic of anaerobic

s�udges, five more fresh anaerobic digested s�udges obtained from different wastewater

treatment p�ants (Termina� Is�and, Chino Basin (RP1), A�varado, Va�encia and JWPCP

P�ant ) were tested. S�udge samp�es used in this test were prepared as decribed before .

For each s�udge, the PCE dech�orination test was started with a high PCE concentration

( about 67 mg/� in the �iquid phase without accounting for biosorption) and performed

in trip�icate. Forty nine µmo�es of PCE was added to each samp�e without adding any

carbon source . For Va�encia and JWPCP s�udges, an additiona� bott�e was prepared to

test the dech�orinating abi�ity under an even higher PCE concentration (about 134 mg/1) .

The PCE concentration was achieved by adding 98 µmo�es of PCE to each bott�e . A��

experiments were conducted at 35 °C under quiescent conditions .

3.6.2 . Treatabi�ity of ch�orinated compounds

Hyperion digested s�udge was chosen to conduct the treatabi�ity test for PCE,

TCE, cis-DCE, trans-DCE, 1 .1-DCE, and VC . The initia� dose for a�� of the ch�orinated

compounds was 0.3 µmo� per bott�e. After the first chemica� addition was consumed,

the dose for each test chemica� was doub�ed. Each test chemica� was tested in separate

bott�es to avoid interference with each other . 5-10 µmo�es of methano� was added to the

bott�es at the same time that PCE was added . For the PCE treatabi�ity test, two identica�

bott�es, with and without methano�, were prepared . The purpose was to determine if the

fresh digested s�udge was capab�e of degrading PCE without adding methano� (e�ectron

donor). After 42 days of semi-continuous operation, the dose of each chemica� was

increased to 49 µmo�es, and a higher amount of methano� was added (123 mo�es in
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each bott�e). This was done to determine if acc�imation to a �ow concentration wou�d

faci�itate the degradation under high concentrations .

The treatabi�ity of a high initia� concentration of PCE and TCE was a�so

eva�uated. 49 µmo�es of PCE and TCE were initia��y added into two separate bott�es .

Once the initia� chemica�s were consumed, the same amount of PCE or TCE was added

again to observe the dech�orination in �ong-term operation . Each time, 246 µmo�es of

methano� was added with the PCE or TCE . An additiona� bott�e was used to test

treatabi�ity of high PCE concentration without methano� addition . These experiments

were accompanied by a contro� samp�e of water and an autoc�aved s�udge samp�e with

the same �iquid phase vo�ume (deionized water and s�udge, respective�y) and the

addition of the ch�orinated compounds .

3.6.3. Dech�orinated products and reductive dech�orination progression

test

The sequentia� reductive dech�orination of ch�orinated compounds (inc�uding

PCE, TCE, 3 isomers of DCE, and V.C.) in fresh anaerobic Hyperion s�udge was

examined. Six identica� fresh s�udge samp�es were used to assess the dech�orination fate

for each tested chemica� under anaerobic conditions without any addition of methano� .

For PCE dech�orination, one additiona� bott�e (methano� bott�e) received 5 µ� of

methano� (about 123 µmo�es) as the added carbon source and e�ectron donor. About 49

µmo�es of each test chemica� were added to separate bott�es containing 100 m� of fresh

s�udge. These serum bott�es were incubated in the dark without shaking at 35°C .

Routine GC ana�ysis of the supernatant was performed on a�� of the bott�es to observe
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the change in the concentration of tested compounds and formation of intermediates over

time. A water contro� samp�e (100 m� of deionized water p�us the same amount of each

ch�orinated compounds) was incubated under the same conditions in order to examine

chemica� �osses from the serum-bott�e system .

The effect of TCE and VC presence on PCE dech�orination was a�so studied at

this stage. Dech�orination of a mixture of 49 µmo�es of PCE and 49 Rmo�es of VC was

conducted in a serum bott�e with the same amount of fresh s�udge, whi�e the mixture

containing 49 µmo�es of each of PCE, TCE, and VC was incubated in an additiona�

bott�e. Both of them contained 246 µmo�es of methano� as the e�ectron donor .

3.6.4. Toxicity and highest to�erab�e concentration

A�� of the six ch�orinated compounds were tested for their toxicity to

methanogenesis in Hyperion s�udge. For each test compound, 6 - 8 different dosages

(approximate�y 0 .55 to 250 µmo�es per bott�e) were injected to each of a series of

bott�es. After 3 weeks of incubation, 100 µ� of headspace gas samp�e was removed

from each bott�e for methane production ana�ysis . The methane production from each

bott�e was then compared with that of the b�ank contro� in each set of experiments

(containing the same amount of identica� s�udge cu�tures without the addition of

ch�orinated compounds) to determine the re�ative inhibition of methane production at

various chemica� concentrations .

In this experiment, supernatant �iquid samp�es from a�� of the bott�es were a�so

periodica��y ana�yzed to observe the extent of dech�orination of each ch�orinated
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compound at various initia� concentrations and the possib�e ethy�ene production from

dech�orination of each ch�orinated compound .

3.6.5 . Semi-continuous operation

The six s�udge bott�es created in the dech�orination progression test for PCE,

TCE, 3 isomers of DCE, and VC respective�y, were periodica��y spiked with the same

chemica� to eva�uate semi-continuous operation . When the added ch�orinated compound

in each bott�e was degraded, the same amount of test chemica� (49 µmo�es) was

repetitive�y added to the bott�e accompanied with the addition of 123 µmo�es of

methano� . From the 59th day on, 5 .0 m� of supernatant was a�so removed and rep�aced

with fresh anaerobic nutrient medium (containing 50% of supernatant of fresh digested

s�udge and 500 mg of yeast extract per �iter) in each addition of ch�orinated compounds .

In addition to these cu�tures, two identica� mixed-cu�tures were created. 10 mL

samp�es from each of the six bott�es (mentioned above) were used to create a mixture to

determine if it cou�d dech�orinate PCE better and faster than a sing�e acc�imated cu�ture .

The mixture bott�es were operated semicontinuous�y . Whenever PCE was degraded to

VC, 5 mL of mixed �iquid was removed and rep�aced with fresh medium (containing 5

tL of MeOH) p�us PCE. After 16 days, semi-continuous operation was fo��owed by an

incubation period (40 days) when PCE additions were stopped to see if a�� the VC can

be further degraded to ethy�ene . During this period, rep�acement of mixed �iquid with

fresh medium and addition of methano� was continued . At the end of the incubation

period, the pressure in the headspace of each bott�e was measured and used to determine

the tota� mass of ethy�ene and methane production .
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3.6.6. Effect of Methano� (e�ectron donor) on PCE dech�orination rate

The effect of methano� on PCE reductive dech�orination was examined by

incubating the acc�imated s�udge with various amounts of methano� and PCE at 49

µmo�es per bott�e . The methano� concentrations app�ied to each bott�e were 0, 123, 123,

1230, 2460, and 4920 µmo�es per bott�e (123 µmo�es was chosen in two bott�es) . At

the beginning, six bott�es, each containing 100 m� of acc�imated Hyperion s�udge and 49

µmo�es of PCE, were incubated with 123 µmo�es of methano� . After repetitive PCE

degradation in these six bott�es was demonstrated, various amounts of methano� were

added to each bott�e with the same amount of PCE dose (49 µmo�es). Whenever PCE

was degraded, 5 m� of �iquid was removed and rep�aced with the same amount of fresh

medium p�us PCE and methano�, except for one 123 µmo�es-methano� bott�e from

which 20 m� of �iquid was removed . The addition of PCE and methano� was repeated

severa� times to a��ow cu�tures in each bott�e reach stab�e condition. These resu�ts were

used to eva�uate the effect of methano� on the extent of PCE dech�orination and reaction

rate .

3.6.7. Effect of mixing on PCE dech�orination test

Five identica� bott�es containing 100 m� of fresh Hyperion digested s�udge were

prepared. The fresh s�udge in each bott�e was incubated with 49 µmo�es of PCE to

acc�imate to degrade PCE first . Once the added PCE was consumed, fresh PCE was

added. At the same time, 5 m� of supernatant was a�so removed and rep�aced with fresh

anaerobic nutrient medium p�us 123 µmo�es of methano� . After repetitive PCE
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degradation in these bott�es was demonstrated, a�� s�udge �iquid was mixed together with

25 m� of nutrient medium and then dispensed into 5 bott�es again to create the

homogeneity of mixed cu�ture in each bott�e . These five bott�es designated as S 1 - S5

were used for this series of experiments .

At first, whi�e other samp�es were sti�� incubated under quiescent conditions, S5

samp�e was p�aced in a 35 °C shaker to observe differences in PCE dech�orination . After

10 days of incubation, the first run was ended . S 1 - S4 samp�es and 10 m� of nutrient

medium were mixed together and redispensed into origina� bott�es . At the same time,

2.5 m� of s�udge �iquid was removed and rep�aced with nutrient medium for S5 samp�e .

During the second run, S5 p�us S4 were incubated in the 35 °C shaker to test if the

sma��er amount of medium cou�d improve PCE dech�orination because the partia�

dech�orination of PCE accompanying a much higher methane production occurred in S5

which was p�aced in the shaker during the �ast run .

After 6 days, S 1- S3 were mixed with 7 .5 m� of medium as decribed above and

2.5 m� of s�udge from S4 and S5 was rep�aced with medium. In addition, nitrogen was

used to rep�ace the gas in the headspace of S2 and S3 whi�e other samp�es were sti��

under a N2/C02 (about 70 :30) atmosphere. This was done for preventing the methane

formation from carbon dioxide. The third run was conducted with 3 samp�es (S3 - S5)

incubated in the shaker. After this run (6 days), 2 .5 m� of s�udge �iquid was removed

from each bott�e and rep�aced with the same amount of medium . Nitrogen was sti�� used

for S2 and S3 samp�es . During the fourth run, S5 was removed from the shaker to test

if the comp�ete dech�orination abi�ity cou�d be recovered under quiescent conditions . The

fourth run proceeded 6 days .

29



The fifth run was started with the same conditions as those done for the �ast run

except no PCE being added to S5 . In this experiment, 49 µmo�es of PCE p�us 123

µmo�es of methano� were added to each bott�e before each run was started .

3.6.8. Effect of temperature on PCE dech�orination test

Temperature is an important factor which can inf�uence the microbia� activity .

The effect of temperature on the dech�orination process was tested by incubating the

fresh digested s�udge cu�tures with 49 µmo�es of PCE under �aboratory conditions

without temperature regu�ation .

3.6.9. PCE-dech�orinating abi�ity in o�d s�udges test

To examine the reductive dech�orination abi�ity in o�d s�udge, eight fresh

Hyperion s�udge samp�es prepared as described previous�y were incubated for 1, 2, 3,

4, 12, 14, 20 and 21 days, respective�y before PCE injection . For purposes of

comparison, these experiments were accompanied by a contro� samp�e of fresh

Hyperion s�udge with the same �iquid phase vo�ume and the addition of PCE (49

µmo�es) .
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3.6.10. Bio�ogica� activated carbon process (BAC) test

Activated carbon is an amorphous form of carbon . It has been wide�y used for

its exce��ent adsorptive capabi�ity for a variety of substances because of the

characteristics of high porosity and high surface area. Nuchar granu�ar activated carbon

(grade WV-5, 10x25 mesh size), produced by Westvaco Corporation (Covington, VA)

was used throughout this study .

Granu�ar activated carbon (GAC) and/or powdered activated carbon (PAC) have

been increasing�y used for the treatment of water and wastewater through most of the

twentieth century. At the beginning, inf�uent water is app�ied to GAC co�umn . In this

case, bio�ogica� growth a�ways �ed to p�ugging prob�ems . Nonethe�ess, these operation

prob�ems �ed to the idea of adding PAC to the aeration tank of an activated s�udge p�ant .

However, both of them were referred to as bio�ogica� activated carbon. The bio�ogica�

activated carbon process (BAC) integrates bio�ogica� treatment and adsorption into a

sing�e reactor. In comp�ete mixing reactor, such system overcomes the p�ugging

prob�ems and �owers the adsorptive remova�s because the carbon tends toward

equi�ibrium with the treated eff�uent (Benedek, 1980) . The organic remova�s are a�so

higher than those of separate bio�ogica� and adsorption treatment .

This experiment concentrated on the effect of carbon addition on the PCE

dech�orination in a bio�ogica� treatment system . Six bott�es designated as U1 -U6 were

prepared for this series of experiments . Two grams of virgin activated carbon and 100

m� of anaerobic Hyperion digested s�udge preacc�imated with PCE degradation were

used in each bott�e . After bott�es were sea�ed, 49, 98, 196, 294, 392, and 490 µmo� of
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pure PCE were injected into bott�e U1 to U6, respective�y . The above dosages resu�ted

in PCE concentrations ranging from 490 to 4900 gmo�/L (81 .3 to 813 mg/L) in �iquid

phase without considering the headspace-�iquid partitioning and adsorption on s�udge

and carbon. Both �iquid and gas samp�es were ana�yzed over the �ength of the

experiment .

3.6.11. Off�ine bioregeneration (OBR) test

The another way to combine bio�ogica� treatment with carbon adsorption is

off�ine bio�ogica� regeneration (OBR) . The process was proposed by Sigurdson and

Robinson in 1978 . In such a process, exhausted carbon is regenerated through

biodegradation. Bacteria are supposed to degrade adsorbed organics . Bio�ogica�

regeneration of the spent carbon and subsequent recovery and recyc�e of the carbon to

the adsorption process may be practiced because PCE has been demonstrated to be

biodegradab�e in anaerobic digested s�udge. Usua��y, regeneration of the spent carbon is

more economica� than rep�acement with virgin carbon . The conceptua� difference

between BAC and OBR is i��ustrated schematica��y in Figures 3 and 4 .

To examine the feasibi�ity of OBR for PCE �aden carbon, activated carbon was

initia��y saturated with PCE in adsorption bott�es containing deionized water, then was

regenerated in bioregeneration bott�es by the acc�imated anaerobic Hyperion digested

s�udge.
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Six of two grams of exhausted granu�ar activated carbon (preequi�ibrated

separate�y with 49, 98, 196, 294, 392, and 490 µmo� of PCE in 100 m� deionized

water) were taken out of those PCE-preadsorption bott�es and p�aced in six new bott�es

designated as S 1 - S6. These amounts of PCE were chosen based on pre�iminary

adsorption test resu�ts which provided an acceptab�e range of PCE �iquid concentration

for biodegradation . Each bott�e contained 100 m� of acc�imated s�udge �iquid and

approximate�y 20 m� of headspace . At the beginning a�� PCE was adsorbed on the added

carbon and no PCE was free in s�udge �iquid . Due to the non-equi�ibrium of PCE

distribution between the �iquid and carbon, desorption of previous�y adsorbed PCE

from carbon to the �iquid was supposed to occur to approach the equi�ibrium . This

c�osed bott�e system was designed to emp�oy desorption and microbia� activity for the

regeneration of spent, PCE-bearing carbon . This was a�so used for the investigation of

the concept of off�ine bioregeneration. Bott�es were operated under batch condition and

incubated at 35 °C quiescent�y. Both �iquid and gas samp�es (100µ�) were withdrawn

periodica��y to determine PCE and its dech�orinated product concentration in the

bioregeneration bott�e .
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4. RESULTS

4.1. Ch�orinated chemica� �oss contro�

First, the integrity of the serum bott�e system sea�ed with Tef�on-�ined rubber

septa and a�uminum crimp caps to prevent sorption and vo�ati�e �osses of ch�orinated

compounds was demonstrated . Over a period of 60 days, the decreases in tota� masses

of PCE, TCE, cis-DCE, trans-DCE, 1 .1-DCE, and VC in a water contro� ( shown in

respective�y, in the water contro� bott�e wrapped with foi� (shown in Fig . 6). The

reduced �oss of ch�orinated compounds observed in the bott�e wrapped with foi� is

consistent with the more stab�e chemica� characteristics of ch�orinated a�iphatic

compounds without exposure to �ight . By and �arge, ch�orinated compounds are re�ative

unstab�e under �ight .

PCE �oss and abio�ogica� reductive dech�orination of PCE were a�so examined in

an autoc�aved-s�udge contro� . Data are shown in Fig . 7. Over a period of 135 days,

about 81% of 245 µmo�es of cumu�ative PCE dose sti�� remained . During the same

period, 6 .63 µmo�es of TCE and trace amounts of cis-DCE (0 .41 µmo�es) were

produced. This experiment a�so demonstrated that the integrity of the serum-bott�e

system is acceptab�e and the abio�ogica��y-mediated reductive dech�orination of PCE is

insignificant in anaerobic digested s�udge .
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4.2. Mass ba�ance

A methodo�ogy for performing mass ba�ances of ch�orinated compounds in the

120 m�-serum-bott�e system containing 100 m� of digested s�udge was deve�oped by

considering the headspace-�iquid partitioning and biosorption within the bott�e .

Genera��y, the tota� mass of ch�orinated compounds in an experimenta� bott�e can be

expressed as :

TM =E((C�,iV 1 +Cg,iVg+KiC �,i(1/ni)M)/MW .)

	

(1)
1

where

	

TM= tota� mass (µmo�e),
C �,i= concentration of ch�orinated compound (i) in �iquid phase (µg/1),

V1 = vo�ume of �iquid phase (�iter),

Cg,i = concentration of ch�orinated compound (i) in gas phase (µg/1),

Vg= vo�ume of gas phase (�iter),

Ki = equi�ibrium constant indicative of adsorptive capacity,
ni = constant indicative of adsorption intensity,
M= mass of bio-adsorbent (gram), and
MWi= mo�ecu�ar weight of ch�orinated compound (i) (gram/mo�e) .

