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ABSTRACT OF THE DISSERTATION

Developing A Decision Support System for Operation and Control

of the High-Purity Oxygen Activated Sludge Process

by

Tingyong (Mark) Yin

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 1995

Professor Michael K. Stenstrom, Chair

Operation and control of the high-purity oxygen activated sludge process (HPO-

AS) are more complex than for conventional open-air activated sludge process . The

objective of this research is to provide both quantitative and qualitative support to the

operators in their decision-making process. To realize this goal, a decision support system

is developed in this investigation . The system consists of five major components :

operator's interface, process simulator, on-line state and parameter estimator, knowledge

base and data managing utilities. This dissertation presents the framework of the system .

The decision support system developed in this study is superior to a conventional

expert system since it can quantify the operation and control, besides performing process

diagnosis. The operator can obtain more information and has more choices when he/she is



making operational changes to the process, so that the correct decision is more likely to be

made.

A process simulator was built into the system . It consists of a group of ordinary

differential equations . The operator can simulate and test the operational strategies before

they are applied to the process operation . In this way, the strategies can be evaluated and

refined. The simulator is a valuable tool for training new operators .

An on-line estimator was constructed to estimate biomass and substrate

concentrations, maximum and specific growth rates of biomass, and oxygen uptake rate,

based upon measured dissolved oxygen concentration in each stage . These estimated

states and bio-kinetic parameters are very valuable to the operator, and provide important

information for advanced process controls. The estimator is assisted by fuzzy estimations

of influent substrate and effluent total suspended solids concentrations . The convergence

of the estimator is fast and stable. The estimated values reasonably well agree with both

steady state plant data and hypothetical data with artificial noise .

Two kinds of knowledge were formulated in the knowledge base : fuzzy

knowledge for gas phase control and conventional knowledge for process diagnosis. Four

fuzzy control strategies were developed to perform gas phase control . The results show

that all four strategies are superior to the conventional proportional integral derivative

(PID) control system in terms of stable oxygen feed, reducing dissolved oxygen oscillation

and resisting process disturbances . The fuzzy control system also has the ability to adapt

to process upsets, such as storm and extremely dry weather conditions .

xiv



A conventional rule-based knowledge base was developed specifically for the

HPO-AS process operation. It can be executed in either on- and off-line modes . The

arrangement of the logic trees has the advantages of easy maintenance and extendibility .

More than 200 rules were formulated in the knowledge base.
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1. INTRODUCTION

1.1 Statement of the Problem and Previous Work

The activated sludge process has emerged as one of the major wastewater

treatment methods since its invention in 1912 . Thousands of plants use this process for

secondary wastewater treatment in the United States . However, according to a survey

conducted by the General Accounting Office (1980), 87% of the wastewater treatment

plants involved in the survey had failed to meet the National Pollutant Discharge

Elimination System (NPDES) permits . Another study, conducted by Junkins et al. (1983),

showed that most of the violations of NPDES permits were due to poor operating practice

and inadequate process control techniques. Appropriate operation and control of

wastewater treatment plants have become a major issue in the wastewater engineering

field .

The high purity oxygen (HPO) activated sludge (AS) process, a special version of

the activated sludge process, is more complex than the conventional AS process . The

complexity is due to 1) the nature and configuration of the process, which uses high purity

oxygen, covered tanks and tanks in series, and 2) highly stochastic inputs to the process,

such as hydraulic and substrate shock loadings . These complexities require greater

operator sophistication, and more quantitative support for the operators. Improved

operation and control of this process is a difficult task for process operators and control
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engineers. The major difficulties are 1) uncertainty involved in the bio-treatment process

and model, and 2) lack of on-line and reliable measurements which result in poor

observability over the process . A large number of previous investigations has been focused

on these topics .

Biological systems are one of the most poorly understood systems among the

engineering fields (Karplus, 1976). The evolution of the activated sludge model can be

traced from single substrate and single organism models to structured multiple component

models. The single substrate model was developed by Monod (1942) . To overcome the

problems associated with this model, structured multiple substrates activated sludge

models were developed by the Andrews' group (Blackwell, 1971 ; Busby, 1973 ; Busby and

Andrews, 1975 ; Stenstrom, 1976 ; Clifft, 1980; Clifft and Andrews, 1981) . The most

important concept of these models is the substrate storage function : the particulate

substrate is first entrapped in bio-floc and becomes "stored substrate" . The stored

substrate is then converted to stored mass which is readily biodegradable by the bacteria .

This concept was later adopted by Ekama and Marias (1979), and Dold et al . (1980) . The

latest structured activated sludge model was developed by the IAWQ Tasking Group

(1987), IAWQ Activated Sludge Model No . 1. The stored mass concept was not used in

this model. An excellent review of the evolution of the activated sludge model was

presented by Yuan (1994) . None of the activated sludge models have addressed the

uncertainties involved in the structure and bio-kinetic parameters of the model. This is one

2



of the major obstacles for the application of the models to the operation and control of the

activated sludge process.

There are no major differences between the biological portion of the HPO and

activated sludge models, except for the parameter values . However, differences do exist

between the two process models, since the HPO process uses covered tanks . The first

person who systematically presented an HPO model was Mueller et al . (1973). This model

is a conventional activated sludge model based on Monod kinetics, in which the total

pressure in each stage was assumed constant . This assumption is far from reality since the

total pressures in the gas phase usually vary with the biological activities and the process

inputs. A generalized mathematical model describing the multi-component mass transfer in

the HPO process was formulated by McWhirter and Vahldieck (1978). This model was

developed primarily for the process design and is a steady-state model . Clifft and Andrews

(1986) applied a structured activated sludge model to the HPO process . In their model,

the total pressure of each stage was no longer assumed constant, which is one step closer

to reality . Stenstrom (1990) proposed a structured HPO model and tested the model

using pilot plant data. The model was further calibrated and verified by Tzeng (1992) and

Yuan (1994) for a full-scale HPO treatment plant . The latest HPO process model was

developed by Yuan (1994), who modified the IAWQ activated sludge model (1989) and

applied it to the HPO process . Yuan concluded that the modified IAWQ model is

compatible with Clifft and Andrews, and Stenstrom HPO models .

3



Beside the poorly understood bio-kinetics and models, lack of on-line

measurement for some of the very important process states has created difficulties for

operation and control of the HPO-AS process . This poor observability of the system

causes poor controllability of the system, which results in poor performance . To

compensate for the lack of on-line measurements, an on-line estimator (observer) to

estimate the unmeasured states from the measured ones, can be developed . The on-line

estimator compensates for some of the disadvantages of poor abservabi ity. Several

techniques are available to design the estimator . Among these, the exponential method

(Williamson, 1977), Extended Luenberger Observer (ELO) and Extended Kalman

Observer (EKO) (Aborhey and Williamson, 1978), and Asymptotic Observer (Bastin,

1988), are most frequently used in the control field.

Estimators have been used previously in the environmental engineering field .

Holmberg (1982) used a simple dynamic model to estimate the influent BOD-load and

effluent BOD. A recursive algorithm was used to predict oxygen uptake rate (OUR) and

KLa. Holmberg and Olsson (1986) presented a simultaneous estimation scheme for K La

and OUR based on a linear Kalman filter, taking advantage of the differing time scale of

the two variables . Marsili-Libelli (1990) constructed an on-line estimator to predict KLa

and OUR using linear approximation. The estimator was coupled with a self-tuning PID

controller. In all cases efficient estimates were obtained .

The lack of on-line and reliable measurements requires operators to rely heavily on

their personal experiences to operate their treatment plants (Patry and Chapman, 1989) .
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Expert systems have been developed to assist operators with treatment plant control . The

first person to use the expert system-type rules for treatment plant operation was Beck et

al. (1978). Johnson (1985) developed a prototype expert system to diagnose the presence

of toxic material in the plant's influent . An expert system developed for operation of an

anaerobic digester was developed by Barnett and Andrews (1987). A combination of rules

and fuzzy logic knowledge was used in the knowledge base which could detect and

prevent process failure of an anaerobic digester . Berthouex et al . (1988, 1989) used a

statistical model to assist expert systems in making control decisions and to perform

process diagnosis . Fuzzy terms, such as high, medium and low, were used to define the

state limits and to detect abnormal states of the process . These fuzzy terms were

statistically based on plant data. Parker and Parker (1989) developed an expert system to

address sludge settling problems, such as filamentous bulking, floating sludge, ashing, etc .

Koskinen (1989) reported the use of an expert system as a top level controller for an

activated sludge treatment plant. Gall and Patry (1988) presented a knowledge-based

system for diagnosis of activated sludge plant .

A new development in the expert system approach is to incorporate a process

model into the expert system. Ozgur and Stenstrom (1994) have developed an expert

system with some simple process models . The system is used for diagnosing nitrification

problems for a refinery activated sludge treatment plant .

Most of the expert systems described above are process diagnosis-oriented . The

results of the diagnosis are usually linguistic or semi-quantitative recommendations . It is

5



difficult to quantify these recommendation into control actions . A fuzzy logic algorithm

overcomes this difficulty, and provides a better way to combine human heuristic

knowledge with both quantitative and qualitative system inputs, and to produce

quantitative control output for the process .

Fuzzy logic is a useful tool to handle processes where the process mechanism is

not well understood, but empirical knowledge about the process exists . Fuzzy logic theory

was first introduced by Zadeh (1965), and has emerged as one of the most fruitful fields in

artificial intelligence . The applications are primarily focused in the process control area .

The description of fuzzy logic algorithm is given in Chapters 4 and 5 . The first application

of a fuzzy logic algorithm to control the activated sludge process was reported by Tong et

al. (1981). They concluded that the algorithm works well and that a fuzzy controller

would be a useful and practical way of regulating the activated sludge process . Another

investigation was conducted by Chen et al . (1990). They developed more than 100 fuzzy

rules to control the sludge recycle rate, sludge conditioning time and air supply rate for a

full scale treatment plant . Significant improvement in process performance of the plant has

been achieved as compared with the conventional control method .

6



1.2 Objectives and Scope of the Work

The ultimate goal of this study is to develop a decision support system (DSS) to

facilitate the operation and control of the high-purity oxygen activated sludge processes

(HPO-AS). It includes the following sub-objectives :

•

	

performing problem diagnosis using a conventional knowledge base ;

•

	

estimating the unmeasured process states and parameters using the process

estimator ;

•

	

simulating the control and operational alternatives before they are applied to the

process ;

•

	

issuing quantitative control outputs through fuzzy logic reasoning ;

•

	

process data entry and retrieval, and trending data using a spreadsheet-like window ;

•

	

training new operators .

A framework of a DSS for operation and control of the HPO-AS process is

developed in this study . The decision support system consists of 5 major components

(modules): operator's interface, process simulator, state and parameter estimator,

knowledge base and data managing utilities . The system was planned for implementation

into a computer software, G2 (Gensym, 1992) and G2 Diagnosis Assistant (GDA)

(Gensym, 1992) . G2 and GDA are a real-time expert system shell and on-line process

diagnosis tool, respectively . Originally the system was developed for both HPO and open-

7



air activated sludge processes . Due to the time limit and quantity of the work, the system

was narrowed to HPO-AS only. However, with some minor modifications, the system

can also be applied to the open-air activated sludge process .

The development of the DSS is divided into two phases . In phase 1, the overall

system structure is developed and each system component is tested individually . In phase

2, all system components are integrated into G2 and GDA, and the system is tested .

Because of the time limits and available computer software (G2 and GDA), only phase 1 is

completed. Part of phase 2 has been completed, such as developing the menu systems and

operator's interface to access each system component . However, this work will not be

presented in this dissertation. The interested reader is referred to Yuan et al . (1993) for

the description of the data managing utilities .

The framework of the DSS is presented in this dissertation (mostly the work

completed in phase 1). It includes the overall system structure and the interface between

each system component, the process simulator, the on-line estimator, and the conventional

expert system and fuzzy knowledge bases. All the algorithms involved in these system

components are thoroughly tested and discussed in the dissertation .

8



1.3 Organization of the Dissertation

This dissertation is organized based on several papers that are published or

submitted for publication. Each paper specifically describes a certain aspect of the DSS or

a system component . As stated in the Objectives and Scope of Work section, there are 5

system components and three out of five components (modules) will be presented in the

dissertation : process simulator, on-line state and parameter estimator, and knowledge

base .

Figure 1 .3.1 shows the organization of this dissertation . A system overview paper

is presented first at the beginning of this dissertation (Chapter 2) . It describes the overall

structure of the system, the function of each component, and the interactions among its

components. A process simulator for a typical HPO-AS process is described in Chapter 3 .

The simulator was developed based on an existing HPO process model (Stenstrom, 1989

and 1990) . To compensate for the unmeasured state variables and parameters in the liquid

phase of the HPO-AS process, an on-line estimator is developed, which is described in

Chapter 4. The estimator can provide quantitative support to the other system

components, such as the simulator, fuzzy logic gas phase control and process diagnosis,

etc. In Chapter 5, the development of a fuzzy logic control system to perform gas phase

control of the HPO process is presented. An adaptive fuzzy logic control system was

developed specifically for dealing with extreme weather flows . This is one part of the

knowledge base . Another part of the knowledge base, developed specifically for the

HPO-AS process, addresses conventional problem diagnosis for both liquid and gas

9



phases, and is presented in Chapter 6 . The detailed and complete logic trees and

inferencing results of the knowledge base are presented in the Appendix. Finally, the

conclusions of this study and future work are presented in Chapter 7 and 8, respectively .

/r chapter 1
introduction

presenting scope and
organization of the

dissertation

chapter 2
overal system

structure

presenting the
framework of the
decision support

s stem

chapter 3
process

simulator

presenting process
simulator : a

system component

chapter 7
conclusions

presenting the
conclusions of the

work

Figure 1 .3.1 Organization of the Dissertation
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2. A DECISION SUPPORT SYSTEM FOR WASTEWATER TREATMENT
PLANT OPERATIONS

Abstract

A framework of a decision support system for wastewater treatment plant operation is

presented in this paper . The process simulator, state estimator, data management utilities along

with the knowledge base provide the operator with both qualitative and quantitative support for

making decisions . The preliminary results have shown the system is superior to the conventional

diagnosis-oriented expert system .

2.1 Introduction

Appropriate operation of wastewater treatment is one of the most challenging

tasks faced by process operators and operational engineers . The main difficulties are the

inputs to the treatment process, such as influent flow rate and loading, which are highly

stochastic, and our partial understanding the process dynamics under transient conditions .

The problems are further complicated by the fact that there are few on-line available or

reliable measurements (Patry and Chapman,1989) . The operator must heavily rely on his

or her personal experiences . Several "expert systems" have been developed over the last

decade using such experiences (Beck et al.,1978, Johnson,1985, Berthouex et al.,1988,

Bamett et al.,1987, Gall and Patry,1988, Koskinen,1989, Parker et al.,1989 and Ozgur

and Stenstrom, 1994) . Most of the previously described systems are process diagnosis-
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oriented, which still have difficulty satisfying the day-to-day operational needs . This is

especially true when the linguistic results are interpreted quantitatively .

To overcome these problems, a decision support system is developed in this

investigation. This support system makes full use of the features of expert systems and

couples the expert system with process models. It takes full advantage of the expert

system shell and creates a user's friendly environment for the operator. The system can

perform the following tasks :

•

	

performing conventional problem diagnosis ;

•

	

estimating the unmeasurable states using the process estimator ;

•

	

simulating options before the control action is applied to the treatment process ;

•

	

data entry, retrieving and data trending via a spreadsheet-like window ;

•

	

detecting and alarming potential process upsets through either simulation or real

operation ;

•

	

issuing quantitative control outputs through fuzzy reasoning ;

•

	

training new operators .

The preliminary results have shown that this system can provide more information to the

operator than an expert system . With the aid of the system, the appropriate operational

decisions are more likely to be obtained .

The system is developed using G2, a real time expert system shell (Gensym

Corporation, 1992), and G2 Diagnostic Assistant (GDA) which is a separate product of
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G2. GDA is designed specifically for process diagnosis, fuzzy reasoning and other

advanced controls .

This paper describes a framework of a decision support system for wastewater

treatment plant operation. In the following sections, we first present the system structure

and discuss the interactions among the system components . The functions of each system

component are introduced next . Finally the integrity of the system and the summary are

presented.

2.2 System Structure

Determining the system architecture is a critical step in developing a decision

support system . The system should be arranged such that the operator can access any

system component to obtain necessary information when needed. The information should

also flow freely among the system components for ease of use . Based on this information

the operator can make decisions under transition states .

Figure 2.2.1 shows the structure of the system, which is designed in a hierarchical

format with three levels . The connections between the levels are established through a

menu system (workspace in G2) . There are four major components beside the operator

interface: knowledge base, process simulator, state estimator and data management utility .

Each component is designed as an individual module. The information exchange between

the modules is through rules, procedures and relations which are standard functions
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provided by the expert system shell (G2) . For example, the initial conditions for the

simulator are provided by the state estimator when it is active, or provided by the data

server in the database when the estimator is inactive . The simulated results are graphically

displayed to the operator and fed to the knowledge base . The operator starts or stops each

functional module based on his needs. For example, when the fluid color or the foam in

the aeration tank is abnormal, the operator may start the knowledge base to diagnose the

causes of the abnormal color.

To allow the operator to conveniently work among the system modules, a user

friendly and easy-to-use interface is crucial important . It should have the ability to extract

information, access to each module freely, and perform the specific tasks within each

Knowledge
Base



module. As illustrated in Figure 1, the operator interface is on the top of the three level

structure. Under the G2 developing environment, the operator interface is designed as

several menus under the root menu. The operator starts the module by opening that

module menu using the action button. Each module has its own sub-menu system . In this

way, the operator can freely access all parts of the system .

In the following sections, we discuss each system module individually . It should be

noted that the modules of the system were originally designed for a high-purity oxygen

and a refinery activated sludge processes . With some simple modifications, they are readily

applicable to any open-air activated sludge processes .

2.3 Process Simulator

A process simulator is designed to enhance the system performance. It takes

advantage of our partial knowledge about process kinetics and provides the operator with

an inside view of the process . A simulator can simulate the control strategies before they

are implemented and allows the operator to review the predicted results . The control

strategy may be modified and resimulated . In this way, better control is obtained. In

addition, the process simulator can generate deeper knowledge for forming new rules, or

generate fuzzy rules for advanced control techniques . The process simulator can also

imitate different operational scenarios such that new operators are exposed to a wide

spectrum of operational problems and gain operating experience in a relatively short time .
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The simulator, based on the High-Purity Oxygen process models (Stenstrom et al.,

1989, 1990, Tzeng, 1992 and Yuan 1994), has been incorporated into the system using

the built-in simulation utilities of G2 . It can run in parallel with the system . "Simulated"

data can be intrinsically interfaced with the knowledge base and dynamically displayed to

the operator.

There are three major parts in the simulator : a group of ordinary deferential

equations describing the process ; graphical display of the simulation results, and a control

panel which allows the operator to make changes and explore alternatives . Figure 2 .3.1

shows the control panel for a High-Purity Oxygen Process . The operator can change

process operating mode by regulating the valve openings in the graph. There are four

wastewater feeding valves corresponding to four stages of the aeration tanks in series on

the upper-left corner of the graph . Different combination of the valve openings forms

different step-feed modes . For example, the raw water could be fed completely into the

first stage by giving 100% opening to the first valve, and zero openings for the rest of the

valve, or a reaeration mode could be established by given 100% opening to the second

valve. Similarly, the oxygen feed flow rate can also be regulated by changing the slider of

the openings of the oxygen feeding valve. In this way, the operator can evaluate alternate

strategies, observe the process responses and make improved operational decisions .
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Figure 2.3.1 Process Control Panel of the Simulator

2.4 State Estimator

Among the most difficult problems in the operation of wastewater treatment are

the lack of on-line and/or unreliable measurements . Many investigators have discussed

this problem (Marsili-Libeli, 1982, 1990, Holmberg, 1982, 1986) . One of the solutions to

this problem is to design a state estimator (or observer) to estimate the unmeasured states

from the measured ones. The estimated state can assist the operator in understanding

process conditions and facilitating decision making process .
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A prototype state estimator was designed and tested for estimating the sludge and

substrate concentrations in the aeration tanks of a HPO-AS process . The estimator is

based on the HPO-AS models (Stenstrom et al., 1989, Stenstrom 1991) expressed in as

follows :

dt
= K•(4) - D4+ F + TR(4)

	

2.4.1
dt

here 4 is a state vector, K is a coefficient matri hich includes stoichiometric and ield

coefficients, (~) is a reaction rate vector hich depends on the substrate and sludge

concentrations, F is a feeding vector, D is the dilution rate vector and TR(4) is the

species transfer rate vector bet een liquid and gas phases . An as mptotic algorithm is

used in the estimator (Dochain et al.,1992). This method is simple and the convergence

occurs faster than ith the other methods . The non-linearit of Equation 2.4.1 is

appro imated b a linear combination process . Figure 2.4.1 sho s the estimated four

stage sludge concentrations based on the measurements of the gas purit in the gas phase

and the DO concentrations in each stage . As e pected, the convergence occurs after 40

hours and the estimated sludge concentrations reasonabl agreed ith the measured pilot

plant data .
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Figure 2 .4.1 Estimated Sludge Concentrations Using State Estimator

The estimator is incorporated into the decision support s stem. With a proper

initial transformation vector Z, the convergence occurs much faster than the one sho n in

Figure 2.4.1 . The operator can run the estimator either in simulation or in real-time mode .

