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ABSTRACT OF THE DrSSERTA TION 

Classification of Stormwater and Landuse 

using Neural Networks 

by 

Haejin Ha 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2002 

Professor Michael K. Stenstrom, Chair 

Stormwater runoff is a major contributor to the pollution of coastal waters in the United 

States. Differences in landuse patterns result in different pollutant concentrations, and 

therefore landuse-related control strategies are essential to control storm water pollution 

effectively. An approach that can differentiate landuse types in stormwater could provide 

opportunities for better landuse management to minimize storm water pollution. 

A neural network model was applied to examine the relationship between stormwater 

water quality and various types of landuse. The neural model can be used to identify 

landuse types for future known and unknown cases. The neural model uses a Bayesian 

network and has ten water quality input variables, four neurons in the hidden layer, and 
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five landuse target variables. The neural model correctly classified 92.3 % of test files. 

Simulations were performed to predict the landuse type of a known data set, and 

accurately described the behavior of the new data set. This study demonstrates that a 

neural network can effectively classify landuse types with water quality data. 

A similar approach was applied to two local storm water monitoring programs, which use 

human activity as measured by landuse or standard industrial classification code to 

describe storm water, in the hopes that these classifications will be useful to planners and 

regulators in abating storm water pollution. Data sets produced by the landuse based 

program were successfully identified by the neural network, and the monitoring program 

is successful in accomplishing its goals. The industrial stormwater monitoring program 

is not successful~ standard industrial classification code is not related to stormwater 

quality. Improvements are suggested, which include sample type, parameters and timing. 

Beach water quality monitoring programs were next evaluated using examples from 

Southern California. Data collection that is useful in minimizing fecal contamination 

from human and animal waste is their major objective. Lack of specificity of indicator 

organisms is the major problem, and better, real-time indicators are needed. Beach 

monitoring programs seldom collect water quality or other data that might be used with 

neural network techniques to identify pollutant sources. Methods to detect human fecal 

pollution and differentiate it from other sources such as animals are reviewed. Microbial 

methods, especially those using molecular biology, and chemical methods are reviewed. 
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At present there is no easy, low cost or rapid method for differentiating between human 

and non-human fecal contamination. It is much more likely that a combination of 

methods can be used to accurately identify human fecal pollution. 
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Chapter 1. 

Introduction 

California coastal waters are important recreational and economic resources, which make 

the safety of coastal waters of concern to both state and county health departments and 

beachgoers (Jiang et aI., 2001). The completion of wastewater treatment plants mandated 

by the Clean Water Act has reduced conventional water pollution to California's beaches 

and bays. As a result, non-point source pollution such as stormwater runoff is now a 

major contributor to the pollution of the coastal water including Santa Monica Bay, 

which is among the most severely polluted Bays in the United States (Wong et aI., 1997). 

Stormwater pollution starts with precipitation falling on the ground. When the 

precipitation exceeds the capacity of the land to retain the rainfall, stormwater runoff is 

produced. The storrnwater runoff picks up natural and human-made contaminants that 

accumulate on the ground during dry days and carries them directly into the receiving 

waters without any treatment. These contaminants may include heavy metals, pesticides, 

and other organic compounds, inorganic phosphates and nitrates, radionuclides, 

ammonia, and sediments. Stormdrains lurban runoff accounted 34% of the Beach Mile­

Day (one linear mile of beach closed for one day, or BMD) closures and warnings, and 

are a main cause of permanent beach postings at many California beaches (State \Vater 

Resources Control Board, 2000 and 2001). The problem of storm water pollution is 
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becoming worse because of population growth, which results in increased impermeable 

area. 

It is generally recognized that different human activities will create different types and 

varying concentrations of stormwater contaminants (Stenstrom et al. 1984). For example, 

runoff from transportation-associated landuse is a primary source of metals and 

hydrocarbons (LACDPW and Woodward-Clyde, 1998). Vehicles release hydrocarbons 

from leaks, engine byproducts and unburned fuel and various metals from corrosion, fuel 

combustion and wearing surfaces such as brake pads (Rogge et al. 1993; Sansalone and 

Buchberger, 1997). Therefore landuse-related control strategies are essential to control 

storm water pollution etTectively. 

An approach that can differentiate storm water from different landuse types could help to 

better understand the system, and eventually provide opportunities for better landuse 

management to control storrnwater pollution. To examine the relationship between water 

quality variables and various types of landuse, a neural network was applied. The neural 

network model can then be used to identify landuse type for future known and unknown 

cases. If the network cannot confirm the known landuse, it suggests that something else is 

occurring such a spill, leakage, illegal discharge, or that monitoring data are suspect. 

A neural network (N1\1), more specifically an artificial neural network, is a computational 

tool that operates similarly to the biological processes of human brain. NN is in the 
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"black-box" class of models. These models do not require derailed knowledge of the 

internal functions of a system in order to recognize relationships between inputs and 

outputs (EI-Din and Smith, 2002). Because of this feature, NN modeling is being 

increasingly applied in various aspects of science and engineering, including the 

environmental field. Neural networks (NNs) have been used to predict wastewater 

inflow rate (EI-Din and Smith, 2002), sanitary sewer flows (Djebbar and Kadota, 1998), 

the flux during ultrafiltration and after backwashing (Teodosiu et aI., 2000), peak 

Cr;plOsporidiuln and Giardia concentrations (Neelakantan et aI., 2001), and metal 

bioleaching in municipal sludge (Laberge et aI., 2000). [n addition, NNs have been 

applied to simulate nitrate leaching (Kaluli et aI., 1998), model solid transport in sewers 

(Gong et aI., 1996) and to identify non-point sources of fecal contamination (Brion and 

Lingireddy, 1999). [n this study, a l\~ was used to the identify landuse types as a 

function of stormwater quality data. 

Public agencies are responding by requiring storm water monitoring to satisfy the 

National Pollutant Discharge Elimination System (N'PDES) Stormwater Permit as 

authorized by the Clean Water Act. For example, the Los Angeles County Department of 

Public Works (LACDP\V) has been monitoring stormwater under the 1990 NPDES 

Municipal Permit (No. CA0061654) and later 1996 Municipal Permit (No. CAS614001) 

since the 1994-1995 wet seasons. Addition sampling is required by other agencies, such 

as the City of Los Angeles and the California Department of Transportation. Similar 

programs are underway in other areas of California and the United States. 
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The existence of stonnwater monitoring programs should represent progress towards 

achieving clean water goals; however. studies have not yet been perfonned to understand 

the utility of the current programs or to improve their usefulness. Several monitoring 

programs were evaluated to detennine if the results will be helpful to planners and 

regulators in abating stonnwater pollution. In this study, datasets from a major municipal 

program, several research projects, beach monitoring, and a large self-monitoring 

program were used. 

Study Objectives 

The primary objective of this study was to develop a neural network model to examine 

the relationships between stonnwater quality variables and landuse types. Chapter 2 

describes a model developed using a Bayesian network, which was then used to identify 

landuse types for known cases. Based on this experience, the industrial stonnwater permit 

monitoring was evaluated to determine if monitoring will be helpful to planners and 

regulators in abating storm water pollution. Chapter 3 focused on the evaluation with the 

other monitoring programs. Chapter 4 is a review of indicators of human fecal 

contamination of surface waters including beach waters, and their ability to differentiate 

human contamination from other sources, such as animals and soil. The review includes 

microbial methods, especially those using molecular biology, and chemical methods. An 

early objective of this research was to use neural networks with fecal indicators to 

identify contamination sources, but too little data are available and indicators are not 

robust. 
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Chapter 2. 

Identification of land use with water quality data in stormwater 

using a neural network 

Abstract 

To control stormwater pollution effectively, development of innovative, landuse-related 

control strategies will be required. An approach that could differentiate landuse types 

from stormwater quality would be the first step to solving this problem. We propose a 

neural network approach to examine the relationship between stormwater water quality 

anci various types of landuse. The neural network model can be used to identify landuse 

types for future known and unknown cases. The neural model uses a Bayesian network 

and has ten water quality input variables, four neurons in the hidden layer, and five 

landuse target variables (commercial, industrial, residential, transportation, and vacant). 

We obtained 92.3 percent of correct classification and 0.157 root-mean-squared error 

(RMSE) on test files. Based on the neural model, simulations were performed to predict 

the landuse type of a known data set, which was not used when developing the model. 