However, for di�ute rea� so�utions, a chemica� concentration in gas phase is

proportiona� to the concentration of that component in the �iquid phase based on the

Henry's �aw, expressed as :

Cg,i = HciC1j

	

(2)

where Hci = Henry's �aw coefficient of ch�orinated compound (i)
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By substituting equation (2) into equation (1), tota� mass can be expressed as:

TM=)((C1,iV1 +HCiC�,iVg+KiC�,i(11ni)M)/MW1.) (3)

To obtain the tota� mass of ch�orinated compounds, vo�ati�ity and biosorption of

each ch�orinated compound must be determined .

Henry's �aw coefficient

The modified EPICS (Equi�ibrium Partitioning in C�osed Systems) procedure

(Gossett, 1987) was app�ied to measure Henry's �aw coefficient for a�� chemica�s at

35°C. For each chemica�, Henry's coefficients were measured in six 60-m� serum

bott�es. Three contained 50-m1 �iquid (D .I.water) vo�umes; the other three, 5 m�. Bott�es

were prepared as fo��ows: D .I. water (5 or 50 m�) was pipetted to each serum bott�e, the

bott�es were sea�ed with tef�on-�ined rubber septa and a�uminum crimp caps ; the

appropriate chemica� was injected into each bott�e with a gas-tight syringe . The �iquid

vo�ume and the quantity of injected chemica� were determined by gravimetric means .

The six EPICS serum bott�es were then incubated for 24 hours at 35°C . The �iquid

phase concentration in each bott�e was ana�yzed for the determination of Henry's �aw

coefficient . For each chemica�, nine possib�e pairings of trip�icate high and �ow �iquid

vo�ume EPICS bott�es provided nine possib�e estimates of Henry's �aw coefficient

based on the fo��owing equation :
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where

	

r = M2C1,1
M1C1,1,2

H - V1,2
-NI'�

	

(4)

c rVg, �
-Vg,2

M = tota� mass of a vo�ati�e so�ute added to a serum bott�e (µg),

V = vo�ume (�iter),

C = concentration (µg/1),

1, g = �iquid and gas, respective�y, and

1, 2 = bott�e 1 and bott�e 2, respective�y .

Henry's �aw coefficients for a�� ch�orinated ethy�enes are �isted in Tab�e 3 .

Furthermore, Henry's �aw coefficients were a�so determined in the s�udge system by

direct measurement of gas and �iquid equi�ibrium concentrations in a 120-m� serum

bott�e containing 100 m� anaerobic digested s�udge .

Tab�e 3 . Summ of He 's �aw coefficient (unit�ess)

( ) : standard deviation .
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Henry's
coeff.

PCE TCE cis-DCE trans-DCE 1 .1-DCE VC

in water
system

1 .06 (0.07) 0.61 (0.02) 0.26 (0.01) 0.65 (0.06) 1 .40 (0.08) 1 .45 (0.18)

in s�udge
system

0.81 (0.05) 0.52 (0.02) 0.22 (0.01) 0.53 (0.01) 1 .63 (0 .09) 1.39 (0.07)



Biosorption

The characteristic constants of biosorption for each test ch�orinated compound in

the s�udge system at 35°C were determined by using the Freund�ich Isotherm . It has the

fo��owing form

x/M = KCe 1/n

where

	

x = mass of adsorbate adsorbed on bio-adsorbent (µg),

M = mass of bio-adsorbent (gram),

K = equi�ibrium constant indicative of adsorptive capacity,

n = constant indicative of adsorption intensity, and

Ce = so�ution concentration at equi�ibrium after adsorption (µg/1) .

The constants used in equation (5) were determined by p�otting the mass

adsorbed on per unit mass of bio-adsorbent versus the equi�ibrium concentration on �og-

�og paper. The intercept is K, whi�e 1/n is the s�ope . A�� of the six ch�orinated

compounds were tested for their biosorption in the 120 m�-serum-bott�e system

containing 100 m� of Hyperion digested s�udge . For each test compound, 6 to 8

different masses (approximate�y 0.55 to 250 µmo�es per bott�e) were injected to each of

a series of bott�es . After 10 to 24 hours of incubation, both headspace gas and aqueous

concentrations in each bott�e were measured . The amount of chemica� adsorbed on the

s�udge was obtained by subtracting the masses of the chemica� in both gas and aqueous

(5)
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phases from the tota� added chemica� in each bott�e . The experimenta� resu�ts are

summarized in Tab�e 4 .

Tab�e 4. Summ of Freund�ich characteristic constants of bioso tion

Based on the Freund�ich mode�, x /M = K Ce ^ ( 1/n), (Units : Ce = µg/1 ; x = µg ; M = g) .

Figure 8 shows typica� resu�ts of the serum bott�e experiment when sequentia�

dech�orination of PCE to VC occurs. The measured concentration do not ba�ance the

added PCE concentration due to vo�ati�ization into the bott�e's headspace and adsorption

to the bioso�ids .

To account for vo�ati�ization and biosorption, the respective fractions were

estimated using Henry's �aw and an adsorption isotherm . The amounts vo�ati�ized and

adsorbed are significant, as the fo��owing examp�e shows . If 49 µmo�es PCE were

added, it wou�d correspond to 490 µmo�es per �iter (81 .3 mg/1) in the �iquid phase .

44

Constant PCE TCE cis-DCE trans-DCE 1 .1-DCE VC
K 0.2042 0.2907 0.1050 0.0185 0.0748 0.0910
n 1 .0040 1 .2309 1 .3993 1 .0821 1 .1946 1 .4186
Experimenta�
range (Min .)

(µ�a)

182.50 213.95 381 .41 9993 .42 273 .83 2013 .87

Experimenta�
range (Max .)

(µms)

60569 135161 180147 160443 113174 111741

Corre�ation
coefficient (r)

0.9998 0.9928 0.9690 0.9874 0.9766 0.9234



Fi
g.

8
Th

e 
me
as
ur
ed
 c
on
ce
nt
ra
ti
on
s 
of
 c
h�
or
in
at
ed
 c
om
po
un
ds

in
 �

iq
ui

d 
ph

as
e 

wi
th

ou
t 

co
ns

id
er

at
io

n 
of

 b
io

so
rp

ti
on

an
d 
vo

�a
ti

�i
ty

.
60
0

50
0

40
0

H
30

0

20
0

10
0 0

0

P
C
E

14
	

TC
E-
	

...
...

...
....

...
...

...
...

....
...

...
-

ci
s.

DC
F,

	

.

tr
an
s,
DC
E

	
0

:	
	

;
D
C
E
	

...
...

...
....

...
..

....
...

...
..

	

...
...

...
.

....
...

...
...

....
.

	

...'
	

--
-*

!-
VC

'
No
mi
na
� 
co
nc

.
--••••

... .--
--••••••

..v	
;	

;	
> .	

.....
.....

.;	
-----

--....

50
10

0
15

0

	

20
0

	

25
0

Re
ac

ti
on

 T
im

e 
(h

rs
.)

30
0

35
0

No
te

:
Wh
en
 b
io
so
rp
ti
on
 a
nd
 v
o�
at
i�
it
y 
ar
e 
no
t 
ta
ke
n 
in
to
 c
on
si
de
ra
ti
on
, 
th
e 
me
as
ur
ed

co
nc

en
tr

at
io
ns
 f
or
 e
ac
h 
co
mp
ou
nd
 d
o 
no
t 
ad
d 
up
 t
o 
th
e 
to
ta
� 
no

mi
na

� 
co

nc
en

tr
at

io
n

.

On
ce
 t
he
se

 f
ac

to
rs

 a
re

 t
ak

en
 i

nt
o 

ac
co

un
t,

 t
he

 s
um

 o
f 

me
as

ur
ed
 c
he
mi
ca
�s

at
 e

ac
h 

ti
me

 p
oi

nt
 d

o 
ad

d 
up

 t
o 

th
e 

cu
mu

�a
ti

ve
 a

dd
it

io
ns

 i
nt

o 
th
e 
sy
st
em

(c
om

pa
re

 F
ig

. 
8 
to
 F
ig

. 9
).

40
0



Using Henry's �aw, this concentration wou�d be reduced to on�y 421 µmo�es/1 (69 .9

mg/1). The actua� measured concentration was on�y 107 µmo�es/1(17 .8 mg/1). Using the

isotherm shown in Tab�e 4, to account for biosorption and vo�ati�ization, the ca�cu�ated

concentration in �iquid phase is 104 µmo�es/�, which is very c�ose to the measured

concentration of 107 µmo�es/� . This indicates that the methodo�ogy is �ogica��y

reasonab�e for performing mass ba�ances of ch�orinated compounds in the serum bott�e

system.

Figure 9 shows a ca�cu�ated mass ba�ance using the above procedures . It is

observed that the tota� app�ied and measured p�us ca�cu�ated concentrations very c�ose�y

ba�ance. The sma�� departure at the end of the test is probab�y due to ethy�ene

production, which was not measured in this test .

4.3. PCE-dech�orinating abi�ity and a genera� characteristic of s�udges

PCE-dech�orinating abi�ity :

PCE-dech�orinating abi�ity was demonstrated in a�� of the first five anaerobic

cu�tures tested. Viny� ch�oride (VC) was the major accumu�ated dech�orination product

in a�� of these cu�tures, exc�uding pond sediment (ethy�ene production was not measured

at this stage because it was expected to be be�ow the detection �imit if there is any

produced). PCE dech�orination on�y proceeded to cis-DCE in pond sediment cu�ture ;

however, after mixing with Hyperion digested s�udge, cis-DCE cou�d be further

dech�orinated to VC. This resu�t suggests that the Hyperion s�udge cu�ture is main�y

responsib�e for PCE dech�orination in the mixture.
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Hyperion s�udge cu�ture was observed to have the greatest abi�ity to

dech�orinate PCE among a�� the tested cu�tures . The first addition of 0 .3 µmo�es of PCE

was tota��y degraded to VC in 3 days without any significant �ag period. Under the

condition of �ow initia� PCE concentration, a tota� (3 .45 µmo�es) of 8 successive PCE

additions were degraded to VC in 29 days . After demonstrating PCE dech�orination at

�ow concentrations, higher concentrations were tested . The s�udge cu�ture sti��

transformed PCE to VC, but , it took �onger. The resu�ts are shown in Fig. 10 .

Different amounts of methano� addition (123, 25, and 2 .5 µmo�es) in a series of bott�es

did not significant�y change PCE dech�orination rates . The resu�ts for different amount

of methano� addition are provided in Appendix A (Fig . A-1 and A-2) .

Pond sediment ( un�ike Hyperion s�udge ) demonstrated on�y partia� PCE-

dech�orinating abi�ity (see Fig . 11). In a�� three test bott�es (with different methano�

additions), cis-DCE was the major end product . A significant �ag period (from 3 to 17

days) was observed before PCE transformation was observed . In the bott�e with the

�east methano� added (2.5 µmo�es, each time), the �ag period is shortest but PCE-

dech�orinating abi�ity was decreased when PCE dose was increased, which was

be�ieved to be a resu�t of TCE accumu�ation . The who�e data are provided in Appendix

A (Fig. A-3 and A-4) .

Mixture (1 :1) of fresh Hyperion s�udge and pond sediment showed a simi�ar

abi�ity of PCE dech�orination to that observed in 100% Hyperion s�udge (see Fig . 12).

PCE dech�orination resu�ted in VC formation and accumu�ation . However in the samp�e

with 25 µmo�es of methano� added each time, about 50% of PCE was degraded on�y to

cis-DCE. After �onger incubation, it was converted to VC . It appears that the Hyperion
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Fig. 10 PCE-dech�orinating abi�ity and formation of intermediates
in a batch cu�ture of fresh anaerobic Hyperion s�udge after
successive additions of PCE and 123 µmo�es of methano� .
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Fig. 10a PCE-dech�orinating abi�ity and formation of intermediates
in a batch cu�ture of fresh anaerobic Hyperion s�udge after
successive additions of PCE and 123 µmo�es of methano� .
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A

PCE-dech�orinating abi�ity and formation of intermediates in
anaerobic pond sediment after successive additions of PCE
and 123 µmo�es of methano� .
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Fig . 11a PCE-dech�orinating abi�ity and formation of intermediates in
anaerobic pond sediment after successive additions of PCE
and 123 µmo�es of methano�.
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Fig . 12 PCE-dech�orinating abi�ity and formation of intermediates in
a mixture cu�ture (1:1) of fresh anaerobic Hyperion s�udge
and anaerobic pond sediment after successive additions of PCE
and 123 µmo�es of methano� .
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Fig . 12a PCE-dech�orinating abi�ity and formation of intermediatess in
a mixture cu�ture (1 :1) of fresh anaerobic Hyperion s�udge
and anaerobic pond sediment after successive additions of PCE
and 123 µmo�es of methano� .
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s�udge cu�ture has contributed to the further dech�orination of cis-DCE. The

dech�orination resu�ts for different amounts of methano� addition are provided in

Appendix A (Fig . A-5 and A-6) .

Chino Basin (RP2) s�udge a�so showed partia� PCE-dech�orinating abi�ity

in most cases . During the first 90 days, on�y one PCE addition was added to each

bott�e, and cis-DCE was found as the major dech�orination product in most of the bott�es

with various amounts of PCE and methano� added (Shown in Appendix A (Fig . A-7

through A-11)) . However, from one of Chino Basin (RP2) s�udge with 49 µmo�es of

initia� PCE dose and a tota� methano� addition of 4920 µmo�es, comp�ete PCE

dech�orination to non-toxic ethy�ene was observed at the end of the 90 day of

incubation. About 22 .6 µmo�es of ethy�ene were produced from the dech�orination of 49

µmo�es of PCE initia��y added. After that, PCE was comp�ete�y dech�orinated to

ethy�ene at even faster rates (51 µmo�es of ethy�ene produced in 29 days) . The resu�ts

are shown in Fig. 13. To try to improve the PCE-dech�orinating abi�ity after 90 days of

operation, the supernatant in each bott�e was rep�aced with the same vo�ume of fresh

anaerobic medium . The medium was prepared with 50% of fresh Hyperion s�udge

supernatant and 50% of D .I. water containing known concentrations of sa�ts . Methano�

was a�so used and the initia� dose of PCE was 49 µmo�es for each bott�e . After two

months of incubation, significant ethy�ene productions (50.9 and 44.3 µmo�es,

respective�y) were observed from two more bott�es, whi�e cis-DCE was sti�� the major

end product of PCE dech�orination in three other bott�es . The improvement of the

dech�orinating-abi�ity was achieved in part of these bott�es . However, the factor(s) that

has contributed to the improvement in comp�ete PCE dech�orination abi�ity is not c�ear .
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Methano�-enrichment cu�ture was deve�oped with the inocu�um of

Hyperion digested s�udge. After one-year exposure of methano� (enriched by methano�

(100 mM) as the on�y carbon and energy source), the enrichment cu�ture was found not

to degrade PCE any better than the origina� fresh Hyperion s�udge ; on the contrary, its

abi�ity to dech�orinate PCE is even worse . Over 79 days of incubation, PCE was main�y

dech�orinated to TCE in methano�-enrichment cu�ture with methano� (615 µmo�es tota�)

as the major carbon source (see Fig . 14). In the second bott�e with the same amount of

methano� under a H2/CO2 (80/20%) atmosphere (1 .34 Kg/cm2), a �onger �ag period

(about 30 days) was observed before PCE transformation to TCE significant�y

occurred. TCE was the on�y observed end-product suggesting that the hydrogen can not

induce �ater transformation steps .(see Fig. 15) .

In the third methano�-enrichment cu�ture bott�e, VC was incubated with the same

amount of methano� and hydrogen to test VC dech�orination . No detectab�e VC

dech�orination was observed (Fig . 16) .

Improved PCE-dech�orinating abi�ity was found in concentrated mixture. After

80 days of incubation, the ce�� masses in the three methano�-enrichment cu�ture bott�es

were centrifuged and transferred into one bott�e, and then taken up to 100 m� by adding

fresh anaerobic medium. 49 µmo�es of PCE was comp�ete�y dech�orinated to ethy�ene in

24 days. The same amount of PCE that was added thereafter was stoichiometrica��y

transformed to ethy�ene at an even faster dech�orination rate within 9 days .(Fig. 17) .

The improvement of PCE-dech�orination abi�ity was possib�y due to the concentrated

ce�� mass, rep�acement of nutrient medium, or induction .
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Fig. 14 PCE-dech�orination abi�ity and formation of intermediates
in a batch system of MeOH-enrichment cu�tures .
(methano� was used as a so�e carbon and energy source .)
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PCE dech�orination - A genera� characteristic of s�udges :

The dech�orination of PCE in fresh anaerobic digested s�udges obtained from

five more different wastewater treatment p�ants (Termina� Is�and, Chino Basin (RP1),

A�varado, Va�encia, and JWPCP P�ant ) was tested to eva�uate if it is a genera�

characteristic of s�udges to metabo�ize PCE . Throughout the course of this study, the

trip�icate samp�es for each s�udge performed simi�ar�y . The sequentia� reductive

dech�orinations of PCE were observed in a�� s�udges . Comp�ete dech�orination of PCE

to non-ch�orinated ethy�ene was demonstrated in a�� test s�udges, except for the Chino

Basin (RP 1) s�udge cu�ture in which PCE was on�y dech�orinated to cis-DCE after 4

months of incubation. The comp�ete�y dech�orinating abi�ity under a higher PCE

concentration (162 .6 mg/1) was a�so demonstrated in the cu�tures obtained from Va�encia

and JWPCP Treatment P�ants . Without the addition of extra carbon source, PCE

dech�orination was achieved in a�� s�udge samp�es . This indicated that a�� fresh anaerobic

digested s�udges contain sufficient and adequate nutrients for PCE dech�orination .