The estimated states provide a vie of the on-going treatment process, hich is a valuable

assistance for the operator to assess the process state .

2.5 Kno ledge Base

The kno ledge base consists of t o parts: problem diagnosis and fu logic

reasoning. The former is used to perform conventional problem diagnosis, and the later

provides quantitative operation suggestions to the operator .

The kno ledge base developed b O gur and Stenstrom (1992) contains about

300 hundred rules. The kno ledge is coded for a refiner aste ater. The global
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kno ledge and kno ledge structure in the rule-base applicable to all activated sludge

plants have been e tracted. The local kno ledge, hich is site-specific, can be added to

the main kno ledge bod for a particular treatment plant . The results of rule reasoning

could be the cause of the problem, or a suggestion to solve the problem . Figure 2.5.1

sho s a simple logic tree for temperature control . The global kno ledge base is built into

the decision support s stem using the G2 Diagnosis Assistant (GDA) here the rule

structure is e plicitl displa ed b blocks and connections . The rule net is displa ed

graphicall , and therefore the operator can observe the path of firing rules .

check influent
temperature

can ou divert
part of influent ?

RC-159

RC-154
divert part of
influent into
holding tank

mconsistenc

check temp .
measuring device

Temperature

high, lo

RC-165
aeration tank

temp. i s normal

RC-155
cannot divert

influent

Figure 2.5.1 Logic Tree for Temperature Control
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Fu logic theor as first introduced b Zadeh (1965). Since then man

successful applications of this theor have been achieved in Japan . Most of these

applications are focused on the process control area . Tong et al. (1981) applied a fu

algorithm to control an activated sludge process . The concluded that the algorithm orks

rather ell and a fu controller ould be a useful and practical a of regulating the

activated sludge process . Another investigation as conducted b Zhou et al (1991), in

hich the built more than 100 fu rules to control the sludge rec cling rate, sludge

conditioning time and air suppl rate for a full scale treatment plant.

Fu logic is a useful tool to handle processes that are characteri ed b

uncertainties, such as biological treatment . We are designing a fu logic controller

(FLC) for the HPO-AS process. A group of membership functions for the stage 1 total

pressure and the o gen feeding valve openings is sho n in Figure 2.5.2. The relationship
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Figure 2.5.2 (b) Membership Function for O gen Feed Valve Openings

bet een the pressure and valve opening is generated b the process simulator . In this

control scheme, the o gen feeding valve is regulated based on the measurement of the

stage 1 total pressure . The measurement is first fu ed into a fu set. This set is then

mapped onto the membership discourse and a clipped set is obtained . Based on the fu

rules the clipped set of the membership values is projected onto the control output

discourse (o gen valve openings) . Finall a deffu ification is performed b calculating

the center of the clipped sets so that a percentage opening is obtained .

Figure 2.5.3 sho s a fu rule relation matri for the stage 1 total pressure, stage

4 o gen gas purit and o gen valve openings . This rule matri is the backbone in the

fu reasoning process. In contrast to the conventional reasoning hich results in a

"black-and- hite" conclusion, the fu reasoning fires a group of

rules and produces several fu sets. For e ample, if the input stage 1 total pressure is

1 .0019 atm and the stage 4 o gen purit is 40%, the total pressure is 78% of Lo and

22% of Too Lo , and the stage 4 o gen purit is 86% of Lo and 14% of Normal,
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hen these inputs are mapped onto the membership functions. Thus, four rules in the

matri are fired as indicated in the shado ed area :

1 . if the total pressure is Too Lo and stage 4 purit is Lo then the valve opening is

Too Large;

2 . if the total pressure is Lo and stage 4 purit is Lo then the valve opening is

Large;

3 . if the total pressure is Too Lo and stage 4 purit is Normal then the valve opening

is Large ;

4 . if the total pressure is Lo and stage 4 purit is Normal then the valve opening is

Large.

stage 1 total pressure (atm)r

Too Lo

Lo

stage 4 02
purit (%) Norma

High

Too High

Too Lo Lo Normal High Too High

Figure 2.5.3 Fu Rule Relation Matri for HPO-AS Pressure Control
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The controlled output is generated b the eighted average of these four fu sets. The

set points for this e ample are 1 .008 for stage 1 total pressure and 60% for stage 4 o gen

purit , respectivel .

Using the process simulator and common sense, more complicated fu relations

among the process states and controlled variables can be established . These relation

matrices and their corresponding membership functions are being incorporated into the

decision support s stem using GDA's built-in utilities, hich ill become an important

part of the s stem .

2.6 Data Management

An e pert s stem for a refiner aste ater treatment process as developed b

Yuan et al. (1993). The data management utilit of the s stem as implemented in the

decision support s stem of this ork. The data management utilit includes data entr,

retrieving, trending and an implausible data entr checking function . The utilit is

developed b making use of the built-in tools of the shell .

Data entr allo s the operator to t pe in data collected from sensors and

laboratories into a data file through a spreadsheet-like orkspace. Certain tping errors

can be detected b the utilit rules and reported to the operator . The entered and

processed data can be retrieved upon the request . The user can var retrieving interval,
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such as monthl , eekl or hourl , so that the retrieved data are displa ed in that interval .

The utilit can also displa trend charts of major process variables .

2.7 Summar

A frame ork of a decision support s stem for aste ater treatment plant

operation and control has been presented and discussed . The s stem is superior to a

conventional e pert s stem since it can perform the process diagnosis, and can also

quantif the operation and control . With the assistance of the process simulator, estimator,

data management and the kno ledge base, the s stem can provide more information and

better choices to the operator . This information can greatl facilitate process operation

and provide the operator opportunities to make better decisions .

Implementation and integrating each module into the s stem are difficult tasks .

Great care should be given to the interactions among the s stem modules . The information

flo path a s bet een the components should be arranged logicall and efficientl such

that the s stem can act as a hole .

2.8 References

Barnett, M. W. and Andre s (1987). The Use of E pert S stem in Computer Assisted
Operation of the Anaerobic Digestion Process . Te as Water Pollution Control
Association Conference, Corpus Christ, TX .

29



Beck, M.B ., Latten, A. and Tong, R.M. (1978) . Modeling and Operational Control of the
Activated Sludge Process in Waste ater Treatment . International Institute for Applied
S stem Anal sis, La enburg, Austria .

Berthoue , P.M., Lai, W. and Darjatmoko, A . (1989). A Statistics-Based S stem for
Treatment Plant Operation . Environmental Monitoring and Assessment, 13, pp. 247-
269.

Chen, Y.U., Cao, Z. and Kandel, A. (1990). Application of Fu Reasoning to the
Control of An Activated Sludge Plant . Fu Sets and S stems, 38, pp 1-14 .

Dochain, D., Perrier, M . and Ydstie, B .E. (1992) . As mptotic Observers for Stirred Tank
Reactor . Chemical Eng. Science, 47, No. 15/16, pp. 4167-4177 .

G2 Reference Manual (1992) . Gens m Corporation, Cambridge, Massachusetts .

Gall, R.A.B. and Patr , G.G . (1988) . Kno ledge-Based S stems in Waste ater
Engineering. MacMaster File No . 5-52618, DSS Project : KE405-7-6012/01-SE.

Gall, R.A.B. and Patr , G.G. (1988). Kno ledge-Based S stems in Waste ater
Engineering, Technical Appendi . MacMaster File No . 5-52618, DSS Project: KE405-
7-6012/01-SE.

Holmberg, A. (1982). Modeling of the Activated Sludge Process for Microprocessor-
Based State Estimation and Control . Water Res., 16, pp . 1233-1246.

Holmberg, A. (1986). Adaptive Dissolved O gen Control and On-line Estimation of
O gen Transfer and Respiration Rates . AIChE Annual Meeting.

Johnston, D.M., (1985) . Diagnosis of Waste ater Treatment Process . Computer
Applications in Water Resources, ASCE, Ne York, April, pp 601-610.

Koskinen, K. (1989). E pert S stem as A Top Level Controller for Activated Sludge
Process . Water Science and Technolog , IAWPRC, Vol. 21, pp 1809-1812 .

Marsili-Libelli, S . (1982). On-line Estimation of Bioactivities in Activated Sludge
Processes . 2 ad Int. Conf. of Modeling and Control of Biotechnical Processes, IFAC,
Helsinki, Finland .

Marsili-Libelli, S . (1990). Adaptive Estimation of Bioactivities in the Activated Sludge
Process . IEEE Proceedings, 137, No.6, pp .349-356.

30



O gur, N.H. and Stenstrom M.K. (1992). Development of A Kno ledge-Based E pert
S stem for Process Control of Nitrification in the Activated Sludge Process . J. of the
Envir. Eng. Division, ASCE, 120, pp . 87-107 .

Parker, S.C. and Parker, D.G . (1989) . An E pert S stem for Managing An Activated
Sludge Waste ater Treatment Plant . Proceedings of 25th AWRRC Conference .

Patr , G.G. and Chapman, D . (1989) . D namic Modeling and E pert S stems in
Waste ater Engineering . Chelsea, MI: Le is Publishers, Inc .

Stenstrom, M.K, Kido, W., Shanks, R.F. and Mulkerin, M. (1989). Estimating O gen
Transfer Capacit of a full-scale Pure O gen Activated Sludge Plant. J. of WPCF, 61,
2, pp. 38-50 .

Stenstrom, M .K. (1990). Westpoint Treatment Plant O gen Process Modeling. UCLA
ENG 90-17, Univ. of California, Los Angeles, CA .

Tong, R.M., Beck, M.B. and Latten, A.(1980) . Fu Control of the Activated Sludge
Waste ater Treatment Process . Automatica, 16, pp 659-701 .

T eng, C-7. (1992) . Advanced D namic Modeling of the High Purit O gen Activated
Sludge Process . Ph. D. Dis., Univ. of California, Los Angeles, CA .

Yaun, W., Yin, M.T., Stenstrom, M.K. and Okrent, D (1993). Development of an E pert
S stem to Improve Operation and Control for an Activated Sludge Treatment S stem,
Proceeding of 66th Annual Conference & E position, WEF, Anaheim, CA .

Zadeh, L., (1973), Outline of a Ne Approach to the Anal sis of Comple S stems and
Decision Processes, IEEE, Transactions on S stems, Man and C bernetics, SMC-3,
pp 28-44.

3 1



3. A SIMULATOR-ENHANCED EXPERT SYSTEM FOR THE HIGH-PURITY
OXYGEN ACTIVATED SLUDGE PROCESS

Abstract

Most of the e pert s stems developed to facilitate the operation of the activated sludge process are

diagnosis-oriented s stems. These s stems have difficulties interpreting the linguistic recommendations

into quantitative controls. This is especiall true for the high-purit o gen process (HPO), here more

quantitative controls are required. In this investigation e incorporate a simulator, based on an HPO

process model, into an e pert s stem. The simulator provides the operator ith more opportunities to

make better decisions b allo ing him to test his operational alternatives before the are implemented .

The simulator is also a useful tool for training the ne operator. The preliminar results have sho n that

the e pert s stem's abilit to produce more quantitative controls is greatl e tended ith the simulator.

3.1 Introduction

There are fe available and reliable on-line measurements hich require treatment

plant operators to rel heavil on their e periences in operating the treatment plants (Patr

and Chapman, 1989) . This deficienc has stimulated the development of a number of

"e pert s stems" for process control during the last decade (Beck et al., (1979), Johnson

(1985), Berthoue et al. (1989), Barnett et al. (1987), Gall and Patr (1988), Koskinen

(1989), Parker et al. (1989) and O gur and Stenstrom (1994)). These e pert s stems

encode the operator's kno ledge or "kno ho " into a computer program in such a a
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that it can be used for process control . Most of the s stems developed are process

diagnosis-oriented, hich usuall produce a linguistic or semi-quantitative control

recommendation to the operator . One of the major difficulties in developing such a s stem

is to quantif these actions for process control . For more complicated treatment processes,

such as the high-purit o gen activated sludge (HPO) process, more quantitative control

actions are required .

The HPO activated sludge process is more complicated than the conventional

open-air process . The comple it of the HPO process is due to the use of the high purit

o gen, covered aeration tanks and multistage tanks in series . Appropriate operation and

control of HPO process is of crucial importance to prevent process upset under the transit

conditions and to avoid asting energ . The series operation of the stages produces lags

or process dela s hich further complicates control . This is especiall true for the gas

phase. In contrast to the conventional air process, the operator cannot observe the

aeration tanks directl since the multiple stage tanks are covered up . This greatl limits the

traditional use of the e pert s stem hich relies upon empirical observations, such as color

of the sludge. The operation of the HPO process is further complicated b its

configuration hich provides more operational scenarios than a conventional air s stem

does. Changing the step-feed mode of ra aste ater to each stage, regulating o gen

feed rate, adjusting the aeration rate, resetting the controller set-point for stage 1 total

pressure or stage 4 o gen purit , or the combination of these controls, are all possible
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operational alternatives for achieving a better process control. Conventional e pert

s stems have difficult in satisf ing these operational needs .

To compensate for the shortcomings of the diagnosis-oriented e pert s stem and

quantif process control, one approach is to build a simulator based upon process models,

hich represents our partial kno ledge of the process. A process simulator can simulate

different control strategies before the are implemented. The simulated results are

evaluated and compared b either the operator or the e pert s stem. To improve

performance these control actions can be modified and simulated again . Other control

strategies can be developed in this fashion. Additionall , the process simulator can

generate deeper kno ledge, hich is a part of the self-learning aspect of the e pert

s stem. The simulator also allo s the operator to e perience different operational

scenarios, hich is a cost-effective a for training the ne operator. With the assistance

of the simulator, the ne operator is e posed to a ide spectrum of operational problems

and can gain operating e perience in a relativel short time .

A process simulator based on the HPO process models (Stenstrom et al., 1989,

1991, T eng, 1992 and Yuan 1994) has been incorporated into the e pert s stem in this

investigation. Several cases based on HPO pilot plant data ere used to test the simulator.

The preliminar results have sho n that ith the assistance of the simulator, control

actions can be evaluated and refined, thus achieving better process control . Alarms

signaling potential process failure and abnormal states ere delivered to the operator

during the simulation . The process simulator, along ith the d namic displa and user-
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friendl interface, provides the operator ith an intuitive feeling of the process, and

greatl e tends the diagnosis-oriented e pert s stem's abilities .

It should be noted that the process simulator presented herein is onl one part (or

one module) of the overall e pert s stem (called decision support s stem) that is under

development. Figure 2 .2.1 sho s the architecture of the overall s stem. For a more

detailed e planations of the s stem integrit and the functions of each s stem module, the

readers are referred to Yin et al., (1994) .

In the follo ing sections, e first present the HPO process model hich is the

backbone of the simulator. The soft are tools for coupling this group of the ODE's into

the e pert s stem are also presented. The major features of the current version of the

simulator are demonstrated ne t. Finall the summar and preliminar conclusions based

on the ork are presented .

3.2 Methodolog

The simulator consists of four major parts: HPO model, process schematics and

d namic displa , error detection and alarm s stem, and manual control panel. HPO

process models are revie ed and a model is described in the follo ing section. We ill

present the other three parts in the Results and Discussions section . More than 100 rules,

11 procedures and 32 ordinar differential equations are used in the current version of the

simulator.
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3.2.1 Process Model

Several d namic models for the HPO process have been reported in the literature .

The first person ho s stematicall presented HPO model as Mueller et al . (1973). The

model is a conventional activated sludge model based on Monod kinetics. In their stead -

state, model the total pressure in each stage is assumed constant . A generali ed

mathematical model for describing the multi-component mass transfer in the HPO process

as formulated b McWhirter and Vahldieck (1978) . This model as developed primaril

for the process design and is a stead -state model. Clifft and Andre s (1986) applied a

structured activated sludge model to the HPO process . In their model the total pressure

of each stage is no longer constant, hich is much.closer to realit . Stenstrom (1991)

proposed a structured HPO model and tested the model using a pilot plant data . The

model as further calibrated and verified b T eng (1992) and Yuan (1994) for a full-

scale HPO treatment plant. The latest HPO process model as developed b Yuan

(1994), ho modified the IAWPRC activated sludge model (1989) and applied it to the

HPO process . Yuan concluded that the modified IAWPRC model is compatible ith

Clifft and Andre s and Stenstrom HPO models.

In this investigation, the Monod-based model developed b Stenstrom et al.,

(1989) as used as the basis of the simulator. Since the model is too comple to describe

using conventional nomenclature, the model as re ritten in state-space format. For the

liquid phase, it takes the follo ing form :
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Equation 3 .2.1 can be generali ed as

da
i = K t i (4 i )-D i4 i + Fi +TR1 (4 i )

here i denotes the i-th stage of the aeration tank, C L is the state vector, K is the

stoichiometric and ield coefficient matri , i is the reaction rate vector hich is a

function of the state variables, D i is the dilution rate, Fi is the mass input vector in the

liquid phase and TR i is mass transfer rate vector for 02 , CO2 and N2 bet een the gas

phase and liquid phase, hich is also a function of the state variables . Similarl , e can

rite the state-space equations for the gas phase as follo s :

3.2.2

d
dt

02g

C02g

N2g i

=0-
02g
CO2g

N2g i

Dgi +

02g0
CO2g 0
N2go
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here Dg ; is gas phase dilution rate, D go, is dilution rate of the input gas flo at stage 1

and R; is the liquid-gas volume ratio .

3.2.2 Developing Tool

The e pert s stem shell used in this investigation is G2 (Gens m Corporation,

Cambridge, Massachusetts, 1992), a real-time e pert s stem shell. Equations 3.2.1 and

3.2.3 ere incorporated into G2 using its built-in simulation capabilities . With the multi-

tasking feature of G2, the e pert s stem still controls the hole treatment process hile

the simulator is active. Under the G2 developing environment, the simulator is

intrinsicall related to the other s stem components. The relationship inside the simulator,

such as the connections among the process schematics and icons, or the relationship

bet een the simulator and the other s stem modules, is established through the rules,

procedures and relations. These are the standard functions of G2 . The implementation of

the e pert s stem and the process simulator have taken full advantage of these functions .

One of the major concerns in this research is the development of a more user-

friendl and eas -to-use interface for the operator . Poor screen displa , poorl organi ed

menus and cumbersome simulation interface could jeopardi e the operator's acceptance of

the s stem. Under the G2 environment, the operator interface is designed as several menus

for each s stem module under a root menu . The simulator has its o n sub-menu s stem

beneath the root menu, hich is protected in the operator mode. The process schematic
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provides the operator a more intuitive and familiar interface . The operator can s itch

bet een the s stem modules sho n in Figure 2 .2.1, turn on-and-off simulator using the

action button, test his operational alternatives b changing the slider of the valve openings

in the control panel menu, and observe the predicted results b clicking on the process

icons on the schematics . The initial conditions for equations 3.2.1 and 3.2.3 are provided

b the estimator hen it is active, or b data from the database hen the estimator is

inactive .

3.3 Results and Discussion

We present the process schematic and displa , alarm s stem and control panel of

the simulator in this section .

3.3.1 Process Schematic and Displa s

Inclusion of the process schematic into the e pert s stem and simulator helps the

operator understand and accept the s stem. The operator can directl observe the process

equipment la out and flo diagram. With the assistance of the d namic displa , such as

trend charts, meters, dials and numerical tables, the operator gains an intuitive feeling of

the process d namics. The displa s can be made to look like e isting controller displa s .

The HPO process schematic in this s stem as created based on a h pothetical

and t pical HPO process . Figure 3.3.1 sho s the overall treatment plant la out. B
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clicking on the go-submenu button, the s stem displa s the detailed primar or secondar

treatment process diagram (Figure 3 .3.2) . Process equipment, such as pumps, tanks,

meters and valves, are represented b the icons on the schematics . There is at least one

displa orkspace beneath each process icon, hich is displa ed hen the icon is clicked .

For e ample, hen the sludge rec cling pump is clicked, the displa orkspace appears,

hich sho s the current status (OK or BAD) and the current pumping rate . More

detailed displa s are imbedded in the icons of the ke operation units, such as aeration

tanks (4 stages), clarifier, etc . The displa s for these equipment have several la ers,

including dials and meters, numerical tables and state variable trending charts sho n

process conditions . Figure 3 .3.3 sho s eight important state variables of stage 1 for both

the gas and liquid phases . The total pressure of stage 1 can be seen b clicking on the

pressure meter icon on the schematic (see Figure 3 .3.2 for the total pressure meter icon) .

The operator can bring up the trend chart b clicking on the go-submenu button .

T o tpes of information can be sho n in the displa s: measured data obtained

from the on-line sensors or manuall entered laborator results, and simulated "data" from

the simulator or the estimator . The simulated values are displa ed first if the simulator is

active. The real process data is displa ed if the simulator is inactive, or if the operator

selects the process data . Due to the lack of on-line measurements in the aste ater

treatment plants, the process simulator can be used to estimate state variables for process

displa s and control. In this a the simulator becomes a valuable tool to the operator in

understanding the process d namics .
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to sludge treatment

Figure 3 .3.1 HPO Plant Overvie Schematic
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Figure 3 .3.2 Secondar Treatment Schematic of HPO-AS Process
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Figure 3.3.3 Meter and Dial Displa s of Simulation Results for Stage 1

The simulator can be triggered b the operator or b the built-in rules and

procedures . The operator can start the simulator henever needed through an action

button. For e ample, hen evaluating changing to the step-feed mode, the operator ma

ish to turn on the simulator to observe the predicted process changes . The simulator can

also be invoked through the diagnosis of a certain t pe of problem, or hen an implausible

measurement needs to be evaluated. The simulator is turned on and off automaticall

hen involved in the later condition .
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3.3.2 Alarm S stem

The alarm s stem is designed to alert the operator to the potential process failures

and the status of process equipment . Earl arning of the process upset can be vital to the

biological treatment since it ma take a long time to recover from the process failure .