The simulation accurately described the behavior of the new data set. This study 

demonstrates that a neural network can be effectively used to produce landuse type 

classification with water quality data. 
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Introduction 

Stonnwater is now a major non-point source contributor to coastal water pollution 

including Santa Monica Bay, which is among the most severely polluted Bays in the 

United States (Wong et al., 1997). Stonn drains and urban runoff accounted for 34 

percent of the beach mile-day beach closures and warnings (California State Water 

Resources Control Board, 2000). The problem of stormwater pollution is becoming 

worse because of population growth, which results in increased impermeable surfaces. 

Stonnwater runoff picks up natural and human-made contaminants that accumulated on 

surfaces during the dry days and transports them to the coastal waters. 

The fonns and concentrations of contaminants from runoff are closely related to various 

types of landuse because human activity is different according to landuse. To control 

stonnwater pollution effectively, development of innovative landuse-related control 

strategies will be required. An approach that could differentiate landuse types in 

stonnwater would be a first step to solving this problem. We propose a neural network 

approach to examine the relationship between water quality variables and various types 

of landuse. The neural network model could then be used to identify landuse type for 

future cases where only the inputs are known. We could also apply the neural model to 

water quality data sets from known landuses. If the network cannot confirm the known 

landuse, it suggests that something else is occurring such a spill, leakage, illegal 

discharge, or that monitoring data are suspect. Such information could provide 

opportunities for better landuse management to control stormwater pollution. 
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A neural net\vork (l'.'N). more specifically an artificial neural network, is a computational 

tool that operates similarly to the biological processes of human brain. Many researchers 

have discussed the history, capability, kinds, structure, and learning algorithm of neural 

net\vorks (Marther and Shaw, 1993; Basheer et aI., 1996; Zhao et aI., 1997; Walley and 

Fontama, 1998; Lek et aI., 1999; Loke et aI., 1997; Laberge et aI., 2000; Gob et aI., 

2001). NN is in the "black-box" class of models. These models do not require detailed 

knowledge of the internal functions of a system in order to recognize relationships 

between inputs and outputs (EI-Din and Smith, 2002). Because of this feature, NN 

modeling is being increasingly applied in various aspects of science and engineering, 

including the environmental field. Neural networks (NNs) have been used to predict 

wastewater inflow rate (EI-Din and Smith, 2002), sanitary sewer flows (Djebbar and 

Kadota, 1998), the flux during ultrafiltration and after backwashing (Teodosiu et aI., 

2000), peak Cryptosporidium and Giardia concentrations (Neelakantan et aI., 2001), and 

metal bioleaching in municipal sludge (Laberge et aI., 2000). In addition, NNs have been 

applied to simulate nitrate leaching (Kaluli et aI., 1998), model solid transport in sewers 

(Gong et aI., 1996) and to identify non-point sources of fecal contamination (Brion and 

Lingireddy, 1999). In this study, a NN was applied to the identification of landuse types 

as a function of stonnwater quality data. 

Our objectives were to develop a neural network model to examine the relationships 

between stonnwater quality variables and landuse types. We evaluated three approaches 
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: multi-layer perceptron. radian basis function and bayesian network. A model was 

developed using the bayesian network, which was then used to identify landuse types for 

known cases. Future applications will investigate unknown cases where only the inputs 

are available. 

Overview of Bayesian Networks 

A Bayesian Network (BN) is the application of probability theory in Bayesian statistics to 

a multi-layer perceptron (MLP), the most common supervised neural network. Therefore, 

a BN has many common features with MLP. The major difference is the way error is 

measured during training. In an MLP, only the weights between neurons are adjusted 

during training. In a BN, both these weights and a set of parameters can be altered to 

reduce error measure during training. This enables BN to produce a generalized model 

without a validation data file, which is particularly useful for relatively small data sets 

such as ours. 

The BN used here is a three-layered, supervised feed-forward neural network with back­

propagation algorithm. For supervised learning, the network can be trained using both 

input and target values. After training, when we present only the input values to the 

neural model, it will compute an output value that approximates the target value. In a 

feed-forward neural network, feed back loops are absent. Information is processed in a 

forward manner only from input to output, and thus it always gives the same output result 

for the same input. In a back-propagation algorithm, the prediction error is generated at 
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the output layer of neurons and then propagates backwards through the network. It 

consists of an input layer. output layer and a hidden layer between the input and output 

layers. The number of neurons in the input layer is usually equal to the number of input 

variables. The number of output layer neurons is usually the same as the target variable 

number. The number of neurons in the hidden layer is determined to optimize 

performance. 

Data Collection 

Development data 

Development data are used for building a neural network model. We selected the Los 

Angeles County Department of Public Works (LACDPW) landuse stormwater 

monitoring data as development data because they are representative of this study 

purpose and are produced by a well-regarded agency. The LACDPW has been 

monitoring landuse storm water in the County of Los Angeles since 1996. They provide 

flow and water quality data for various types of landuse (commercial, educational, 

industrial. high-density residential, multi-family residential, mixed residential. 

transportation, and vacant) for every storm event. Flow-weighted composite samples 

were analyzed for many water quality variables including indicator bacteria, general 

minerals, nutrients, metals, semi-volatile organic compounds, oil and grease and 

pesticides. Records of the storm water quality data in various types of landuse were 

obtained online (http://www.ladpw.orglwmdlNPDES/report_directory.cfm) for the \998-
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2001 seasons, and from the Los Angeles County Stormwater Monitoring Report. for the 

1996-1998 seasons (LACDPW, 1997: LACDPW, 1998). 

The development data set was divided into three data files: a training file, a validation 

file, and a test file. Validation data were used to monitor the neural model's performance 

during training to prevent problems such as overtraining. Test data were used to measure 

the performance of the trained neural model. 

Run data 

Run data, similar to test data, but not used when developing a neural network model, 

were used to test the developed model's suitability for identifying landuse types. 

Highway monitoring data being collected in our laboratory were used as a run data set. 

Three sites from interstate highways near UCLA have been monitored since 1999 

(Stenstrom et aI., 2000; Stenstrom et aI., 2001). The sites in Los Angeles are adjacent to 

the 101 and 405 freeways, which are among the busiest freeways in the United States 

(280,000 to 330,000 average daily traffic). Runoff samples during storm events were 

analyzed for a large suite of parameters such as indicator bacteria, general minerals, 

nutrients, metals, polycyclic aromatic hydrocarbons, and oil and grease. 
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Data Screening and Preprocessing 

Target variables and input variables 

Commercial, industrial, residential, transportation, and vacant landuse types were chosen 

as the target variables because they cover most types of landuse in urban areas. For 

residential landuse, we selected high-density residential sites because they have been 

monitored longer than the multi-family residential and mixed residential sites. Table 2.1 

shows the landuse distribution in their sampling sites by LACDPW. The Santa Monica 

Pier site, representative of commercial landuse, was not monitored in the 1999-2001 

storm seasons because the City of Santa Monica was constructing a storm water treatment 

plant. 

Among approximately 90 water quality variables in stormwater, 42 candidate variables 

were initially selected because they were detected in more than 25 percent of the events. 

After clipping the data cases that contained missing values, 184 samples or cases 

remained. We next considered the maximum number of input variables within the 

available data set to develop a general neural network model. The following rough rule 

was used: '"The minimum number of training data cases should be ten times the total 

number of input variables and target variables" (SPSS, 1997). Taking into account the 

five target variables and 85 percent of the available data for the training file, the 

maximum number of input variables was ten. Among the 42 water quality variables, the 

ten input variables were selected using discriminant analysis as a preliminary 
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classification approach (Systat 9. SPSS Inc .. Chicago, IL). Discriminant analysis was 

used initially to detennine the most useful variables for classifying the target classes. We 

selected the top ten most useful variables among 42 water quality variables. The selected 

ten input variables were Potassium, Sulfate, Alkalinity, Dissolved Phosphorus, Nitrite-N, 

Total Dissolved Solids, Volatile Suspended Solids, Suspended Solids, Dissolved Copper, 

and Dissolved Zinc. 

Clipping outliers 

In a preliminary test, poor classification was obtained between target variables and the 

output because of data cases that contained unusually high values in the input variables. 

These high values were identified as outliers and the data cases with outliers we removed 

(clipped) from the data sets. Outliers were defined as any observation exceeding ten times 

its median value in the whole range of the data set. We found 11 data cases that 

contained outliers. After clipping, 173 stonn events from the five landuse monitoring 

stations remained for the 1996-2001 seasons. The descriptive statistics of the input 

variables according to their landuse after clipping outliers are shown in Table 2.2. 

Data file and multiple data sets 

The 173 cases were divided into three data files. The training file contained 121 cases or 

70 % of the total cases; the validation file contained 26 cases or 15% of the total cases, 

which left 26 cases or 15 % of the total cases for the test file. The cases for each file 

were selected randomly from the overall data set. For the BN, which does not require a 
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validation tile. the data that would have been used for validation was grouped with the 

training data. 