Termina� Is�and s�udge degraded PCE via sequentia� reductive

dech�orinations . PCE was step-by-step dech�orinated to ethy�ene through TCE, cis-DCE

and viny� ch�oride. About 25 µmo�es of ethy�ene was formed from the dech�orination of

49 µmo�es of PCE after 20 days of incubation, whi�e the rest of PCE was ending up as

viny� ch�oride . Over 30 days of incubation, at �east 40 µmo�es of ethy�ene was observed

in a�� trip�icate samp�es . More ethy�ene production was observed after repetitive PCE

addition to these bott�es. At the end of this experiment, 82, 88, and 142 µmo�es of

ethy�ene were accumu�ated in the bott�es which received 98, 98, and 147 µmo�es of

PCE, respective�y. The data are shown in Fig. 18 .
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The comp�ete dech�orination of PCE in a batch cu�ture
of fresh anaerobic s�udge obtained from Termina� Is�and
Wastewater Treatment P�ant.
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Chino Basin (RP1) s�udge on�y dech�orinated PCE partia��y to cis-DCE . In

trip�icate samp�es, cis-DCE was the major end product. The comp�ete dech�orination

product, ethy�ene, was never detected . However, no any significant �ag period was

observed for PCE dech�orination even though it was dech�orinated to TCE very s�ow�y

during the first week (see Fig. 19). It took much �onger (about 50 days observed from

two of trip�icate samp�es) to tota��y degrade PCE to TCE. The transformation of TCE to

cis-DCE spent another 40 days . After that, no additiona� dech�orination ( VC formation )

was noted. A�though cis-DCE was continuous�y dec�ined from day 20 to 119 ( see Fig .

19a), it was most �ike�y due to �eakage �osses because no V .C. accumu�ation was

observed. For Chino Basin (RP 1) s�udge, much more methane production was

observed. After 20 days of incubation, a tota� of about 3000 µmo�es of methane was

yie�ded from Chino Basin s�udge, whi�e on�y 750 µmo�es of methane production was

observed from Termina� Is�and s�udge samp�es. If it were the reason for the s�ow and

partia� dech�orination of PCE is not c�ear . The another factor which may cause the worse

dech�orinating abi�ity is that Chino Basin (RP1) P�ant on�y receives �ess than 5% of their

wastewater from industria� sources. The exposure to a �ow percentage of industria�

wastewater may resu�t in a dramatic reduction in the comp�exity of microorganisms

invo�ved in the s�udge . Consequent�y, many dech�orinating bacteria may be exc�uded .

A�varado s�udge performed PCE dech�orination simi�ar�y to that in Termina�

Is�and s�udge . However, for an unknown reason, it a�so took �onger ( about 30 - 35

days) to comp�ete�y dech�orinate 49 µmo�es of PCE to VC . In addition, cis-DCE was no

�onger the on�y major product of TCE dech�orination . A significant amount of trans-

DCE (15 µmo�es ; about 30% of TCE) was observed to accumu�ate in the s�udge system

during the transformation of TCE to DCE . Fortunate�y, it was not so persistent as
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expected. Trans-DCE and cis-DCE were comp�ete�y degraded to VC in 10 days . Over

83 days of incubation, 19 - 30 µmo�es of ethy�ene were formed in the trip�icate samp�es .

To investigate the dech�orination abi�ity in the o�d s�udge, an additiona� s�udge samp�e

was incubated 3 days under the same conditions without PCE addition . After that, PCE

was injected into the bott�e . PCE sti�� can be comp�ete�y dech�orinated to ethy�ene but it

took even �onger in each step of PCE dech�orination . More trans-DCE (24 µmo�es)

accumu�ated during the transformation of TCE to DCE than that observed in fresh

s�udge samp�es . At the end of the experiment (119 days of incubation), a tota� of 22 .5

µmo�es of ethy�ene was measured. The data are shown in Fig . 20. During the period of

experiment, an average of 2500 µmo�es of methane production was observed with the

fresh s�udge samp�es, whi�e the o�d s�udge samp�e produced 3000 µmo�es of methane in

tota� .

Va�encia s�udge took on�y 7 days to dech�orinate 49 µmo�es of PCE to cis-

DCE, without any significant formation of the other two isomers (trans-DCE and 1 .1-

DCE) . A�� of the cis-DCE was further dech�orinated to viny� ch�oride in the next 14

days. About 4.5 to 6 µmo�es of ethy�ene were produced from the trip�icate samp�es on

day 28 . After that, ethy�ene was formed at an even s�ower rate . The average methane

production from trip�icate samp�es was around 2500 µmo�es . The dech�orination abi�ity

under a higher initia� PCE concentration (98 µmo�es of PCE per bott�e) was investigated

in an additiona� s�udge samp�e . Interesting�y, the doub�ed amount of PCE did not take

any �onger for comp�ete dech�orination . Within 7 days, PCE was tota��y degraded to cis-

DCE. A�� of the cis-DCE was found to end up as viny� ch�oride on day 21 . However,

much more ethy�ene (22 .2 µmo�es) was produced on day 28, compared to the ethy�ene

production from the samp�e with a �ower initia� PCE concentration . This indicated that a

62



y

4 ..d.

O

oA
yo
4 =L
O
auv
A

A

M
u
7
O y

w~
O

00-
in o
e6.w -
0-
AC,

A

u

''C ..
Od

QI Y
O

OA
Y O
r.T :L
.S -
.Cu
in
A

Fig. 20

	

The comp�ete dech�orination of PCE in a batch cu�ture
of fresh anaerobic s�udge obtained from A�varado
Wastewater Treatment P�ant .
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higher concentration of viny� ch�oride may not inhibit the formation of ethy�ene in the

s�udge system . However, during the same period, on�y a sma��er amount of methane

(about 1900 µmo�es) was produced from the high PCE concentration samp�e . Whether

it was due to the competition between methanogenesis and reductive dech�orination for

e�ectrons avai�ab�e in the system, or the toxicity of ch�orinated compounds to

methanogens is not known current�y . The resu�ts are shown in Fig. 21 .

JWPCP s�udge took the shortest period of time (�ess than 13 days) to degrade

49 µmo�es of PCE to VC and make ethy�ene (1 .8 - 2.3 µmo�es) emerge ear�iest from the

comp�ete dech�orination of PCE among a�� tested s�udge . However, the ethy�ene

production rates observed from JWPCP s�udge were s�ower than that from Termina�

Is�and s�udge. Within 29 days, JWPCP s�udge on�y yie�ded 18 - 19 µmo�es of ethy�ene

from the dech�orination of 49 µmo�es of PCE, whi�e about 43 - 45 µmo�es of ethy�ene

had been produced in Termina� Is�and s�udge . At the end of the experiment (49 days),

34 - 40 µmo�es of ethy�ene and an average of 2500 µmo�es of methane were

accumu�ated in trip�icate samp�es . For the samp�e with a higher initia� PCE concentration

(98 µmo�es per bott�e), the comp�ete PCE dech�orination proceeded simi�ar�y to that in

Va�encia s�udge, but with a higher fina� ethy�ene production (83 µmo�es) . Again, the

fina� methane production (1700 µmo�es) was much �ower than that produced from the

samp�es with a �ower initia� PCE concentration . The data are shown in Fig . 22 .

Based on the above resu�ts, reductive PCE dech�orination was observed with a��

tested anaerobic digested s�udges . This indicates that the dech�orination of PCE may be

a genera� characteristic of anaerobic digested s�udges. However, due to an unknown
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The comp�ete dech�orination of PCE in a batch cu�ture
of fresh anaerobic s�udge obtained from JWPCP
Wastewater Treatment P�ant .
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reason, digested s�udges from different sources varied in their potentia� to comp�ete�y

dech�orinate PCE to ethy�ene .

4.4 . Treatabi�ity of ch�orinated compounds

The biodegradabi�ity (defined as the capacity of a substance to undergo microbia�

attack, Painter and King, 1985) of each ch�orinated compound tested was significant�y

different from each other in fresh Hyperion digested s�udge . However, when the period

of incubation was �ong enough, a�� of the six tested ch�orinated compounds were

anaerobica��y biodegradab�e in Hyperion s�udge . The observed �ag periods for trans-

DCE, 1 .1-DCE, and VC were 12, 4, and 10 days, respective�y under a �ow initia� dose

(0.3 µmo�es of each tested compound p�us 5 µmo�es of methano� per bott�e) . No �ag

was observed in the degradation of PCE, TCE, and cis-DCE . After 6 additions into each

bott�e, PCE ,TCE, cis-DCE tended to accumu�ate . In order to determine if the

dech�orination capacity in each bott�e has been consumed, 49 µmo�es (much higher than

the dose (0.3-0.6 µmo�es) used before) of each ch�orinated compound p�us 123 µmo�es

of methano� were added to each corresponding bott�e and the remaining dech�orination

capacity of the Hyperion s�udge was tested in each bott�e . After another 58 days of

incubation, a�� of added compounds in each bott�e were either partia��y or comp�ete�y

dech�orinated and ethy�ene was detected in a�� the test bott�es . A summary of the resu�ts

is given in Tab�e 5 . This suggested that a�� six ch�orinated compounds can be degraded

and the higher concentrations of each ch�orinated compound may have contributed to the

faster dech�orination rates observed in each bott�e . Among a�� of the ch�orinated

compounds tested, dech�orination of PCE, TCE, and cis-DCE was more �ike�y to resu�t
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in ethy�ene production . The detai�ed data for the treatabi�ity test of each compound are

provided in Appendix A (Fig . A-12 through A-17) .

Figure A- 18 (in Appendix A) shows the resu�t of reduced ethy�ene production

from PCE (49 µmo�es) dech�orination with higher methano� addition (1230 µmo�es) .

With the higher added amount of methano�, PCE dech�orination was s�ower than that

with �ower methano� dosage (Fig . A-12 shown in Appendix A) .

The PCE-dech�orinating capacity of the fresh Hyperion digested s�udge was

tested by successive�y adding PCE (49 µmo�es each time) into each of two separate

s�udge bott�es incubated with and without methano� addition, respective�y . Simi�ar

resu�ts (as shown in Fig . A-19, Appendix A) were observed from both cases . After 245

µmo�es of PCE were added, the s�udge system appeared to �ose the dech�orinating

abi�ity and the major end products accumu�ated were TCE and a �ower than expected

amount of VC. The accumu�ation of TCE may be due to nutrient deprivation even

though 246 µmo�es of methano� have been added accompanying with each PCE

addition .

4.5. Reductive dech�orination progression

Viny� ch�oride has been observed as a major intermediate in reductive

dech�orination. The mechanism and path of PCE and other ch�orinated compound

dech�orination through VC to ethy�ene is sti�� not c�ear . To further understand the

mechanism of reductive dech�orination in the anaerobic digested s�udge system, a�� of

their possib�e dech�orinated products were investigated in fresh Hyperion s�udge . The
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resu�ts indicate that a�� of the tested ch�orinated ethy�enes may be dech�orinated to

ethy�ene through an identica� co-metabo�ic route (i.e . PCE -> TCE -> DCE -> VC ->

ETH). The �ess ch�orinated ethy�enes seemed on�y to uti�ize part of the route, whi�e the

fu��y ch�orinated ethy�ene (PCE) uti�ized the who�e route during the reductive

dech�orination .

Reductive dech�orination progression of PCE at a high PCE

concentration in fresh Hyperion digested s�udge is shown in Fig . 23 . After a �ag period

of 4 days, PCE started to dech�orinate to TCE . After on�y one more day, 49 µmo�es of

PCE comp�ete�y disappeared and 47 µmo�es of TCE were created . TCE thereupon was

transformed to cis-DCE (49 µmo�es) in the fo��owing 3 days of incubation without any

significant formation of the other two isomers (trans-DCE and 1 .1-DCE) . For an

unknown reason, it took �onger (8 days) to comp�ete�y dech�orinate cis-DCE to VC .

On�y 45 µmo�es of VC, �ess than expected, was measured . The difference between PCE

consumption and VC production was most �ike�y due to �eakage �osses and

undetermined ethy�ene production. This high recovery (around 92% ) suggests that PCE

was stoichiometrica��y dech�orinated, through TCE and cis-DCE, to VC . It was

sequentia��y reduced. In each step, one ch�orine atom in the ch�orinated compound was

rep�aced with a hydrogen coming from an e�ectron donor. A simi�ar resu�t (data not

shown) was observed from the same experiment conducted under conditions without

methano�. This suggested that sufficient nutrients contained in fresh digested s�udge are

adequate for PCE degradation .

The step-by-step dech�orination of PCE was a�so monitored from the samp�e

with a �ow initia� PCE concentration (see Fig . A-20 in Appendix A) . There was no �ag
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period observed and the characteristic step-by-step dech�orination was not as c�ear as in

the high concentration PCE experiments . The steps of PCE dech�orination were more

defined at a higher PCE concentration .

Reductive dech�orination progression of TCE a�so went through cis-

DCE to VC. The resu�t is shown in Fig . 24. Compared to PCE dech�orination, a �onger

�ag period (about 12 days) was required . After the �ag period, it on�y took 7 days to

entire�y dech�orinate TCE to VC . But, in PCE bott�e, the same amount of TCE produced

from the first step of PCE dech�orination took 11 days to terminate at VC .

Reductive dech�orination progression of three isomers of DCE is

shown in Fig . 25 to 27. Interesting�y, the transformations of a�� three isomers proceeded

via the simi�ar reductive dech�orination, a�� resu�ting in the formation of �ower

ch�orinated ethy�ene, VC . Among them, trans-DCE was observed to be most resistant to

reductive dech�orination . Trans-DCE took 17 days before its dech�orination was

observed significant�y, whi�e cis-DCE and � .1-DCE on�y took 6 and 5 days,

respective�y. After that, trans-DCE was dech�orinated at a much s�ower rate than that

observed in cis-DCE and 1 .1-DCE samp�es. The VC produced from dech�orination of

trans-DCE was not accumu�ated as much as that from other two isomers . Most of it

ended up as ethy�ene . This is possib�e due to the s�ower re�ease of VC, a �onger

incubation period or different organisms and mechanisms invo�ved in the formation of

ethy�ene .

Reductive dech�orination progression of VC to ethy�ene was observed

after 30 days of incubation . The data shown in Fig . 28 were taken after 50 days of
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semi-continuous operation fed with VC and methano� . With 49 µmo�es of initia� VC

dose, 40 µmo�es of VC was consumed and 36 µmo�es of ethy�ene was produced in 35

days. This indicates that VC has undergone a reductive dech�orination ending up as

ethy�ene.

Ethy�ene formation was detected from the comp�ete dech�orination of a�� six

ch�orinated ethy�enes in fresh anaerobic Hyperion s�udge . To investigate the possib�e

ethy�ene production from a�� six ch�orinated ethy�enes, a new series of six 120-m1 serum

bott�es containing 100 m� of fresh Hyperion s�udge were prepared again as decribed

previous�y . Each bott�e contained one kind of test compound and was incubated under

the same conditions as described before . The initia� dose was 49 µmo�es for each

chemica� except VC. In order to enhance the ethy�ene production from VC

dech�orination, a higher initia� VC dose (122 µmo�es) was app�ied to the �ast bott�e .

After 15 days, PCE, TCE, cis-DCE, and 1.1-DCE were observed to entire�y end up as

VC. Trans-DCE and VC showed a more persistent characteristic to reductive

dech�orination as expected . Most of them continue to exist . From the 15th day on,

ethy�ene ana�ysis was conducted for each samp�e . Ethy�ene production (summarized in

Tab�e 6) was demonstrated from a�� test ch�orinated compounds after 54 days of

incubation. From Tab�e 6, during the second run, much more ethy�ene production was

observed from the dech�orination of trans-DCE and VC ( the two most persistent

compounds) after 12 days of incubation . This suggested that if the right environmenta�

conditions were provided, even the most resistant compound can easi�y undergo

comp�ete dech�orination in the anaerobic s�udge . The nutrient conditions (inc�uding the

amount, type of e�ectron donors and e�ectron acceptors) and the concentration of target
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ch�orinated compound may be two of the most important environmenta� factors for the

reductive dech�orination in the anaerobic digested s�udge .

The dech�orination patterns for each ch�orinated compound tested in the fresh

Hyperion s�udge are summarized in Tab�e 7 .
Tab�e 7. Summary of dech�orination pattern for each ch�orinated

compound in anaerobic digested s�udge	

The effect of the presence of TCE and VC on PCE dech�orination .

When PCE was incubated with VC in the fresh Hyperion s�udge, the dech�orination

pattern for PCE was the same as observed with PCE a�one . The dech�orination of PCE

went through TCE, cis-DCE, VC and terminated at ethy�ene . Interesting�y, the

dech�orination of the initia��y added VC did not occur unti� a�� PCE was transformed to

VC. In addition, a faster VC dech�orination rate was observed, compared to the resu�t

shown in Fig. 28 and Tab�e 6 . After the initia� added PCE was entire�y transformed to

VC, 79 µmo�es of VC, from a tota� of 99 µmo�es of VC, were dech�orinated to 74

80

Ch�orinated

compounds

Major products in sequentia� reductive dech�orination

PCE

	

-~ TCE-4cis-DCE-->V .C .--ETH

TCE

	

- cis-DCE-*V .C .--ETH

cis-DCE

	

-* V .C . -*ETH

trans-DCE -4 V . C . -ETH

1.1-DCE -4 V . C .-SETH

V.C.
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µmo�es of ethy�ene in on�y 10 days . The resu�t is shown in Fig . 29. A simi�ar

phenomenon a�so occurred in the s�udge bott�e which was incubated with PCE, TCE,

and VC simu�taneous�y . TCE dech�orination occurred after the comp�etion of PCE

dech�orination. When a�� of the TCE was transformed to VC, VC started to be degraded

and ethy�ene emerged ( shown in Fig . 30) .

The resu�ts shown in Fig. 29 and 30 suggested that the dech�orination of �ess

ch�orinated ethy�enes may be inhibited by the presence of higher ch�orinated ethy�enes .