Man investigators have recogni e this problem and built alarms in their s stems (Patr

and Chapman, 1989, O gur and Stenstrom, 1994) . Ho ever, these s stems do not

include a process simulator.

T o t pes of alarm s stems are provided. The first is error detection and alarm

through the process diagnosis and real-time control, and the second is an alarm s stem

that is built in the process simulator. The t o alarm s stems are intrinsicall related

through rules. Both the s stems can invoke the alarm la er imbedded in the icons on the

process schematics and flash the alarm color, indicating the status of the equipment and

the location of the problem . The first t pe of alarm is conventional and is not discussed

further; onl the alarm s stem for the simulator ill be discussed .

T o tpes of alarms are incorporated ithin the process simulator. The first

relates to the simulation that the operator ma perform in evaluating alternative control

actions. When a simulation predicts a process state hich is outside predefined limits, an

alarm ill flash. This alters the operator that his proposed control action produces

conditions hich are potentiall harmful. The second relates to ho ell the simulation is

tracking actual operation. If the deviation bet een simulated results and measured values

is greater than predefined tolerances, an alarm ill flash . Such an alarm ma indicate that a
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probe is malfunctioning or needs recalibration. Figure 3.3.4 shows a typical alarm rule

used in the system. When the rule is fired the alarming message will be delivered to the

operator.

3.3.3 Control Panel

The control panel is designed so that the operator can test and evaluate operational

alternatives. Different operational modes can be established by regulating the openings of

the valves and the speed of the aerators . The changes of these modes are simulated and

the results are dynamically displayed. The operator can evaluate and modify the strategies

based on the predicted results . Under the G2 development environment, the simulator runs

in parallel with the real-time system, and the simulated results can be used by the other

operational units, or stored in a historical data file for later use .

ALARM-RULES

for any aeration-tank T if the liquid-phase-
residence-time of T <= 0 .75 then change
the alarm icon-color of T to red and
inform the operator on message-board
that 'HYDRAULIC SHOCK LOADING IS
SUSPECTED!'

for any aeration-tank T if the liquid-phase-
residence-time of T>= 0 .8 then change
the alarm icon-color of T to medium-
goldenrod

MESSAGE-BOARD

#12 10:02:30 a.m. HYDRAULIC SHOCK
LOADING IS SUSPECTED!

#21 10:06:40 a .m. HYDRAULIC SHOCK
LOADING IS SUSPECTED!

Figure 3.3.4 Rules and Message-Board Alarming Operator about Hydraulic Shock
Loading
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All the major control devices for a HPO activated sludge process are arranged as

shown in Figure 3.3.5 . The operator can change the operational modes by regulating the

sliders of the different valve openings, or by inputting new values for the process

parameters on the graph . On the upper-left corner, the combination of different valve

openings of the wastewater feed forms various operational strategies . The primary

effluent, for example, could be fed completely into the first stage by opening the first valve

to 100% and closing the other valves to zero, or a reaeration mode could be established by

opening the second valve to 100% and closing the other valves . The sludge age, which is a

steady-state control variable, can also be regulated through the sludge wasting valve on

the upper-right corner of the graph . Reduction of the opening of the sludge wasting valve

increases sludge age and sludge concentration in the aeration tanks . This change can be

observed in the display graphs shown in Figure 3 .3.3 . The aerator speed is controlled via

the change of the K L a values of the four stages . For an existing treatment process with

mechanical aerator, K La is directly related to the motor speed of the aerator . For the

other controls, such as oxygen feed rate, sludge recycle rate, and emergency diversion

valves, the control provides the sub-menus at the lower-left corner of the graph . Clicking

on the go-submenu action button will bring up these sub-control menus to the operator .

Operation of an HPO activated sludge process is more complicated than operating

an equivalently sized air activated sludge process. It frequently provides the operator with

more operational modes. The combination of these working modes results in additional

and more flexible controls and operating scenarios . For example, if an increase of stage 1
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dissolved oxygen (DO) concentration is desired, three alternatives are possible : 1)

increasing the oxygen feed rate; 2) increasing the KLa of stage 1 ; and 3) decreasing the

primary effluent feed to stage 1 . All these are possible and will increase DO in stage 1 ;

however, they also impact other parts of the process and may produce important impacts

on process operation other than changing the DO in stage 1 . The simulator can evaluate

Figure 3 .3.5 Control Panel for the Operator
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all these alternatives, or combinations of alternatives, which allow the operator to pick the

best strategy . If the same simulations are repeated many times and the results are

analyzed, it may be possible to develop empirical rules for elevating stage 1 DO, which

can update the existing knowledge base through the rule keeper .

3.4 Summary

A process simulator has been incorporated into the expert system shell for the

high-purity oxygen activated sludge process . The preliminary results have shown that the

simulator can greatly facilitate the operation of an HPO activated sludge process. With the

assistance of the simulator, control actions can be evaluated and refmed . The simulator

can also provide the operator an inside view of the process . It can quantify the controls,

which is important for operation and control of an HPO activated sludge process due to its

complex nature . The simulator is a valuable tool for training the new operators .

It should be noted that the overall system is still under development. The current

version of the simulator is subject to many changes . New features will be added and

redundancies of the simulator will be eliminated as the research continues .
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4. DEVELOPING A FUZZY-SUPPORTED STATE AND PARAMETER
ESTIMATOR FOR LIQUID PHASE OPERATION AND CONTROL OF THE

HIGH-PURITY OXYGEN ACTIVATED SLUDGE PROCESS

Abstract

Lack of on-line measurements is a major problem in the operation and control of the high-purity

oxygen activated sludge process. To overcome the problems, we developed an on-line estimator using

dissolved oxygen measurements in each stage to estimate biomass and substrate concentrations, as well as

biomass growth and decay rates . We employed a fuzzy algorithm to estimate unmeasured influent

substrate and recycling biomass concentrations . The fuzzy rules also have the ability to adapt to process

upsets and still make good predictions . The convergence of the algorithms used for the estimator is fast

and stable, even with a large range of initial inputs and noisy dissolved oxygen measurements. The

estimated results compare well with both plant and model simulated data . The estimator was also tested

under certain types of process upsets, such as shock hydraulic loading and high diluted sludge volume

index. The performance of the estimator is stable and satisfactory .

4.1 Introduction

One of the most challenging problems to operators in operation of the activated

sludge process is the lack of on-line measurements . This leads to poor observability and

poor system performance . The high-purity oxygen (HPO) activated sludge (AS) process,

which is characterized by the high-purity oxygen feed and covered aeration tanks in series,
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is more complex to operate than conventional open-air activated sludge processes, and

more quantitative controls are required . It is crucial for the operator to know the state of

the on-going process when making operational decisions . The known states and

parameters of the process can also be utilized for process control . An on-line estimator

for the HPO-AS process is valuable because it can estimate many unmeasured states and

parameters from the measured ones.

Constructing an on-line estimator (observer) is a common practice in the control

engineering field (Aborhey and Williamson, 1978, and Ljung, 1979) . A number of

successful applications of this technique to the fermentation process has been reported in

the literature (Stephanopoulos and San, 1984, Ramirez, 1987, Shimizu and Takamatsu,

1989, Dochain, 1992, and Dochain et al ., 1992). In the fermentation process, such as a

fed-batch bioreactor, the input substrate is usually known, and biomass is not recycled .

For the activated sludge process, the influent substrate concentration is highly stochastic

and unknown, and biomass needs to be recycled to maintain biomass concentration in the

aeration tank. The recycled biomass concentration is usually not measured on-line. This

has greatly increased the complexity of applying on-line estimation techniques to the

activated sludge process . Meditch and Hostetter (1974) developed an algorithm for

systems with unknown inputs, but the algorithm can only be applied to constant-

coefficient linear systems .

Previous application of on-line state and parameter estimation techniques for the

activated sludge process can also be found in the literature. Holmberg and Olsson (1985)
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presented a simultaneous estimation scheme for KLa and oxygen uptake rate (OUR) based

on a linear Kalman filter, taking advantage of the differing time scale of two variables .

Marsili-Libelli (1990) constructed an on-line estimator to predict K La and OUR using

linear approximation. The estimator was coupled with a self-tuning PID regulator . Their

results confirm that efficient estimates can be obtained in all cases. An on-line state and

parameter estimation algorithm for identification of IAWPRC model was reported by

Ayesa et al . (1991). They employed a recursive non-linear, extended Kalman filter to

simulate the behavior of a specific activated sludge process under the steady and transients

conditions. The results showed rapid convergence of the algorithm and accurate state

estimation even with noisy data .

The purpose of this study is to develop a method to estimate important,

unmeasurable variables using available on-line measurements, and process models . We

employed an asymptotic algorithm (Dochain, et al., 1992) to estimate biomass and

substrate concentrations in each stage using the dissolved oxygen measurements . The

maximum, specific growth and decay rate are simultaneously estimated based on the

estimated biomass and substrate concentrations using a recursive least squares algorithm

(Young, 1978, Bastin and Dochain, 1991) . The oxygen uptake rates for each stage can

also be obtained . A conventional HPO model was used for the on-line estimator

(Stenstrom, 1989). To estimate the unmeasured influent substrate and recycling biomass

concentrations, an on-line fuzzy logic algorithm (Pedrycz, 1993) was used. The recycling

biomass concentration is estimated by first estimating the total effluent suspended solid
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(TSS) using 30 fuzzy rules based upon the influent flow rate and diluted sludge volume

index (DSVI) . A mass balance is then made around the secondary clarifier to obtain the

recycle biomass concentration . In this way, the off-line measurement (DSVI) is

incorporated.

The estimated biomass and substrate concentrations in each stage were compared

with the pilot HPO plant data (Stenstrom, 1990) . The convergence of the state estimator

is fast and stable even with a large range of initial inputs and noisy DO measurements .

The estimated states reasonably agree with the plant data. Since there is very little

dynamic field data available, the estimator was simulated and compared with an existing

HPO process simulator, using a structured model developed by Stenstrom (1990) . The

estimated parameters were compared with both plant and simulated data, and very good

agreement was achieved. The estimated OUR's closely track the simulated ones . With

the assistance of fuzzy estimations of influent substrate and recycle biomass

concentrations, the estimator exhibits a fast convergence and stable performance using

dynamic inputs and transient conditions. The estimator was also tested under certain

types of process upsets conditions, such as hydraulic shock loading or sludge bulking

(high DSVI value) . The results are reasonable and satisfactory .

It should be noted that the on-line estimator developed in this study is an

integrated component of an overall decision support system for the operation of high-

purity oxygen activated sludge process, which is still under development . The on-line

estimator can provide data support to the operator, as well as to the other system
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components . For detailed description of the overall system, the interested readers are

referred to Yin et al . (1994) .

In the following section, we first describe the HPO-AS process, the process model

and assumptions about the availability of on-line measurements . The asymptotic and

recursive least squares algorithms are next described, followed by a description of the

fuzzy rule base used for estimating influent substrate and effluent TSS concentration . The

performance and simulated results of the estimator are next presented and discussed .

Finally we conclude our study with some remarks .

4.2 HPO-AS Process and Process Model

4.2.1 High-Purity Activated Sludge Process and Process Measurements

The HPO process is different from the conventional open-air activated sludge

process because of its use of high-purity oxygen (>97%) and the process configuration .

Figure 4.2.1 shows a typical HPO process . The aeration tanks are covered and arranged

in series (usually 3 to 6 stages) to increase treatment efficiency and oxygen utilization.

The oxygen is normally fed to stage 1, which operates at slightly higher pressure than

atmospheric, usually about 1 .008 atm (5-15 cm water column) . The mixed liquor DO

concentrations in each stage are higher (6 - 10 mg/L) than commonly found in open-air

activated sludge processes .
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Primary effluent to the aeration tanks can be manipulated depending on operational

needs. The primary effluent can be fed to the stage 1 in a conventional way, or can be fed

to the second stage to establish a reaeration mode, or fed directly to stage 4 to protect

sludge inventory when hydraulic shock loading is encountered (Clifft et al ., 1983) . The

estimator was operated in the reaeration mode to simulate the pilot plant operation . The

estimator can work in any feed mode and we demonstrate this later by simulating a

hydraulic shock load.

Oxygen Feed
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02 Purity Sensor
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Aerator
Sensor --~

	

..+

	

-->

	-1~~	
Primary
Effluent Recycle Sludge

Waste Sludge

Figure 4.2.1 Flow Diagram for a Typical Four-stage HPO-AS Process

To construct an on-line estimator for liquid phase operation, it is necessary to

examine the on- and off-line measurements used in the HPO process . Table 4.2.1

summarizes some of the possible measurements, which can be used in estimator design .

Stage DO concentration is one of the major measurement required for the estimator. In

most of the HPO plants, the stage DOs or oxygen partial pressures in each stage may be
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measured . In either cases, the DO concentrations can be known . The estimator also

requires the on-line measurements of influent, recycling and sludge wasting flow rates .

Table 4.2.1 Summary of Some Measurements for HPO-AS Process

Note : x denotes the most likely method of measurement

Another key parameter to run the estimator is the oxygen transfer coefficient

(KLa). In most of the cases, KLa should directly proportional to the impeller speed (surface

aerator) or gas recirculation rate (submerged turbine aerator) . Various empirical

equations may be used to estimate stage K La and the following equation is used in this

research .

KLa = 0.11(P)
0 ' 9
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4.2.1

Variable Name
(1)

Measured On-Line
(2)

Measured Off-
Line

Unmeasured
(4)

(3)
Influent Flow Rate

Influent Substrate Concentration
x

x x
Recycling Flow Rate
Recycling Biomass

x
x x

Concentration
Oxygen Partial Pressure

DO Concentration
Sludge Wasting Flow Rate

Effluent Total TSS

x
x
x

x x
DSVI x

Effluent BOD 5 (or COD) x x



where P is the stage propeller horsepower. This equation is specific for this research, and

shoud not be applied elsewhere. In this study we considered KLa as a known parameter .

4.2.2 HPO Process Model

A conventional Monod-type dynamic model developed by Stenstrom et al . (1989)

was used as the governing equation for both state and parameter estimators . The liquid

phase model takes the form

d
dt

DO-
S
X
Co
NH
DN_ i

K1
K3
K 5
K7
K9
0

K2
K4
K6
K8
K10
0_

Equation 3.2.1 can be generalized as

da' = K•i (4 i )-Di 4 i + Fi +TR i (4 i )

where i denotes the i-th stage of the aeration tank; 4 i is the state vector consisting of DO,

substrate, biomass, C02, NH 4 and N2 concentrations ; K is the stoichiometric and yield

coefficient matrix ; • i is the biomass growth and decay rate vector, which is a function of
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the states ; Fi is mass input vector in the liquid phase ; Tri is mass transfer rate vector which

is also a function of the process states ; and Di and Di,, are the dilution ratios for influent

flow rate plus recycle flow rate, and influent flow rate, respectively . Equation 3 .2.1 (or

3.2.2) formulates the backbone of the on-line estimator .

The elements of K are defined and described in Table 4 .2.2. Table 4.2.2 also

shows the values of the stoichiometric and yield coefficients used in the estimator . It

should be noted that the K matrix is known and constant .

Table 4.2.2 Definition and Values for K Matrix

4.3 Estimation Methodologies

4.3.1 On-Line Estimator Schematic

The on-line estimator consists of three major parts : fuzzy estimation for the

influent substrate and effluent total suspended solid (TSS) concentrations, estimation of

5 8

Element
(1)

Formula
(2)

Explanation
(3)

Value
(4)

KI -(1-Y)Y021/Y Y, cell yield, mass X/mass S Y=0.55
YO21 , mass 02/mass S Y021=1.42

K2 -Yo22 Y022, mass 02/mass X Yo22=1.42
K3 -1/Y
K4 0 1
K5 1
K6 -1 -1
K7 (1-Y)Yco21I' Yco21, Mass CO 2 produced/mass S converted Yco21=1 .37
Ks Yco22 Yco22, mass CO2 produced/mass X oxidized Yco22=1.95



the process states and parameter estimations . Since influent substrate and TSS are usually

not measured on-line, this estimation is an important function for the estimator . An

asymptotic algorithm was employed for state estimation, and recursive least squares

algorithm was applied for parameter estimation .

Figure 4.3 .1 shows the overall structure of the estimator . The estimator was

fuzzy estimations of
S,,,t and XTSS,t

1
SYSTEM INPUTS

measured DO,, 1 , QR c, QW, Qw.t, Oz feed,
stoichiometric . coefficients, KLai, biokinetic
parameters for model, and initial values .

comparisons plant and simulated data
with on-line estimated results .

5 9

Figure 4.3.1 On-Line Estimator Schematic



incorporated into an existing HPO simulation program and ; runs in parallel with the

simulator. The estimator and simulator share the same gas phase (02 feed, pressure, etc) .

The estimation starts with the fuzzy estimation of influent substrate and effluent TSS .

These estimates along with the DO measurements, initial conditions and other

measurements, initiate both the estimator and simulator . The estimated substrate and

biomass concentrations are used for estimating biomass growth and decay rates . Finally,

the estimated states and parameters are graphically displayed to the operator . To illustrate

the success of the estimator, we compare these estimates with both plant data and

simulated results .

4.3.2 Asymptotic and Recursive Least Squares Algorithms

An asymptotic observer algorithm (Dochain et al., 1992) was employed to

estimate biomass and substrate concentrations in each aeration stage using DO

measurement only. It partitions the equation 3 .2.1 into two parts (a, b), which correspond

to the measured and unmeasured states, respectively. The partitioned states are then

linearly combined to eliminate the non-linear vector •; by introducing an auxiliary state

vector Z;,

dZ ; _
dt

	

-D;Z; + AO (Fi,a + TR i a ) + (Fi,b + TR; .b )

	

4.3.1

b = A21 (Z ; - A14i a )
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where A l , A2 , and Ao are coefficient matrices and can be obtained from the K matrix ; 4i .a ,

b are the measured and estimated states, respectively .

This algorithm allows the partial use of equation 3 .2.1 to perform the estimation .

In this case the first three states in equation 3 .2.1 were used and partitioned . Since only

the DO state is measured, A2 matrix is not inversable. To overcome this problem, we used

the estimated • d in the parameter estimator at time t- 1 to approximate •d in the [t; vector

of equation 3 .2.1 . Therefore, the coefficient matrices in equations 4 .3.1 and 4.3.2 have

the following formats :

A0 = A

	

K
1 = _ 1

	

3

	

and A2 =1

	

4.3 .3
K1 K5

4i,a = DO;

	

and

	

~i.b = [S X]T

	

4.3 .4

We used a recursive least squares algorithm (Young, 1984, and Bastin, 1991) for

biomass growth and decay rate estimation. This algorithm is a recursive least squares

algorithm obtained by applying a linear regression technique. Based on equation 3 .2.1 the
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algorithm can be written as

•m+l =•m + TI'; ,tKII;,t (4,) {4,+1- ~ t - T[KH ; .t (4 t )•m -Dot + TR; + F; ] } 4.3 .5

17.
t

	

T2HTt

	

+ T2 KH ;,t (~, )r,.,HT, &)K T ]-' KH; .t (4, )I',,, }=

	

(I_

	

(4t )KT [%I 4.3 .6I';,t+1



where •,,,ax ; and Kdi are the i-th stage biomass maximum growth and decay rates,

respectively ; Ks, and K EO1 are the half-saturation coefficients for substrate and dissolved

oxygen concentrations, respectively . Incorporating Monod kinetics into H it is very

important to obtain good performance of the estimator. The biomass growth is subject to

the limitation of biomass, substrate and DO concentrations . The endogenous respiration is

limited by the DO concentration . This is especially true in stage 1 when the process is

operated in the reaeration mode, where less substrate is present and endogenous

respiration becomes significant.

4.3.3 Fuzzy Logic

Since influent substrate and recycle biomass concentrations are not measured on-

line, estimating these two variables becomes crucially important to support the estimator .

We used a fuzzy logic algorithm to make these predictions . Three sets of fuzzy rules have

been developed and implemented into the estimator .

The first set consists of 14 fuzzy rules used for estimating the influent substrate

concentration . For municipal wastewater, the substrate loading pattern is strongly

correlated to living habits and the characteristics of the sewer system in the service area,

such as the length of the sewer and travel time of flow . The peak substrate loading at

treatment plant usually lags the peak substrate discharge since there is a traveling time

between the plant and the resident area . The 14 rules were formulated based upon the
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observed loading pattern corresponded to the time. For example, rule 4 is "If time is

between 3 to 5 in the morning, then the influent dissolved BOD5 is extremely high" .

The other set of 30 fuzzy rules estimates the total effluent suspended solid (TSS) .