Lack of data is a common problem in developing neural networks and data sets with a 

relatively small number of data cases such as ours are a typical. To partially overcome 

this problem. additional combinations were created by randomly selecting different new 

test data sets from the original data set. The remaining 85% of the data were then used as 

training and validation files. Three data sets were created, called A. B and C, from the 

original data and were used to measure the overall performance of the neural network 

model. 

Building a neural network model 

Selection of neural network 

In this study, Neural Connection 2.1 (SPSS Inc. and Recognition Systems Inc, Chicago, 

IL) was used to build the neural model. Three supervised, feed-forward neural networks, 

namely, Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Bayesian 

Network (BN) were used. In the early work, the neural networks were trained at their 

default settings. Both MLP and BN used eight neurons in their hidden layer. The BN 

automatically normalizes the input data. The RBF network started with 5 centers, and 

increased in steps of 5 centers to 50 centers using a spline radial function. The 

performance of the networks was measured using correct classification in percentage and 

the Root-Mean-Square Error (RMSE), which is the mean square difference between the 
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target and the actual output value. An ideal neural network model would correctly 

classify all cases and have zero RMSE. The overali performance of the neural networks, 

as the average over each of the three data sets, is presented in Fig.2.l. The best 

performing network in the preliminary evaluation was BN. For this reason, BN was 

selected for further development. 

Architecture of the neural model 

For all cases the number of neurons in the input layer was equal to the number of water 

quality input variables and the number of neurons in the output layer was equal to the 

number of landuse types. In many problems, a second hidden layer does not produce a 

large improvement in performance, and varying the number of hidden neurons in the one 

hidden layer is usually sufficient (EI-Din and Smith, 2002). We evaluated the benefits of 

one to nine hidden neurons. The model had a significant improvement in the RMSE and 

classification accuracy as the neurons were increased from one to four. After four 

neurons, additional neurons had no benefit (see Fig. 2.2). In general, the number of 

neurons in the hidden layer should be as low as possible to make a generalized neural 

model. Therefore, the model that utilizes four neurons in the hidden layer was chosen to 

be the final model. T~e BN model had nineteen total neurons: ten in the input layer, four 

in the hidden layer, and five in the output layer. 

Figure 2.3 shows the error reduction as a function of the number of training epochs. A 

stopping criterion was established based upon error improvement. If the reduction in 
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RlvIS E over a tixed number 0 f epochs was less than 0.0 l, training was stopped. The fixed 

number of epochs was varied from 10 to 100, and 80 epochs was selected. 

Results of the final model 

The performance of the final neural model on the training and test data files in RMS error 

and correct classification is shown in Table 2.3. In general, the statistical quality of the 

neural model was high. We obtained 92.3 and 94.5 percent overall correct classifications 

and 0.157 and 0.154 overall RMSE on the test and training files, respectively. 

The overall performance on each target landuse type in RMSE and correct classification. 

measured as the average over each of the three data sets, is shown in Fig.2.4. and Fig. 2.5. 

respectively. Vacant landuse type had the lowest value of RMSE among the five landuse 

types and 100 percent in overall correct classification on test and training files. The result 

indicates that vacant land is the most distinct among the five landuse types based on 

water quality data. This might be expected since there is almost no human activity to 

create contaminants. 

Analysis of the final model 

Sensitivity of input variables 

To evaluate the sensitivity of the model to different water quality variables, each variable 

was omitted C"leave-one-out method") and the network was retrained with all other 

conditions as before. In this way the impact of each variable on the fmal result can be 
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evaluated. The percent difference in RNISE between ten and the nine input variables is 

shown in Table 2.4. If the error increases after removing a variable, it means that the 

removed variable was helpful in improving classification. If the error is unchanged, it 

means that the variable was not helpful for classification. A negative percentage in Table 

2.4 suggests that the variable was harmful and might not be related to land use. All cases 

in Table 2.4 are positive except sulfate in dataset A. The neural model was the most 

sensitive to the level of dissolved copper, and the least sensitive to the level of sulfate. 

The values shown in Table 2.4 are useful in that they suggest ways of differentiating 

landuse in future monitoring programs. 

Simulation 

The utility of a neural network model, and our reason for developing it, is to confirm 

landuses from a large number of datasets. An agency seeking to reduce stormwater 

pollution can review monitoring data from known land uses and compare them to 

benchmark data used in developing the neural network. If the network cannot confirm the 

known landuse, it suggests that something else is occurring or that monitoring data are 

suspect. Such a tool could be useful watershed-based approaches to stormwater 

management. Large data sets could be screened to identify opportunities for water 

quality improvement. 

To demonstrate this concept, simulations were carried out on a known data set (motor 

vehicle highways) that was not used in developing the modeL Table 2.5 shows the 
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monitoring data for the selected input variables. All data were from flow-weighted 

composite samples for 2000-200 I wet season. and collected by our laboratory. Two 

variables present in the LACDPW. potassium and total dissolved solids (TDS), were not 

collected as pan of the highway monitoring program. The two missing variables provide 

an opportunity to evaluate classification sensitivity by substituting hypothetical data for 

the missing values. 

The model correctly classifies the land use ifTDS and potassium concentrations typically 

associated with highway land use are substituted into the data set for the missing values 

for all samples except S3-ES and S3-E6. By substituting a large range of possible values, 

the sensitivity of classification can be observed. Figure 2.6 shows the changes in 

classification caused by changing TDS and potassium concentrations. Low values of 

TDS and potassium are associated with transportation land use. If potassium 

concentrations increase, the classification changes to commercial and finally residential 

landuse. The TDS concentration "pushes" the classification towards commercial at 

higher concentrations. 

Samples S3-ES ad S3-E6 in Table 2.S did not classify correctly with typical values of 

TDS and potassium; they were incorrectly classified as industrial, commercial or 

residential. The most likely reason is the low values of copper and zinc. To test this 

suggestion, the values of copper and zinc were increased. The classification changes to 

transportation as the copper, or copper and zinc concentrations are changed to 22.S J.lgll 
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and 112.7 J.lg/l. respectively. The classification changes to industrial if only the zinc 

concentration is changed. 

The simulation demonstrates the utility of the model for understanding why land use 

classifications change as a function of water quality variables. Further usage of the 

model may be helpful in identifying "problem" sites or developing a better classification 

system - a system that creates landuse types based upon water quality as opposed to 

observable human activities or the needs of public agencies (e.g. tax records). 

Conclusions 

A neural network model for identifying the various types of landuse with stormwater 

quality data was successfully developed using LADPW stormwater monitoring data, 

collected during 1996-200 I. A Bayesian Network model was best and had ten water 

quality input variables, four neurons in the hidden layer and five landuse target variables. 

The statistical quality of the neural model was high. We obtained 92.3 and 94.5 percent 

of correct classitication, and 0.157 and 0.154 in the RMSE on the test and training files 

(173 cases). The model was used as a simulation tool to predict landuse type from 

highways storm water monitoring data that was not used to develop the model. The 

simulations showed the sensitivity to classification and demonstrated a method to identify 

water quality variables that affect classification. 
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This research has demonstrated that a neural network can be used to classify landuses 

from water quality data. and that the technique can be automated. An approach for 

identifying opportunities for water quality improvement could be developed using this 

concept. Such information could provide opportunities for better management to control 

stormwater pollution. 
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Table 2.1. Land Use distribution of the monitored stations by LACDPW 

Drainage Area 
Station Name 

Santa Monica Pier 

Sawpit Creek 

Project 620 

Dominguez Channel 

Project 1202 

Land Use Distribution • (%) 
(Square km) 

0.33 CommerciaVRetaii (53.6) 

Other (36.7) 

13.41 

0.49 

3.65 

2.77 

Multi-Family Residential (5.1) 

Transportation (4.6) 

Vacant (98) 

Other (2) 

High-density Residential (100) 

Transportation (75.2) 

Light Industrial (17) 

Other (7.1) 

High Density Residential (0.6) 

Retail/Commercial (0.1 ) 

Light Industrial (67.1) 

Other (26.9) 

Transportation (4.7) 

Vacant (1) 

Retail/Commercial (0.3) 

.L Bold letter indicates the major landuse in the station. 
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-------------

Table 2.2. Continued 

Potassium Sulfate Alkalinity Dissolved Nitrite-N Total Suspended Volatile Dissolved Dissolved 
(mg/I) (mg/I) (mg/I) Phosphorus (mg/I) Dissolved Solids Suspended Copper Zinc 