This was a�so common�y suggested in previous �iterature and �ead peop�e to be�ieve that

PCE is the most susceptib�e to the reductive dech�orination among six ch�orinated

ethy�enes. However, if PCE can actua��y inhibit the dech�orination of �ess ch�orinated

ethy�enes in the s�udge ? We wi�� discuss it �ater.

4 .6. Toxicity effect

Methane production was used as an indicator to estimate the toxic effect of each

ch�orinated compound on the methanogenic activity of fresh Hyperion s�udge . A variety

of effects on methane production was observed with different ch�orinated compounds .

The term, LC50 was used to describe the concentration of a test ch�orinated compound

which reduced methanogenic activity by 50% . It is be�ieved that the decrease in methane

production may be partia��y or comp�ete�y due to the competition for reduction between

the e�ectron acceptors used by methanogens in the s�udge system and the test ch�orinated

compound. In some situations, it is possib�e that e�ectrons are more easi�y diverted to

ch�orinated compounds than to the precursor materia�s of methane formation .
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The effect of viny� ch�oride on PCE dech�orination in
a fresh anaerobic Hyperion s�udge cu�tures without
methano� addition .
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Fig. 29a The effect of viny� ch�oride on PCE dech�orination in
a fresh anaerobic Hyperion s�udge cu�tures without
methano� addition .
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Fig. 30 The effect of the presence of TCE and VC on PCE
dech�orination in a fresh anaerobic Hyperion s�udge
cu�tures without methano� addition .
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Fig . 30a The effect of the presence of TCE and V.C. on PCE
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From Fig. 31 to 36, we found that the ch�orinated compounds (inc�uding PCE,

TCE, and cis-DCE) which were more rapid�y dech�orinated, have �ower LC50 va�ues .

Compounds with �ower rates of dech�orination (such as trans-DCE, 1 .1-DCE and VC)

exhibited higher LC50 va�ues . The LC50 va�ues obtained from each chemica� corre�ate

with their treatabi�ity (the amenabi�ity of compounds to dech�orination during bio�ogica�

treatment ) .

4.7. Highest to�erab�e concentration and ethy�ene production

Tab�e 8 to 13 show the change in tota� mass of each tested compound and their

dech�orinated products over a 20-55 day period of incubation in the fresh Hyperion

digested s�udge. PCE showed the highest potentia� to produce ethy�ene, then TCE and

cis-DCE. Trans-DCE, 1 .1-DCE and VC were more resistant to degradation and ethy�ene

productions. In these experiments, we did not observe 100% comp�ete dech�orination at

any initia� dosage for each tested compound. The maximum �eve� of ethy�ene production

was observed from the samp�e with an initia� dose of 97 .86 µmo�es of PCE . About 74%

of the PCE was recovered as ethy�ene (72 .4 µmo� .) after 32 days . No instances of

100% transformation were observed during the incubation period, even for the samp�e

with the �owest initia� dosage of PCE . Viny� ch�oride and trans-DCE were dech�orinated

most s�ow�y. The recovery for most of samp�es were �ess than 100% . This is due to the

�osses of chemica�s from the re�eased gas (for re�easing pressure resu�ting from gas

production in serum bott�es containing fresh digested s�udge) .

PCE. After one month incubation, the highest dose of PCE that was most

readi�y degraded to ethy�ene was 97 .86 µmo�es per bott�e . A�though degradation of PCE
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Fig. 31 Toxico�ogica� Effect of PCE on Anaerobic Digested S�udge
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Fig. 32 Toxico�ogica� Effect of TCE on Anaerobic Digested S�udge
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Fig. 33 Toxico�ogica� Effect of cis-DCE on Anaerobic Digested S�udge
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Fig. 34 Toxico�ogica� Effect of trans-DCE on Anaerobic Digested S�udge
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Fig. 35 Toxico�ogica� Effect of 1.1,DCE on Anaerobic Digested S�udge
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Fig. 36 Toxico�ogica� Effect of Viny� Ch�oride on Anaerobic Digested S�udge
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was sti�� carried out at higher concentrations (up to 195 .72 µmo�es per bott�e), the

dech�orination that occurred within this period was not as comp�ete. The major product

of PCE dech�orination at 195 µmo�es per bott�e was viny� ch�oride, instead of ethy�ene .

The tota� ethy�ene production increased with the initia� PCE concentration up to an upper

�imit. It seemed that the ethy�ene formation from the reductive dech�orination may be

a�so inf�uenced by the concentration of viny� ch�oride . There was no any detectab�e

ethy�ene produced from the samp�es with a �ow initia� PCE concentration which resu�ted

in a corresponding �ow VC concentration . Resu�ts of this experiment are shown in Tab�e

8 .

TCE. The resu�ts for TCE dech�orination were simi�ar to those observed from

PCE dech�orination. With up to 196.21 µmo�es of TCE per bott�e, dech�orination of

TCE sti�� occurred; however 91 % of TCE was recovered as VC and on�y 9% of TCE

was comp�ete�y dech�orinated to ethy�ene . The maximum ethy�ene production (48.8

µmo�es) was observed from the samp�e incubated with 98.11 µmo�es of TCE, whi�e the

samp�e with 73 .58 µmo�es of TCE showed the highest percentage (about 56%) of

transformation from TCE to ethy�ene (see Tab�e. 9) .

cis-DCE. The production of ethy�ene from cis-DCE was much more than those

observed with the other two isomers. The highest to�erab�e cis-DCE concentration

appeared to be 105 .62 µmo�es per bott�e producing the maximum amount of ethy�ene

(see Tab�e 10) . For the highest cis-DCE dosage (211 .24 µmo�es per bott�e), on�y 112

µmo�es of cis-DCE was degraded to VC after 39 days of incubation with no ethy�ene

produced .
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trans-DCE . Trans-DCE was high�y resistant to dech�orination in the fresh

digested s�udge. After 54 days of incubation, no significant amount of trans-DCE was

transformed in any samp�e tested (Tab�e 11) . This is consistent with ear�ier observations

for the trans-DCE progression test . No ethy�ene production was observed even after 70

days of incubation (data not shown here) .

1 .1-DCE . At a dose of 50 µmo�es of 1 .1-DCE, the maximum amount of

ethy�ene production was observed (16 .7 µmo�es) . At higher concentrations of 1 .1-DCE

incomp�ete dech�orination was observed in a�� samp�es after 55 days of incubation

period (see Tab�e 12) .

VC. Genera��y, VC is regarded as the most resistant compound to reductive

dech�orination (Freedman and Gossett, 1989) . In spite of this, we sti�� found an

optimum concentration at which the dech�orination of VC to ethy�ene was maximized,

whi�e VC was a�most tota��y resistant at higher initia� doses. VC was maxima��y

dech�orinated at the initia� dose of 73 .57 µmo�es per bott�e. After 51 days, about 35

µmo�es of ethy�ene was recovered from VC (refer to Tab�e 13) . This indicates that the

concentration of VC inf�uences its rate of dech�orination to ethy�ene .

4.8. Semi-continuous operation

In order to eva�uate �ong-term dech�orination efficiency for each ch�orinated

ethy�ene, the six s�udge bott�es created in the dech�orination progression test and two

mixed-cu�ture bott�es were maintained under semi-continuous feeding . In PCE bott�e,

49 µmo�es of PCE was tota��y degraded to VC in 15 days at the beginning . After 5 runs,

92
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on�y 3 days were required to degrade the same amount of PCE . A tota� of 686 µmo�es

of PCE was degraded over a period of 145 days . At the end of the experiment, a tota�

of 33% of PCE was recovered as ethy�ene. VC was the major product accumu�ated in

the serum bott�e from PCE dech�orination . The resu�ts are shown in Fig . 37. Simi�ar

resu�ts (shown in Appendix, Fig. A-21) were obtained under conditions in which no

methano� was added for the first 60 days . 275 µmo�es of ethy�ene were produced from

735 µmo�es of PCE cumu�ative�y added in 145 days . Furthermore, �ong term semi-

continuous tests carried out using TCE, cis-DCE, and 1 .1-DCE showed simi�ar resu�ts

with �arge amounts of VC accumu�ation . The data are provided in Appendix A (Fig . A-

22 to A-24) .

In the trans-DCE bott�e, 61 µmo�es of ethy�ene were produced in 130 days from

a tota� of 98 µmo�es of trans-DCE cumu�ative addition . There were on�y 10 µmo�es of

VC accumu�ated in the bott�e at the end of the experiment (see Fig . 26) .

VC was a�so very s�ow�y dech�orinated . During the period of 135 days, a tota�

of 196 µmo�es of VC was added and 141 µmo�es of ethy�ene were recovered. At the

end of the test, VC was sti�� not comp�ete�y dech�orinated . A�though this resu�t indicated

that dech�orination of VC under anaerobic condition is possib�e, comp�ete

transformation of VC from the treatment system is more difficu�t and may take �onger .

The importance of methano� to VC dech�orination was a�so tested in this experiment by

ending methano� addition on 85th day . Dech�orination of VC and production of ethy�ene

were inhibited significant�y unti� the 114th day, at which time methano� was added again

( see Fig. 38). In this case methano� appears to be necessary for VC dech�orination to

take p�ace.
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490 222.3 110.4 22 .5 67.9
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There is no attempt to identify which organism(s) is responsib�e for the reductive

dech�orination in this study . In the �iterature, the occurrence of reductive dech�orination

has been demonstrated in both pure cu�ture and mixed microbia� popu�ation . However,

on�y a re�ative�y s�ow rate and partia� dech�orination was achieved in most cases

studying with pure cu�tures (e.g . 0.25 - 0.45 mo�es of PCE per �iter per day observed

in Fathepure and Boyd's work, 1988b) . In the present study, we observed that PCE

dech�orination proceeded at a much faster rate in s�udges . On average, 49 µmo�es of

PCE can be entire�y dech�orinated to VC with a significant amount of ethy�ene

accumu�ated in 15 days for most test s�udges . The dech�orination rate corresponding to

these reactions is about 32 .7 µmo�es per �iter per day . Furthermore, PCE was

dech�orinated not on�y to TCE but a�so further to VC and ethy�ene in this study .

Therefore, both the rate and the extent of PCE dech�orination have been improved .

Usua��y, pure cu�tures are more un�ike�y to degrade a reca�citrant compound so

comp�ete�y. The comp�ete dech�orination of PCE in digested s�udges is more �ike�y to be

the co-metabo�ic resu�t of a methanogenic consortium .

In anaerobic digested s�udge, many kinds of non-methanogenic bacteria may

form hydrogen . Genera��y, this hydrogen serves as a source of the reductant required

for reductive dech�orination of PCE and its partia��y dech�orinated intermediates . The

bio�ogica� reductive dech�orination of PCE may be a nonspecific reaction and mediated

nonspecifica��y by coenzymes invo�ved in methanogenesis . In addition, because PCE is

dech�orinated sequentia��y, the conditions (nutritiona� and process requirements) for

each step of the comp�ete dech�orination of PCE may be different . To achieve optimum

dech�orinating efficiency, the environmenta� conditions for each step shou�d be

optimized separate�y. However, it wou�d be comp�ex and difficu�t to e�ucidate .
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5.2 . Dech�orination progression and comp�ete dech�orination .

The fresh anaerobic Hyperion s�udge incubated with PCE exhibited a typica�

resu�t for the reductive dech�orination pattern (Fig .23). The comp�ete reduction of 49

µmo�es of PCE per 100 mL occurred within 5 days . The transient accumu�ation of TCE

reached its maximum �eve� on day 5 . After this time, the tota� mass of TCE started to

decrease and cis-DCE started to increase. Then cis-DCE decreased and V.C. began to

accumu�ate in the system. The digested s�udge incubated with PCE contained TCE, cis-

DCE, and V.C. after 4, 6, and 9 days, respective�y, suggesting that TCE, cis-DCE, and

V.C. were sequentia� intermediates of PCE dech�orination (PCE was dech�orinated

stepwise via TCE, cis-DCE, and VC to ethy�ene) .

Ethane (a possib�e reduced product of ethy�ene) has never been detected in any

significant amount throughout the course of this study . Apparent�y, the methanogenic

consortium in the anaerobic digested s�udge is not on�y capab�e of degrading PCE but

a�so capab�e of degrading a�� of its possib�e biotransformation products (i.e . TCE, 3

isomers of DCE, and V .C.) . However, it is sti�� not known whether the same

microorganisms are invo�ved in the dech�orination of different compounds or different

species are needed for each step of dech�orination . With the �ag periods observed in each

step of PCE dech�orination, it was very possib�e that the different dech�orination steps

might be effected by different microorganisms . Severa� different microorganisms are

needed to achieve comp�ete dech�orination of PCE. To identify the species that posses

dech�orinating activity is most important . The dech�orinated intermediates for each

parent target compound �isted in Tab�e 7 and their sequence of appearance and
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disappearance of the dech�orinated products shown in Fig . 24 to 28 appeared to indicate

that a�� the tested ch�orinated compounds have undergone a dech�orination progression

that is consistent with a simi�ar mechanism which �eads to the same intermediates and

end products. The common observed dech�orination pattern is summarized in Fig . 49 .

The dech�orination pattern is simi�ar to that observed previous�y in other methanogenic

environment (Voge� and McCarty, 1985 ; Barr�o-Lage et a� ., 1986) .

The findings of comp�ete reductive dech�orination of PCE to ethy�ene in

anaerobic digested s�udges obtained from six different wastewater treatment p�ants and

in methano�-enrichment cu�tures enriched from Hyperion s�udge are of great importance

for bioremediation app�ications . This is the first report of such a comp�ete dech�orination

of PCE occurring in fresh anaerobic digested s�udge at such a high rate. These findings

make reductive dech�orination in anaerobic digested s�udge an attractive method for

remova� of PCE in bioremediation processes .

In this study, not on�y PCE but a�so TCE, 3 isomers of DCE, and VC were

demonstrated to readi�y undergo the comp�ete reductive dech�orination in anaerobic

digested s�udge. It is apparent from these studies that reductive dech�orination is the

primary mechanism in the degradative sequence of ch�orinated compounds in anaerobic

digested s�udge. A�� of tested ch�orinated compounds were dech�orinated in a stepwise

fashion and a�� of them can be dech�orinated to ethy�ene . These resu�ts are consistent

with recent�y observed dech�orinations under anaerobic conditions (Freedman and

Gossett, 1989, 1991 ; Bruin and Zehnder, 1992). The evidence of these dech�orination

are based on the disappearance of parent compounds (i.e . PCE, TCE, DCE and V.C.)

and the formation of dech�orinated products under strict anaerobic conditions . Whether
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Fig. 49 Schematic for the common observed dech�orination
pattern for conversion of ch�orinated compounds to
ethy�ene.
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biooxidation mechanisms were a�so in part invo�ved in the transformations of

ch�orinated compounds was not determined because CO2 was not measured in this

study .

In this study, we did not conduct radioisotope studies to determine whether the

ethy�ene formed was a consequence of PCE degradation . Indirect evidences suggest that

the formation of ethy�ene is direct�y re�ated to the dech�orination of PCE . These

evidences are : (1) ethy�ene was detected on�y from the time when VC started to

disappear, (2) in most of cases, the amount of ethy�ene formed was near�y

stoichiometrica��y equa� to the responding decrease in VC, and (3) there was no any

detectab�e ethy�ene observed in the s�udge samp�e which was incubated without PCE

under the same conditions . A�though the transformation of PCE to ethy�ene, and

eventua��y to ethane was monitored in Bruin et a� .'s report (1992), there was no

significant amount of ethane being found throughout this study . Furthermore, we have

not tried to determine whether products not detectab�e by the purge-and-trap method

were a�so being formed .

PCE-dech�orinating abi�ity may vary with the microorganisms present and

physicochemica� environment. According�y, reductive dech�orination may degrade PCE

to various extents under different conditions . In most previous studies of bio�ogica�

dech�orination of PCE, on�y partia� dech�orination was reported . The partia� PCE-

dech�orinating abi�ity was a�so found in the pond sediment obtained from UCLA's

botanica� garden. In that case, PCE was initia��y dech�orinated to TCE and cis-DCE .

After one month of semi-continuous operation cis-DCE was the on�y end product . The

cis-DCE did not further dech�orinated even after 6 months of extended incubation . The
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�ess ch�orinated products may not be further degraded under the same conditions . Not

surprising�y, in contaminated anaerobic environments, such as waste dumping sites,

subsoi�, and groundwater, partia� dech�orinated products of PCE are often found . For

examp�e, cis-DCE is frequent�y the major environmenta� contaminant when PCE or TCE

has been re�eased in a dump. Therefore, in assessing the biodegradation of PCE, one

must a�so assess the partia� dech�orination products formed and their possibi�ity to

further biodegradation, not simp�y the disappearance of PCE .

5.3. Dech�orination rate

In this study, PCE dech�orination commenced most�y after a short initia� �ag .

The insignificant �ag time might be due to the sufficient, appropriate primary carbon

source, e�ectron acceptor, or �arger ce�� popu�ation in the anaerobic digested s�udge . The

initia� �ag time wi�� a�so depend upon the ch�orinated compound . For examp�e, V.C.

and trans-DCE needed much �onger period of time to start being degraded . If PCE

dech�orination were bio�ogica��y cata�yzed, the re�ative�y short acc�imation time is a�so

probab�y due to the continua� presence of dech�orination cata�yst, that may be a non-

specific cata�yst, in anaerobic digested s�udge . The possib�e exp�anations for the periods

of acc�imation are : (i) genetic change, (ii) induction, (iii) exhaustion of preferred

substrates, or (iv) growth of the active popu�ation from a very �ow initia� density (Mohn

and Tiedje, 1992). Exhaustion of preferred substrates may be responsib�e for the �ag

period observed in the reductive dech�orination because PCE dech�orination occurred at

the initia� period, but on�y at a very s�ow rate (a typica� data from PCE dech�orination

was shown in Tab�e 22). This appeared to indicate that microorganisms prefer to

degrade non-PCE materia�s other than PCE at initia� stage . For both cases of trans-DCE
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and VC with �onger acc�imation periods, their methane productions observed at initia�

stage were re�ative higher than those observed in the s�udge acc�imated to other

compounds causing shorter acc�imation periods .