We considered the two operational parameters that may have significant influence on

effluent TSS : influent flow rate and diluted sludge volume index (DSVI) . Olsson and

Stephenson (1985) have correlated high influent flow rate and high effluent TSS

concentration . DSVI represents the sludge settling characteristics (Koopman and Cadee,

1983, and Hultman et al ., 1991) where high DSVI value usually indicates poor sludge

settling rates. Such conditions also result in high effluent TSS concentration .

Figure 4.3.2 shows the fuzzy rule relations among influent flow rate, DSVI and

effluent TSS . The horizontal axis is the influent flow rate which changes from very low to

extremely high . Similarly, DSVI changes from very low to very high on the vertical axis .

Each box inside the matrix represents the predicted effluent TSS . For example, rule 18

reads as :

"If the influent flow rate is high (H) and DSVI is normal (N), then the TSS in the

effluent is high (H)."
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N --- normal

EH

Figure 4.3.2 Fuzzy Rule Relation Matrix for Flow Rate and DSVI vs . Effluent TSS

This matrix reflects the empirical knowledge among the three parameters : higher values of

flow rate and DSVI correspond to higher effluent TSS concentration . It should be noted

that the estimator only works on each horizontal axis for certain period of time, since

DSVI is not measured on-line. Whenever the estimator receives a new DSVI value, the

estimator can function along the vertical axis corresponding to the current DSVI value. In

this way, we utilize the off-line measurement for on-line estimation.

After obtaining the effluent TSS, the recycle biomass concentration can be

obtained by making a mass balance around the clarifier as follows :
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XRt =-
	 (Qin,t + QR,t)X 4,1-(Qin,t-QW,1)X TSS,t

,
QR,t + Qw,t

4.3.10

where Q;, QR,t and Qw.t are the influent, recycle and sludge waste flow rates at time t,

respectively ; X4 ,t is the stage 4 biomass concentration, estimated from the state estimator ;

and XTsS ,t is the effluent TSS concentration obtained using the fuzzy logic algorithm

described previously.

To deal with the abnormal operations, such as sludge bulking or wet weather flow,

fuzzy TSS estimation is needed for the abnormal state . To do this, we developed the third

set of rules (10 rules) which allows the fuzzy estimate to adapt to abnormal conditions .

When predefined flow rates or DSVI limits are exceeded, the rule set is invoked and the

scaling factors are obtained. These scaling factors are then applied to the support sets for

flow rate, DSVI and effluent TSS concentration . In this way, the scale and shape of the

membership functions are changed, so that a new working estimation state is established .

We present the estimation results in detail in the Results and Discussion section.
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4.4 Results and Discussions

4.4.1 Plant Data and Model, Estimator Inputs

In order to confirm and evaluate the performance of the estimator, pilot plant data

were, as shown in Table 4.4.1 . These data are averaged values and do not represent the

process dynamics, especially when the process is under transit conditions . An alternative

way to mimic these conditions is to use a simulator to simulate the process, and then

compare the simulated results with the estimator's predictions .

Table 4.4.1 Pilot Plant Data

A structured dynamic HPO process model developed by Stenstrom (1990) was

used for this purpose . The model was well calibrated and validated by Tzeng (1992) and
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Parameter
(1)

Value
(2)

Parameter
(3)

Value
(4)

Liquid Phase Volume 7.84 m 3 Stage 1 OUR 63 mg 02/L-hr
Gas Phase Volume 1.13 m3 Stage 2 OUR 96 mg 02/L-hr
Gas Phase Pressure 3 cm w.c. Stage 3 OUR 48 mg 02/L-hr
Average Flow Rate 6 M3/hr Stage 4 OUR 41 mg 021L-hr
Recycling Ratio 52% Average Stage 1 DO 7.6 mg/L

Sludge Waste Rate 0.48 m3/hr Average Stage 2 DO 5.2 mg/L
Net Yield 0.6-0.85 Average Stage 3 DO 5.5 mg/L
MLSS 1346 mg/L Average Stage 4 DO 5.0 mg/L
MLVSS 1171 mg/L Stage 102 Purity 93.7%

Recycle Sludge Conc . 3577 mg/L Stage 2 0 2 Purity 82.8%
Recycle Sludge Conc. (VSS) 3112 mg/L Stage 3 0 2 Purity 71.0%

Influent Total BOD 5 88 mg/L Stage 4 0 2 Purity 65.6%
Influent Soluble BOD 5 39 mg/L 02 Flow In 0.62 m3/hr
Influent Total COD 217 mg/L 02 Flow Out 0.07 m3/hr



Yuan (1994) based upon this pilot plant data and another full scale HPO plant data . Good

agreement between model prediction and plant data were obtained . Table 4.4.2

summarizes the biokinetic parameters used in the model . The stoichiometric and yield

coefficients used in the estimator are shown in Table 4 .2.2 .

Table 4.4.2 Biokinetic Parameters Used in Model (After Tzeng, 1992)

Note : all time units are in hours .

The same input data were used as both simulator and estimator inputs. The pilot

plant had four stages in series and operated in reaeration mode, and the primary effluent

was fed to the second stage . The plant used surface aerators . A diurnally varying flow

rate was observed in the plant which was approximated by a sinusroid. The DO

measurements in each stage were assumed in a sinusoidal pattern due to the flow rate

pattern, with a mean equaling to the measured average plant data (Table 3), and were

corrupted with a white noise .
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Parameter
(1)

Value
(2)

Description
(3)

Parameter
(1)

Value
(2)

Description
(3)

bci 0.012 decay coeff. (hi) K025, 1 .10 02 stoich. coeff. (m/m)
bsstor 0.405 transfer coeff. K502 2.0 02, saturation coeff. (mg/L)
bstor 0.5 transfer coeff. msol 0.006 max. growth rate (hf)
ff= 0.6 max. fraction (m/m) ms,or 0.75 max. growth rate (hr-1 )
Kwor 0.05 saturation coeff. (m/m) Y,,, 0.4 active mass yield (m/m)
K.. 1 .42 02 stoich . coeff. (m/m) Y,SV 0.4 active mass yield (m/m)
KO2so1 1 .10 02 stoich. coeff. (m/m) Y2 0.15 _ inert mass yield (m/m)



4.4.2 Fuzzy Estimation of Influent Substrate and Effluent TSS

We used 14 fuzzy rules to estimate the influent substrate pattern . All the rules use

time as the rule antecedent. Figure 4 .4.1 shows the estimated soluble BOD5 for a typical
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Figure 4.4.1 Comparison of Fuzzy Estimated and Measured Soluble BOD5 for A Typical
Day

day. Very good agreement between the observed and predicted soluble BOD5 was

obtained. The number and defined ranges (support sets) of rules will vary from plant to

plant, depending upon the characteristics of the sewer system and the service area . One

should create these rules based on the observed substrate loading pattern to obtain

estimates for different sites .

Figure 4.4.2 shows the estimated effluent TSS using the fuzzy rules described in

the Fuzzy Logic section. As the influent flow rate undergoes a periodic change during 24

hours period, the TSS changes accordingly : more TSS is lost through the effluent when
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flow rate is high, and less TSS is present in the effluent when flow rate is low . Another

important parameter that greatly influences effluent TSS is the DSVI value . Two DSVI

conditions were simulated, as showed in the graph . Both DSVIs are partially within the

"normal (N)" range, but one is partially in the "high (H)" range (DSVI=125) and another

is in the "low (L)" range (DSVI=75) . As expected, the results show increased TSS with

increased DSVI. This is exactly the knowledge that implemented in the rule matrix

(Figure 4 .3 .2) .

Time (hr)

Figure 4.4.2 Fuzzy Estimation of Effluent TSS with Different DSVIs

A crucial step in making this estimation is design of the fuzzy relation matrix

(Figure 4.3.2), which should represent the best empirical knowledge among the three

parameters. Correctness of the rules determines the overall trend of the estimates (the

shape of the curves showed in Figure 4 .4.2). The shape of the curve could be completely

different if the relation matrix is defined differently than in Figure 4.3.2. The number of
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the rules and appropriately defined ranges of the linguistic variables, such as high, low,

normal, are responsible for making an accurate prediction . In principle, increasing the

number of rules can make the prediction more accurate (smoother curves), but also greatly

increases the complexity of the estimation. To properly define the range of each linguistic

variable, one should use trial-and-error to fine-tune the fuzzy estimator based upon

specific plant data.

To make the TSS estimation adaptive to the process upsets, we designed another

set of rules to obtain scaling factors, which can change the estimation state . We will

present these in the State Estimation under Abnormal Operation section .

4.4.3 State Estimation

To validate the asymptotic state estimator, we first use the exact pilot plant data

(recycle and waste sludge flow rates and concentrations) in the estimator to observe the

convergence and stability of the estimator with a large range of initial values of the

auxiliary states (Z's) . To simulate realistic inputs to the estimator for DO measurements,

influent flow rate and substrate concentration, etc ., we used sinusoidally varying functions

with means equal to the plant data and with an amplitude equal to the expected variations

in the plant data, while noises was added . Due to the absence of measured effluent

substrate data, we ran the estimator in parallel with the process simulator, and compare

the simulated and the estimated results .
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Figure 4.4.3 shows the estimated biomass and substrate concentrations for stage 2

using the plant data during a 24 hours period. We used initial values of the 72 vector

(auxiliary state vector) from 500 to -500 for both biomass and substrate . Even with this

large range of initial estimates, the convergence is fast and stable for both states . The same

convergence patterns were also observed in stages 1, 3 and 4 .

1400

1200

h 1000

N

CA

800

100

8o

20

0

	

5

‚I- zr 500

z2-- 500

Zj=- 500

I

10 15 20

I	I	 I

5

	

10

	

15

	

20

Time (hr)

Figure 4.4.3 Estimated Biomass and Substrate Concentrations for Stage 2

72



The convergence for biomass estimation is faster than for that of substrate (about 2

hours) . The relative error between the plant measured and estimated biomass

concentration is 6% . The substrate estimation converged within 3 hours . Similar results

are obtained when larger initial values of Z vector were tested .

Figure 4.4.4 shows comparisons of biomass and substrate concentrations between

the estimated and simulated results . The simulation inputs are the estimated influent
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substrate and recycling sludge concentration obtained via fuzzy estimation of effluent TSS .

In order to fine-tune the TSS estimation, the ranges of the support sets for influent flow

rate and DSVI were redefined. The estimated biomass concentration in stage 2 can track

the simulated biomass well, except the initial period of simulation (first 10 hours) . The

same pattern of biomass concentration changes can be observed for the rest of the stages .

Since we assumed influent flow rate and substrate loading are in phase, the oscillation of

biomass concentration may be caused by the sinusoidally changed loading pattern .

Significant differences between the simulated and estimated substrate

concentrations in stage 2 are presented in Figure 4 .4.4. The reason for this is the

difference between the structured and conventional models . The simulator uses the

concept of stored substrate and mass where the particular substrate are first stored (or

may be entrapped in bioflocs) as stored substrate that is slowly biodegradable, and then

the stored substrate is converted into stored mass that is readily biodegradable . This

accounts for a rapid and large amount of substrate removal after substrate mixed with

mixed liquor. This also causes the maximum oxygen demand lagging the maximum

loading. The conventional Monod kinetics have difficulty in presenting this phenomenon .

However, constructing a structure model based estimator could greatly increase the

complexity of the algorithm, and very time consuming for calculation .

74



4.4.4 Parameter Estimation

Based on equations 4.3.5 through 4 .3.9, the parameter estimation is performed

using the estimated biomass and substrate concentrations in each stage along with the

measured DOs and fuzzy estimated influent flow rate and recycling sludge concentrations .

The estimated parameters include maximum and specific growth rates, decay rate and

oxygen uptake rate (OUR) . As mentioned before, the estimator was running in parallel

with the simulator and the results are then compared .

Figure 4.4.5 shows the estimated specific growth rates, OURs, and comparison

between the estimated and simulated results in stage 2 in a 48 hour simulation period. As

evidenced in the upper graph of Figure 4 .4.5, the dynamics of biomass specific growth

rates in stages 2 and 4 are in phase with the organic loading (dotted line) : the higher the

organic loading is, the larger the growth rate . The average growth rate of stage 2 is

higher than that of stage 4 due to more substrate entering stage 2 (primary effluent is fed

into stage 2). The higher growth rate usually results in higher oxygen uptake rate . The

lower graph shows the relationship between specific growth rate and OURS for all four

stages. For stages 2, 3 and 4, since less food is fed into the sub-sequence stages, the

specific growth rates decrease from stage 2 to 4, and therefore the OURS of stages are

reduced, respectively . The high OUR occurrring in stage 1 is caused by endogenous

respiration of biomass due to the presence of very low substrate .
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The estimated OUR in stage 2 tracks the simulated OUR (middle graph) well and

the organic loading pattern (comparing middle with upper graph) . This good tracking

ability is particularly due to the correctly estimated specific growth rate . However, a time

lag (2-3 hours) between the estimated and simulated OURS were observed in stages 2, 3

and 4 . This is caused by using different models in constructing the simulator and

estimator. The simulator used a structured model in which the substrate is divided into

several pools: soluble and particulate biodegradable BOD5, soluble and particulate inert

substrate, etc. The particulate BOD5 is slowly biodegraded. This portion of BOD 5 can

account for 60 to 85% of total BOD (Tzeng, 1992 and Yuan, 1994) . The conventional

model based estimator can not represent this delay. One alternative method to overcome

this problem is to use a delay time (t-t, where 'c is the delay time) in equations 4 .3.5 and

4.3.6 .

Table 4.4.3 summarizes the simulation results. The negative values of biomass

decay rates in stages 2 and 3 indicates large biomass growth, where the growth dominates

the degradation process. This occurs because the feed point is stage 2 . The simulated and

plant measured data for OUR and biomass concentration are reasonably agree . The high

simulated and estimated OURS in stage 1 may be caused by high biomass concentrations .

77



Table 4.4.3 Summarized Simulation Results and Comparison Among Estimated,
Simulated and Measured Data

4.4.5 State Estimation Under Abnormal Operation

Process upsets, such as sludge bulking and high flow due to storm water, are

usually experienced in wastewater treatment plants . Under these abnormal operational

conditions, it is very important for the operator be aware of the key process states, in

order to change the operation mode to accommodate the upsets . A process estimator may

be useful in these circumstances . In this section we present two abnormal cases (high
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Parameter
(1)

Stage 1
(2)

Stage 2
(3)

Stage 3
(4)

Stage 4
(5)

KLa Used (hr"') 2.0 5.0 3.0 3.0
Ks Used (mg/L) 1.0 20.0 20.0 20.0
Km Used (mg/L) 0.5 0.5 0.5 0.5

Average Biomass Maximum Growth
Rate (hf') 0.013 0.133 0.091 0.081

Average Biomass Decay Rate
(hf') 0.010 -0.005 -0.003 0.006

Average Biomass Specific Growth
Rate (hf') 0.012 0.095 0.055 0.043

Average Estimated Oxygen Uptake
Rate (OUR) (mg 0 2/L-hr) 82 .1 100.9 54.2 51.5

Average Simulated Oxygen Uptake
Rate (OUR) (mg 0 2/L-hr) 80.6 100.2 63.4 45.7

Average Measured Oxygen Uptake
Rate (OUR) (mg 02/L-hr) 63.0 96.0 48.0 41.0
Average Estimated Biomass

Concentration (MLVSS, mg/L) 3447 1042 1055 1070
Average Simulated Biomass
Concentration (MLSS, mg/L) 3597 1334 1333 1327
Average Measured Biomass

Concentration (MLVSS, mg/L) 3112 1171 1171 1171



hydraulic loading and high DSVI value) using the on-line estimator to predict biomass

concentrations in each stage . All the simulation inputs are as same as those previously

presented in the state and parameter estimation sections, except influent flow rate and

DSVI, which are changed to simulate the process upsets .

The upper graph of Figure 4.4.6 shows the estimated biomass concentrations of

stages 1 and 4 when a high influent flow rate occurs at time 36 hour . Because of the

higher flow rate, the biomass in the clarifier (caused by high TSS in effluent) washes out,

increasing effluent TSS and reducing recycle sludge concentration . The average biomass

concentrations before and after high flow rate occurring for stage 4 are 1033 and 803

(mg/L), respectively . A 22% reduction of biomass concentration is estimated . Similar

reductions are observed for the other stages . If an even higher flow rate were used,

further reductions of biomass would be expected in each stage . This may cause treatment

process failure .

An alternative strategy dealing with hydraulic shock loading is to directly feed

primary effluent to the last stage of the process . In this way the biomass in stages 1, 2 and

3 can be preserved . The lower graph of Figure 4 .4.6 shows the results of applying this

strategy. When the feed point is changed from stage 2 to stage 4, the fuzzy logic sets the

biomass concentrations in stages 2 and 3 equal to the stage 1 biomass concentration . As

compared with the reaeration mode (upper graph), this strategy can increase the total

sludge mass from 8 .0 kg to 11 .7 kg in all four stages, which is a 46% increase over
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reaeration operation . This change allows the plant to retain its sludge inventory, and

greatly helps the plant recover after the high hydraulic loading ends .
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Figure 4.4.6 Estimated Biomass Concentrations Under Hydraulic Shock Loading

High DSVI usually implies poor biomass settling ability and large quantity of

biomass may be lost through the effluent. To properly apply the estimator in this situation,

the estimation of effluent TSS becomes critical important . As discussed in the Fuzzy

Estimation of Influent Substrate and Effluent TSS section, we use a separate set of rules

to readjust the rule sets that are used in normal operation . Figure 4.4.7 shows the
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performance of the adaptive rules for the estimation of TSS (dotted line) when high DSVI

occurs at time 24 hour. The effluent TSS is increases from 13 .5 to 58 mg/L . This results

in reduction of biomass concentration for all stages . As evidenced in Figure 4 .4.7, the

average reduction of biomass concentration for each stage is 40%, which may jeopardize

the treatment process and cause process failure . Effluent permit violations will almost

certainly occur.
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Conclusions

A fuzzy logic supported on-line state and parameter estimator was developed for

the high-purity oxygen activated sludge process . For state estimation, an asymptotic

algorithm was employed . A recursive least squares method was used for parameter



estimation. To compensate for unknown influent substrate and recycle biomass

concentrations, a fuzzy logic algorithm was applied to predict these unmeasured process

inputs. The estimator can predict the unmeasured substrate and biomass concentrations in

each stage using DO measurements alone . It can also estimate other important

parameters, such as maximum, specific growth and decay rates, and oxygen uptake rates

(OURs) . Knowledge of these estimated states and parameters can greatly help the

operator in making decision, as well as providing quantitative supports for advanced

process control .

The convergence of the algorithms is fast and stable even with a large range of

initial values and noisy dissolved oxygen (DO) measurements . The estimated process

parameters are agree reasonably well with both plant and simulated data . The estimator

can closely track the simulated OURs under transients conditions . It can also be used for

state and parameter estimation when certain types of process upsets occur. The overall

performance of the estimator is stable and satisfactory .

A crucial step in developing such an estimator is fuzzy estimation of effluent total

suspended solids (TSS), since TSS has great influence on the biomass inventory .

Correctness of the rules is the key for the whole estimation . Influent flow rate and diluted

sludge volume index (DSVI) are the two major parameters influencing TSS . The fuzzy

rules developed for the estimator also have self-tuning ability to accommodate the process

upsets, such as high hydraulic loading and high DSVI. The estimator utilizes the off-line

measurement (DSVI) for on-line estimation purposes .
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5. APPLICATION OF FUZZY LOGIC ALGORITHM TO GAS PHASE
CONTROLFOR HIGH-PURITY OXYGEN ACTIVATED SLUDGE PROCESS

Abstract

Conventional Proportional Integral Derivative (PID) controller and control strategies usually

cannot control process disturbances, and have difficulty in handling extreme upsets such as stormwater

flows. Four fuzzy logic control systems were developed for normal weather flow in this study . The

simulated results show that the fuzzy systems are superior to conventional control systems in reducing DO

variations, stabilizing oxygen feed and exit gas venting, and consuming energy . A direct control strategy,

using feedforward aerator speed control and feedback stage 4 DO control, is the best among the four

systems . For plants without variable speed aerators, a feedforward control based on influent flow rate to

adjust the stage 1 pressure set point, with feedback stage 4 DO control, is the best . To address the

extremes in wastewater flow due to stormwater, an adaptive fuzzy logic control system was developed .

The control system can immediately shift to a new state to adapt to large changes in influent flow rate.

The system can prevent DO depletion under wet weather conditions, and avoid oxygen wastage while

providing energy conservation during dry weather flow .

5.1 Introduction

Operation and control of the high-purity oxygen (HPO) activated sludge (AS)

process is more difficult than conventional air activated sludge process control . The major
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difficulties are 1) the complex nature of the process, with its use of high-purity oxygen,

covered aeration tanks and tanks in series ; 2) highly stochastic inputs to the process, such

as influent flow rate (including wet weather and dry weather flows) and organic loading ;

3) lags or process delays due to series operation of the stages. Lags can be especially

significant for the gas phase . The hydraulic shock loading caused by fixed-speed influent

pumps or diurnal variations in flow rate further complicate process control . The goal for

the gas phase control is to keep dissolved oxygen (DO) concentrations in the aeration

tanks as constant as possible, even with dynamic inputs, to obtain stable process

operation, and to conserve energy. Conventional PID controller and control schemes have

difficulty in meeting these goals.