Land Use (mg/I) Solids (mg/I) Solids (ug/I) (ug/I) 
(mg/I) (mg/I) 

-----~--

n 56 56 56 56 56 56 56 56 56 56 

Min. 0 1.59 7.7 0 0 IX 15 4 0 0 

Max. 5.66 37 58.3 1.0H 0.359 IHO 3X4 136 95 724 
Transport 

Median 1.9X 8.29 16.3 0.318 0.081 56 59 25 28.8 199.5 

Mean 2.2 9.52 19.76 0.37 0.1 61.75 83.04 32.14 32.93 210.50 

Std. Dev. 1.13 6.97 9.36 0.26 0.07 30.24 71.46 24.4 21.58 137.91-1 

n 30 30 30 30 30 30 30 30 30 30 

Min. 1.05 10.9 148 0 0 206 3 0 0 0 
I"') 

"'" Max. 3.48 31.1 200 0.316 0.043 264 567 76 0 
Vacant 

Median 2.385 16.2 175 0 0 242 28.5 15.5 0 0 

Mean 2.4 19.19 174.8 0.03 0.01 241.27 113.1 19.77 0.07 0 

Std. Dev. 0.55 7.08 12.71 0.06 0.02 14.3 155.56 18.06 0.25 0 



Table 2.2. Descriptive statistics of the input variables according to their land use after clipping outliers 
(0 indicated level below detection limit) 

Potassium Sulfate Alkalinity Dissolved Nitritc-N Total Suspended Volatile Dissolved Dissolved 
(111g/1) (mg/I) (mg/I) Phosphorus (111g/1) Dissolved Solids Suspended Copper Zinc 

Land Use (111g/1) Solids (111g/1) Solids (ug/I) (ug/l) 
(mg/I) (111g/1) 

Detection Limit 0.1 4 0.05 0.1 2 2 5 50 

n 20 20 20 20 20 20 20 20 20 20 

Min. 0.96 3.59 15.4 0.083 0 48 14 9 0 0 

Commercial 
Max. 9.3 89.3 122 0.66 0.283 514 170 66 22.7 450 

Median 3.195 16 28.1 0.186 0.076 113 70 35.5 7.7 145 

Mean 3.59 29.06 42.19 0.26 0.1 I 187 77.85 34.5 9.63 144.1) 

Std. Dev. 2.22 27.39 30.50 0.17 0.08 153.10 45.05 16.02 6.75 113.52 
I-.J 
VI 

23 23 23 23 23 23 23 23 23 23 n 

Min. 1.29 2.26 7.7 0.055 0 22 14 12 0 () 

Max. 12.5 34 127.2 0.845 0.505 302 531 200 26.2 127 
Residential 

Median 3.08 5.19 15.9 0.31 0.052 46 74 42 6.97 (J 

Mean 4.30 7.51 25.99 0.37 0.09 70.44 119.74 57.7 7.22 13.5 

Std. Dev. 3.32 7.43 27.43 0.22 0.12 64.64 122.68 47.17 7.78 32.59 

n 44 44 44 44 44 44 44 44 44 44 

Min. 0 1.9 5.3 0 0 28 16 6 0 (J 

Max. 7.66 6l).9 164 0.73 0.36 438 596 157 39.7 112X 
Industrial 

Median 2.205 7.945 20.15 0.201 0.062 74 12l) 45 9.665 301.5 

Mean 2.61 11.4 26.5 0.22 0.09 88.27 172.48 46.59 11.27 333.l)1 

Std. Dev. 1.57 11.6 24.58 0.17 0.08 69.21 109.52 27.74 9.47 240.1)4 



Table 2.3. Result of the neural model on the test and training files. 

Correct Classification (%} RMS error 
Data set 

Test file Training file Test file Training file 

Data set A 92.3 95.0 0.171 0.160 

Data set B 96.2 92.6 0.131 0.152 

Data set C 88.5 95.9 0.169 0.149 

Average 92.3 94.5 0.157 0.154 
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Table 2.4. Leave-one-out impact analyses based on all 10 input variables 

Impacts (%) 
Input variables 

Data set A Data set B Data set C Average 

Potassium 7.6 31.8 13.9 17.8 

Sulfate -5.4 32.1 1.7 9.4 

Alkalinity 7.1 20.7 22.7 16.8 

Dissolved Phosphorus 5.4 24.9 7.9 12.7 

Nitrite - N 9.6 12.8 9.0 10.5 

Total Dissolved Solids 8.8 20.5 16.2 15.2 

Suspended Solids 11.0 25.1 16.8 17.7 

Volatile Suspended Solids 10.1 12.1 8.0 10.1 

Dissolved Copper 24.5 33.8 31.2 29.8 

Dissolved Zinc 11.2 29.9 22.4 21.2 
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Tabll! 2.5. Watl!r quality results from thl! highway monitoring 

Storm date and station number and storm event number 

Input Variables 2/9/2001 2/18/2001 212312001 4/6/2001 4/6/2001 4/19/2001 

S2 - E4· S3 - E5 S3 - E6 S2 - E8 S3 - E8 Sl - E9 

Potassium (mgl\) NAb NA NA NA NA NA 

Sulfate (mgtl) 24.82 3.84 1.73 373.16 4.78 8.66 

Alkalinity (mg/I) 17 9.5 1 1 112.1 10 28.5 

Dissolved Phosphorus (mg/I) 0.243 0.161 0.061 0.126 0.152 0.154 

Nitrite - N (mg/I) 0.162 0.119 0.048 0.103 0.075 0.151 

Total Dissolved Solids (mg/i) NA NA NA NA NA NA 

Suspended Solids (mgt\) 86.87 80.57 62.7 127.1 56.4 33.69 

Volatile Suspended Solids (mgli) 37.6 25.80 18.3 38.5 21.3 14.27 

Dissolved Copper (ug.rl) 20.55 6.98 5.4 25.8 16.2 27.35 

Dissolved Zinc (ug/I) 90.5 54.85 42 100.8 107.4 151.99 

• S indicates station number and E indicates storm event number. 

b. NA indicates sample was not analyzed. 
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Chapter 3. 

Utility of stormwater monitoring 

Abstract 

Stormwater runoff is now a major contributor to the pollution of coastal waters in the 

United States. Public agencies are responding by requiring stormwater monitoring to 

satisfy the National Pollutant Discharge Elimination System (NPDES) Stormwater 

Permit. However, studies to understand the utility of the current programs or to improve 

their usefulness have not yet been performed. In this paper, we evaluate the landuse based 

program. the industrial stonnwater pennit program. and beach water quality monitoring 

in the County of Los Angeles to determine if the results will be helpful to planners and 

regulators in abating stonnwater pollution. The utility of the program has been assessed 

based upon the programs' ability to accurately estimate the emissions for different classes 

of landuses. The land use program appears successful while the industrial monitoring 

program does not. Beach water quality monitoring suffers from a lack of real time 

monitoring techniques. We also provide suggested improvements such as sampling 

method and time. and parameter selection. 

Introduction 

California coastal waters are important recreational and economic resources, which make 

the safety of coastal waters of concern to both state and county health departments and 

beachgoers (Jiang et ai., 200 1). The completion of wastewater treatment plants mandated 
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by the Clean Water Act has reduced conventional water pollution to California's beaches 

and bays. As a result, non-point source pollution such as stonnwater runoff is now a 

major contributor to the pollution of the coastal water including Santa Monica Bay, 

which is among the most severely polluted Bays in the United States (Wong et aI., 1997). 

Stonn drains entering the ocean are a main cause of pennanent beach postings at many 

California beaches (State Water Resources Control Board, 2001). The problem of 

stonnwater pollution is becoming worse because of population growth, which results in 

increased impenneable area. 

Public agencies are responding by requiring stonnwater monitoring to satisfy the 

National Pollutant Discharge Elimination System (NPDES) Stonnwater Pennit as 

authorized by the Clean Water Act. For example, the Los Angeles County Department of 

Public Works (LACDPW) has been monitoring stonnwater under the 1990 NPDES 

Municipal Pennit (No. CA0061654) and later 1996 Municipal Pennit (No. CAS614001) 

since the 1994-1995 wet seasons. Addition sampling is required by other agencies, such 

as the City of Los Angeles and the California Department of Transportation. Similar 

programs are underway in other areas of California and the United States. 