Induction may not be used to exp�ain the reductive dech�orination observed in

the digested s�udge because there was a detectab�e dech�orination occurred at the initia�

period and hence the PCE-dech�orination activity in the s�udge cu�tures shou�d be

expected initia��y. Genetic change, which might invo�ve mutation or genetic exchange,

was a�so un�ike�y because of the reproducibi�ity of the acc�imation periods . The �ast

exp�anation may a�so be app�ied to exp�ain the case of dech�orination because the

dech�orination was initia��y present at a �ow rate . If it is true, the �ag period in PCE

dech�orination is not true acc�imation . The short acc�imation period required for the

reductive dech�orination of PCE a�so suggests that popu�ations capab�e of dech�orinating

PCE are popu�ar in anaerobic digested s�udge .

In this study, PCE was very quick�y dech�orinated to V.C., which was

dech�orinated to ethy�ene at a much s�ower rate than previous steps . On average, after

the �ag time 49 µmo�es of added PCE cou�d be degraded to VC in 4 days in the 100 m�-

s�udge system (that is, the ca�cu�ated maximum dech�orination rate was about 122.5

µmo�es of PCE per �iter per day), whi�e on�y about 30% of PCE was recovered as

ethy�ene. It takes much �onger to produce more ethy�ene . Over the 40 days of extended

incubation observed from the mixed-cu�ture bott�e (B2), 119 more µmo�es of ethy�ene

was produced from dech�orinating VC . The VC dech�orination rate corresponding to

this reaction is on�y about 3 .0 µmo�es per �iter per day . Therefore, the dech�orination of

VC to ethy�ene wou�d be the rate-�imiting step in comp�ete dech�orination of PCE .
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Optimizing the dech�orination conditions to enhance the dech�orination in this step is

important in using reductive dech�orination in bioremediation processes .

Tab�e 22 The increasing rate of PCE dech�orination by fresh
Hyperion s�udge at initia� �ag period .

* PCE = 49 - (TCE + cis-DCE + VC) ; ** Initia� PCE dosage .

When PCE was dech�orinated in digested s�udge, a series of �ess ch�orinated

intermediates have been observed to accumu�ate transient�y . Such sequentia�

dech�orination not on�y revea�ed the anaerobic biodegradation progression of PCE, but

a�so provided the information that the more ch�orinated congeners (such as PCE and

TCE) are thermodynamica��y more favorab�e to be dech�orinated . After a short �ag time,

PCE was tota��y degraded to TCE in 0 .8 days in the Hyperion s�udge, then two more

days were required to convert to cis-DCE, and then cis-DCE took 7 days to become VC .

An even �onger period is genera��y expected to carry out the dech�orination of VC to

ethy�ene. The dech�orination of pure VC to ETH was observed to be much more
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reaction time

(days)

PCE*

(µmo�es)

TCE

(µmo�es)

cis-DCE

(µmo�es)

VC

(µmo�es)

CH4

(µmo�es)

0 49.0** 0.00 0.00 0.00 0.00

0.67 48 .66 0.34 0.00 0.00 1046

1 .63 48 .30 0.68 0.02 0 .00 1438

2 .63 47 .03 0.94 0.03 0 .00 1621

3 .96 43 .82 5 .10 0 .08 0.00 1776

4.79 1 .78 46 .6 0.62 0.00 1831



resistant than that for any other tested compounds . During the process of sequentia�

reductive dech�orination of a�� tested compounds, the conversion of VC to ETH was

a�so s�ow, but it was notab�y faster than the pure VC conversion to ETH . The possib�e

reason has been suggested in DiStefano's dissertation(1992) that the presence of PCE

and/or its �esser ch�orinated products (TCE, DCEs) may faci�itate transformation of VC

to ETH .

However, as suggested previous�y in this study, the required environmenta�

conditions may be different for each compound's dech�orination . Therefore, perhaps,

the resistance of VC to reductive dech�orination has resu�ted from the presence of

inappropriate environmenta� conditions . After the dech�orination of more ch�orinated

compounds the environment may undergo changes to fit the required conditions for

dech�orinating �ess ch�orinated compounds . If so, it shou�d not be the presence of higher

ch�orinated compounds to inhibit the dech�orination of �ess ch�orinated compounds .

A�though this inhibition was indeed observed in the fresh Hyperion s�udge cu�tures to

which PCE, TCE and VC were simu�taneous�y added at the beginning (see Fig . 29 and

30), the concurrent dech�orination of PCE, TCE, cis-DCE and VC was a�so observed in

many o�d s�udge samp�es (see Fig . A-27, 28 and 29 in Appendix A) . It indicated that

before PCE is comp�ete�y dech�orinated to TCE, the dech�orination of TCE is possib�e to

occur. Dech�orination of VC is a�so achievab�e with the presence of TCE and cis-DCE .

It is not necessary to a�ways expect the s�owest rate for VC dech�orination if the right

environmenta� conditions are provided . Based on the observations of this study, the

factor most possib�y responsib�e for the tardy VC dech�orination is methane-yie�ding

capacity of the s�udge used . For the o�d s�udge samp�es, after most methane-yie�ding

capacity has been consumed (i.e . there is no excess e�ectron acceptor existing for

144



methanogenesis), VC wou�d become more competitive for reductive reaction and

thereby resu�t in a faster dech�orination .

5.4. Nutrient requirements

The presence of a suitab�e e�ectron donor is necessary to prevent the

accumu�ation of dech�orinated intermediates . The dech�orination of PCE has to be

stimu�ated by e�ectron donors �ike �actate, formate, g�ucose and methano� . But in most

previous studies, a comp�ete dech�orination was not achieved . This is possib�y because

reducing equiva�ents were not avai�ab�e for reductive dech�orination resu�ted from

competitions for e�ectrons by other species in the same system . For examp�e, PCE

dech�orination was partia��y inhibited in Hyperion s�udge cu�tures incubated with

methano� more than 1230 µmo�es (comparing Fig . A-12 and Fig. A-�d). Experiments

conducted with s�udge obtained from Chino Basin Wastewater Treatment P�ant showed

s�ower dech�orination . This was probab�y due to carbon source deficiency in this s�udge

because much �ess methane production was observed in these samp�es than that in the

bott�es containing the fresh s�udge obtained from Hyperion Wastewater Treatment P�ant .

The fresh Hyperion s�udge was a�so found to gradua��y �ose their dech�orinating abi�ity

from the bott�e without rep�enishing nutrients . The apparent inabi�ity of digested s�udge

to dech�orinate PCE in the absence of carbon substrate suggests that PCE dech�orination

by digested s�udge is a co-metabo�ic process .

However, autoc�aved Hyperion s�udge (possessing p�enty of nutrients) amended

with PCE, TCE, DCE, V.C . showed no significant transformation, suggesting that

dech�orination is bio�ogica��y dependent and no significant�y abiotic dech�orination have
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occurred. In digested s�udge cu�tures reductive dech�orination of PCE is bio�ogica��y

dependent, but it is not c�ear that the activity is bio�ogica��y cata�yzed because we found

6.5 µmo�es of TCE and 0 .4 µmo�es of cis-DCE productions in the autoc�aved digested

s�udge incubated with PCE after 4 months . Mohn and Tiedje (1992) have pointed out

that the inhibition of reductive dech�orination by steri�ization on�y imp�ies either

bio�ogica� or bio�ogica��y dependent cata�ysis . Steri�ization may abo�ish the cata�yst of

reductive dech�orination or the source of reductants, which are products of bio�ogica�

activity and needed for the reductive dech�orination . If PCE dech�orination were not

bio�ogica��y cata�yzed, it is possib�e to occur in autoc�aved s�udge containing the

reductant(s) .

In dech�orination of PCE, on�y the ch�orine substituents were removed and

degradation of the remaining hydrocarbon compound (i.e . ETH) did not occur .

Therefore, we can conc�ude that such substrate did not support growth. In order to

maintain the activity of microorganisms, nutrients a�so have to be rep�enished . In the

study of dech�orination of ch�orinated ethy�enes by fresh digested s�udge, major

required nutrients were presumab�y supp�ied initia��y by the source s�udges . When PCE

and other tested compounds were s�ow�y degraded, these existing nutrient materia�s

were a�so metabo�ized to provide e�ectrons and carbon . Later on, an organic substrate

(methano�) p�us autoc�aved anaerobic medium so�ution (containing 50% of supernatant

of fresh digested s�udge and 500 mg per �iter of yeast extract) was provided as the

potentia� e�ectron donor and carbon source. The purposes of the addition of substrate are

to serve as an e�ectron donor for reductive dech�orination and to support the growth of

the dech�orinating organisms . Throughout this study, yeast extract was used to provide

essentia� amino acids, vitamins, and trace e�ements . But the nutritiona� requirements of
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reductive�y dech�orinating communities are sti�� not understood yet . For their use in

bioremediation, the know�edge of nutritiona� requirements is essentia� .

5.5. E�ectron donor

As mentioned above, the presence of the suitab�e e�ectron donor is necessary to

reductive dech�orination . The avai�abi�ity of reducing equiva�ents wi�� possib�y affect the

extent of reductive dech�orination. H2 is the most possib�e source of reducing

equiva�ents for the reductive dech�orination of ch�orinated compounds by an anaerobic

consortium (Do�fing, J., and Tiedje, J.M., 1986) . H2 can be obtained from the

oxidation of organic substrates, e.g. from the acetogenic oxidation . But very �itt�e

information about the origin of the reducing equiva�ents needed for the dech�orination in

monocu�ture has been deduced .

Differences in the nature of reducing equiva�ents used for reductive

dech�orination may account for the enhanced rates of PCE dech�orination in the

consortium (Fathepure and Boyd, 1987) . Under methanogenesis, it is proposed that the

reducing equiva�ents for PCE dech�orination are derived from methane biosynthesis and

the e�ectrons can be diverted to PCE by a reduced e�ectron carrier invo�ved in methane

formation (Fathepure and Boyd, 1988a) . If e�ectrons from the primary carbon source

are being shared between methanogenesis and reductive dech�orination processes, a

competition for grabbing the e�ectrons between these two reductive reaction processes is

expected. According to our resu�ts, that too much methano� added to the s�udge did not

resu�t in more or faster dech�orination reaction in the s�udge treatment system, may be

due to the predomination of methanogenesis . Most of e�ectrons generated from methano�
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have f�owed to the methane formation . This is confirmed by the observation (from the

s�udge bott�e containing 49 µmo�es of PCE and 4920 µmo�es of methano� in MeOH

effect test) that the ca�cu�ated rate of methane formation was 73 times higher ( 600

µmo�es per day per 100 mL) than the rate of PCE dech�orination (8 .2 µmo�es per day

per 100 mL) . Furthermore, in this bott�e, reductive dech�orination was obvious�y

inhibited and PCE was partia��y dech�orinated to cis-DCE on�y .

However, based on the simi�ar resu�ts, Fathepure and Boyd (1988a) deduced

that the reductive dech�orination of PCE is direct�y proportiona� to the concentration of

the primary carbon substrate because it is the source of reducing equiva�ents for both

methane biosynthesis and reductive dech�orination . However, when the amount of TCE

formed, shown in the Tab�e 1 of Fathepure and Boyd's report (1988a), is norma�ized on

the basis of methano� consumed, we wi�� get TCE production rate per mi��imo�e of

methano� consumed from 52 to 31 nmo� per mi��imo�e of methano�, for the tota� added

mass of methano� from 0.25 to 5 .0 mmo�es, respective�y. It is apparent that the

dech�orination of PCE per unit of methano� is inverse�y proportiona� to the concentration

of methano�. Besides, the incubation period (2 weeks) is too �ong to observe the inverse

effect of high methano� concentration on the PCE dech�orination.

In fact PCE dech�orination is indeed �inked to the methano� consumption during

the methanogenesis. But too much methano� added wi�� inhibit the ch�orinated

compounds to undergo reductive dech�orination . In reductive dech�orination, a��

ch�orinated compounds are e�ectron acceptors. The presence of e�ectron acceptors wi��

affect the composition of species present in the digested s�udge . Therefore, the presence

of reductive�y dech�orinating organisms in the digested s�udge may be affected by
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e�ectron acceptors. E�ectron acceptors do affect the dech�orination activity in anaerobic

digested s�udge . A�so it is possib�e to have a competition for e�ectron donors between

different e�ectron acceptors . So, the f�ow of e�ectrons may be affected by the avai�abi�ity

of e�ectron acceptors . This effect might occur via intrace��u�ar channe�ing of e�ectrons or

via interspecific competition for e�ectron donors (Mohn and Tiedje, 1992) . Methano�-

uti�izing methanogens might compete with PCE-dech�orinating popu�ations for avai�ab�e

e�ectron donors. This may be a direct inhibition of PCE dech�orination by the e�ectron

acceptor because methano� might have higher potentia� being reduced to produce

methane gas .

5.6. Competition and inhibition

Competition between dech�orination and methanogenesis .

Reductive dech�orination of PCE is main�y known under anaerobic conditions .

Reductive dech�orination invo�ves the rep�acement of ch�orine substituent with

hydrogen. This process requires a reductant. The reductant may be derived from

numerous microbio�ogica� activities in anaerobic s�udge systems . However, in such

systems the reductant is a�so strong�y required by methanogenic reactions and it may be

eco�ogica��y or thermodynamica��y more favorab�e for methanogenesis . Therefore, a

competition for reductants between dech�orination and methanogenesis wou�d be

expected to occur in the systems . Furthermore, it is possib�e that the avai�abi�ity of

various e�ectron acceptors wi�� determine the f�ow of e�ectrons . Many evidences
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observed in this study indeed showed that e�ectron acceptors used by methanogens do

affect dech�orination activity in digested s�udge .

Reductive dech�orination rates were found to be inverse�y corre�ated to methane

productions in the test of methano� effect on PCE dech�orination . The higher amount of

added methano� resu�ting a more methane production did not stimu�ate a faster

dech�orination. Instead, PCE dech�orination was on�y s�ower and partia� under higher

initia� methano� concentrations whi�e it was sti�� comp�ete for other samp�es with �ower

methano� concentrations . The high methane production was the evidence of e�ectrons

having most�y f�owed to methanogenic process, rather than reductive dech�orination .

A�though it has been wide�y suggested in the �iterature that

methanogens/methanogenesis are required for dech�orination of PCE under

methanogenic conditions, a high methanogenic activity sti�� need to be avoided .

In order to enhance the dech�orination of PCE, mixing was app�ied to some test

s�udge samp�es to provide sufficient interaction between the treated compound and

microorganisms. However, it seemed that mixing was more favorab�e for

methanogenesis. As simi�ar�y observed in methano� test, reductive dech�orination was

significant�y inhibited by the higher methane production under mixing conditions . In

addition, the presence of CO2, a methanogenic e�ectron acceptor (used by

methanogens), a�so showed a significant inf�uence on PCE dech�orination under mixing

conditions . The presence of CO2 resu�ted in a higher methane production but a sma��er

ethy�ene formation during PCE dech�orination under mixing conditions . However, there
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was no significant difference observed between the samp�es with and without CO2

incubated under quiescent conditions . This may be due to the much s�ower gas transfer

efficiency for CO2 under quiescent conditions .

In the test of o�d s�udges, a favorab�e environmenta� conditions may have been

created through exhaustion of substrates and reduction of redox potentia� because a�� test

s�udges have been stored anaerobica��y in a 35 °C incubator for a few days to a��ow

methane evo�ution before their uses . However, an apparent �onger �ag time was found in

o�d s�udges. This is �ike�y due to the decrease in viabi�ity during storage. After the �ag

time, dech�orination of PCE, TCE, cis-DCE and even VC (the most resistant one) was

observed to occur concurrent�y under the �ess active�y methanogenic conditions . That

the higher ch�orinated ethy�enes inhibit dech�orination of �ess ch�orinated ones was no

�onger observed in o�d s�udges . The simi�ar resu�ts were a�so common�y observed in

acc�imated Hyperion s�udge. The step-by-step dech�orination in acc�imated s�udge was

not as c�ear as in the fresh anaerobic digested s�udge samp�es . This phenomenon might

be brought about by various possib�e reasons ; e.g., (i) different ch�orinated substrates

might have different abi�ity to compete with methanogenic e�ectron acceptors for

e�ectrons and (ii) the same organism(s) cata�yze the different dech�orination steps but

different environmenta� conditions are required for each step . Based on these resu�ts,

reductive dech�orination of each ch�orinated ethy�ene appeared to have variab�e

responses to the concentration of e�ectron acceptors used by methanogens. For fresh

digested s�udges, a p�enty of e�ectron acceptors is avai�ab�e for methanogenesis .

Methanogenic reactions might outcompete reductive dech�orinations of �ess ch�orinated

ethy�enes by virtue of a higher potentia� for e�ectron consumption . However, at this
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time, PCE and/or TCE might have a higher competing abi�ity for e�ectrons and sti�� can

undergo reductive dech�orination. For o�d or acc�imated s�udges, in contrast, on�y a few

methanogenic e�ectron acceptors are avai�ab�e . The �ower concentration of methanogenic

e�ectron acceptors might reduce the redox potentia� of the system and make �ess

ch�orinated ethy�enes (e.g . cis-DCE and VC with a �ower competing abi�ity for

e�ectrons) more readi�y to undergo dech�orination . Therefore, the to�erab�e concentration

of methanogenic substrate may be different for dech�orination of each compound . To

achieve comp�ete dech�orination of PCE, the required environmenta� conditions for each

step may have to be created separate�y .