Conventional PID controllers based upon stage 1 pressure have difficulty in

controlling gas phase of HPO-AS process, and can be upset by process disturbances. An

example was documented by Norman et al. (1985). When a hydraulic shock loading

occurs, the liquid level of the aeration tank increases and compresses the head space

volume, which results in a pressure increase. When the pressure sensor detects this

increase, the controller reduces the oxygen feed rate attempting to return to the set point,

which is the exact opposite of the desired control action . Conventional PID controllers

also have difficulty in tracking the oxygen demand caused by bacteria activity . The

maximum oxygen demand usually lags the peak influent flow rate (Olsson and Andrews,

1978 and 1981, Clifft and Andrews, 1986, Tzeng, 1992) . This causes oxygen depletion
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when the oxygen demand is large, and oxygen wasting when the oxygen demand is small .

It is difficult to implement this knowledge into a conventional PlD controller .

Conventional feedback control strategies also have difficulty in tracking the

oxygen demand, which can cause large variations of DO concentration in the aeration

tanks. Most commonly used control strategies include control of stage 1 total pressure

(McWhirter, 1978), and control of both stage 1 pressure and vent gas flow rate or vent

gas oxygen purity (Tzeng, 1992) . One shortcoming of these control schemes is the oxygen

losses through the cracks and pin holes in the aeration tank covers, since the pressure in

each stage must be higher than atmospheric pressure . A second shortcoming is regulating

vent gas flow rate, since only very limited pressure drop is available at the vent valve. All

these effects can produce significant DO variations in the aeration tank with diurnal

changes in loading . A new approach proposed by Clifft (1991) suggests using lower than

atmospheric pressure be applied in each stage of the reactor. An exhaust apparatus is used

in the last stage to vent exit gas . Since this produces a negative pressure (< 1 atm .) in the

head spaces, oxygen losses can be reduced . Clifft simulated this strategy for both the wet

and dry weather conditions . Less variable oxygen feed and improved control over the

conventional strategies were obtained .

To overcome the shortcomings of the conventional PID controller and control

strategies, we developed a fuzzy logic controller with proportion-like (P-like) properties,

to perform regulating control, and modified conventional strategies by introducing a

feedforward loop in the control schemes . PI-, PD- and PID-like fuzzy controllers were
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also tested . We found that these controllers have no significant improvement over the P-

like fuzzy controller, but have the disadvantages of increased complexity. Therefore a P-

like fuzzy logic controller was adopted for set point control throughout this investigation .

A feedforward loop was implemented in the control system based on the influent

wastewater flow rate, which is or can be frequently and reliably monitored at most

treatment plants . The feedforward loop consists of a group of fuzzy rules that represent

our partial knowledge of HPO-AS process . The simulation results show that feedforword

control along with the feedback control, such as stage 1 total pressure control, stage 4 DO

control, vent gas regulation, stage 4 oxygen purity control, or a combination of all forms,

can more closely track the oxygen demand with dynamic influent flow and substrate . The

diurnal fluctuation of DO concentration is greatly reduced . The fuzzy control system also

provides a stable oxygen feed and high oxygen utilization rate. The set point of stage 1

total pressure can be reduced from 1 .008 atm to 1 .004 atm or even lower, which can

reduce the oxygen losses from leaks .

To handle the extreme weather flows, such as storm and extreme dry season flows,

an adaptive fuzzy control system has been developed . This system can immediately change

the fuzzy logic controller to a new working state whenever extreme flows are

encountered . It can prevent DO depletion and oxygen wasting . If a three speed or

variable speed aerator drives (high, media and low speeds which correspond to wet,

normal and dry weather flows) are installed, the system is further enhanced and an even

better performance can be achieved .
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A dynamic, structured high-purity oxygen activated sludge process model

developed by Stenstrom (1990) was used to simulate the fuzzy control systems . The

process model was calibrated by Tzeng (1992) based on a pilot plant data and data from a

full scale plant. The calibrated model is in good agreement with both data sets . The fuzzy

logic algorithm was incorporated into the model and simulated using the pilot plant data to

observe the fuzzy control systems performance . Since the purpose of this study is to

provide a qualitative or semi-quantitative aid for design of control system for HPO-AS

process, sinusoidal inputs to the system were used to simulate the diurnal variations in

wastewater influent flows and substrate concentration .

In the following sections we first present the high-purity oxygen activated sludge

process and conventional control strategies. A fuzzy logic algorithm and the structure of

fuzzy logic controller (FLC) are discussed next . Several conventional control strategies,

modified with feedforward control, and the major rule bases are presented next, followed

by the simulation results of the control strategies and discussion . Conclusions and

recommendations for future work are presented last.

5.2 HPO Process and Conventional Controls

5.2.1 High-Purity Oxygen Activated Sludge Process

The high-purity oxygen activated sludge process is characterized by high-purity

oxygen feed, closed aeration tanks, and several tanks in series . Figure 5.2.1 shows a
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typical HPO process . Several aeration tanks are covered and arranged in series (usually 4)

to increase treatment efficiency . Ninety-seven percent or higher oxygen purity is normally

used in the feed for large plants . This feed purity results in a high oxygen partial pressure

in each stage, which greatly increases the oxygen transfer capacity (3-6 times higher than

open-air system) to the liquid phase . It is common to use higher mixed liquor DO

concentrations (6-10 mg/L) than normally found in air activated sludge processes .

Figure 5.2.1 Flow Diagram for A HPO-AS Process

Conventional control systems maintain a total pressure in stage 1 a little higher

than atmospheric, usually about 1 .008 atm or 5 to 15 cm (2 - 6 inches) water column . This

creates gas concurrent flow from one stage to another . The exit gas pressure at stage 4 is

almost equal to atmospheric pressure . Oxygen absorption and efficient oxygen utilization

produce longer gas residence times, which causes large process delays in the gas phase .
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Typical gas phase residence time in stage 1 may be 2 hours and may increase to 12 hours

in stage 4. The problem is further complicated by oxygen demand lags in the liquid phase .

When substrate loading occurs the oxygen demand does not immediately increase to the

maximum, since a finite length of time is needed to assimilate the substrate . This time

accounts for the time lags in oxygen demand . Conventional controllers have difficulty in

tracking this oxygen demand, which may result in DO oscillation.

5.2.2 Conventional Control Strategies

Figure 5.2.1 shows the measurements used in the HPO gas phase control . Stage 1

total pressure and exit gas purity are commonly used measurements in the conventional

gas phase control. Conventional control variables include oxygen feed valve opening and

exit gas flow rate. The available pressure drop is too low for conventional meters, which

can create large errors in exit gas measurement. This is one of the major problems for

conventional stage 4 control .

Two basic control loops are used in conventional gas phase control . The first is

stage 1 total pressure control to regulate the oxygen feed valve around a set point

(McWhirter, 1978). The main purpose of this control is to provide certain marginal

pressure in each adjacent stage and to prevent backflow . The advantage is fast response

and effectiveness . The second loop is the vent oxygen gas purity control by manipulating

the exit gas flow rate (Tzeng, 1992) . This control loop can increase oxygen utilization rate

and ensure sufficient oxygen supply . The major problems associated with these control
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loops are 1) the constant set points which can not address the dynamic inputs (influent

flow and substrate) to the process where oxygen depletion or over supply occurs ; 2) the

exit gas flow and available pressure drop are too small to perform accurate control (Clifft,

1991).

To enhance stage 4 control, Clifft (1991) and Tzeng (1992) suggest installing

venting equipment at the last stage . Placing a DO sensor in the clarifier or exit channel can

provide an additional closed loop for stage 4 DO control . This loop, however, cannot co-

exist with the vent gas purity loop since both controller outputs are vent gas flow rate .

5.3 Fuzzy Logic

A fuzzy logic algorithm (FLA) is a useful tool to handle processes where the

mechanism is not well understood, but where empirical knowledge about the process

exists, such as biological treatment . A fuzzy logic controller (FLC) that uses a fuzzy logic

algorithm as its control law can perform the same task as a PID controller, such as P-, PI-,

PD-, or PID-like FLC . In addition, our partial knowledge of the process can be

implemented into a FLC such that better performance of the system is obtained . A fuzzy

logic algorithm is also robust and tolerates the disturbances produced from both

measurement and process. The advantages of FLC over conventional PID controllers are

well documented by Driankov et al . (1993) .

Fuzzy logic theory was first introduced by Zadeh (1965) . Since then many

successful applications of this theory have been achieved . The applications are mainly

focused in the process control area . The first application of fuzzy logic algorithm to
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control the activated sludge process was reported by Tong et al. (1981). They concluded

that the algorithm works well and a fuzzy controller would be a useful and practical way

of regulating the activated sludge process . Another investigation was conducted by Chen

et al. (1990). They built more than 100 fuzzy rules to control the sludge recycling rate,

sludge conditioning time and air supply rate for a full scale treatment plant . Significant

improvement in process performance was achieved as compared with the conventional

control method .

In general, a fuzzy logic algorithm works in three steps : input signal fuzzification,

fuzzy reasoning and defuzzification. To avoid confusion to readers who are not familiar

with the fuzzy logic method we will not use fuzzy mathematics to define these steps .

Instead, we use the fuzzy relations between the oxygen feed valve openings and the error

of the pressure to illustrate how the FLA works (Figure 5 .3.1) .

Figure 5.3.1 shows the fuzzy rule relations between the error of stage 1 total

pressure and oxygen feed valve opening for stage 1 total pressure control . Each triangle in

Figure 1 represents a fuzzy membership function or a fuzzy set, and each set has a

linguistic meaning, such as "Large", "negative large", etc . Different shapes of membership

functions other than triangles are possible, such as a bell function (Yamakawa, 1992) .

However, the effects of different membership functions on the performance of FLC are

not well documented (Driankov and Hellendoom, 1993) . The triangle shape function is

most frequently used for process control due to its simplicity and computational ease . In

this study a triangle membership function and Mamdani composition method were adopted
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(Terano et al ., 1992). Both input and output universe discourses are normalized between -

1 and 1 .

1

IVWPLNV PV

input = -0 .3

	

0
Error on Stage 1 Total Pressure (Setpoint-Pressure Measurement)

1

Figure 5.3.1 Membership Function for Stage 1 Total Pressure Setpoint Control

Fuzzification is the process in which a crisp controller input signal is mapped into

the fuzzy membership functions such that fuzzy sets are obtained . For example, if the

pressure error is -0.3 after normalization, it intersects with both negative small and

negative large in the input discourse . Therefore two sets are obtained by this mapping as

indicated in the shadowed areas in Figure 5.3.1 .
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There are 7 rules in the stage 1 pressure controller as shown in Figure 5 .3.1 . The

following are the examples of the rules :

if the error is negative very large then the oxygen feed valve opening is very small ;

if the error is positive very large then the oxygen feed valve opening is very large .

Obviously, the error being negative very large (NVL) implies that the total pressure in

stage 1 is much higher than the set point . Therefore the oxygen feed valve opening should

be reduced in order to bring the pressure to the set point . These rules, obtained by

common sense or by experience, are the heart of the fuzzy reasoning process . Fuzzy

reasoning fires the rule based on the match up of the rule antecedence, and projects the

fuzzified sets on the corresponding output membership functions on the output discourse .

In the above example two rule antecedence are matched: error is negative large (NL) and

negative small (NS), therefore, rules 2 and 3 are fired . The two cut sets obtained in the

fuzzification process are projected on the small and near small functions of the oxygen

feed valve opening .

After fuzzy reasoning, deffuzzification is needed to convert the projected fuzzy

sets into a crisp control output. This is performed by taking weighted average of the

projected membership values in the output discourses. We employed the Center of Area

method (Lee, 1990) to perform the defuzzification in this study .

A fuzzy logic controller consists of three major parts : rule base, data support for

the rule base, and fuzzy logic algorithm . Figure 5 .3.2 shows a typical FLC structure . The
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measured, on-line process states are first normalized between 1 and -1 . The normalized

inputs are then fuzzified into fuzzy sets . The rule antecedence are searched and matching

rules are invoked, so that the membership functions on the output discourse are located .

The fuzzified sets are then projected on these output functions . Defuzzification is

performed to convert these output sets into crisp values . Finally, denormalization is used

to obtain the controlled outputs .

crisp process
state values

I
signal

normalization
-~fuzzification

rule
base

fuzzy
reasoning

C
data

support

Figure 5 .3.2 A Typical FLC Structure

A FLC setpoint controller can perform the same tasks as a PID controller, but has

other advantages over a PID controller . A conventional PID controller has difficulty in

controlling a process which involves phase changes (process lags or delays) or requires

changing from one working state to another. For example, when wet weather flow occurs,

the oxygen feed valve opening is increased to a very large value to prevent the DO

depletion. The HPO-AS process is characterized by these unwanted lags in both the gas

defuzzifica-
tion
A
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and liquid phases, and can experience stormwater wash out . To accommodate these

process disturbances, two feedforward loops were added to the conventional FLC to

increase the adaptability of the controller, which will be discussed in Control Strategies

section in great detail .

5.4 Control Strategies

The control strategies being presented in this section are based on the conventional

control schemes, which were described previously in the Conventional Control Strategies

section, and modified by introducing influent flow rate as a feedforward control .

Installation of venting equipment and placement of DO sensor in the clarifier or exit

channel are also assumed.

5.4.1 Modified Fuzzy Logic Controller Structure

Figure 5.4.1 shows the modified FLC structure. The feedforward loops are based

on the measurement of influent flow rate . The first feedforward loop is used for adjusting

controller set points, such as stage 1 total pressure, exit gas oxygen purity, stage 4 DO, or

for regulating KLa's which are directly related to the aerator motor speed . Set point

adjustment is made through a rule base which consists of 18 rules . For example, if the

influent flow rate increases, and is large, a large value of the set point of stage 1 pressure

is assigned, which results in an increase in oxygen feed . In this way the controller is more
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robust to the gas phase volume disturbance and can trace the oxygen demand. A detailed

explanation will be given in the Feedforward Control section .

	flow
rate

controller
inputs

rule-base for
adjusting setpoints

and Kla's

input signal
normali-
zation

I

setpoint
fuzzi-

fication

Figure 5 .4.1 Modified FLC Structure

An adaptive FLC can be designed in several ways . The first is to use scaling

factors. Determination of the factors can be made through a rule set. This rule set is

activated when certain predefined controller input thresholds are reached or the

constraints are violated. These factors are then applied to both the input and output

discourses. The second method is to modify the current rule base as a function of the

controller inputs. In this way the controller self-tunes itself to adapt to the changing

conditions of the process states . Other methods can be found in the literature (Bare et al .,

1988, Batur and Kasparian, 1989). In this study we applied the scaling factor method in

the second feedforward loop to address wet and extremely dry weather flows . A group of
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7 rules (in each rule set) is designed for this purpose . When influent flow exceeds the

predefined threshold, the rule set is invoked and the scaling factors are obtained . The

factors are then multiplied by both the input and output discourses so that the shape of

triangle membership function and their support set values are changed to adapt to the

process change . In this way a new operational state is established . The performance of the

adaptive FLC will be presented and discussed in the Results and Discussion section .

5.4.2 Feedforward Control

One of the major purposes of performing gas phase control is to maintain relatively

constant DO concentrations in each stage under the dynamically varying input conditions .

This goal can be realized by tracking the oxygen demand with oxygen supply . The

conventional methods have difficulty in making this match . Both the stage 1 pressure and

vent gas purity control cannot instantaneously change DO concentration due to the large

delays and long gas residence time in the gas phase . The phase change between the

substrate load and oxygen demand also deteriorates the efficiency of conventional control

strategies. However, these gas and liquid phase delays can be modeled via a fuzzy rule set .

The rules are inferenced-based on the influent flow measurement .

A feedforward loop based on the measurement of influent flow was used in this

study. It is assumed that the flow rate and substrate concentration are in phase . In fact

substrate loading may have smaller lag time than hydraulic loading as observed in the
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plants . The feedforward loop contains 18 rules . Figure 5 .4.2 shows the fuzzy rule

relation matrix

ES

trend
of floe

4 IN

DE

flow rate

VS

11.

S NS N VL EL

IN-flow increase

	

DE-flow decrease

	

ES-extremely small

	

VS-very small
S -small

	

NS -near small

	

N -normal

	

NL-near large
L -large

	

VL-very large

	

EL-extremely large

Figure 5.4.2 Fuzzy Rule Relation Matrix for Stage KLa Control

for KLa control of the 4 stages . The horizontal axis represents the magnitude of the flow

rate, such as extremely small, very small, etc . The vertical axis shows the trend of flow,

which is determined by two adjacent flow rate samples . The linguistic variables inside the

matrix represent the controller output . Rule number 9, for example, can be interpreted as

If the influent flow is Extremely Large and flow rate is Increasing then the KLa's for

each stage are Very Large .

Stage KLa is directly related to the aerator impeller speed . Increasing KLa results in

an increasing oxygen transfer rate which increases the DO concentration . Under the
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normal conditions (no delays between the peak flow and oxygen demand), rule 9 could be

written as follows :

if the influent flow is Extremely Large and flow rate is Increasing then the KLa's for

each stage are Extremely Large .

In this way, when flow rate reaches its maximum, stage KLa is also increased to the

maximum. More oxygen is dissolved into the liquid phase to prevent DO depletion .

However, the maximum oxygen demand usually occurs shortly after the peak flow, which

is not addressed by this rule. To correctly address this phenomena, an extremely large

value of KLa is given when the flow is very large and flow rate is decrease (rule 11),

instead of flow rate being extremely large (rules 9 or 10) . The shift from rules 9 to 11, for

delaying assigning the extremely large KLa value while the influent flow rate being

extremely large, addresses the fact that the maximum oxygen demand lags the maximum

loading. The same rule shift is arranged when flow is extremely small .

A similar arrangement of rule sets for adjusting controller set points in the

feedforward loops was used . Since there is large delay in operation of stages in the gas

phase, further shift in rules is required .

5.4.3 KLa Control

The mass transfer coefficient KLa can be affected by many factors . In most

situations, KLa should be directly proportional to the impeller speed (surface aerator) or

gas recirculation rate (submerged turbine aerator) . Unfortunately, fixed speed drives are
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commonly installed in HPO plants ; however, control of KLa's (impeller speed) could be a

potential control technique, and could significantly improve process performance.

Changing motor speed to match the oxygen demand can save energy and reduce DO

variation. Operating surface aerators at reduced speed also extends motor and gear box

life, while reducing maintenance. The use of KLa control by adjusting motor speed was

simulated in this work . The results are useful for the design of new HPO-AS control

system, or for retrofitting or expanding existing plants .

5.4.4 Control Strategies

As discussed earlier, three closed control loops can be formulated : stage pressure

control, vent gas purity and stage 4 DO control. In addition to these closed loops, the

feedforward loops for predicting KLa and modifying controller set points are also

discussed. The control alternatives were combined and formulated as shown in Table

5.4.1 .

In strategy 1 the KLa of each stage is adjusted based on the measurement of the

influent flow. The rule base in this loop is described earlier in this section (Figure 5 .4.2) .

To ensure sufficient oxygen supply, the oxygen feed is regulated based on stage 4 DO

error, and the exit vent gas flow is constant . Nine rules were implemented in the stage 4

DO control loop, which act like a P-controller . If the DO error is negative large, for

example, it implies that the DO concentration is higher than the set point and the valve

opening is reduced .
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Strategy 2 consists of two control loops : stage 1 pressure control and vent gas

oxygen purity control. The set point of the pressure controller is adjusted based on the

influent flow rate, and the adjusted set point is maintained by regulating the oxygen feed

valve. This feedforward loop has 18 rules, but the arrangement of the rules is different

from the KLa control in strategy 1 . In the KLa control loop the rule is shifted from left to

right (Figure 5 .4.2) because the oxygen demand lags the flow rate. The maximum oxygen

supply should be provided after the peak flow. If the reaeration mode (influent feed to

stage 2) is used, the oxygen gas flow requires time to reach the second stage, which has

the greatest demand . This delay compensates for the oxygen demand delay . Therefore, no

rule shift is made in this feedforward loop. A typical rule in this rule base may written as

follows :

if the influent flow is Extremely Large and flow rate is Increasing then the pressure set

point is Extremely Large .

The second loop is used to control the vent gas purity . The purity set point is adjusted by

the stage 4 DO error and the adjusted set point is maintained by regulating vent gas flow

rate. Figure 5 .4.3 shows this control strategy .

The same stage 1 pressure control scheme is applied to strategies 3 and 4 to ensure

oxygen supply, and addresses the delays in gas phase . The difference between strategies 3

and 4 is the schemes for last stage purity and DO controls, respectively .
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Figure 5.4.3 Control Diagram for Strategy No . 2

In strategy 3 we introduce another feedforward loop to dynamically adjust the purity set

point based on the flow rate . The set point is then traced by manipulating vent gas flow

rate. The rules in this loop are different from those in stage 1 pressure control loop . In

general, when flow is large a high oxygen purity set point is assigned to ensure large

oxygen transfer rate. A rule shift between the peak flow and the highest set point is

arranged in the rule set. This is to account for the delay in the oxygen demand . A closed

loop stage 4 DO control is arranged for strategy 4 . Strategy 5 is a conventional control

scheme without feedforward control, and using conventional PID controllers . It is used for

comparison to the first four strategies .
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5.5 Results and Discussions

5.5.1 Model Inputs and Plant Data

A structured dynamic HPO process model developed by Stenstrom (1990) was

used to simulate the performance of the control system. The model was calibrated and

validated by Tzeng (1992) based on a pilot and a full scale HPO plant data . Good

agreement between model prediction and plant data has been achieved. For detailed model

structure and bio-kenitic parameters, the readers can refer to Tzeng (1992) and Yuan

(1994) .