The existence of stonnwater monitoring programs should represent progress towards 

achieving clean water goals; however, studies have not yet been perfonned to understand 

the utility of the current programs or to improve their usefulness. In this paper we 

evaluate several monitoring programs to detennine if the results will be helpful to 
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planners and regulators in abating stormwater pollution. Datasets from a major 

municipal program. several research projects, beach monitoring, and a large self­

monitoring program were used. The results suggest that parts of the current monitoring 

programs will not be helpful to regulators and planners, and we make proposals for 

improvement, along with projected cost increases 

Background 

The Los Angeles County Department of Public Works has been monitoring stormwater 

since early 1970s. In 1994 they began an improved program, which was designed to 

determine total pollutant emissions to Santa Monica Bay as well as determine landuse 

specific discharges (Stenstrom and Strecker, 1993). Total emissions are estimated from 

flow-weighted composite samples that are collected at five sampling stations (four 

stations are required under the 1996 Permit and one station remains from an earlier 

permit.). These stations are "mass emission" stations in that they were selected to sample 

the greatest runoff mass with the least number of stations. The stations are equipped with 

flow monitoring equipment and operate unattended in secure facilities. Samples from 

specific landuses are also required by the 1996 Municipal Permit and are collected with 

composite samplers at engineered sampling stations. A large suite of water quality 

parameters is measured, including indicator organisms, general minerals, nutrients, 

metals, semi-volatile organic compounds and pesticides. 
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Additional monitoring is being conducted by other agencies to satisfy regulations or for 

research. The California Department of Transportation (CalTrans) has a large monitoring 

program for their highways. Our laboratory has monitored three highway locations near 

UCLA (adjacent to the 101 and 405 freeways) since 1999 (Stenstrom et aI., 2000; 

Stenstrom et ai., 2001). The study is also sponsored by Cal trans and an extensive suite of 

parameters is measured, including indicator bacteria, general minerals, nutrients, metals, 

polycyclic aromatic hydrocarbons, and oil and grease. 

The previous programs monitor discharges to the Bay, but there are also programs that 

monitor coastal waters. The California Assembly passed Bill 411 (chapter 765 of Statutes 

of 1997) to address the problem of declining beach water quality and restore confidence 

in the healthful of beach swimming. Three types of indicators organisms are monitored 

and retesting in the event of an exceedence is also required. The more restrictive 

procedures by the bill have increased the frequency of beach postings and closures. The 

closure of Huntington Beach in Orange County, CA, during the summer of 1999, was the 

first example of beach closures caused by the new regulations (Orange County Sanitation 

District. 1999). Many organizations are monitoring the microbiological water quality of 

Southern California coastal waters (Noble et. ai., 2000) 

An example of a new monitoring activity is the Industrial Activities Stormwater General 

Permit (General Permit), which mandates all industrial stormwater permittees to analyze 

storm water samples twice per year for at least four analytical parameters. The industries 
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are classified by Standard Industrial Classification (SIC) code 

(\VWW .swrcb.ca. govil"\vqcb4/hnnllprograms/storm waterlsw _ industrial.htmlreference). 

The monitored analytical parameters are pH, total suspended solids (TSS), specific 

conductance (SC), and total organic carbon (TOe). Oil and Grease (O&G) may be 

substituted for TOe. In addition, the pennittees must monitor any other pollutants, which 

they believe to be present in their stonnwater discharge as a result of industrial activity 

(www.swrcb.ca.gov/stormwtr/docs/induspmt.doc). Permittees in some cases may be 

required to sample at more than one location. 

It is natural to ask if the monitoring programs are valuable. Is the resulting water quality 

database useful to planners and regulators to identify acute problems, improve long-term 

water quality, and understand landuse/water quality relationships? An improved 

understanding of the relationship of landuse to stonnwater quality is an expected result 

since landuse specific sampling is required by the NPDES penn it. The original purpose 

of the monitoring programs was to identify larger sources (e.g., "hot spots") as well as to 

create a database to help develop total mass daily loads (TMDLs) and other management 

tools. To answer this question, we reviewed the current industrial stormwater permit 

program. We also comment on other monitoring programs, and suggest improvements in 

sampling strategies and water quality parameter selection, with their anticipated cost 

increases. 
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Monitoring Program Utility 

It is generally recognized that different human activities will create different types and 

varying concentrations of stormwater contaminants (Stenstrom et al. 1984). For example, 

runoff from transportation-associated landuse is a primary source of metals and 

hydrocarbons (LACDPW and Woodward-Clyde, 1998). Vehicles release hydrocarbons 

from leaks, engine byproducts and unburned fuel and various metals from corrosion, fuel 

combustion and wearing surfaces such as brake pads (Rogge et al. 1993; Sansalone and 

Buchberger, 1997). Differences in landuse patterns will likely result in different pollutant 

concentrations, and therefore landuse-related control strategies are essential to control 

storm water pollution effectively. 

Landuse monitoring data 

The landuse-based program administered by the LACDPW is a useful example. The 

landuse monitoring program required by the 1996 Municipal Permit was examined to 

determine if different landuses produce different stormwater quality. If the monitoring 

program is successful, landuses should be identifiable from the collected data. We 

developed a neural network approach to identify the various types of landuse 

(commercial, residential, industrial, transportation, and vacant) as a function of 

stormwater quality data (Ha and Stenstrom, 2002). The neural model uses a Bayesian 

network, and was trained using LACDPW data collected during 1996-200 I wet seasons. 

The model was successful at classifying 92 percent of the cases. Ten water quality 

parameters were used: potassium, sulfate, alkalinity, dissolved phosphorus, nitrite-N, 
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total dissolved solids. volatile suspended solids. total suspended solids, dissolved copper, 

and dissolved zinc. The model was useful in that a data set could be manipulated by 

changing various water quality parameters, and the changes in classifications could be 

observed. It is also possible to determine which parameters are most sensitive for the 

classification, and which are most active in a particular case. The model will eventually 

be useful to automatically examine many datasets to identify abnormally high or low 

parameters for a particular landuse, and label these as opportunities for investigation or 

improvement. 

Industrial stormwater monitoring 

Based on this experience, a similar approach was applied to the industrial stormwater 

discharge data for the 1998-200 I wet seasons. This dataset contains approximately 

14,000 cases. Neural networks were trained to differentiate between several industrial 

categories based on SIC code and water quality data. It was hoped that the trained model, 

would be help to identify industrial "hot sources" or outliers. Eight industrial categories 

were selected based their prevalence in Los Angels County, which means some SIC 

codes have many more cases than others. The selected eight industrial categories and 

each category's case number for the three years are shown in Table 3.1. The data cases 

that contain both the mandatory water quality parameters (pH, TSS, SC, TOC, and Oil 

and Grease) and metals are limited. Because of the reason, a neural model trained 

separately with the water quality data and metal data. Outliers in this study were defined 
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as the upper two percent of the whole range of the data set for each parameter, and these 

cases were removed. 

m this study, Neural Connection 2.1 (SPSS mc. and Recognition Systems Inc, Chicago, 

IL) was used to build the neural models. Three supervised, feed-forward neural networks, 

namely, Multi-Layer Perceptron, Radial Basis Function, and Bayesian Network were 

used to differentiate the various types of industries. The neural models were extensively 

trained with various architectures; however, the performance of all models was very poor. 

This indicates a weak or almost no relationship between the industrial categories based 

on the SIC code and the available water quality data. 

To further seek a relationship between water quality data and various landuses of 

industries, an unsupervised Kohonen neural network was used. The goal of Kohonen 

network is to map the spatial relationships among clusters of data points into 

hyperdimensional space (Aguilera et aI., 200 I). Once trained successfully, it may be used 

to identify unknown data patterns, and it was hoped that useful patterns between water 

quality and landuse would be identified. 

A Kohonen neural model with two dimensions in the Kohonen layer was trained with 

different node sizes of3x3, 5x5, and 7x7. The method performs square normalization, 

which normalizes the original input data patterns to zero mean and unit variance. The 

results were generally unsatisfactory and it was difficult to make a decision to cluster 
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from the activation maps by the neural model. Fig. 3.1 shows an activation map having 

3x3 neurons obtained by a Kohonen model that was trained with four parameters: pH. 

TSS, SC and O&G. The shading intensity indicates the degree of similarity to their 

neighbor nodes; lighter shades indicate similar characteristics as the neighboring node, 

and darker patterns indicate greater differences. 

There are two possible clusters. The first contains nodes 1,4,5, and 7, and the second 

contains nodes 2, 3 and 6. Figure 3.2 shows the number of cases assigned to the various 

nodes. Nodes 4 and 5 contain most of the cases, and the majority (82%) would be 

assigned to the first cluster. A classification system that assigns such a large fraction to a 

single cluster is not useful; basically, the classification system is saying that it can find no 

difference in the available water quality parameters among the majority of the SIC codes. 