The different abi�ity of competition for e�ectrons with methanogenesis for each

ch�orinated ethy�ene was demonstrated more obvious�y in the toxicity test . The abi�ity of

competition for e�ectrons for different ch�orinated ethy�enes had the fo��owing order :

TCE > PCE > cis-DCE > 1 .1-DCE > trans-DCE > VC . The s�udge samp�e incubated

with more readi�y degradab�e ch�orinated compounds produced �ess methane ; on the

contrary, more methane production was observed from the samp�es with more persistent

ch�orinated compounds .

However, for the same test compound, the competing abi�ity and dech�orination

rate were observed to be proportiona� to the concentration of ch�orinated compound

present, up to some maximum va�ue (see Tab�e 8 to 13). This suggested that the

concentration of each ch�orinated compound is a�so an important factor which may affect

the competition between dech�orination and methanogenesis .
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Methanogenesis has been wide�y imp�ied to p�ay an important ro�e in reductive

dech�orination of PCE under methanogenic conditions . However, methanogens may not

necessari�y be invo�ved direct�y in the transformation of ch�orinated ethy�enes if they can

support conditions where the avai�ab�e e�ectrons may be diverted to PCE dech�orination

process (Baker and Herson, 1994) . In the s�udge system, redox conditions may

determine the type of bio�ogica� community that deve�ops . However, the concentrations

of bio�ogica��y produced reductants and methanogenic e�ectron acceptors wou�d affect

the redox potentia� of the system . Therefore, the concentrations of reductants and

methanogenic e�ectron acceptors are two of the most important factors to be contro��ed .

For comp�ete dech�orination of PCE, the concentration of methanogenic e�ectron

acceptors must be decreased be�ow a certain �eve� before the use of PCE or other �ess

ch�orinated compounds as an e�ectron acceptor starts .

Toxicity and inhibition .

PCE and other �ess ch�orinated ethy�enes are usua��y mentioned in regard to their

environmenta� persistence and toxicity . However, it is a difficu�t question to answer

proper�y if PCE or other ch�orinated ethy�enes are toxic materia�s . Many factors may

inf�uence their toxicity to s�udge cu�tures ; e .g ., characteristics of these compounds,

concentration, abi�ity of microorganisms to adapt to their presence, and time of exposure

(Baker and Herson, 1994) . Usua��y, for a non-inhibitory substrate, the biodegradation

rate increases with the substrate concentration, up to an upper �imit . Beyond this �imit,

the rate remains constant . However, for an inhibitory substrate, the degradation rate wi��

1 53



dec�ine when the substrate concentration is beyond the maximum va�ue . Based on this

criterion, we may categorize a�� these compounds as toxic materia�s . In the highest

to�erab�e concentration test, dech�orination rates for each test compound were observed

to increase with their concentrations, up to an upper va�ue. Beyond that �imit,

dech�orination rate was decreased significant�y for a�� test compounds . In addition, the

methane productions for each compound were a�so decreased . It suggested that the high

concentrations of ch�orinated compounds have a�so inhibited methanogenic activity in

the s�udges .

The toxicity of PCE was a�so demonstrated in the s�udge samp�e with activated

carbon added . After the system has reached a stab�e condition, a faster dech�orination

accompanying a higher methane production was observed . This may be due to the �ower

toxicity because most PCE was adsorbed on carbon and PCE concentration in �iquid

phase has been dramatica��y decreased . Due to the toxicity, the concentration of each

compound app�ied to the bio�ogica� treatment process must be �arge�y restricted .

However, the highest to�erab�e concentration for a�� ch�orinated ethy�enes can be further

enhanced in the s�udge system with activated carbon addition because a�� of these

compounds are adsorbab�e on activated carbon .
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5.7. Carbon addition and dech�orination substrate avai�abi�ity

The avai�abi�ity of dech�orination substrates to microorganisms has been

demonstrated to affect their dech�orination rates in the highest to�erab�e concentration test

(see Tab�e 8 through 13) . The dech�orination rate for each test compound was observed

to be proportiona� to their initia� concentration, up to an upper �imit . To increase

substrate avai�abi�ity, activated carbon is often added to �iquid treatment systems because

it can concentrate substrates on the carbon surface and thereby enhance the contact of

microorganisms and substrates. The concentration enhancement may occur when a

significant fraction of the bacteria can �ive in the pores and these bacteria can direct�y

metabo�ize adsorbed chemica�s on the carbon . However, most bacteria are severa�

orders of magnitude �arger than the average pore size and can not enter the pores .

Therefore, it is sti�� questionab�e if bacteria can direct�y attack the chemica� adsorbed on

carbon. In this experiment, no direct evidence showed that the addition of activated

carbon has improved the dech�orination rate in the acc�imated s�udge system.

Neverthe�ess, the carbon addition indeed offered significant protection against inhibitory

factors to comp�ete dech�orination .

For an unknown reason, partia� dech�orination of PCE to cis-DCE fo��owed a

retardation of further dech�orination was observed in severa� para��e� test s�udge bott�es

without any carbon addition . However, in the bott�es with carbon added, PCE was

dech�orinated to ethy�ene with no exception. The introduction of activated carbon into
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the acc�imated s�udge system may have adsorbed inhibitory or toxic substances, thereby

prevent bacteria from toxicity .

In addition, the overa�� dech�orinating abi�ity observed in both BAC and OBR

systems exceeded the abi�ity of the pure s�udge system a�one . With on�y one time of

nutrient rep�acement, the s�udge cu�ture with carbon added degraded PCE as much as

490 µmo�es. There are two things here which are not achievab�e in the pure s�udge

system. First�y, the reductive dech�orination wou�d have been tota��y inhibited if 490

µmo�es of PCE had been added to the pure s�udge system . However, it is not so

surprising because the adsorptive capacity of activated carbon is expected to reduce the

concentration of adsorbab�e species in the �iquid phase . Second�y, it is impossib�e for

the s�udge to entire�y dech�orinate 490 µmo�es of PCE with such a sma�� amount of

supp�ementary nutrient (e�ectron donors) . Compared to the methane production (about

1300 µmo�es) from the samp�es (U 1 and S 1) with 49 µmo�es of PCE addition, a much

sma��er amount (about 200 µmo�es) of methane was produced from the highest initia�

PCE dosage samp�es (U6 and S6) . This indicated that most e�ectrons avai�ab�e in the

system have been diverted to the reductive dech�orination . The synergism of the

presence of activated carbon and biodegradation may have created an environmenta�

condition which is more favorab�e for reductive dech�orination . The toxicity of PCE was

reduced through carbon adsorption . Consequent�y, bio�ogica� activity was enhanced . In

addition, the biodegradation of PCE in �iquid phase disturbed the equi�ibrium of PCE

between carbon and aqueous phases and resu�ted in the desorption of PCE from carbon .

This continuous supp�ement of PCE may a�so resu�t in dech�orination occurred more

competitive�y than methanogenesis .
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Genera��y speaking, the added activated carbon is ab�e to adsorb a substantia�

part of PCE and, thus, �ower its inf�uence on the biomass and reduce its inhibitory effect

on the bioprocess .

5.8. Bio�ogica� activated carbon process

Bio�ogica� activated carbon process is a combined adsorption and biodegradation

process. Adsorption and biodegradation are two of the most important remova�

mechanisms of the process. However, the interaction between these two remova�

mechanisms has not been fu��y understood . Co��ective�y, biodegradation and adsorption

occur simu�taneous�y and competitive�y . In addition, these two mechanisms may be

functioning synergistica��y . The preferentia� adsorption of toxic or inhibitory substances

can enhance bio�ogica� activity. Simi�ar�y, bio�ogica� activity may regenerate the

adsorption capabi�ity of the carbon and great�y extend the period of performance .

Remova� mechanisms :

In this study, adsorption was initia��y a faster process than dech�orination . The

major added PCE, which may cause biotoxicity, was preferentia��y adsorbed onto

carbon before significant dech�orination occurred . Carbon adsorption has obvious�y

caused a �ower PCE concentration in the �iquid phase . However, the sequentia�
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reductive dech�orination of PCE was sti�� observed . About 36 to 70% of initia� added

PCE was recovered as ethy�ene at the end of the test, whi�e a�� remaining PCE was

transformed to V .C. in each different initia� PCE dose samp�e . During the period of

experiment, the sequentia� adsorption, desorption and biodegradation seemed to be the

major mechanisms for PCE dech�orination occurred in BAC process . Prior to

degradation by the s�udge cu�tures, the major added PCE in BAC experimenta� bott�es

was adsorbed on carbon . This may be due to a much faster adsorption rate on carbon .

As degradation occurred, desorption of adsorbed PCE from carbon may be caused by

the reversed concentration gradient . The decrease in PCE and appearance of �ess

ch�orinated ethy�enes is indicative of microbia� transformation .

Comp�ete dech�orination :

Feasibi�ity of the BAC process for comp�ete dech�orination of PCE was

successfu��y demonstrated at a�� initia� PCE doses . The initia� concentration of PCE

achieved for comp�ete reductive dech�orination is much higher than reported previous�y

in the �iterature . At the highest PCE concentration of 813 mg/L, PCE sti�� cou�d be

tota��y dech�orinated and a significant amount (189 µmo�es) of PCE was recovered as

ethy�ene. Most of PCE in each bott�e was dech�orinated and terminated at V.C. This is

very possib�y due to that the right environmenta� conditions were not maintained

continuous�y . A�though we sti�� do not know the exact nature of the right environment

required for comp�ete dech�orination, the possib�e factors might inc�ude temperature,

inorganic trace e�ements, carbon sources (e�ectron donors), and e�ectron acceptors . To

achieve optimum performance in BAC and bioregeneration systems, these

environmenta� factors shou�d be further studied and optimized .
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Carbon performance :

During the operation of BAC, difficu�t-to-degrade or nondegradab�e organics

shou�d accumu�ate on the carbon. This wou�d be the major factor responsib�e for the

decrease in adsorption capacity gradua��y . The adsorbed organics which are degradab�e

wi�� be desorbed into �iquid phase and then degraded when their concentrations are

dropped be�ow equi�ibrium . In bio�ogica� activated carbon process, part of the added

virgin PCE may undergo biodegradation before it is adsorbed on carbon, whi�e most of

added PCE is expected to be adsorbed first and then desorbed to be degraded .

Typica��y, there has no attempt to distinguish between these two in this study .

Activated carbon adsorption is prominent in its attenuation of high transient peak

inf�uent PCE concentrations . The distinctive feature of the addition of activated carbon

to the bio�ogica� treatment observed in the BAC processes is, at �east, to improve

stabi�ity to shock �oads and toxic upsets . However, it is not c�ear if biodegradation rates

in the combined bio�ogica� degradation and carbon adsorption system have been

improved. A major disadvantage of the use of activated carbon is the costs associated

with the rep�acement or regeneration of the spent carbon . Common�y, regeneration of

spent carbon can be more economica� than rep�acement with virgin carbon . Among

many regeneration methods (inc�uding so�vent regeneration, steam stripping, therma�

regeneration, etc .), microbia� regeneration of spent carbon might be the most

advantageous if the adsorbate is biodegradab�e (Sigurdson and Robinson, 1978) .
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However, very few work has been concentrated on the deve�opment of bio�ogica�

regeneration as an a�ternative to traditiona� methods of carbon regeneration .

Effectiveness of BAC process :

This study focused on the effectiveness of granu�ar activated carbon on the

improvement of microbia� to�erance of high initia� PCE dosage during the dech�orination

of PCE. In bio�ogica� activated carbon process, carbon rapid�y reduced PCE

concentration in the �iquid phase and increased methane production compared to the

amount produced from the system without carbon addition . The high adsorption

efficiency and probab�y �ow desorption and subsequent biodegradation of PCE and its

dech�orinated products have enab�ed the improvement of bio�ogica� system in the

to�erance of high PCE �oading during the dech�orination processes .

The success of PCE dech�orination in the BAC process is significant for uti�izing

existing anaerobic digestors for the treatment of PCE contamination . It is a �ess

expensive way because adding on carbon adsorption co�umns to existing bio�ogica�

treatment faci�ities needs �arge capita� expenditures and increased operation costs

(Sub�ette, et a� ., 1982)
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5.9 . Off�ine bio�ogica� regeneration

Off�ine bio�ogica� regeneration is another way to combine bio�ogica� treatment

with carbon adsorption . In such a process, sorbed substrate is supposed to desorb from

carbon and undergo biodegradation in bu�k �iquid . Bio�ogica� activity is uti�ized to

regenerate activated carbon. The major purpose of this study is to examine the feasibi�ity

of the off�ine bio�ogica� regeneration process for PCE �aden carbon . The regeneration of

spent, PCE-bearing granu�ar activated carbon by anaerobic digested s�udge cu�tures was

achieved in a�� test samp�es . The PCE adsorbed on carbon cou�d be comp�ete�y

detoxified to non-toxic ethy�ene in acc�imated s�udge cu�tures. The nature of

dech�orination products is exact�y same as that observed in the s�udge system without

carbon .

Regeneration mechanisms:

Numerous studies have shown that adsorbed substrates on carbon can be

degraded bio�ogica��y . It is feasib�e to regenerate the spent carbon with a bio�ogica�

cu�ture. However, if microorganisms can direct�y uti�ize an adsorbed substrate is sti��

not exact�y understood yet . In this study, PCE dech�orination in OBR system seemed

more �ike�y to be a two-step reaction, that is, adsorbed PCE was desorbed from carbon

first and then degraded by s�udge cu�tures in the �iquid phase. Desorption continuous�y

occurred unti� a�� of the PCE, adsorbed and unadsorbed, was degraded .
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Bioregeneration efficiency :

Usua��y, bioregeneration is defined as the renewa� of the adsorptive capacity of

activated carbon by the microbia� activity that is capab�e of metabo�izing the adsorbed

compounds subsequent to their desorption from the carbon (Sub�ette, et a� ., 1982) and

is recognized by the increase in adsorptive capacity . However, many other mechanisms

can a�so achieve the remova� of materia� adsorbed on carbon and hence increase

adsorptive capacity. To recognize the occurrence of bioregeneration in this study, PCE-

dech�orinated products were used as the indicator . Once these compounds appear in the

�iquid phase, a certain amount of adsorbed PCE wou�d have been removed from the

carbon and bio�ogica��y degraded . In addition, ethy�ene, the end product of PCE

dech�orination, was found to be the best one for eva�uating bioregeneration efficiency

because it adsorbs neither on carbon nor on s�udge materia�s . Tota� ethy�ene production

based on the ana�ysis of gas samp�es wou�d be re�ative�y more accurate when it is used

for the eva�uation of the regenerated portion of the carbon's adsorptive capacity .

At the end of the experiment, the percentages of PCE recovered as ethy�ene

production for each initia� dose ranged from 22 .5 to 72.0% (see Tab�e 20). However, to

correct�y estimate the bioregeneration efficiency of carbon, any dech�orination product

which has not been adsorbed on the carbon and stay in the �iquid and s�udge so�id

phases shou�d be accounted. Therefore, the ethy�ene production p�us the tota� mass of

VC found in both �iquid and s�udge phases is used as an indicator for the eva�uation of

bioregeneration efficiency because on�y VC and ethy�ene were found at the end of the

test. Based on the experimenta� resu�ts, a high efficiency of bioregeneration of PCE

�aden carbon was achieved in a�� test samp�es . The tota� regeneration efficiency for each
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PCE dose ranges from 68 to 100% . It obvious�y depends upon the initia� amount of

adsorbed PCE. In this study, the effect of various PCE �oading on bioregeneration

efficiency at different time points was a�so investigated . The resu�ts showed that

bioregeneration efficiency is a�so dependent of regeneration time. Besides, a sma�� part

of work was conducted as a function of the carbon dosage . The amount of activated

carbon added was a�so demonstrated to inverse�y affect bioregeneration . This may be

due to a s�ower desorption of chemica�s resu�ting from the introduction of too much

carbon.

Genera��y speaking, bioregeneration efficiency wi�� be high�y inf�uenced by the

environmenta� conditions . Such environmenta� factors as temperature, trace nutrients,

e�ectron donors, e�ectron acceptors, spent carbon adsorbate �oading, carbon type, ratio

of carbon mass to biomass, tota� biomass, and retention time can be modified to

optimize the environment for bioregeneration (Baker and Herson, 1994 ; Sigurdson and

Robinson, 1978; Goeddertz, Matsumoto, and Weber, 1988) .

Reproducibi�ity :

Bioregeneration observed from another regeneration tria� using Hyperion s�udge

obtained on different date is quite simi�ar . The reproducib�e bioregeneration may be due

to the reproducibi�ity of PCE reductive dech�orination which has been previous�y

observed in anaerobic digested s�udge .
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Equi�ibrium between carbon and bu�k �iquid :

During bioregeneration, it was found that the isotherm constants for virgin

carbon in deionized water were not app�icab�e to the spent carbon being regenerated in

the s�udge system. A change in carbon adsorption characteristics may have occurred

during the regeneration process because the possib�e bacteria� growth around the carbon

partic�e and the re�ative thick so�id materia�s of digested s�udge were expected to

decrease the carbon adsorption and desorption abi�ity .

Biodegradabi�ity :

From the ana�ysis of �iquid samp�es, it was observed that TCE, cis-DCE, V .C .

and ethy�ene appeared sequentia��y and then vanished in the same order except ethy�ene

which was gradua��y accumu�ated during the bioregeneration process . However, 100%

of recovery of ethy�ene from adsorbed PCE was never achieved among test samp�es .

V.C. was the major accumu�ated dech�orination product . This indicated that each

compound's biodegradabi�ity wi�� high�y affect the efficiency of bioregeneration . For

more biodegradab�e compound, the �oss of effective adsorption site may be �ess during

each cyc�e of a mu�tip�e adsorption and bioregeneration .