We used the pilot plant data as the simulation inputs. Table 5.5.1 summarizes the

pilot plant data for the simulation. The plant had four stages in series and a surface aerator

was used for each stage . The plant is operated in reaeration mode. The primary treated

wastewater was fed to the second stage . A daily sinusoidally varying flow and substrate

loading was observed in the plant . To mimic this pattern, we employed a sinusoidal

influent pattern with a mean equaling the average flow rate .

5.5.2 Normal Weather Simulation

The ultimate goal in performing gas phase control is to increase treatment

efficiency and avoid wasting energy. The treatment efficiency is affected by many factors,

such as DO concentration, oxygen uptake rate, food to organism ratio and mean cell
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residence time. For gas phase control of the HPO process, maintaining a relative constant

DO concentration at a suitable set point is required to conserve energy and avoid sludge

bulking. Energy savings can be evaluated by the total amount of oxygen feed, oxygen

utilization rate and aerator power . To evaluate the fuzzy control system performance we

chose DO concentrations in each stage, amount of oxygen feed, oxygen utilization rate

and aerator power, as well as system stability, as the performance indices of the control

systems .

Table 5.5.1 Pilot Plant Data for Simulation

1 07

Parameter
(1)

Value
(2)

Parameter
(3)

Value
(4)

Liquid Volume 7.84 m3 Stage 102 Uptake 63 mg 02/L-hr

Gas Volume 1.13 m3
Rate

Stage 2 0 2 Uptake 96 mg 02/L-hr

Gas Pressure 3 cm w .c .
Rate

Stage 3 0 2 Uptake 48 mg 02/L-hr

02 Consumption 0.16-0.29 kg 02/kg
Rate

Stage 4 02 Uptake 41 mg 02/L-hr

Average Flow rate
BOD5
6 m 3/hr

Rate
Average Stage 1 DO 7.6 mg/L

Recycle Ratio 52% Average Stage 2 DO 5 .2 mg/L

02 Flow In 0.62 SCMH Average Stage 3 DO 5.5 mg/L

02 Flow Out
(Standard m3/hr)

0.07 SCMH Average Stage 4 DO 5 .0 mg/L

02 Purity (feed)
(Standard m3/hr)

97% Stage 102 Purity 93.7%

Waste Sludge 0.48 m3/hr Stage 2 02 Purity 82.8

02 Utilization Rate 92.5% Stage 3 0 2 Purity 71.0%

Influent Total BOD5 88 mg/L Stage 4 0 2 Purity 65.6%

Average MISS 1346 mg/L Average Temperature 19.5 C



Four fuzzy control systems were simulated and compared with the conventional

strategy. The simulation results are summarized in Table 5 .5.2. Figure 5 .5 .1 shows the DO

profiles of 5 strategies and their corresponding oxygen feed during 48 hours simulation .

The DO profiles show that the fuzzy control systems with the feedforward loop to control

stage 1 pressure are superior to the conventional control strategy . The average stage 1

total pressure is reduced to 1 .004 atm, which can reduce oxygen leakage . Among the 4

fuzzy control strategies, set point control of stage 4 DO and feedforward control of stage

KLa's (strategy 1) is the best in maintaining constant DO .

The superiority of strategy 1 is partly due to its ability to manipulate stage KLa by

regulating motor speed or gas recirculation rate . Manipulating stage KLa implies directly

adjusting oxygen transfer rate . This control is not affected by the gas phase delays .

Moreover, the measurement of the influent flow rate used in the feedforward loop

provides additional information to the fuzzy rule base, which results in a relatively

constant DO, reduced oxygen feed, higher oxygen utilization rate and energy

conservation. As long as the fuzzy rules match the oxygen demand pattern, a constant DO

can be maintained . The improved DO control is most significant in stage 2, where the

variations of the influent flow and concentration have the most profound effects .
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Figure 5 .5 .1 DO Profiles and Oxygen Feed for Normal Weather Simulation

For strategies 2, 3 and 4 we assumed the aerator speed is not adjustable . The
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demand occurs by regulating the oxygen feed . These strategies are all affected by gas

phase delays ; a large change in the oxygen feed to stage 1 cannot simultaneously change

DO concentration . Furthermore, a higher oxygen partial pressure can create large driving

force, but the increased driving force may still be inadequate to offset a large oxygen

demand due to the limitation of KLa. Strategies 2, 3 and 4, which use gas phase control to

manipulate DO concentration, are inferior to the controlling KLa in each stage .

Another characteristic of strategy 1 is smaller oxygen feed and larger KLa

requirement as compared with the other strategies. The oxygen feed is 7% less than in

strategy 4, while the KLa's for stage 2, 3, and 4 are 2 .4, 1 .4 and 16% greater, respectively

(Table 5.5.2) . Reducing oxygen feed usually requires increasing in KLa's, if a specified DO

concentration is to be maintained, or vice versa (McWhirter, 1978) . There is a trade off

between oxygen feed and KLa in design and control of HPO process . As discussed earlier,

KLa control is more effective than the other indirect controls . Increasing the KLa can also

increase oxygen utilization rate with a corresponding reduction of oxygen purity in stage 4

and oxygen feed rate . This results in reduced oxygen costs . The disadvantage is the need

for variable speed aerators and increased aerator power at peak loading .

Another disadvantage of strategy 1 is the rapid manipulation in oxygen feed rate .

As compared with strategy 4 and conventional control, sharp changes in oxygen supply

are required at times 16 to 20, and 38 to 40 hours . The same phenomenon are also

observed in strategies 2 and 3 at time periods of 6 to 11, and 26 to 33 hours . The sharp

change may be caused by inaccuracies in the fuzzy membership function in the

1 1 1



feedforward loop . One method to solve this problem is to fine tune the membership

functions using trial-and-error as a optimization technique . These fluctuations are small

and would not cause instability of the system .

Significant improvement in DO control is achieved in stage 4 for all four fuzzy

control systems. A 40% reduction in DO variation is achieved as compared to the

conventional control scheme . Varying oxygen purity in stage 4 (40-60%) usually causes

larger DO fluctuations in the liquid phase, which results in wasting oxygen when DO is

high and oxygen depletion when DO is low. The DO concentration in stage 4 is also

affected by the DO fluctuation in the upstream stages . Large fluctuations of DO in the

stages prior to stage 4 create difficulty for stage 4 DO control in the conventional control

scheme (strategy 5) . For all 4 fuzzy control systems, less DO variations in stages 2 and 3

help to achieve a constant DO concentration, as evidenced in Figure 5 .5.1 .

In the conventional control scheme the exit gas flow is too small to regulate with a

single valve. With the installation of venting equipment, stage 4 DO and oxygen purity

controls are greatly enhanced. When the stage 4 DO error or oxygen purity error is

positive large, a large exit flow is required to build up higher oxygen partial pressure and

increase oxygen transfer rate. If the errors are negative, the exit gas flow must be reduced .

This knowledge is implemented in the feedback loops in all four fuzzy control strategies .

The simulation has confirmed the correctness of the knowledge and the effectiveness of

the control strategies .
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Among the fixed- KLa control strategies (2, 3, and 4), strategy 4 may be the best

choice in terms of overall performance . All three strategies have the same stage 1 pressure

control scheme and same rule base in the feedforward loop . The stage 4 feedback loop of

strategy 4 is more simple than in strategies 2 and 3, since only a DO error control is used.

Adjusting the FLC set point in the feedback loop is not required . This simplification

greatly reduces the number of rules, and a more stable oxygen feed is presented by this

strategy. In the next section we developed an adaptive system based on strategy 4 for

extreme weather flow simulation . Strategy 4 is also serves as a comparison basis for the

adaptive control system .

5.5.3 Extreme Weather Condition Simulations

Storm and extremely dry weather flows are usually experienced in wastewater

treatment plants. The DO concentration in the aeration tank is low when storm flow

occurs and the aeration tank may be near wash-out. In dry weather, DO concentration

may be high due to the small influent flow. This may result in oxygen wastage . To control

these extreme cases, the control system is required to self-adjust to different working

states. Conventional PID controller and control strategies have difficulty in satisfying this

requirement.

To accommodate the extreme weather flows, a fuzzy adaptive control system was

designed and simulated . The adaptation of the fuzzy control system was made through

adjusting the input and output membership function discourses by applying scaling factors .
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These scaling factors are obtained by firing sets of rules when certain predefined influent

flow rates are reached . There are two sets of rules that are responsible for obtaining the

scaling factors : wet-weather and dry-weather rule sets . The general knowledge in the rule

sets is simple : if the storm flow rate is large, then the scaling factor is larger ; if the dry-

weather flow is small, then the scaling factor is smaller . The adaptive system was

implemented with control strategy 4 (Table 5 .5 .1) .

The wet-weather mean flow was simulated by doubling the normal average flow

rate. A sinusoidal flow pattern was then superimposed to the mean storm flow rate . The

same procedure was applied to simulate the dry-weather flow, but the average normal

flow rate was only one-half of the mean dry-weather flow rate. A 10% reduction in gas

phase volume, caused by the higher flow rate through the tanks, was used to simulate the

gas volume disturbance for the wet weather condition . The other operating conditions are

the same as for normal weather.

Figure 5.5 .2 shows DO concentration and oxygen feed in stage 4 under the wet

weather condition. The storm event occurs at time 12 . DO concentration immediately

drops to less than 1 mg/L for control strategy 4 due to the stormwater dilution . The

average DO concentrations of Stage 2 and 4 for strategy 4 are 1 .6 and 0.6 mg/L,

respectively. Although 10% reduction in head space volume was simulated, the control

system did not reduce the oxygen feed in response to the pressure increase. This is an

improvement over conventional PID system (Clifft, 1991) . This is because the fuzzy rules

1 14



in the feedforward loop provide higher pressure set point. However, the oxygen feed is

not elevated to address the stormwater, which results in DO depletion in each stage .
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Figure 5 .5 .2 Stage 4 DO and Oxygen Feed for Wet Weather Simulation

Figure 5.5.2 also shows the DO profile and oxygen feed produced by the adaptive

control system. The average DO concentrations for stages 2 and 4 are 2 .53 and 2 .47

mg/L, respectively, which are 1 mg/L closer to the designed value than obtained by



strategy 4 (without adaptation) . Table 5.5.3 summarizes these quantitative indications of

the improved performance of the adaptive control systems. When the storm event is

detected by monitoring the large change in influent flow, the system immediately shifts the

control to the storm operation condition . Both the membership function discourses of

oxygen feed and venting motor speed in the FLCs are elevated . This results in increased

oxygen feed and oxygen partial pressure in stage 4 . The average oxygen feed valve

opening is 152.7% as compared with 77 .7% for strategy 4, which results in a 49%

increase in oxygen feed. Since the motor speed of the aerator is fixed (KLa's are the same

as the normal weather) an average 62 .9% oxygen purity occurs in stage 4. This high

oxygen purity causes oxygen wasting through the venting apparatus and lowers the

oxygen utilization rate to 60% .

To determine the impact of variable speed aerators for extreme flow conditions

with the adaptive control system, we assumed that the plant installed three speed aerator

drives: high, low and medium, which correspond to wet, dry and normal weather

operations. Figure 8 shows the simulated results with K La increased by 50% .

The average oxygen feeds for adaptive and adaptive plus changing in KLa control

systems are almost the same. The DO concentrations in stages 2 and 4 are elevated to 5 .98

and 7.08 mg/L, respectively, for the adaptive system with higher KLa. This is very close to

the 6.0 mg/L set point for each stage. The DO peaks immediately after the storm occurs

(between time 12 to 16 hours) because of the increase in oxygen feed and KLa. This could

be avoided by gradually enlarging the scaling factors in the first few hours of the storm .

1 1 6



The oxygen utilization rate is increased from 60 to 70% using this control strategy

because of the higher KLa. We used the same rules to obtain the scaling factors for both

the adaptive and adaptive plus changing KLa . The higher oxygen utilization rate could be

obtained if different scaling factors were used for the two adaptive control strategies . In

comparing with strategy 4 and the adaptive control system, the adaptive system with

control of aerator motor speed provides the best overall system performance in the storm

condition.

Extremely dry weather flow can also be experienced at treatment plants . In this

case the major goal of the control system is to reduce the oxygen feed and conserve

energy. Figure 5 .5.3 shows stage 4 DO profiles and oxygen feed for three control

strategies: strategy 4, the adaptive control system and the adaptive system with lower

KLa's. The simulated quantitative results of the three strategies are presented in Table

5 .5 .3 .

For extremely dry weather the DO concentrations of stages are very high for the

control system with little or no adaptability (strategy 4) . The average DOs in stages 2 and

4 are 12.5 and 14.9 mg/L, respectively . For the adaptive control system the DO

concentrations of stages 2 and 4 are reduced to 9 .5 and 7.8 mg/L. The adaptive control

system with fixed KLa's reduces the total oxygen feed by 10% . This results from a 12%

lower oxygen feed valve opening than in strategy 4.
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Figure 5 .5.3 Simulation Results for Extremely Dry Weather Flows

The adaptive control system plus changing KLa has a better performance than the

adaptive system with a fixed KLa. The two systems have the same oxygen feed, but a 30%

reduction in K,a was achieved by changing KLa. The DO concentrations of stages 2 and 4

are controlled at 5 .88 and 6 .01 mg/L by applying the reduced KLa, and are more closer to

the DO set points (6.0 mg/L) .
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5.6 Conclusions

Four fuzzy control systems have been developed for performing gas phase control

of the high purity oxygen activated sludge process for normal weather condition . All the

four systems have shown improved controls over the conventional PID control systems in

terms of reducing diurnal DO variations, stable oxygen feed and energy savings . Among

the four fuzzy systems the direct control method (control of aerator motor speed) based

on the influent flow rate in the feedforward loop, and in conjugation with the stage 4 DO

control (strategy 1), provides the best overall performance . For plants where a fixed

speed drive is installed, the stage 1 pressure control using the feedforward loop to adjust

FLC set point, along with the stage 4 DO feedback regulating (strategy 4), is the most

attractive choice.

Using influent flow measurement as a feedforward control method can greatly

reduce the process disturbances caused by hydraulic shock loading and increase the

robustness of the system. The knowledge for tracking oxygen demand can be implemented

through the fuzzy rules in the feedforward loop and fuzzy logic controller . These fuzzy

rules are more resistant to the gas volume disturbances and reduce DO variations in each

stage.

Aerator motor speed control is the most effective method for maintaining a

constant DO and conserving energy . This is especially true for the extreme weather flows .

Increasing KLa's allows operation at reduced total head space pressure so that the oxygen
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leakage is also reduced . Another advantage of aerator speed control is to elevate oxygen

utilization rate by reducing the wastage of oxygen through the exit gas flow .

The adaptive fuzzy control system developed based on strategy 4 showed better

performance in reducing disturbances from extreme weather flows than the initial fuzzy

system without adaptability. The adaptive control can shift operation to a completely

different state when the extreme flows are detected . An even better performance is

achieved if three speed variable frequency aerator drives are installed . The fuzzy adaptive

control system can operate the plant at high, medium and low aerator speeds to adapt to

the wet, normal and dry weather conditions .

Fuzzy rules are the backbone of the fuzzy control system . The correctness of the

rules is of crucial importance to the system performance . Further research will focus on

using neural network techniques to develop better rules .
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6. DEVELOPING A KNOWLEDGE-BASE TO FACILITATE THE OPERATION
OFTHE HIGH-PURITY OXYGEN ACTIVATED SLUDGE PROCESS

Abstract

In this paper we present a global, real time knowledge base (KB) developed specifically for the

operation of the high-purity oxygen activated sludge process (HPO-AS). The KB consists of two types of

logic trees : elementary and symptom-oriented . The logic trees are arranged in block format . More than

20 commonly used parameters in operation of HPO-AS are selected for building the logic trees . The

architecture of the KB allows the operator to efficiently perform on- and off-line diagnosis . The KB can

also be easily updated and maintained under the G2 and GDA expert system shell environment . With

minor modifications, the KB can be applied to HPO plants to accommodate site specific conditions .

6.1 Introduction

The high-purity oxygen activated sludge process (HPO-AS) has become one of the

major choices for building or updating treatment plants where the infrastructure of the

mature city is well developed and land is limited . Numerous HPO-AS treatment plants

have been built since their introduction in the late 1960's . Unfortunately, using high purity

oxygen (usually higher than 96%), high food to biomass ratio (F/M) and short hydraulic

retention times can potentially waste energy and violate discharge permits if the plant is

124



not operated properly . Operation and control of HPO-AS process have become an

important research topic, especially for very large facilities .

High-purity oxygen activated sludge processes are more complex than the

conventional air systems due to high purity oxygen feed, covered and multi-stage tanks,

and series operation of these tanks. The complexities require a higher level of operational

expertise by skillful operators . However, experienced operators are scare and new

operators require a long time to obtain needed experience . The operation is further

complicated by the fact that there are few reliable on-line measurements (Patry and

Chapman, 1989) . Operators must rely heavily on their personal experience to operate the

process. To overcome these aforementioned difficulties, a number of "expert systems"

have been developed during the last decade (Beck et al ., 1978, Johnston, 1985, Barnett et

al., 1987, Berthouex et al ., 1988, Gall and Patry, 1988, Parker et al., 1989, Koskinen,

1989, and Ozgur and Stenstrom, 1994) . These expert system applications were developed

specifically for the conventional air activated sludge process, anaerobic digester,

nitrification for refinery wastewater, or diagnosis of the presence of the toxic compounds .

They dealt with a verity of operational and control problems . However, most of the

systems function as off-line diagnosis or training tools, and few posses real time features .

An expert system designed specifically for the HPO-AS process has not been reported in

the literature .

A global and real time knowledge base (KB) is developed specifically for operation

of HPO-AS process in this study . Two kinds of knowledge are included in the KB :
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conventional diagnosis-oriented knowledge, and fuzzy logic . The fuzzy logic part is

applied only to the gas phase control. The fuzzy logic converts real time gas phase data

and operator experience into control actions . In this paper we focus our discussion on the

development of the conventional diagnosis-oriented knowledge base . We briefly

introduce how the conventional knowledge base interacts with the fuzzy logic control .

These interactions are good examples of interaction at large treatment plants .

The KB is structured in logic tree format. The logic trees are formulated based

upon the most commonly used operational parameters in an HPO-AS plant, such as sludge

age, pH, stage 1 total pressure, vent gas purity, etc. The knowledge is organized in two

categories: elementary logic trees (ELT) and symptom-oriented logic trees (SLT). The

ELTs are constructed based upon some very important operational parameters, and are

invoked in a real-time fashion. The SLTs serve as an off-line diagnosis tool to help the

operator identify the cause and solutions of the problems. These logic trees are fired

based upon the detection of abnormal parameters or upon the operators' observations .

The primary simulation results have shown that the knowledge base can provide the

operator with more information which results in improved operation . Site specific

conditions can be included in the KB with only slight modifications .

The knowledge base presented herein is one part (or called one module) of a

decision support system which is still under development . For more detailed explanations

of the system structure and the functions of each system module, the readers are referred

to Yin et al ., (1994) .
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The knowledge base is developed using G2, a real time expert system shell

(Gensym Corporation, 1992), and G2 Diagnosis Assistant (GDA), which is a separate

product of G2. The development of the knowledge base makes full use of the GDA's

features : user friendly interactions, easy updating and maintaining existing logic trees,

graphical display of logic trees and data, etc . With these functions of GDA, the

knowledge base can be easily modified and updated, and then applied to the specific

treatment plant .

In the following sections, we first briefly present a typical HPO-AS process . The

development of the knowledge base and the results are discussed next. Finally we

summarize our research in progress and suggest topics for future research .

6.2 High-Purity Oxygen Activated Sludge Process (HPO-AS)

The HPO-AS process is characterized by its use of high-purity oxygen feed,

covered aeration tanks, and parallel trains of four or more tanks-in-series . Figure 6.2.1

shows the process flow diagram for a typical HPO-AS process . The oxygen (usually

purity more than 96%, depending what kind of oxygen generation processes is used :

cryogenic or pressure swing adsorption) is fed to stage 1 . The oxygen feed rate is

controlled by the position of the oxygen feed valve (OFV) . The oxygen production rate

can also regulated by the position of the compressor suction or compressor discharge
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Figure 6.2.1 Process Flow Diagram For A Typical HPO-AS Process

valves located in the oxygen generation processes . A pressure which is slightly higher

than atmospheric (about 1.008 atm.), is produced in stage 1, and drives the gas flow from

one stage to another. The vent gas pressure is almost equal to the atmospheric pressure .

The primary effluent is usually fed to stage 1 . However, it can also be fed to stage 2, 3

and 4 to create different operational modes (e.g . step feed), depending upon operational

needs. When storm flow occurs, for example, the wastewater may be fed directly to stage

4 to prevent the sludge wash out and process failure .

In general, the technology of the HPO-AS process can be classified into two parts :

gas and liquid phases . The two phases are coupled by mass transfer of oxygen, nitrogen

and carbon dioxide. The purpose of gas phase control is to provide sufficient dissolved

oxygen concentrations (DO) for each stage. The major operational parameters for the gas

phase include stage 1 total pressure, vent gas oxygen purity, DO concentrations in each

stage, aerator impeller speed (if variable drives are used) and air recirculate rate (for
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diffused or submerged turbine aerators only) . In the liquid phase, the most commonly

used measurements are flow rate, pH and DO concentrations of each stage . The placement

of the DO probe may be varied from plant to plant (at stage 1, or stage 4, or at every

stage). In developing this knowledge base we assume that DO probe is located at stage 4 .