Nodes 4 and 5 tend to have the lowest pollutant concentrations, but the members are not 

distinguished by SIC codes. Similar results were obtained using 5x5 or 7x7 neurons and 

with different set of input parameters. The conclusion from this analysis is that 

stormwater quality is not distinguishable by SIC code using the current water quality 

parameters. 

To further investigate possible relationships, the water quality data were transformed into 

a three member fuzzy set with categories of low, medium and high. Each of the resulting 

data sets except for pH was examined using a Kohonen neural model. Each model had 

three nodes in the one dimensional Kohonen layer and was trained for each parameter 
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separately. The output result of the model was assigned a specific node number, from 1 

t03, for every case. The nodes were reordered so that higher node numbers always 

indicated greater pollutant concentration, with the number 3 representing the highest 

pollutant concentration for each parameter. For the case of pH, a qualitative score was 

assigned manually, based upon deviation from neutrality. An overall qualitative score 

was created by summing the fuzzy states. Figure 3.3 shows the overall process. For 

example, when we used four parameters, the possible minimum and maximum overall 

qualitative score is 4 and 12 respectively, with 12 representing the worst water quality. 

Figure 3.4 shows the distribution of the overall qualitative score for the various types of 

industries with different sets of input parameters. The upper figure used all five water 

quality parameters (pH, TSS, se, TOe, and O&G). The middle part shows the 

classifications when Toe is left out. The bottom shows the classification using the metal 

analysis. In general, no distinguishing differences were found among industrial 

categories. \Vhen four or five water quality parameters were used (Fig. 3.4, top and 

middle), food and kindred product facilities have the least abundance oflow scores (4 or 

5), suggesting that it is the land use with the worst stormwater quality. The wholesale 

trade-durable goods category has least abundance of small scores if scores up to 6 are 

considered. For metals (lower portion of Figure 3.4), primary metal facilities have least 

abundance oflow scores (3 and 4). This suggests that this industry has the worst 

stormwater quality with respect to metals. The statistical significance of these findings 
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has not been evaluated and it all likelihood. a new method would need to be developed or 

an existing method adapted. 

The industrial data set was also examined to detennine if a seasonal first flush could be 

identified. Los Angeles has two distinct rainfall seasons. The late spring to late fall or 

early winter is usually dry. Most rainfall occurs in winter and early spring. This rainfall 

pattern creates a long period for pollutant build-up and the first stonn of the season 

usually has abnonnally high pollutant concentrations, which is called a seasonal first 

flush. The industrial penn it requires the first stonn to be sampled and one later stonn to 

be sampled, which was required in order to identify the seasonal first flush. 

To determine if the industrial stormwater monitoring program was successful in 

identifying the seasonal first flush, the data (for 2000-2001 season only) were divided 

into first and second sample datasets. In some cases the first sample does not represent 

the first rainfall event. In cases when there were more than two samples collected, the 

later samples were ignored. Cases with only one sample were also ignored. The 

comparison of the first to second sample for the 2000-2001 season are shown in Figure 

3.5 using notched bar plots and in Table 3.2. Concentration for all parameters were 

higher in the first sample than the second sample by 0 to120 % for the median and 20 to 

85 % for the mean. TOC showed the greatest difference between first and second 

samples; oil and grease showed the smallest difference. Statistically significant 

differences can be observed in the notched bar plot. 
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Beach monitoring 

Assembly Bi1l411 created improved beach water quality monitoring requirements. The 

improved monitoring was mandated after an epidemiological study of Santa Monica Bay 

swimmers suggested increased health risk associated with swimming near storm drains 

(Haile, et al. 1999). Daily samples for total coliforms, fecal coliforms and enterococcus 

were mandated with new, lower levels that trigger a beach posting or closure. Leecaster 

and Weisberg (2001) examined sampling data from 24 sites in Los Angeles County 

between 1995 and 1999. They report that over 70% of the water quality exceedences 

were for only 1 day. 

The time required to analyze indicator organism data is generally more than 24 hours. 

This created a chronology as follows: day I - a sample is collected and analysis begins; 

day 2 - the sample is analyzed and an exceedence is noted, with a beach posting and a 

new sample is collected and analysis begins; day 3 - the second sample result is negative 

70% of the time, and the beach posting is removed. The chronology creates a situation 

that beaches are posted when the samples do not exceed standards and open when they 

do. Clearly the problem is a monitoring program that cannot be implemented with 

current technology. Rapid indicators are needed. Furthermore the utility of conventional 

indicator organisms for fecal contamination in beach waters is in question. 

49 



Discussion and Recommendations 

Three stonnwater monitoring programs \Vere discussed. The landuse monitoring 

program was generally successful and showed the anticipated differences in water quality 

based upon land use. This program used automatic, flow-weighted composite samplers 

with trained personnel. The second program, the industrial monitoring program, used 

grab samples collected at various times for two or more stonns with SIC codes as landuse 

or industrial-use descriptors. The program is generally unsuccessful in identifying 

relationships between water quality and landuse. It was successful in showing a seasonal 

first flush. and its utility for identifying acute problems is questionable, based upon 

outliers, to be discussed later. The third is the beach water quality monitoring program, 

which uses grab samples and analyses that are not real-time. This creates problems of 

beach postings, which are out of phase with exceedences. 

In this section. we discuss possible reasons for less successful program and suggest ways 

to improve monitoring. Some suggestions will require new technology. 

Sampling method 

For the industrial stonnwater pennit monitoring, grab samples are allowed, and facility 

operators are instructed to collect the sample during the first hour of discharge from the 

first event for the wet season (October to May), and at least one other stonn event in the 

wet season. A grab sample is a discrete sample taken within a short period of time, 

usually less than 15 minutes. Flow-weighted composite samples were collected in the 
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landuse program. which requires instrumentation and perhaps site preparation to create a 

channel for flow measurement and security for equipment. The flow-weighted samplers 

collect a composite by combining a series of discrete samples of specific volume, 

collected at specific flow- weighted intervals over the duration of a stonn event 

(LACDPW and Woodward-Clyde, 1998). 

It is useful to compare the results of the two programs. They are analogous in that both 

programs attempt to measure the emissions from a particular human activity, although the 

industrial program also attempts to identify high dischargers. The results of the 1998 -

2001 industrial peffilit using grab samples were compared to the 1996- 2001 landuse 

monitoring that used flow-weighted composites. Figure 3.6 is a notched bar plot that 

shows the differences. 

There are a large number of outliers among the grab samples and almost no outliers 

among the composite samples. The number of outliers suggests the need for a quality 

assurance program, and is helpful in understanding why the neural networks could not 

identify significant differences in stoffilwater from SIC codes. 

The standard deviations of the concentrations are much lower among the composite 

samples (Table 3.3). For example, the standard deviation for TOe is 174 for grab 

samples and 9.7 for composite samples. or a ratio of 18. The other parameters have ratios 

of standard deviations from 2.3 (pH) to 66 (zinc). With this large range of differences, 

51 



one has to question to the utility of such a monitoring program for any purpose. The 

application of any nonnalization method of the original data is not useful to generalize 

for use with a neural model. In addition, there are too many upper and lower outliers in 

the data set, which results in excessive clipping. 

A flow-weighted composite sample for a storm event is generally better represents of the 

stonn event than a single grab sample that may be biased due to the collection time. The 

result is an event mean concentration, which can be multiplied by the flow rate to 

calculate overall mass emissions. This is useful for spreadsheet load models (Wong, et 

aI., 1997), which are finding wide spread use for planners and TMDL development. 

A grab sample suffers from a variety of errors and biases, but one that has not been fully 

explored is the effect of first flush. Many parameters exhibit a first flush, which is 

typified by a declining concentration from storm beginning to stonn end (Ma, et al. 

2002a). When the grab sample is collected early in the storm, it will be higher than the 

EMC; conversely, if collected too late, it will be lower than the EMC. The industrial 

monitoring program suggests collecting a sample within the first hour. The best time for 

sampling oil and grease from highway landuse is between 2 and 3 hours and is related to 

cumulative rainfall and duration (Ma, et aI., 2002b). There might be some improvement 

in the existing program with better definition of collection times. 
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It is almost universally recognized that composite samplers are better for storm\vater 

monitoring; however, to collect a flow-weighted composite sample, an automatic sampler 

must be installed and operated properly before a storm event. It would be a burden to all 

industrial permittees to construct composite sampling facilities. Additionally, several 

water quality parameters such as oil and grease and indicator bacteria are not easily 

measured by a composite sample. 

To improve sampling, it might be reasonable to randomly select a small subset of 

industrial users for composite sampling. This might be funded by fee permittees or by 

allowing a reduced number of grab samples to be collected. A trained team would also 

increase quality assurance to eliminate outlier. Such an approach might be a better and/or 

less expensive method of determining storm water emissions on receiving waters. 