Loss of adsorptive capacity :

Because of the difficu�ty of remova� of the adherent s�udge materia�s to the

carbon, the equi�ibrium adsorptive capacity of the regenerated carbon was not

experimenta��y tested . However, after three runs, the initia� equi�ibrium PCE

concentration in the �iquid phase of the samp�e used for pre�iminary BAC test was sti��



c�ose to the va�ue of the first run . This suggested that there is no significant �oss

occurred for the PCE equi�ibrium adsorption capacity of carbons that were regenerated

bio�ogica��y three times . In Sigurdson and Robinson's study, it was a�so observed that

no appreciab�e change in the bio�ogica��y regenerated carbon adsorption capacity after

the first regeneration. The �oss (about 53% of the fresh carbon adsorption capacity

observed in their experiment) occurred during the first regeneration is probab�y due to

the �imit of the physica� desorption process, i .e. adsorbate might be no �onger desorbed

from carbon once the amount of adsorbed compound on carbon is be�ow a certain �eve� .

Based on a study of adsorbate distribution in the pores of carbon (Jiang and

Huang,1982 ; cited in Zhang's paper, 1991), the strength of adsorption was observed to

be part�y dependent upon the ratio of the pore diameter to the adsorbate diameter. When

the ratio is �ess than three, it is very difficu�t for so�vent regeneration because the

adsorbate is tight�y adsorbed in pores . The another reason for the incomp�ete desorption

of adsorbate may be due to the existence of a thresho�d concentration of the adsorbate in

the �iquid for the microbia� degradation . Liquid concentration �ower than the thresho�d

va�ue, wi�� not be achievab�e during bioregeneration . In addition, reduction in the

adsorptive capacity of regenerated carbon may resu�t from microbia� fou�ing of the pore

openings or irreversib�e adsorption of metabo�ites- during the bioregeneration

(Hutchinson and Robinson, 1990b) .

If any intermediate metabo�ite produced from the metabo�ism of treated

compounds were irreversib�y adsorbab�e or reversib�y adsorbab�e but
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nonbiodegradab�e, it wou�d eventua��y cause a significant �oss in adsorption capacity of

bio�ogica��y regenerated carbon . In this study, PCE was sequentia��y converted to TCE,

cis-DCE, V .C. and eventua��y ended at ethy�ene without any other intermediate

metabo�ite . Therefore, such kind of regeneration �oss may not be encountered in PCE-

bearing carbon bioregeneration process .

Rate-�imiting step :

For free suspended microorganisms in the �iquid phase, the avai�ab�e substrate is

those disso�ved in the bu�k aqueous phase. The biodegradation of PCE in �iquid phase

wi�� disturb the equi�ibrium of PCE between carbon and aqueous phases and resu�t in

the desorption of PCE from carbon . In such a case, if the biodegradation rate is much

greater than the rate of PCE desorption, bioregeneration of carbon wi�� be governed by

the rate of PCE desorption and the equi�ibrium of PCE between carbon and the bu�k

aqueous so�ution wi�� never be reached. Otherwise, adsorbed-PCE on carbon is a�ways

equi�ibrating with the PCE concentration in the �iquid phase and biodegradation wi��

�imit the bioregeneration rate . In bioregeneration test, we found that PCE desorption

from carbon is more �ike�y to be the �imiting reaction when compared to biodegradation

of PCE in pure s�udge . Actua��y, these two reactions are a�� possib�e to be the rate-

�imiting step during the bioregeneration . For examp�e, in Goeddertz's study (1988)

desorption was observed to �imit regeneration rate, whi�e biodegradation was reported to

be the �imiting step in Sigurdson's research (1978) . It can be a�tered by many factors,

such as the nature of adsorbate and carbon, biodegradabi�ity of adsorbate and

characteristic of microorganisms, etc .
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Bioregenerabi�ity :

In bioregeneration process, PCE wi�� desorb from the carbon unti� a specified

fina� equi�ibrium is reached . The specified equi�ibrium has to be determined based on the

bio�ogica� regenerabi�ity of carbon . The microorganisms used in the regeneration

process wi�� high�y inf�uence the regenerabi�ity . Genera��y speaking, bio�ogica�

regeneration in anaerobic digested s�udge can produce a significant degree of carbon

regeneration . It makes bioregeneration a promising method to regenerate the spent,

PCE-bearing carbon . However, to obtain a conc�usive resu�t, a �ong-term cyc�ica�

adsorption-bioregeneration study is essentia� .

The high bioregenerabi�ity achieved in a�� OBR test bott�es demonstrates not on�y

the feasibi�ity of the off�ine bio�ogica� regeneration process for PCE �aden carbon, but

a�so the concept of a three-stage treatment process consisting of adsorption of PCE by

activated carbon fo��owed by desorption and anaerobic dech�orination for the

rec�amation or treatment of groundwater contaminated with PCE and/or other �ess

ch�orinated ethy�enes. The process wi�� use activated carbon to adsorb PCE from �iquid

phase (contaminated groundwater), instead of a��owing it to direct�y enter the bio�ogica�

treatment system. Then, the activated carbon wi�� be regenerated in an off�ine bio�ogica�

regeneration system. PCE wi�� be detoxified comp�ete�y in the bioregeneration system .

Using this scheme, deoxygenation of the PCE contaminated groundwater wou�d be un-

necessary and 100% of the remova� of PCE from the contaminated groundwater can be

achieved without any secondary po��ution . A�so, higher concentration of PCE can be

obtained which wi�� probab�y resu�t in higher treatment efficiencies in the bio�ogica�
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system. The use of activated carbon co�umn shou�d be more re�iab�e than direct

bio�ogica� treatment for the remediation of po��uted groundwater .

1 68



6. CONCLUSIONS

The widespread contamination of groundwater and surface water with PCE and

TCE is a serious prob�em facing the industria�ized wor�d today . A�though many

regu�atory strategies have been adopted in an attempt to reduce the use of PCE and TCE,

this contamination is sti�� �ike�y to occur in the future because of their versati�ity as

industria� organic so�vents . To remediate such environmenta� contamination and keep

the continued va�ue of PCE and TCE as industria� organic so�vents, a techno�ogy

capab�e of detoxifying these ch�orinated compounds is needed .

Among severa� techniques used previous�y, bio�ogica� remediation processes are

most potentia��y suited for comp�ete�y treating �arge vo�umes of contaminated

groundwaters and industria� wastewaters without generating toxic end products . Many

previous studies have demonstrated that PCE and TCE are susceptib�e to reductive

biodegradation under a variety of anaerobic environments . However, �itt�e is known

about the feasibi�ity of the exp�oitation of microorganisms in anaerobic digested s�udge

(the most reducing environment) to treat such contamination . In view of this

consideration, the present research concentrates on the study of comp�ete detoxification

of ch�orinated ethy�enes in anaerobic s�udge and the feasibi�ity of using existing

wastewater treatment p�ants to the rec�ame or treat of groundwater contaminated with

PCE and TCE .

Reductive dech�orination was demonstrated to be the primary mechanism

invo�ved in the bio�ogica� transformation of six ch�orinated ethy�enes under
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methanogenic conditions in a�� test anaerobic s�udges . In this process, ch�orine atoms

were sequentia��y removed and rep�aced with hydrogen .

Comp�ete dech�orination of six ch�orinated ethy�enes (inc�uding PCE, TCE, 3

isomers of DCE and VC) to non-toxic ethy�ene was demonstrated in fresh anaerobic

Hyperion digested s�udge . Reductive dech�orination of PCE was even proved to be a

genera� characteristic of anaerobic digested s�udges obtained from different wastewater

treatment p�ants. A�� of these compounds were transformed under methanogenic

conditions. PCE and TCE, the higher ch�orinated ethy�enes, more readi�y undergo

reductive dech�orination . The �ower ch�orinated ethy�enes are �ess reactive to

dech�orination under methanogenic conditions . In fresh digested s�udge, dech�orination

of TCE and VC can not occur unti� PCE is entire�y dech�orinated . However, in "o�d"

s�udge, a�� these compounds can be dech�orinated simu�taneous�y . This indicates that it

is not necessari�y the presence of higher ch�orinated compounds that inhibits the

dech�orination of �ower ch�orinated compounds . Furthermore, it may be due to

decreasing methanogenic activity a��owing the �ower ch�orinated compounds to

successfu��y compete for e�ectrons in the "o�d" s�udge .

The competition for e�ectrons between methanogenesis and reductive

dech�orination may exist in the digested s�udge incubated with ch�orinated compounds .

A s�ower and partia� dech�orination of PCE is observed from the s�udge samp�e with

higher methanogenic activity resu�ting from a higher amount of methano� added . The

partia� inhibition and retardation of PCE dech�orination is a�so observed with the s�udge

samp�e under mixing condition which causes a higher amount of methane production .

This suggests that reductive dech�orination is re�ated to methanogenesis in digested
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s�udge and, for each ch�orinated ethy�ene, the reductive dech�orination requires different

methanogenic conditions .

Comp�ete dech�orination of PCE in a bio�ogica� activated carbon process can be

achieved at much higher initia� PCE concentration (813 mg/� without accounting for

vo�ati�ization and sorption) . The added activated carbon protects dech�orinating bacteria

from inhibitory substances and improves the bio�ogica� system's to�erance of high PCE

�oading.

The feasibi�ity of bioregeneration of PCE-�aden carbon is demonstrated in

digested s�udge . The tota� regeneration efficiency is inverse�y proportiona� to the amount

of PCE initia��y added under the experimenta� conditions . The high bioregenerabi�ity

a�so demonstrates that the concept of a three-stage treatment process consisting of

adsorption of PCE by activated carbon fo��owed by desorption and anaerobic

dech�orination is a promising method for the rec�amation or treatment of groundwater

contaminated with PCE and/or other �ess ch�orinated ethy�enes .

A summary of the most important findings in this research is as fo��ows :

1 . Reductive dech�orination of PCE is a genera� characteristic of anaerobic digested

s�udges. PCE-dech�orination abi�ity was demonstrated in a�� the tested anaerobic

cu�tures, inc�uding seven fresh digested s�udges (obtained from Hyperion,

Termina� Is�and, A�varado, Va�encia, JWPCP, Chino Basin (RP�) and (RP2)

Wastewater Treatment P�ants), pond sediment, a mixture of pond sediment and

Hyperion s�udge, and methano�-enrichment cu�tures . The dech�orination abi�ity

varied in the extent of dech�orination of PCE depending upon the cu�ture tested .

17 1



Whi�e comp�ete dech�orination of PCE to ethy�ene was found in most of s�udge

cu�ture samp�es and concentrated methano�-enrichment cu�tures, partia�

dech�orination of PCE to cis-DCE was observed in Chino Basin (RP1) digested

s�udge and pond sediment.

2. An improved PCE-dech�orination abi�ity was achieved in both methano�-

enrichment cu�ture and Chino Basin (RP2) s�udge cu�ture by the renewa� of

nutrient medium and concentrated ce�� mass. Without the rep�acement of nutrient

medium, PCE-dech�orination abi�ity of the fresh Hyperion s�udge cu�tures cou�d

not be sustained .

3 . An apparent �ack of specificity for the reductive dech�orination of ch�orinated

ethy�enes was observed in the fresh anaerobic Hyperion s�udge . A�� six

ch�orinated ethy�enes (inc�uding PCE, TCE, 3 isomers of DCE, and VC) were

biodegraded via reductive dech�orination. Among these six ch�orinated ethy�enes,

PCE is most readi�y dech�orinated comp�ete�y to ethy�ene, whi�e trans-DCE and

VC showed most resistance to reductive dech�orination .

4 . Comp�ete dech�orination, resu�ting in the formation of ethy�ene (an

environmenta��y harm�ess metabo�ite), was demonstrated under methanogenic

conditions for a�� ch�orinated ethy�enes . The same dech�orination pattern was

observed from dech�orinations of a�� six ch�orinated ethy�enes. The observed

dech�orination pattern is summarized in Fig . 49. In the comp�ete dech�orination

process, the dech�orination of VC to ethy�ene was observed as a rate �imiting step .

VC was the major end product of reductive dech�orination of ch�orinated

ethy�enes.

5 . The presence of higher ch�orinated compounds wi�� not inhibit dech�orination of

the �ess ch�orinated compounds . The inhibition of dech�orination of the �ess
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ch�orinated ethy�enes may be due to the increasing methanogenic activity in the

fresh digested s�udge . In o�d s�udge, dech�orination of PCE, TCE, cis-DCE and

VC occurred concurrent�y .

6 . Of the three possib�e isomers of DCE, cis-DCE is the most significant

intermediate from dech�orination of PCE and TCE . The other two isomers are on�y

produced insignificant�y in most cases .

7 . The �ower LC50 va�ues obtained from PCE, TCE, and cis-DCE corre�ate with the

chemica�s that appear to be dech�orinated easier by the Hyperion s�udge cu�tures . It

appears to indicate that the reductive dech�orination and methanogenesis are in

competition with each other for �imited e�ectrons.

8 . For most ch�orinated ethy�enes (except trans-DCE which showed no significant

dech�orination at a�� concentrations), the dech�orination rate of each compound was

observed to be proportiona� to their concentration, up to an upper �imit .

9 . In semi-continuous operation, a tota� of 30 to 40% of PCE cou�d be recovered as

ethy�ene . Simi�ar resu�ts were a�so obtained from dech�orinations of other

ch�orinated ethy�enes . With the rep�acement of nutrient medium and addition of

methano�, 49 µmo�es per bott�e (81 mg/L) repetitive doses of PCE were

dech�orinated within 4 days, for 5 months of semi-continuous operation .

10 . There seems to be an inverse re�ationship between reductive dech�orination and

methanogenic reaction . Over the concentration of 24.6 mM of methano�, both of

the extent and the rate of PCE dech�orination were significant�y inhibited by

methanogenesis. Under such a condition, PCE was on�y partia��y dech�orinated to

cis-DCE, at a s�ower rate. A competition for e�ectrons between reductive

dech�orination and methanogenesis may exist .
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11 . PCE dech�orination was retarded by mixing . Mixing is more favorab�e for

methanogenesis . The use of CO2 as an e�ectron acceptor by methanogens a�so

significant�y inhibited reductive dech�orination under mixing conditions .

12 . The comp�ete dech�orination of PCE to ethy�ene at high PCE concentration makes

reductive dech�orination in anaerobic digested s�udge an attractive method for

remova� of PCE in bioremediation processes .

13 . The amount of added activated carbon wi�� inf�uence the effectiveness of carbon

addition on the improvement of comp�ete PCE dech�orination in the carbon-s�udge

system. Too much carbon added wou�d retard comp�ete dech�orination .

14 . In the bio�ogica� activated carbon process, the carbon adsorption provided

significant protection against inhibitory factors to comp�ete dech�orination . The

overa�� comp�ete dech�orinating capacity observed in both BAC and OBR systems

exceeded the abi�ity of the pure s�udge system a�one .

15 . In the bio�ogica� activated carbon process, the tota� ethy�ene production increased

with the amount of PCE added if the incubation time was �ong enough . However,

an inverse re�ationship between methane production and initia� PCE dose was

demonstrated. The more PCE added, the more e�ectrons were diverted to PCE for

reductive dech�orination .

16 . Bioregeneration of PCE-�aden carbon was demonstrated in batch serum bott�es

with acc�imated digested s�udge . A high bioregeneration efficiency of the

adsorptive capacity of activated carbon was achieved in this study . The concept of

the treatment process, consisting of activated carbon adsorption of PCE fo��owed

by desorption and bio�ogica� treatment system for the remediation of groundwater

contaminated with PCE and/or other �ess ch�orinated ethy�enes, was proved. The

off�ine bio�ogica� regeneration process is appropriate for the use in this case .
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17 . Further research is needed for comp�ete�y understanding the bioregeneration

process .
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Fig. A-1 PCE-dech�orinating abi�ity and formation of intermediates
in a batch cu�ture of fresh anaerobic Hyperion s�udge after
successive additions of PCE and 25 µmo�es of methano� .
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Fig . A-1a PCE-dech�orinating abi�ity and formation of intermediates
in a batch cu�ture of fresh anaerobic Hyperion s�udge after
successive additions of PCE and 25 µmo�es of methano� .
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Fig. A-2 PCE-dech�orinating abi�ity and formation of intermediates
in a batch cu�ture of fresh anaerobic Hyperion s�udge after
successive additions of PCE and 2.5 µmo�es of methano� .
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Fig. A-2a PCE-dech�orinating abi�ity and formation of intermediates
in a batch cu�ture of fresh anaerobic Hyperion s�udge after
successive additions of PCE and 2 .5 µmo�es of methano� .
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Fig. A-3 PCE-dech�orinating abi�ity and formation of intermediates in
anaerobic pond sediment after successive additions of PCE
and 25 µmo�es of methano� .
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Fig. A-3a PCE-dech�orinating abi�ity and formation of intermediates in
anaerobic pond sediment after successive additions of PCE
and 25 µmo�es of methano� .
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Fig. A-4 PCE-dech�orinating abi�ity and formation of intermediates in
anaerobic pond sediment after successive additions of PCE
and 2.5 µmo�es of methano� .
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Fig A-4a PCE-dech�orinating abi�ity and formation of intermediates in
anaerobic pond sediment after successive additions of PCE
and 2.5 µmo�es of methano� .
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Fig. A-5 PCE-dech�orinating abi�ity and formation of intermediates in
a mixture cu�ture (1:1) of fresh anaerobic Hyperion s�udge
and anaerobic pond sediment after successive additions of PCE
and 25 µmo�es of methano� .
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Fig . A-5a PCE-dech�orinating abi�ity and formation of intermediates in
a mixture cu�ture (1 :1) of fresh anaerobic Hyperion s�udge
and anaerobic pond sediment after successive additions of PCE
and 25 µ.mo�es of methano� .
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Fig. A-6 PCE-dech�orinating abi�ity and formation of intermediates
in a mixture cu�ture (1:1) of fresh anaerobic Hyperion
s�udge and anaerobic pond sediment after successive
additions of PCE and 2.5 µmo�es of methano�.