For treatment plants with DO probes placed other than stage 4, some minor modifications

are needed to use the KB .

One of the major differences between the open-air and HPO-AS processes is that

the operator can not directly observe the aeration tanks, since the tanks are covered. This

makes it difficult to apply the expert system to the process, as compared with the open-air

activated sludge process, since many of the operators' observations are visual. This

disadvantage is somewhat compensated by the on-line measurements, such as total

pressures and purities of stage 1 and 4, vent gas purity, etc ., and by the observations of the

aeration tank effluent in the clarifier . To perform the gas phase control, the knowledge

base outputs are connected to fuzzy logic sets (Yin and Stenstrom, 1994), which produce

quantitative outputs to the process actuators. We will discuss this in detail in the next

section .
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6.3 Knowledge Base Development and Results

6.3.1 Global Knowledge

The operators' experiences for activated sludge process can be classified into

global and local knowledge (Barnett and Andrews, 1987) . Global knowledge is the

knowledge that is universally applicable to any activated sludge processes . A good

example is pH control . Local knowledge may be changed from plant to plant, depending

upon the characteristics of the influent, and the site-specific conditions. The purpose of

this investigation is to develop such a global knowledge base for the HPO-AS process, so

that it can be applied to most HPO plants with only minor modifications .

A key step to develop such a KB is to properly select globally used and

representative parameters . Table 1 shows the parameters used in the knowledge base .

These parameters formulate the backbone of the logic trees . The control measures

displayed in Table 1 represent the manipulating devices used to perform the process

controls .

To make the knowledge base applicable to different treatment plants, the ranges of

the operational parameters shown in Table 6 .3 .1 are defined using fuzzy terms, such as

high, normal and low . These fuzzy terms can be obtained using histogram charts

(Berthouex et al ., 1988) or Bayesian statistics analysis (Duda et al ., 1976, Ozgur and

Stenstrom, 1994) based on plant data . Berthouex et al ., found that 5% of plant data

typically fall outside of the frequency distribution curve and should be considered
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abnormal operation or indicating a process upset . For HPO-AS processes we have yet to

define a cutoff to define process upsets .

Table 6.3.1 Parameters and Control Measures Used in the Knowledge Base

Note: i denotes the i-th stage of the aeration tanks

13 1

No. Liquid Phase Gas Phase Measures

1 Influent Flow Rate (IFR) 02 Feed Purity (OFP) Number of Trains

2 Sludge Age (SA) 02 Feed Rate (OFR) PE Step Feed Mode

3 Food to Biomass Ratio (F/M) 02 Production Rate (OPR) Equalization Basin (EB)

4 MLSS, Stage 1 Total Pressure (TP s1 ) Sludge Recycle Valve (SRV)

5 Dissolved 02 Cone. (DO) Vent Gas Purity (VGP) Sludge Wasting Valve

(DWV)

6 02 Uptake Rate (OUR) Vent Gas Flow Rate (VGFR) Base Addition Pump (BAP)

7 Sludge Recycle Rate (SRR) 02 Partial Pressure (P'O2 ) 02 Feed Valve (OFV)

8 Sludge Recycle Conc .(XR=Xw) Air Recirculate Rate (ARR;) Vent Gas Valve (VGV)

9 Sludge Volume Index (SVI) Compressor Suction Valve

10 Sludge Blanket Height (SBH) (CSVO2)

11 Base Addition Rate (BAR) Air Recirculate Valve

(ARV)

12 pH,

13 Temperature (T)

14 Influent BOD5 (INBOD5)

15 Effluent BOD5 (INBOD5)

16 Influent pH (p%)

17 Influent TSS (TSS)

18 Effluent TSS (TSS 0•0
19 Influent Ammonia (INNH4)

20 Effluent Ammonia (EFNH4)

21 Nitrification Rate (NR)

22 Nutrient (N-P)

23 BOD5/NH4 Ratio (B/N)



The definition of abnormal conditions and process upsets may vary from plant to plant

One approach to detect process upsets or abnormal conditions is to differentiate the

frequency distribution curve into very high, high, normal, low and very low regions, which

correspond to problem, potential problem, normal operation, etc . The disadvantage of

this method is that it makes the knowledge base more complex, requiring more computing

time .

To overcome this problem, we used the fuzzy terms (high, normal and low) in the

logic trees for both the gas and liquid phases . The fuzzy logic sets for gas phase control

(pressures, vent gas purity, stage 4 DO, oxygen feed valve and vent gas valve positions)

can be formulated based on the process simulator (Yin et al., 1994) or can be based upon

plant data. These fuzzy sets are invoked only when an increase or decrease of a certain

control action is suggested by the KB . In this way, the fuzzy logic sets produce a

quantitative control output to the process actuators, and serve as a bridge that connects

the continuously monitored signals to the expert reasoning, and then to the controlled

output. This approach greatly simplifies the knowledge base, reduces the reasoning

process and computing time (as compared with fuzzy logic reasoning), and makes the

knowledge base more globally applicable . For a detail explanation of how the gas phase

is controlled using the fuzzy logic algorithm and the simulation results, the readers are

referred to Yin and Stenstrom (1994) .
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6.3.2 Knowledge Base Structure

To efficiently perform diagnosis and organize the knowledge base, it is arranged in

logic tree format. Two separate logic trees are developed : elementary logic trees (ELTs),

and diagnosis-oriented logic trees (SLTs) . The logic trees are arranged in the block

format in GDA. These two types of logic trees are differentiated based upon their

functions and the ways that the logic trees are invoked . Figure 6.3.1 shows the structure

of the KB .

operators'
observations or off-
line measurements

on-, off-line
measurements

Figure 6 .3.1 The KB Structure

The ELTs are the basic elements in the KB . They can individually perform process

diagnosis in a real time fashion based upon the results of on- or off-line measurements, and

can also provide off-line diagnosis support to the SLTs, which are fired upon the
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operators' inquiries . Under the GDA development environment, all the rules associated

with the ELTs can be executed in a predefined time period . This time period can be the

sampling interval, or any regular time intervals depending on operational needs . The ELT

is "led" by a prime parameter, such as pH, temperature (T), vent gas purity, influent flow

rate (11hR, see Figure 6 .3.2) etc. When a measurement is obtained, the ELT is fired and

the condition of the prime parameter ( low, high or normal) is checked . Whenever

abnormal operation is detected, the logic tree is searched and the recommendations are

presented to the operator .

The SLTs are on top of ELT and are invoked based upon the operators'

observations or laboratory's analysis results . The SLTs are executed in an off-line mode .

They are led by certain process symptoms, such as high SVI, effluent BOD 5 violation, loss

of nitrification, floating sludge in the clarifier, etc . These symptoms may be caused by

several prime parameters (ELTs) . When the operator detects and enters a symptom, the

SLT is first triggered. The SLT then invokes the ELTs that may have the potential to

cause that symptom . After all possible ELTs are fired, the final results are presented to

the operator.

One of the advantages of strengthening the knowledge in ELTs and SLTs blocks is

increased flexibility. When the knowledge and rules in the KB are updated, the new

knowledge can be easily added to the KB as a new ELT . This newly established ELT can

be connected to the SLT through rules or a connecting line on the workspace in GDA .

The maintenance of the KB can also be easier since both the ELT and SLT are arranged in
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the separate workspaces, act as the individual units, and graphically display the tree

structures.

Two kinds of reasoning processes are arranged in the logic trees: regular and in-

depth. For the real time reasoning mode (for ELTs), only regular diagnosis is used . This

can greatly reduce the required computer time. An in-depth diagnosis can be performed

off-line, or in the background, or by the operator .

6.3.3 Elementary Logic Trees (ELTs)

Among the parameters listed in Table 6 .3.1, 11 parameters are selected as prime

parameters which create 11 ELTs. We believe these parameters are the most important,

problem-causing parameters . These parameters can be either measured or calculated

based upon on-, off-line measurements . Table 6.3.2 shows the selected parameters .

The ELT starts with a prime parameter which is always monitored. When an

abnormal value is detected, the ELT is fired and the reasoning process begins . Figure

6.3 .2 shows an example of the ELT for influent flow rate (IFR) . Table 6.3.3 provides the

explanations and the possible actions caused by invoking this ELT.

The influent flow rate measurement (IFR) is first matched with the 4 fuzzy sets :

low, normal, high and extremely high. If the iNR is within the normal range, no actions

will be taken . When the IFR is low, it is concluded that reducing oxygen feed and

production are required . These conclusions trigger the fuzzy logic algorithm developed in

the KB. The quantitative reduction of oxygen feed valve position is calculated . When the
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IFR is high, the oxygen feed and production can be increased in a similar way . The

operator can also be asked to put more trains into service . If storm flows occur, diversion

of part of the influent to an equalization basin (EQ) can be concluded . For treatment

plants without off-line equalization basin, part of influent can be directly fed into the last

stage of the aeration tank to protect the biomass from being washed out .

Table 6.3.2 Prime Parameters Used for ELTs
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No. Liquid Phase Gas Phase

1 Influent flow rate (IFR) Stage 1 total pressure (TP si )

2 Sludge age (SA) Stage 4 DO concentration (DO4)

3 Food to biomass ratio (F/M) (used for control of stage 4 02 purity)

4 Oxygen uptake rate (OUR)

5 Effluent ammonia (EFNH4)

6 pH

7 Temperature (T)

8 Nutrient (N-P)

9 Effluent Total Suspended Solids (TSS)



Legends :

exit

Inferencing Result Number (IR)

Reasoning Direction

Exit from the MLT

Figure 6.3.2 Influent Flow Rate ELT



Table 6.3.3 Explanations and Actions of Inferencing Results

6.3.4 Symptom-Oriented Logic Trees (SLTs)

Symptom-oriented logic trees (SLTs) are problem-oriented and are used for off-

line process diagnosis . An SLT addresses a specific process problem . It is triggered by

operator inquiry about the causes and measures of the observed problem. Table 6.3.4 lists

some of the commonly observed problems and their potential causes . It should be noted

that the observations are not limited to those shown in Table 6 .3.4. Since the SLTs and

ELTs are arranged in block format, new observations can be easily added to the

knowledge base under the GDA shell environment .
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IR Explanation (Exp) and Action (Act) IR Explanation (Exp) and Action (Act)
1 Exp: The parameter checked is normal . 5 Exp: Yes, we can divert part of the influent .

2

Act: a) Confirm that parameter ;
b) If faulty, correct & run KB again .

Exp: Influent flow rate is low . 6

Act: Divert X% of the influent to the
equalization basin .

Exp: No, we can not divert part of the influent .

3

Act: a) Confirm IFR value; if correct, do :
b) Reducing CSV O2 position ;
c) Reducing OFV position .

Exp: Influent flow rate is high. 7

Act: Change step feed mode (ST?) : feed X%
of primary effluent to the last stage .

Exp: Yes, we have an extra train available .

4

Act: a) Confirm IFR value ; if correct, do :
b) Increasing CSVO2 position ;
c) Increasing OFV position.

Exp: Influent flow rate is extremely high, 8

Act: Put that train into use .

Exp: No, we do not have an extra train
and storm water may occur .

Act: a) Confirm IFR value ;
b) Set CSV O2 & OFV to max . posi .

available .
Act: We have nothing to do about it.



Table 6.3.4 Observed Problems and Their Possible Causes

Figure 6.3.3 shows an SLT used for diagnosis of nitrification loss in an HPO-AS process .

When the operator detects high effluent NH 4 concentration, the inference engine first

searches for DO elementary logic tree to check if the DO concentration is low . If true, the

DO ELT is searched to find out the causes of the low DO and corresponding measures .

After searching the DO ELT, the sludge age ELT is then checked, as shown in dashed line

in Figure 6 .3.3. If the DO is adequate, the inference engine directly checks the sludge age.

In this way all three prime parameters are sequentially checked .
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No Observations Possible Causes
1 High SVI Filamentous: low DO, insufficient N-P, low F/M, low pH

Non-filamentous : high or low FIM, high organic or
hydraulic loading

2 BOD violation in effluent Low DO, low SA, low OUR, high organic or hydraulic
loading

3 NH. violation in effluent Low DO, low SA, low NR
4 High SS in effluent High SVI, high SA
5 Pinpoint floc High DO, high SA, over aeration
6 Straggle floc Low SA, or high F/M
7 White foam Low SA, or high F/M
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Figure 6.3 .3 A SLT Used for Diagnosing Loss of Nitrification

6.4 Summary and Future Work

A global and real time knowledge base for facilitating the operation of high-purity

oxygen activated sludge process is developed in this investigation . The knowledge base is

an integrated part of an overall decision support system for operation of the activated

sludge process, which is still under development. To construct the knowledge base, some

of the commonly used parameters for a typical HPO-AS process are selected to develop

the KB. The knowledge is organized in the elementary and symptom-oriented logic tree

formats, and graphically displayed using the G2 and GDA real time expert system shell .

This knowledge structure allows the operator to efficiently perform on- and off-line

process diagnosis . The KB also has the advantage of easy maintenance and extendibility .

The quantitative control of the gas phase is through a fuzzy logic algorithm, which
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converts the linguistic knowledge into quantitative actions . With minor modifications, the

KB can be readily applied to other HPO plants .

One major future task is to further test the knowledge base . Conflicting and ill-

defmed knowledge are usually encountered in the knowledge acquisition and knowledge

base developing processes . A pilot scale test is needed to verify the knowledge base .
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7. CONCLUSIONS

The main objective of this research is to develop a decision support system (DSS)

to facilitate the operation and control of the high-purity activated sludge (HPO-AS)

process, to provide the operator with more information when he or she is making a

decision, and to provide quantitative support for advanced controls . A framework of such

a decision support system has been developed for this purpose .

The DSS consists of 5 major components : operators' interface, data managing

utilities, process simulator, on-line state and parameter estimator, and knowledge base .

All the components are arranged in a module format and integrated via a menu system .

The system was partially implemented into a computer software package - G2 and GDA, a

real-time expert system shell . The algorithms involved in the components (simulator,

estimator and knowledge base) have been developed and thoroughly tested .

The results of the investigation show that the system is superior to a conventional

expert system since it can perform process diagnosis, and can also quantify the operation

and control. With the assistance of the process simulator, on-line estimator, data

management and knowledge base, the system can provide more information and better

choices to the operator . This information can greatly facilitate process operation and

correct decisions are more likely to be made .

A process simulator has been incorporated into the expert system shell for the

high-purity oxygen activated sludge process . The results have shown that the simulator
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can greatly facilitate the operation of an HPO activated sludge process . With the

assistance of the simulator, control actions can be evaluated and refined. The simulator

can also provide the operator with an inside view of the process . It can quantify the

process states, which is important for operation and control of an HPO activated sludge

process due to its complex nature . The simulator is a valuable tool for training the new

operators .

An on-line estimator using the asymptotic and recursive least squares algorithms,

as well as fuzzy predictions of influent substrate and total effluent suspended solids (TSS),

was constructed. The estimator can estimate the substrate and biomass concentrations,

and the maximum, specific growth and decay rates for each stage using the dissolved

oxygen (DO) measurements . The convergence of the algorithms is fast and stable even

with a large range of initial inputs and noisy DO data .

The estimated states and parameters are reasonably agreed with both the plant

measured and model simulated data . The estimated states and parameters can be plotted

and provide the operator an intuitive feeling of the on-going process . These estimated

states and parameters can also be referenced by the other system components to perform

diagnosis, simulation and fuzzy logic control . The simulator was also tested under

abnormal operation, such as hydraulic shock loading and sludge bulking . The performance

of the estimator in these circumstances is stable and satisfactory. This is primarily due to

the adaptability of fuzzy estimation of the effluent TSS .

144



Four fuzzy logic control strategies were developed to perform the gas phase

control for HPO-AS process . For normal weather flow, all four strategies are superior to

the conventional PID control systems in terms of reducing DO variations, stabilizing

performance, and conserving energy. The fuzzy knowledge built into the feedforward

loops and fuzzy logic controllers are mainly responsible for the improved performance .

To handle the extreme weather flows, an adaptive fuzzy logic control system was

developed. This system can adapt to extreme flow rates by changing the control system to

a new working state. In this way, both the DO depletion and over aeration can be avoided .

If a variable speed motor drive of the mixer is installed, even better system performance

can be achieved .

A process diagnosis knowledge base (KB) for the high-purity oxygen activated

sludge process is developed in this study . The knowledge base is arranged in logic tree

format. Two kinds of logic trees are used : elementary and sympton-oriented . The

elementary logic tree (ELT) is executed in a real time fashion, while the sympton-oriented

logic tree (SLT) is invoked based on the operator's request for certain process problems

and executed off-line. More than 200 rules were developed in the knowledge base . The

KB also has the advantage of easy maintenance and extendibility . The KB will be

implemented into the system using the GDA .
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8. FUTURE WORK

As stated in the Introduction section, the work documented in this dissertation is

the completion of phase 1 for development of the decision support system . Much work

needs to conducted in phase 2, and includes :

•

	

further testing the knowledge base described in Chapter 6, and a pilot scale test is

needed to verify the knowledge base ;

• using a neural network to train the fuzzy rules developed in this study for both the

fuzzy controllers and the prediction of the influent substrate and effluent TSS

concentrations ;

•

	

implementing the conventional and fuzzy knowledge into the system via the GDA, and

performing 0-testing;

•

	

integrating all the system components (modeles) together ; special attention should be

given to the interactions among the system modules .
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Appendix A COMPLETE LOGIC TREES OF THE KNOWLEDGE BASE FOR
THE HIGH-PURITY OXYGEN ACTIVATED SLUDGE PROCESS

This appendix contains the elementary and symptom-oriented logic trees for the

high-purity oxygen activated sludge (HPO-AS) process . The elementary logic tree (ELT)

is led by a prime parameter as showed in Table 6 .3.2, and the symptom-oriented logic tree

is led by a process symptom (Table 6.3.4) . For ELTs, the explanations of the inferencing

results are provided immediately after the logic tree graph . For detailed explanations of

how the ELTs and SLTs working, the readers are referred to Chapter 6 of this

dissertation.

It should be noted that the ELTs for pH, effluent ammonia (EFNH4) and

temperature (T) are adopted from Ozgur's work (Ozgur, 1991). These ELTs will not

present in this appendix .
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Figure A-1 Elementary Logic Tree for Influent Flow Rate (I R)
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Table A-1 Inferencing Results for Flow Rate Diagnosis

149

Explanation (Exp) and Action (Act) CF
1 Exp: The parameter checked is checked and normal .

Act: a) Confirm that parameter ; b) If faulty, correct and run KB again .
90

2 Exp: Influent flow rate is low .
Act: a) Confirm IFR value; if correct, do : b) Reducing CSV02 position ;

c) Reducing OFV position .

90

3 Exp: Influent flow rate is high.
Act: a) Confirm IFR value; if correct, do: b) Increasing CSV02 position;

c) Increasing OFV position .

90

4 Exp: Influent flow rate is extremely high, and storm water may occur .
Act: Confirm IFR value ; if faulty, correct and run the KB again .

95

5 Exp: Yes, we can divert part of the influent.
Act: Divert X% of the influent to the equalization basin .

100

6 Exp: No, we can not divert part of the influent .
Act: Change step feed mode (STP): feed X% of primary influent to the
last stage .

100

7 Exp: Yes, we have an extra train available .
Act: Put that train into use.

100

8 Exp: No, we do not have an extra train available .
Act: We have nothing to do about it.

100



Figure A-2 Elementary Logic Tree for Stage 1 Total Pressure (TPsi)
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Continued from Figure A-2
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Table A-2 Inferencing Results for Stage 1 Total Pressure (TPst) Diagnosis

Act: There might be errors on OFV, IFR and TPS 1 measurements ; confirm them
and run the system again; If correct, increase OFV by X% .

152

IR Explanation (Exp) and Action (Act) CF
1 Exp: That parameter is checked .

Act: a) Confirm that parameter value ; b) If faulty, correct and run the system again .
95

10 Exp: The influent flow rate (IFR) is low .
Act: a) There might be measurement errors on Tps , & IFR; confirm them;

b) If they are correct, increasing OFV & CSV o2 may be needed .

95

11 Exp: The influent flow rate is normal.
Act: a) Confirm IFR measurement; if faulty, correct and run the system again ;

b) A X% increase of OFV may be needed .

95

12 Exp: The influent flow rate is high.
Act: a) Confirm IFR measurement; if faulty, correct and run the system again ;

b) Increasing both OFV & CSV o2 positions by X% .

95

13 Exp: The influent flow rate is extremely high .
Act; Set OFV & CSVo2 positions to maximum for storm water.

95

14 Exp: The influent flow rate (IFR) is low.
Act Reducing OFV & CSVo2 positions by X% .

95

15 Exp: The influent flow rate is normal .
Act: a) Confirm !FR measurement; if faulty, correct and run the system again ;

b) Reducing OFV & CSV o2 positions may be needed.

95

16 Exp: The influent flow rate is high .
Act: a) Confirm IFR measurement; if faulty, correct and run the system again ;

b) If correct, compressing head space volume may occur due to high flow rate ;
c) If b) is true, keep current OFV & CSV o2 positions.