Parameter selection 

A variety of metal-related industries are included among the SIC codes in the industrial 

monitoring program. Many industries should be sources of metals such as chromium, 

copper, lead, nickel and zinc (Woodward Clyde, 1992). Fig. 3.7 shows the mean 

concentration of the basic analytical parameters and metals as a function of their 

industrial categories for 1998-2001 seasons. Outliers defined as before have been 

removed. The numbers of cases for all parameters vary with as many as 800 for 

conventional parameters and only about 80 for metals. The conventional water quality 

parameters show much less relation to industrial category than metals. The mean 

concentrations of lead, zinc, and nickel were highest for the primary metal industries 
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category. and copper was highest at the transportation equipment facilities category. 

Mean concentrations of oil and grease and total organic carbon were highest for whole 

trade-durable good industries and mean concentration of conductivity and suspended 

solids were highest for Electric/Gas/Sanitary service facilities. 

The addition of metals to the basic pennit's requirement for basic water quality 

parameters would be a useful way of adding infonnation to the dataset. A neural model 

trained with both metals and basic parameters will perfonn better than that trained 

existing water quality parameters or metals alone. The addition of metals will increase 

monitoring cost. Table 3.4 shows the current costs for laboratory analysis. The addition 

of metals to the pennit will approximately double or triple the laboratory costs. The cost 

of collecting the samples should be quite similar. Cost increases are probably inevitable. 

but this approach may be less expensive that other approaches. 

Conclusions 

This paper has examined three stonnwater monitoring programs. The utility of the 

programs have been assessed based upon the programs' ability to accurately estimate the 

emissions for different classes of landuses, as well as other obvious benefits. The 

following conclusions are made: 

1. Data collected by grab samples had much higher variability than composite 

samplers. The coefficients of variation (standard deviation divided by the mean) 

for the same parameters were generally 2 to 9 times higher for the grab samples. 
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The variability suggests that composite samples should be collected, even if it 

means a reduction in the total number of samples or facilities that can be 

monitored. 

2. The time required to analyze a sample must be commensurate with the intended 

use of the results. Beach water quality monitoring suffers from analysis time for 

indicator organisms. The data suggests that 70% of the beach postings are out of 

phase with the water quality parameter exceedence. 

3. Metals (zinc, copper, lead, nickel) are potentially more useful to distinguish 

landuse patterns. Adding them to existing permits might double or triple the cost, 

but will add value to the resulting monitoring database. 

Managing storm water is a developing technology and much remains to be done. This 

paper has shown that even with the limited experience we have so far, that there are 

improvements that can be made. 
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Table 3.1. The selected eight major industries and its case number according to the different sets 
of input parameters after clipping outliers for the 1998-200 I seasons 

Major industries 

Food and kindred products (FKP) 

Chemical and allied products (CAP) 

Primary metal industries (PMI) 

Fabricated metal products. except machinery and 
transportation equipment (FMP) 

Transportation equipment (TE) 

Motor freight transportation and warehousing (MFTW) 

Electric. gas. and sanitary services (EGSS) 

Wholesale trade-durable goods (WT) 

Number of the total cases 

56 

[nput parameters 

SIC code pH. TSS, pH. TSS. Lead. 

20 

28 

33 

34 

37 

42 

49 

50 

SC. TOC. SC. and copper. 
and O&G O&G and Zinc 

184 472 10 

305 850 35 

144 773 100 

417 1325 155 

193 601 187 

263 731 76 

182 505 198 

120 723 471 

1808 5980 1232 



Table 3.2. Com~arison of first to second sam~le for the 2000/2001 wet season 

Water quality parameters First sample Second sample 

Number 1058 1035 
Minimum 0.464 0 

Total Suspended Solids Maximum 25160 7860 
(mg/I) Median 69.5 42 

Mean 236.93 145.39 
Standard Dey. 1129 406 

Number 1057 1052 
Minimum 0.017 0.018 

Specific Conductance Maximum 15000 32200 
(umhos/cm) Median 160 99 

Mean 431.31 310.54 

Standard Dey. 1017 1226 
~umber 823 820 
Minimum 0 0 

Oil and Grease Maximum 1000 650 
(mg/I) Median 5 5 

Mean 14.38 10.365 
Standard Dey. 60 29.013 
Number 443 465 

Minimum 0.05 0.05 

Total Organic Carbon Maximum 3150 1890 
(mg/I) Median 28.1 13 

Mean 83.98 39.81 
Standard Dey. 230 119.0 
Number 211 208 
Minimum 0 0.005 

Lead (mg/I) 
Maximum 90 50 
Median 0.08 0.05 

Mean 1.21 0.656 
Standard Dey. 8.4 4.903 
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Table 3.2. Continued. 

Water quality parameters First sample Second sample 

Number 209 208 
Minimum 0.009 0.006 

Copper (my!) 
Maximum 6.24 21.9 
Median 0.11 0.067 
Mean 0.414 0.351 
Std. Dev. 0.91 1.73 
Number 349 341 
Minimum 0.001 0.01 

Zinc (mglI) 
Maximum 56 28.2 

Median 0.66 00407 
Mean 2.09 1.12 
Standard Dev. 5.3 2.7 
Number 99 96 
Minimum 0.006 0.004 

~ickel (mg/!) 
Maximum 4.63 15.1 
Median 0.06 0.042000 

Mean 0.226 0.2900 
Standard Dev. 0.554 1.546 
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Table 3.3. Comparison of grab to composite sample (0 indicates level below detection limit) 

Water quality parameters 

pH 

Total Suspended Solids (mg/l) 

Number 
Minimum 
Maximum 
Median 
Mean 
Standard Dev. 
Number 
Minimum 
Maximum 
Median 
Mean 
Standard Dev. 
Number 
Minimum 

. Maximum 
Specific Conductance (umhoslcm) . 

Oil and Grease (mg/I) 

Total Organic Carbon (mg/I) 

Lead (mg/1) 

Median 
Mean 
Standard Dev. 
Number 
Minimum 
Maximum 
Median 
Mean 
Standard Dev. 
Number 
Minimum 
Ma.ximum 
Median 
Mean 
Standard Dev. 
Number 
Minimum 
Maximum 
Median 
Mean 
Standard Dev. 

Industrial storm water 
permit sample 1998-

2001 

59 

8584 
0.1 
12.7 
6.88 
6.91 
0.96 
8424 

o 
101000 

48 
219.11 

1693 
8297 
0.017 
71000 

121 
365.17 

1555 
6685 

o 
6640 

5 
13.63 

95 
3404 

o 
3700 

18 
56.01 

174 
171 
o 

90 
0.06 

0.402 
3.5 

Flow-weighted 
composite 

Landuse monitoring 
sample 1996-2001 

(Industrial site alone) 

51 
6.04 
8.32 
6.82 
6.83 
0.41 
49 
16 

1865 
140 

232.55 
298 
47 

48.9 
691 

126 
150.06 
III 

not analyzed 

50 
2.4 

45.62 
9.85 
12.67 
9.7 

low detection 
frequency 



Table 3.3. Continued. 

Grab 
Flow-weighted 

composite 
Water quality parameters Industrial storm water Landuse monitoring 

permit sample 1998- sample 1996-2001 
2001 (Industrial site alone) 

Number 1917 54 
Minimum 0 0.0053 

Copper (mgil) 
Maximum 49.5 0.99 
Median 0.084 0.0185 
Mean 0.337 0.047 
Std. Dev. 1.6 0.13 

Number 2917 54 

Minimum 0 0.079 

Zinc (mg;l) 
Maximum 2200 5.97 

Median 0.6 0.36 
Mean 4.86 0.63 
Standard Dev. 64.4 0.97 

Number 803 54 
Minimum 0 0 

Nickel (mg/I) 
Maximum 15.1 0.0804 

Median 0.05 0.005995 

Mean 0.196 0.0082 
Standard Dev. 0.76 0.013 
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Table 3.4. Comparison of the current requirement parameters to the complementary 
parameters on the costs oflaboratory analysis (data source: Los Angeles County Department 
of Agricultural Commissioner/Weights and Measures Environmental Toxicology 
Laboratory) 

Current reQuirement Comglement!!!:Y 
parameters parameters 

Water quality parameters 
Cost per pH. TSS. pH. TSS. pH. TSS. pH. TSS. 

sample (S) SC. and SC, and Pb. Cu. Zn. SC,O&G, 
TOe O&G and Ni Pb, Cu. Zn. 
(1) (2) (3) and Ni 