Fig. A-6a PCE-dech�orinating abi�ity and formation of
intermediates in a mixture cu�ture (1 :1) of
fresh anaerobic Hyperion s�udge and anaerobic
pond sediment after successive additions of PCE
and 2.5 µmo�es of methano� .
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Fig. A-7 PCE-dech�orination abi�ity and formation of intermediates
in a batch cu�ture of fresh anaerobic Chino Basin (RP2)
s�udge I .
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Fig. A-7a PCE-dech�orination abi�ity and formation of
intermediates in a batch cu�ture of fresh anaerobic
Chino Basin (RP2) s�udge I .
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Fig. A-9 PCE-dech�orination abi�ity and formation of intermediates
in a batch cu�ture of fresh anaerobic Chino Basin (RP2)
s�udge II .
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Fig. A-12 Anaerobic Hyperion s�udge abi�ity to degrade PCE .
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Fig. A-13 Anaerobic Hyperion s�udge abi�ity to degrade TCE.
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Fig . A-13a Anaerobic Hyperion s�udge abi�ity to degrade TCE .
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Fig. A-14 Anaerobic Hyperion s�udge abi�ity to degrade cis-DCE.
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Fig. A-15 Anaerobic Hyperion s�udge abi�ity to degrade trans-DCE .
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Fig . A-16 Anaerobic Hyperion s�udge abi�ity to degrade 1.1-DCE.
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Fig. A-16a Anaerobic Hyperion s�udge abi�ity to degrade 1 .1-DCE .
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Fig. A-17 Anaerobic Hyperion s�udge abi�ity to degrade VC.

50

1

0

0

vc
E

	

Ethy�ene

10 � _

	

.	
1 -

	

see Fig. A-17a

	 L~ - >_ - - . N -

20

--. VC

Tota� MeOH addition=323 µmo� .
Tota� PCE addition=53 µma� .

40

	

60

	

80
Reaction Time (days)

Tota� MeOH addition=200 µcoo�.
Tota� PCE addition--3 .9 µcoo� .

100

Fig . A-17a Anaerobic Hyperion s�udge abi�ity to degrade VC .

5

I	I	I	I	t,,	t	I	�,	t	t	I	t	t,	t	I	t	t,	t

200

120

0

	

10

	

20

	

30

	

40

	

50
Reaction Time (days)

Note: 1 . At the first 45 days, �ow VC concentration was tested .
2. After 45 days, high VC concentration was tested .



0
.0 cd

O
20

o
O A

	

10

An
ae
ro

bi
c

Hy
pe

ri
on

s�
ud
ge

ab
i�

it
y

to
de
gr
ad
e
P
C
E

at
hi

gh
me

th
an
o�
 c
on
ce
nt
ra
ti
on

.

0

PC
E

TC
E

ci
s,
DC
E

tr
an

s,
DC

E
1.
1,
DC
E

vc Et
hy

�e
ne

20
40

	

60

	

80
Re

ac
ti

on
 T

im
e 

(d
ay

s)To
ta

� 
Me

OH
 a
dd
it
io
n=
12
30
 µ
co
o�

.
To
ta
� 
PC
E 

ad
di

ti
on

=5
3 

µc
oo

�.

10
0

No
te

: 
Co

mp
ar

ed
 t
o 
th
e 
re
su
�t
s 
sh
ow
n 
in
 F
ig

. 
A-

12
, 

th
e 

hi
gh

er
 m

et
ha
no
� 
co
nc
en
tr
at
io
n

do
es

 n
ot
 i
mp
ro
ve
 t
he
 P
CE
 d
ec
h�
or
in
at
io
n 
an
d 
et
hy
�e
ne
 p
ro

du
ct

io
n.

12
0

Fi
g

.
A-

18

50

I U b
 
~

40 30



Fi
g.

A-
19

De
cr
ea
se
 i
n 
PC
E-
de
ch
�o
ri
na
ti
on
 a
bi

�i
ty

 w
it

ho
ut

re
p�

ac
em

en
t 

of
 n

ut
ri

en
t 

me
di

um
.

0
20

40
 R

ea
ct

io
n
Ti

me
(d

ay
s)

 8
0

10
0

No
ti
ce
 t
ha
t 
wh
en
 n
ut
ri
en
t 
me
di
a 
is
 n
ot
 r
ep
�e
ni
sh
ed
, 
ma
jo
r 
en
d 
pr
od
uc
ts
 a
cc
um
u�
at
ed
 a
re

TC
E 

an
d 
�o
we
r 
th
an
 e
xp
ec
te
d 
am
ou
nt
s 
of
 V
C
. 
Ac
cu
mu
�a
ti
on
 o
f 
TC
E 
th
at
 i
s 
us
ua
��
y

co
nv

er
te

d 
co

mp
�e

te
�y

 t
o 

VC
 d

em
on

st
ra

te
s 

th
at

 s
om

e 
in

hi
bi

ti
on

s 
ma
y 
be
 d
ue
 t
o

nu
tr
ie
nt

 d
ep

ri
va

ti
on

.

12
0

30
0

I
25
0

U o
20
0

0
o'

-:
15
0

0

°
o 

=.
10
0

U N A
50 0



Fi
g.

A-
20

 R
ed

uc
ti

ve
 d

ec
h�

or
in

at
io

n 
pr

og
re

ss
io

n 
of

 P
CE

 a
t 

a 
�o

w 
PC

E
co

nc
en

tr
at

io
n 

in
 a

 f
re

sh
 a

na
er

ob
ic

 H
yp

er
io

n 
s�

ud
ge

.

1.
2

1 .
0

0.
4

Q

0.
2

0.
0

41

0

0

0

I1-4.0.1
ma

1s
t

]P
CI

E
i
n
j
e
c
t
i
o
n

P
C
E

T
C
E

2
n
d

P
C
E
i
n
i
e
c
t
i
o
n
_
~

P
C
E

T
C
E

ci
s,

DC
E

0
	

tr
an

s,
DC

E

1.
1,

DC
E

-
+
-
-

vc

0
4

8

	

12
Re

ac
ti

on
 T

im
e 

(d
ay

s)
16

20



U C) A

Fi
g.

A-
21

Lo
ng

 t
er

m 
de

ch
�o

ri
na

ti
on

 o
f 

PC
E 

an
d 
fo
rm
at
io
n 
of

in
te

rm
ed

ia
te

s 
in

 a
 s

em
i-

co
nt

in
uo

us
 o

pe
ra

ti
on

 s
er

um
 b

ot
t�

e
.

(T
he

re
 w

as
 n

o 
me

th
an

o�
 a

dd
ed

 f
ro

m 
da

y 
0 

to
 6

0
.)

80
0

70
0

60
0

U

N

	

a

	

50
0

o
40
0

o
G •

	

o 
~.

30
0

20
0

10
0 0

0

PC
E

)(
	

T
C
E

ci
s,

DC
E

tr
an
s,
DC
E

1 .
1,

DC
E

•
	

V
.C

.
et

hy
�e

ne
PC
E 
co
ns
um
pt
io
n

vI
d

r.

5
0

	

1
0
0

Re
ac

ti
on

 T
im

e 
(d

ay
s)

15
0



4-
1 A

Fi
g.

A-
22

Lo
ng

 t
er

m 
de

ch
�o

ri
na

ti
on

 o
f 

TC
E 

an
d 

fo
rm

at
io

n 
of

in
te
rm
ed
ia
te
s 
in
 a
 s
em
i-
co
nt
in
uo
us
 o
pe
ra
ti
on
 s
er
um
 b
ot
t�
e

.

50
0

40
0

30
0

20
0

10
0 0

0

TC
E

ci
s,

DC
E

tr
an

s,
DC

E

1.
1,

DC
E

-f
- 
Vi
ny
� 
ch
�o
ri
de

	
o	

co
ns
um
pt
io
n 
of
 T
CE

20
40

	

60

	

80
Re

ac
ti

on
 T

im
e 

(d
ay

s)
10
0

12
0



Fi
g.

A-
23

Lo
ng
 t
er
m 
de
ch
�o
ri
na
ti
on
 o
f 
ci
s-
DC
E 
an
d 

fo
rm

at
io

n 
of

in
te
rm
ed
ia
te
s 
in
 a
 s
em
i-
co
nt
in
uo
us
 o
pe
ra
ti
on
 s
er
um
 b
ot
t�
e.

0
50

	

10
0

Re
ac
ti
on
 T
im
e 
(d
ay
s)

15
0

70
0

60
0

50
0

U O O
 
N

a
40

0
0

o
- 0

0
30

0
o U A

20
0

10
0 0



(1) AFi
g.

A-
24

Lo
ng
 t
er
m 
de
ch
�o
ri
na
ti
on
 o
f 
1
.1
-D
CE
 a
nd
 f
or
ma
ti
on
 o
f

in
te
rm
ed
ia
te
s 
in
 a
 s
em
i-
co
nt
in
uo
us
 o

pe
ra

ti
on

 s
er

um
 b

ot
t�

e
.

80
0

70
0

50
0

40
0

30
0

20
0

10
0 0

0
50

	

10
0

Re
ac
ti
on
 T
im
e 
(d
ay
s)

15
0



Fi
g.

A-
25

De
ch
�o
ri
na
ti
on
 o
f 
PC
E 
an
d 
fo
rm
at
io
n 
of
 i
nt

er
me

di
at

es
in

 a
 b

at
ch

 c
u�

tu
re

 o
f 

fr
es

h 
an

ae
ro

bi
c 

Hy
pe

ri
on

 s
�u

dg
e .

10
0 80 60 40 20

C
D

'
~
 
CO
D



Fi
g.

A-
26

De
ch
�o
ri
na
ti
on
 o
f 
PC
E 
an
d 
fo
rm
at
io
n 
of
 i
nt
er
me
di
at
es
 i
n 
a

ba
tc
h 
cu
�t
ur
e 
of
 o
ne
-d
ay
 o
�d
* 
an
ae
ro
bi
c 
Hy
pe
ri
on
 s
�u
dg
e

. 40
00

0
50

10

	

20

	

30

	

40
Re

ac
ti

on
 T

im
e 

(d
ay

)
No

te
:

On
e-
da
y 
o�
d 
s�
ud
ge
 m
ea
ns
 t
ha
t 
th
e 
s�
ud
ge
 c
u�
tu
re
 w
as

 i
nc
ub
at
ed
 f
or

on
e 

da
y 

be
fo

re
 P

CE
 i

nj
ec

ti
on

.

35
00

30
00

25
00

20
00

15
00

10
00

50
0

4 CD w o 0

10
0 80

-
v Z b 2
6 a

60
0
 
0

0 o
~

40
-

U N A
20

-



Fi
g.

A-
27

De
ch

�o
ri

na
ti

on
of
 P
CE
 a
nd
 f
or
ma
ti
on
 o
f 
in
te

rm
ed

ia
te

s 
in

 a
ba
tc
h 
cu
�t
ur
e 
of
 t
wo
-d
ay
 o
�d
 a
na
er
ob
ic
 H
yp
er
io
n 
s�
ud
ge

o 
~

0
0

0 O=
L

0 G) A

10
0

0
20

40

	

60

	

80
Re
ac
ti
on
 T
im
e 
(d
ay
)

10
0

opa
� oe

re

-
4
9
A

::

12
0

50
00

40
00

30
00

10
00



rA U O
^ a5
O

0 Id
O

Q
E

0 U N A

Fi
g.

A-
28

De
ch

�o
ri

na
ti

on
 o

f 
PC

E 
an

d 
fo

rm
at

io
n 

of
 i

nt
er

me
di

at
es

 i
n 

a
ba

tc
h 

cu
�t

ur
e 

of
 t

hr
ee

-d
ay

 o
�d

 a
na

er
ob

ic
 H

yp
er

io
n 

s�
ud

ge
.

10
0

o

	

e

0
20

40

	

60

	

80
Re
ac
ti
on
 T
im
e 
(d
ay
)

10
0

	

12
0

50
00

40
00

CD

30
00

i
i

20
00

10
00

0



Fi
g.

A-
29

De
ch
�o
ri
na
ti
on
 o
f 
PC
E 
an
d 
fo
rm
at
io
n 
of
 i
nt
er
me
di
at
es
 i
n 
a

ba
tc

h 
cu

�t
ur

e 
of

 f
ou

r-
da

y 
o�

d 
an

ae
ro

bi
c 

Hy
pe

ri
on

 s
�u

dg
e

.

A

10
0 80 40

.2
E~

U N

2
0 0

o ;
jy
0 
0

0

.
M
M
A

..
..

Ae
r

0
10

20
30

	

40

	

50

	

60
Re

ac
ti

on
 T

im
e 

(d
ay

)
70

80

50
00

40
00

30
00

2
0
0
0

1
0
0
0

0

Me
th
an
e

PC
E

tr
an
s-
DC
E

E
T
H

X
T
C
E

1.
1-
DC
E

ci
s-

DC
E

	

µ
V

.C
.



Fi
g.

A-
30

De
ch
�o
ri
na
ti
on
 o
f 
PC
E 
an
d 
fo
rm
at
io
n 
of
 i
nt

er
me

di
at

es
 i

n
a 
ba
tc
h 
cu
�t
ur
e 
of
 1
2-
da
y 
o�
d 
an
ae
ro
bi
c 
Hy
pe
ri
on
 s
�u
dg
e

.

10
0 40 20

0
20

40

	

60
Re

ac
ti

on
 T

im
e 

(d
ay

)
80

10
0

60
00

50
00

40
00

30
00

0

20
00

10
00



Fi
g.

A-
31

10
0 80

-

60
-

40 20

De
ch
�o
ri
na
ti
on
 o
f 
PC
E 
an
d 
fo
rm
at
io
n 
of
 i
nt
er
me
di
at
es
 i
n

a 
ba

tc
h 

cu
�t

ur
e 

of
 1

4-
da

y 
o�

d 
an

ae
ro

bi
c 

Hy
pe

ri
on

 s
�u

dg
e

.

0

Me
th

an
e

0

	

PC
E

	

0

	

tr
an

s-
DC

E

	

m

	

E
T
H

T
C
E

	

0

	

1.
1-
DC
E

ci
s-
DC
E

	

-
-
-
0

	

V
.C

.

20
40

	

60
Re
ac
ti
on
 T
im
e 
(d
ay
)

80
10
0

60
00

50
00

40
00

30
00

20
00

10
00

a CD o o' 0



Fi
g .

 A
-3
2

De
ch
�o
ri
na
ti
on
 o
f 
PC
E 
an
d 
fo
rm
at
io
n 
of
 i
nt
er
me
di
at
es
 i
n

a 
ba

tc
h 

cu
�t

ur
e 

of
 2

0-
da

y 
o�

d 
an

ae
ro

bi
c 

Hy
pe

ri
on

 s
�u

dg
e

.

-2
0

0
20

	

40

	

60
Re
ac
ti
on
 T
im
e 
(d
ay
)

80
10

0



Fi
g.

A-
33
 D
ec
h�
or

in
at

io
n 

of
 P

CE
 a

nd
 f

or
ma

ti
on

 o
f 

in
te
rm
ed
ia
te
s 
in

a 
ba

tc
h 

cu
�t

ur
e 

of
 2

1-
da

y 
o�

d 
an

ae
ro

bi
c 

Hy
pe

ri
on

 s
�u

dg
e

.

10
0 80 20

-2
0

0
20

	

40

	

60
Re
ac
ti
on
 T
im
e 
(d
ay
)

80
10
0



ab
a
_
y

C)
G9o .?
N

o
b 3v
WUa

Fig . A-34 Initia� PCE dech�orination in the s�udge cu�ture
with GAC addition.
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Fig . A-35 The effect of different amounts of carbon addition
on PCEdech�orination and methane production .
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Fig. A-36 The effect of activated carbon on PCE dech�orination.
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Fig . A-38

	

PCE dech�orination in a bio�ogica� activated
carbon system with acc�imated anaerobic digested
s�udge. (Initia� free PCE dose = 49•mo�)
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Fig. A-39 PCE dech�orination in a bio�ogica� activated
carbon system with acc�imated anaerobic digested
s�udge. (Initia� free PCE dose = 98•mo�)
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Fig . A-40 PCE dech�orination in a bio�ogica� activated
carbon system with acc�imated anaerobic digested
s�udge (Initia� free PCE dose = 196gmo�)
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Fig . A-41 PCE dech�orination in a bio�ogica� activated
carbon system with acc�imated anaerobic digested
s�udge. (Initia� free PCE dose = 294•mo�)
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Fig . A-42

	

PCE dech�orination in a bio�ogica� activated
carbon system with acc�imated anaerobic digested
s�udge. (Initia� free PCE dose = 392gmo�)
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Fig . A-43 PCE dech�orination in a bio�ogica� activated
carbon system with acc�imated anaerobic digested
s�udge. (Initia� free PCE dose = 490•mo�)
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with adsorbed or free PCE doses. (PCE dose = 294 •mo�)
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with adsorbed or free PCE doses . (PCE dose = 490 •mot)
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Tab�e A-2 .
Comp�ete dech�orinating abi�ity of acc�imated
anaerobic Hyperion s�udge
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Time
(day)

PCE
(•mot)

V.C.
(•coo�)

ETH
(•mo�)

Methane
(•mot)

Samp�e 1
0 49.00 27.01
14 0.00 22.09 56.69 33.11

Samp�e 2
0 49.00 28.24
14 0.00 20.54 55.46 29.33

Samp�e 3
0 49.00 27.96
14 0.00 21 .76 56.02 34.52
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