95

17 Exp: The influent flow rate is extremely high .
Act: a) Confirm IFR, Tps , measurements ; b) If correct, compressing head space

volume occurs ; c) Increasing OFV & CSV O2 positions by X% .

95

18 Exp: The 02 feed valve position (OFV) is low .
Act; a) Verify OFV measurement;

b) If correct, increasing OFV by X% .

95

19 Exp: The 02 feed valve position (OFV) is normal or high .
Act: There might be errors on OFV, IFR and TPS 1 measurements ; confirm them

and run the system again .

95

20 Exp: The 02 feed valve position (OFV) is low and normal . 95



Continued from Table A-2
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IR Explanation (Exp) and Action (Act) CF
21 Exp: The 02 feed valve position (OFV) is high .

Act: a) Confirm OFV measurement ; b) If correct, keep current position .
95

22 Exp: The compressor suction valve position (CSV o2 ) is low .
Act: a) Confirm the CSV o2 measurement;

b) If correct, increasing CSV O2 by X% .

95

23 Exp: The compressor suction valve position (CSVo2 ) is normal or high.
Act: a) Confirm CSVO2 measurement;

b) If correct, 02 leaks in stage 1 are suspected.

95

24 Exp: The air recirculating rate (ARR,) of stage 1 is low (for aerator with diffuser
only) .

Act: a) Verify TPs,, IFR and ARR, measurements ;
b) 02 leaks in stage 1 are suspected .

95

25 Exp: The air recirculating rate (ARR,) of stage 1 is normal or high (for aerator with
diffuser only) .

Act: a) Check TPs,, IFR and ARR, measurements ; b) If correct, suggest reducing
ARR, rate.

95

26 Exp: The compressor suction valve position (CSVO2) is low or normal .
Act: a) Confirm CSVO2 , IFR, OFV and TP s, measurements;

b) If correct, increasing CSV o2 position by X% .

95

27 Exp: The compressor suction valve position (CSV 02 ) is high .
Act: Confirm CSVo2 measurement; If correct, keep current high CSV O2position .

95

28 Exp: The air recirculating rate (ARR,) of stage 1 is low or normal (for aerator with
diffuser only) .

Act: a) Confirm CSVO2, IFR, OFV and TPs , measurements ;
b) If correct, increasing ARR, rate

95

29 Exp: The air recirculating rate (ARR,) of stage 1 is high (for aerator with
diffuser only).

Act: Confirm ARR I measurement; If correct, keep current high ARR, rate .

95

30 Exp: Stage 2 pressure (TPS2) is not higher that stage 1 pressure (TP s ,) .
Act: Confirm the pressure measurements ; if faulty, correct and run the system again .

95

31 Exp: Stage 2 pressure (TPS2) is higher that stage 1 pressure (TP s ,), backflow occurs .
Act: Increasing OFV and CSVO2 positions by X% .

95



Figure A-3 Elementary Logic Tree for Stage 4 DO (DO4)
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Table A-3 Inferencing Results for Stage 4 DO Diagnosis
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IR Explanation (Exp) and Action (Act) CF
1 Exp: The parameter is checked . 95

32

Act: a) Confirm that parameter value ; b) If faulty, correct and run the system
again .

Exp: Vent gas purity (VGP) is low or normal . 90

33

Act: a) Confirm VGP measurement ; b) If correct, increase vent gas valve
(VGV) by X% .

Exp: Vent gas purity (VGP) is high . 90

34

Act There might be errors on DO concentration and VGP measurements ;
re-measure DO using potable DO meter, and run the system again .

Exp: Vent gas purity (VGP) is low . 95

35

Act: There might be errors on DO concentration and VGP measurements ;
Re-measure DO using potable DO meter, and run the system again .

Exp: Vent gas purity (VGP) is normal or high . 95

36

Act: Reduce vent gas valve (VGV) by X% .

Exp: Air recirculating rate (ARR 4) of stage 4 is low or normal (only applied 95

37

for aerator with diffuser systems) .
Act: Increase air recirculating valve (ARR4 ) position by of stage 4 by X% .

Exp: Air recirculating rate (ARR 4) of stage 4 is high (only applied 95

38

for aerator with diffuser systems) .
Act: There might be errors on DO, ARR4 and VGP measurements ; remeasure

DO using potable DO meter, and run the system again .

Exp: Air recirculating rate (ARR 4 ) of stage 4 is low (only applied 95

39

for aerator with diffuser systems) .
Act: There might be errors on DO, ARR4 and VGP measurements ; remeasure

DO using potable DO meter, and run the system again .

Exp: Air recirculating rate (ARR4) of stage 4 is normal or high (only applied 95
for aerator with diffuser systems) .

Act: Reduce air recirculating valve (ARR 4 ) position by of stage 4 by X% .



Figure A-4 Elementary Logic Tree for Sludge Age (SA) Diagnosis
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Table A-4 Inferencing Results for Sludge Age (SA) Diagnosis
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IR Explanation (Exp) and Action (Act) CF
40 Exp: Sludge age (SA) is low . 95

41

Act: a) Confirm SA calculation manually ; b) If faulty, correct and run the system
again .

Exp: Sludge age (SA) is normal .
Act: a) Confirm SA calculation manually ; b) If faulty, correct and run the system 95

42

again.

Exp: Sludge age (SA) is unknown . 100

43

Act: Calculate SA ; input SA to the database ; run the system again .

Exp: Sludge age (SA) is high . 95

44

Act: a) Confirm SA calculation manually ; b) If faulty, correct and run the system
again .

Exp: Sludge waste rate (Q w) is high . 95

45

Act: a) Confirm sludge waste rate measurement; b) If correct, reducing Qw by
gpm .

Exp: Sludge waste rate (Q w) is unknown . 100

46

Act: Obtain Qw measurement; input Qw to the database; run the system again .

Exp: Sludge waste rate (Qw) is normal . 95

47

Act: Confirm sludge waste rate measurement ; If faulty, correct and run the system
again .

Exp: Sludge waste rate (Qw) is low . 95

48

Act: There might be errors on SA calculation and Q w measurement; confirm them
and run the system again .

Exp: Sludge waste rate (Q w) is high . 95

49

Act: a) Confirm measurement; b) If faulty, correct and run the system again . .

Exp: Sludge waste rate (Qw) is normal . 95

50

Act: a) Confirm measurement; b) If faulty, correct and run the system again . .

Exp: Sludge waste rate (Qw) is low . 95

51

Act: a) Confirm measurement; b) If correct, increase sludge waste rate by X gpm .

Exp: Sludge waste rate (Qw) is stopped . 100
Act; Begin to waste sludge, and set sludge waste rate to X gpm



Continued from Table A-4
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IR Explanation (Exp) and Action (Act) CF
52 Exp: Sludge wasting concentration (Xw or XR) is high. 95

53

Act: a) Confirm Xw measurement; b) If correct, reduce sludge waste rate and
increase sludge recycling rate may be needed.

Exp: Sludge wasting concentration (Xw or XR ) is normal . 95

54

Act: There might be errors Xw and Qw on measurements, and SA calculation;
confirm them and run the system again .

Exp: Sludge wasting concentration (Xw or XR) is unknown . 100

55

Act: Obtain Xw; input Xw to the database; run the system again .

Exp: Sludge recycling rate (SRR, QR) is high. 95

56

Act: a) Confirm QR measurement; b) If correct, increase SWR and reduce SRR .

Exp: Sludge recycling rate (SRR, QR) is unknown. 100

57

Act: Obtain Q R ; input Q R to the database; run the system again.

Exp: Sludge recycling rate (SRR, Q R) is normal . 95
Act: a) There might be errors on SA calculation, and Q R and Qw measurements ;

b) If correct, increasing SWR (Qw) is suggested.



Figure A-5 Elementary Logic Tree for F/M Diagnosis
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Continued from Figure A-5
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Table A-5 Inferencing Results for F/M Diagnosis

1 6 1

IR Explanation (Exp) and Action (Act) CF
58 Exp: Food to biomass ratio (F/M) is low . 95

59

Act: Confirm the measurements and calculation; If faulty, correct and run the system
again .

Exp: Food to biomass ratio (F/M) is normal . 90

60

Act: Confirm the measurements : BOD5 and MLSS; manually perform the calculation .

Exp: Cannot calculate Food to biomass ratio (F/M) . 100

61

Act: Obtain the BOD 5 and MLSS values, calculate and run the system again.

Exp: Food to biomass ratio (F/M) is high . 95

62

Act: Confirm the measurements and calculation; If faulty, correct and run the system
again.

Exp: MLSS concentration in aeration tank is high . 95

63

Act: a) Confirm MLSS measurement; b) If correct, reducing in sludge recycling flow
rate (SRR, QR) may be needed.

Exp: MLSS concentration is unknown . 100

64

Act: a) Obtain MLSS value; b) Update data base ; c) Run the system again .

Exp: MLSS concentration is normal . 90

65

Act: a) Confirm MLSS measurement; If faulty, correct and run the system again ;
b) If correct, lower organic loading may occur .

Exp: MLSS concentration is normal . 90

66

Act: a) Higher organic loading is occurring ; b) Increase sludge recycling valve (SRV)
position by X%; c) Reduce sludge wasting valve (SWV) position by X% .

Exp: MLSS concentration is unknown . 100

67

Act: a) Obtain MLSS value; b) Update data base ; c) Run the system again .

Exp: MLSS concentration is low . 95

68

Act: There might be errors on BOD S and MLSS measurements ; confirm them and
run the system again.

Exp: Sludge recycling rate (SRR, QR) is low . 95

69

Act: There might be errors on BOD 5 , MLSS and sludge recycling rate (Q R); confirm
them and run the system again .

Exp: Sludge recycling rate (SRR, QR) is unknown . 100
Act: a) Obtain sludge recycling rate measurement ; b) update data base; c) run the

system again .



Continued from Table A-5
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JR Explanation (Exp) and Action (Act) CF
70 Exp: Sludge recycling rate (SRR, Q R) is normal . 90

71

Act: a) Lower organic loading is occurring ; b) Slightly reduce sludge recycling valve
(SRV) position by X% .

Exp: Sludge recycling rate (SRR, Q R ) is high . 95

72

Act: Reduce sludge recycling valve (SRV) by X% .

Exp: Sludge recycling rate (SRR, QR) is low . 95

73

Act: a) confirm sludge recycling rate measurement ; b) If correct, increase sludge
recycling valve (SRV) by X% .

Exp: Sludge recycling rate (SRR, QR) is unknown. 100

74

Act: a) Obtain sludge recycling rate measurement ; b) update data base ; c) run the
system again .

Exp: Sludge recycling rate (SRR, Q R) is normal. 95

75

Act: a) confirm sludge recycling rate measurement ; b) If faulty, correct and run the
system again .

Exp: Sludge recycling rate (SRR, QR) is high .

76

Act: a) confirm sludge recycling rate measurement ; b) If faulty, correct and run the
system again.

Exp: Sludge wasting rate (SWR, Q,,) is normal. 90

77

Act: a) Confirm sludge wasting rate measurement ; b) If correct, increase sludge
wasting valve (SWV) by X% .

Exp: Sludge wasting rate (SWR, Qa,) is unknown . 100

78

Act: a) Obtain sludge wasting rate measurement ; b) update data base; c) run the
system again .

Exp: Sludge wasting rate (SWR, Qw) is low. 95

79

Act: a) Confirm sludge wasting rate measurement ; b) If correct, increase sludge
wasting valve (SWV) by X% .

Exp: Sludge wasting rate (SWR, Qw) is zero . 100

80

Act: Start to wasting sludge, and set sludge wasting valve (SWV) to X% .

Exp: Sludge wasting concentration (X w) is unknown . 100

81

Act: a) Obtain sludge wasting concentration ; b) update data base ; c) run the
system again .

Exp: Sludge wasting concentration (Xw) is normal. 90
Act: a) Organic shock loading is occurring; b) Increase sludge recycling valve (SRV)

position by X% .
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Continued from Table A-5

Explanation (Exp) and Action (Act)	CF
Exp: Sludge wasting concentration (X,,,) is low. 95
Act: a) Confirm sludge wasting concentration measurement ; if faulty, correct and run

the system again ; b) If correct, sludge bulking is suspected .

Exp: Sludge wasting concentration (Xe,) is unknown .

	

100
Act: a) Obtain sludge wasting concentration ; b) update data base ; c) run the

system again .
Exp: Sludge wasting concentration (Xv,) is normal .

	

90
Act: a) Confirm sludge wasting concentration measurement ; b) If correct, reduce

sludge recycling valve (SRV) position by X% .

Exp: Sludge wasting concentration (Xw) is high .

	

95
Act: a) Confirm sludge wasting concentration measurement ; b) If correct, reduce

sludge recycling valve (SRV) position by X% .

Exp: Sludge wasting flow rate (SWR, Q w) is unknown .

	

100
Act: a) Obtain sludge wasting flow rate value; b) update data base ; c) run the

system again .

Exp: Sludge wasting flow rate (SWR, Q w) is normal .

	

90
Act: a) Confirm sludge wasting flow rate measurement; b) If correct, reduce sludge

wasting valve (SWV) position by X% .

Exp: Sludge wasting flow rate (SWR, Qw) is high.

	

95
Act a) Confirm sludge wasting flow rate measurement ; b) If correct, reduce sludge

wasting valve (SWV) position by X% .

Exp: DSVI is high .

	

98
Act: a) Sludge bulking is occurring ; b) Inform the management about sludge bulking ;
c) Recommended measures : 1> Stop sludge wasting ; 2> Chlorination ; 3> addition
of polymer; 4> Run DSVI SLT to see the causes of sludge bulking .

Exp: DSVI is normal.

	

98
Act: a) Organic shock loading is occurring ; b) Set sludge recycling valve (SRV)

position to maximum .

Exp: DSVI is unknown .

	

100
Act: a) Perform DSVI test; b) Update data base ; c) Run the system again
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Figure A-6 Elementary Logic Tree for Oxygen Uptake Rate (OUR)
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Table A-6 Inferencing Results for Oxygen Uptake Rate (OUR) Diagnosis

165

IR Explanation (Exp) and Action (Act)
170 Exp: Oxygen uptake rate (OUR) is high .

Act: Confirm OUR test; if faulty, correct and run the system again .

171 Exp: Oxygen uptake rate (OUR) is normal .
Act: Confirm OUR test; if faulty, correct and run the system again .

90

172 Exp: Oxygen uptake rate (OUR) is low .
Act: Confirm OUR test ; comparing it with estimated OUR (from on-line estimator)

90

173 Exp: Oxygen uptake rate (OUR) is unknown.
Act: Performing OUR test ; update database ; run the system again .

100

174 Exp: Influent substrate concentration (INs ) is low .
Act: Confirm IN s measurement; comparing it with estimated IN s ; If large

deference presents, redo IN s measurement.

90

175 Exp: Influent substrate concentration (INs ) is normal.
Act: Confirm INs measurement; comparing it with estimated INs .

90

176 Exp: Influent substrate concentration (IN s ) is high .
Act: Confirm INs measurement; comparing it with estimated INs .

90

177 Exp: Influent substrate concentration (IN s) is unknown .
Act: Measure INs ; update database; run the system again .

100

178 Exp: Stage 4 dissolved oxygen concentration (DO 4) is low .
Act: a) Confirm DO4 measurement ; b) If correct, increasing oxygen feed in stage 1

is needed.

95

179 Exp: Stage 4 dissolved oxygen concentration (DO4) is normal .
Act: a) Confirm DO4 measurement; b) If correct, increasing oxygen feed in stage 1

may be needed.

95

180 Exp: Stage 4 dissolved oxygen concentration (DO 4) is high .
Act: a) Confirm DO 4 measurement; b) Toxic compounds may be presented in the

influent; c) Check for toxic compounds in the influent .

95

181 Exp: Stage 4 dissolved oxygen concentration (DO 4) is unknown.
Act: Measure stage 4 DO ; update database; run the system again .

100



Figure A-7 Elementary Logic Tree for Nutrient Addition
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Table A-7 Inferencing Results for Nutrient Addition Diagnosis

167

IR Explanation (Exp) and Action (Act) CF
141 Exp: Nutrient addition is lower than calculated requirement .

Act: Increase nutrient addition to X gpm .
98

142 Exp: Nutrient addition is higher than calculated requirement .
Act: a) Check nutrient analysis; b) Increase nutrient addition to X gpm ;

c) Monitor the effluent nutrient concentration .

90

143 Exp: Cannot calculate nutrient requirement .
Act: a) Obtain values for TOC ; b) Update data base ; c) Run the system again .

100

144 Exp: Nutrient addition is lower than calculated requirement .
Act: Increase nutrient addition to X gpm .

98

145 Exp: Nutrient addition is higher than calculated requirement .
Act: a) Check nutrient analysis ; b) Increase nutrient addition to X (25%)

gpm; c) Monitor the effluent nutrient concentration .

146 Exp: Cannot calculate nutrient requirement .
Act: a) Obtain values for TOC ; b) Update data base; c) Run the system again .

100

147 Exp: Nutrient addition rate is low .
Act: a) Inspect nutrient addition visually ; b) Check for empty nutrient tanks ;

c) Check for stuck nutrient tank level indicator .

90

149 Exp: Nutrient addition rate is unknown .
Act; a) Obtain values for nutrient addition rate value; b) Update data base;

c) Run the system again .

100

150 Exp: Nutrient addition rate is normal .
Act: a) Inspect nutrient addition visually ; b) Check for empty nutrient tanks ;

c) Check for stuck nutrient tank level indicator.

151 Exp: Nutrient concentrations are low .
Act: Check nutrient addition analysis .

95

152 Exp: Nutrient concentrations are unknown.
Act: a) Measure the nutrient concentrations ; b) Update data base ; c) Run the

system again .

100

153 Exp: Nutrient concentrations are normal .
Act: Check nutrient analysis .

95
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Table A-8 Inferencing Results for Effluent Total Suspended Solid (EFTSs) Control

170

ER Explanation (Exp) and Action (Act) CF
190 Exp : Effluent total suspended solids (EFTss) is low .

Act: Confirm EFTSS measurement; if faulty, correct and run the system again .
95

191 Exp: Effluent total suspended solids (EPTSS) is normal.
Act: Confirm EFTSS measurement; if faulty, correct and run the system again .

95

192 Exp: Effluent total suspended solids (EFTss) is unknown .
Act: Measure EFTSS ; update database; run the system again .

100

193 Exp: Effluent total suspended solids (EFTSS) is high.
Act: a) Confirm EFTSS measurement; b) If faulty, correct and run the system again .

95

194 Exp: Influent flow rate (JFR) is normal.
Act: Confirm EFTSS measurement; if faulty, correct and run the system again.

95

195 Exp: Influent flow rate (IFR) is high .
Act: a) Confirm EFTSS measurement ; b) If correct, high EFTSS may be caused by the

high IFR; c) Put more train into use if available.

95

196 Exp: Influent flow rate (IFR) is extremely high .
Act: a) Storm water flow may occur; b) Inform management about the storm

event.

95

197 Exp: Diluted sludge volume index (DSVI) is high .
Act: a) Confirm DSVI measurement; b) Possible sludge bulking occurring ;

c) Inform the management and take measures to control sludge bulking.

95

198 Exp: Diluted sludge volume index (DSVI) is unknown .
Act: Measure DSVI; update database; run the system again .

100

199 Exp: Diluted sludge volume index (DSVI) is normal .
Act: a) Confirm DSVI measurement; b) High EFTSS may not be caused by sludge

settling problem .

95

200 Exp: Yes, we can divert part of the influent .
Act: Divert X gpm influent flow into water holding tank for Y hours .

100

201 Exp: No, we cannot divert part of the influent .
Act: Inform the management about the extremely high flow rate that causes

high EFTSS .

100



Continued from Table A-8

17 1

IR Explanation (Exp) and Action (Act) CF
202 Exp: Sludge blanket (SB) height in the clarifier is unknown .

Act: Measure SB; update database; run the system again .
100

203 Exp: Sludge blanket (SB) height in the clarifier is normal .
Act: Confirm SB measurement; if faulty, correct and run the system again .

95

204 Exp: Sludge blanket (SB) height in the clarifier is high.
Act: a) Confirm SB measurement; b) If correct, the high EFTss may be caused by

this high sludge blanket .

95

205 Exp: Sludge waste rate (SWR) is normal .
Act: a) Confirm SWR measurement; b) If correct, increasing SWR may be needed .

95

206 Exp: Sludge waste rate (SWR) is low.
Act: a) Confirm SWR measurement ; b) If correct, increasing SWR by X gpm .

95

207 Exp: Sludge waste rate (SWR) is stopped .
Act: Start sludge waste pump, and set SWR to X gpm .

100



Figure A-9 Symptom-Oriented Logic Tree for Abnormal DSVI Observation (1)
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Figure A-10 Symptom-Oriented Logic Tree for Abnormal DSVI Observation (2)
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Figure A-11 Symptom-Oriented Logic Tree for BOD Violation
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Figure A-12 Symptom-Oriented Logic Tree for Ammonia Violation
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Figure A-13 Symptom-Oriented Logic Tree for High Effluent Suspended Solids (EF- ms)
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Figure A-14 Symptom-Oriented Logic Tree for Pinpoint Floc
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Figure A-15 Symptom-Oriented Logic Tree for Straggle Floc or White Foam
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