(4) 

pH 3.5 3.5 3.5 3.5 3.5 

Total Suspended Solids (TSS) 7.68 7.68 7.68 7.68 7.68 

Specific Conductance (SC) 6.4 6.4 6.4 6.4 

Total Organic Carbon (TOC) 13.46 23.46 23.46 

Oil and Grease (O&G) 36.25 36.25 36.25 

Lead (Pb) 10.29 20.19 20.29 

Copper (Cu) 20.29 20.29 20.29 

Zinc (Zn) 20.19 20.29 20.29 

~iickel (Ni) 20.29 20.29 20.29 

Total cost per sample (S) 41.04 53.83 92.34 158.45 
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~ ------------------------------- S im i lari ty -------------------------------7 

Fig. 3.1. Activation map having 3x3 neurons obtained by a Kohonen neural model that 
was trained with four input parameters (pH. TSS. SC and 0&0). The shading intensity 
indicates the degree of similarity to their neighbor nodes. Numbers indicate node in the 
Kohonen layer. 
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Fig. 3.2. Number of cases per node obtained by the Kohonen neural model that explained 
in Figure 3.1. 
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Fig. 3.3. Overall process of producing an overall qualitative score with four parameters (Shade area: A Kohonen network 
having three nodes in the Kohonen layer was trained for each parameter) 
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Fig. 3.4. Distribution of the overall qualitative score for each industrial category. 
(Top: five parameters, pH, TSS. SC, TOC, and 0 & G, were used; Middle: four 
parameters. pH, TSS. SC and 0 & G were used; Bottom: three parameters, Pb. Cu, and 
Zn. were used.) Number of cases per category with different sets of parameters was 
shown in Table 3.1. 
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Fig.3.5 Comparison of first to second sample for the 2000-200 I wet season. All outliers 
are now shown. I in the x.-axis indicates the first sample and 2 indicates the second 
sample. Number in a parenthesis in x-axis indicates number of cases. 
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Fig.3.6 Comparison of grab sample from the industrial storrnwater discharge data for 
1998-2001 to flow-weighted composite sample from the landuse monitoring data 
(industrial landuse alone) for 1996-2001.G in x-axis indicates a grab sample and C 
indicates composite sample. Number in a parenthesis in x-axis indicates number of cases. 
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Abstract 

Chapter 4. 

Methods to Identify Human and Animal Fecal pollution 

in Water: A Review 

In this chapter methods to detect human fecal pollution and differentiate it from other 

sources such as animals are reviewed. This review includes microbial methods, especially 

those using molecular biology, and chemical methods. The conclusion is that no single 

method can provide definitive answers, as least not with our current understanding or 

experience. Additional testing with some of the reviewed methods may provide the 

required experience and confidence. It is much more likely that a combination of methods 

can be used to accurately identify human fecal pollution. Unfortunately, a combination 

of procedures will be more expensive and most likely be no faster than existing 

techniques. 

Introduction 

Fecal bacterial contamination from human and animal waste is a major cause of 

deteriorating water quality in receiving waters and has direct economic impacts to coastal 

communities through the loss of shellfisheries and restrictions of recreational uses. The 

possible sources of fecal contamination are point sources, such as industrial and 

municipal effluents, or nonpoint sources, such as surface runoff, direct animal and human 
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input. failing or inadequate septic systems, and sewer overflows. In recent years 

nonpoint pollution has surpassed point sources as the major source of Fecal 

contamination to surface water. Management of this problem depends on knowing which 

sources of Fecal matter are the cause. A method that could distinguish sources would be 

the first step to solving this problem. 

Methods for distinguishing between human and animal fecal pollution are necessary for 

assessing the overall protection of water supplies and implementing effective remediation 

for epidemiological studies, and even for legal purposes when it is necessary to determine 

the source of environmental contamination. Animal Fecal pollution is not without risks, 

and many of the risks are unknown, but it is generally thought that animal sources pose 

less risk. Furthermore, knowing the source will help in identifying and eliminating the 

problems. 

Information on the human or animal origin of Fecal pollution gives an indication of the 

types of pathogens that maybe expected, the risk of infection, and the treatment that may 

be required to control the transmission of disease. Many waterborne pathogens are 

difficult to detect and quantify, and specific methodology to detect them in environmental 

water samples has still to be developed. 

Bacterial indicator organisms such as Fecal coliforms have been used to test water 

samples for Fecal pollution, but such indicators do not provide specific information on 
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the specific source of pollution. These bacteria may be found in a variety of warm­

blooded animals and are not unique to the human intestinal flora. 

Since the early 1900s there have been various attempts to develop methods that 

differentiate the source of Fecal pollution. Traditionally, efforts have concentrated on 

determining Fecal pollution of human origin. It is now is also important to distinguish 

between animal sources of Fecal pollution as well as human source because animals can 

carry potentially harmful human pathogens. If animals are the source of indicator 

organisms, control measures and management practices will be different. Ribotyping 

analysis is one encouraging method that may be able to differentiate sources. 

This review paper discusses some of the current methods to identify human sources from 

nonhuman sources of Fecal contamination in surface water. This review is divided into 

sections on microbiological and chemical approaches for identifying sources of Fecal 

contamination. Microbiological approaches cover bacterial and viral indicators found in 

the intestines of warm-blooded animals. Chemical approaches cover natural byproducts 

of human metabolism or human activity. Microbiological approaches include the 

measurement of the ratio of Fecal coliforms to Fecal streptococci or total coliforms, the 

detection of bacteriophages of bacteroides fragilis HSP40 and some serotypes ofF­

specific RNA coliphages, antibiotic resistance analysis, ribotype analysis, rep-PCR DNA 

technique, and use of human enteric viruses. Chemical approaches include Fecal sterol 

fingerprinting technique and the presence of contaminants normally associated with 
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sewage. such as detergents. This review provides a short description of each method. 

some examples of studies that used the method, and a discussion of advantage and 

disadvantage of each method if possible. 

Microbiological Methods 

The ratio of fecal coliforms to fecal streptococci or total coliforms 

Human fecal material may be distinguishable from animal fecal material using an old 

method, the ratio of fecal colifonns to fecal streptococci (FClFS). Fecal streptococci 

have received widespread acceptance as useful indicators of Fecal pollution in natural 

aquatic ecosystem. Fecal streptococci are more abundant in animal feces than in humans~ 

in contrast, Fecal colifonns are more abundant in human feces than in animals (see Table 

4.1). Therefore, Fecal colifonn to Fecal streptococci ratio have been used to differentiate 

human Fecal contamination from that of other wann-blooded animals (Geldreich and 

Kenner, 1969; Feachem, 1975). The ratio of Fecal colifonns to Fecal streptococci 

(FC/FS) greater than four were associated with human Fecal sources while a ratio of less 

than 0.7 was associated with animal Fecal sources. 

If this ratio were reliable it would an inexpensive and practical method. However, the 

application of this method is now considered unreliable due to the variable survival rates 

of Fecal streptococci species. Furthermore, the ratio is affected by the methods for 

enumerating Fecal streptococci and by disinfection of wastewater (APHA, 1998). 
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Therefore, to use this method to provide infonnation on possible Fecal pollution source 

we have to consider its limits: (1) Sampling needs to occur soon after waste 

contamination (within 24 hours if possible) because the Fecal bacteria may die off at 

different rates; (2) it becomes difficult to distinguish Fecal streptococci in waters from 

Fecal streptococci that are naturally present in soil and water when fewer than 100 Fecal 

streptococcillOOml are present, and (3) the water pH needs to be between 4 and 9 because 

Fecal colifonns die off quicker than Fecal streptococci in more acid or alkaline water 

(Geldreich and Kenner, 1969; Coyne and Howell,1994). 

Many attempts have been made to use the ratio to determine the sources of Fecal bacteria. 

For example, Jagals et al. (1995) showed that the ratio of Fecal colifonns to Fecal 

streptococci was close to unity in streams and rivers, which were upstream of the 

settlements, and were exposed to Fecal pollution predominantly of domestic animal 

origin. However, downstream of settlements which were exposed predominantly to 

human Fecal pollution, the ratio increased to 3.5 to 4.7. 

Coyne and Howell (1994) measured FCIFS from two watersheds typical of agriCUltural 

use in Kentucky with some success. They concluded that the FCIFS ratio suggests the 

probable source of Fecal contamination, but considered their conclusions tentative. This 

method is an inexpensive and moderately complicated laboratory procedure (Sargeant, 

1999). The result of this method taken alone must be quite carefully evaluated. If the 
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method were used with some other method, such as the detection of bacteriophages, the 

result will be more reliable. 

Fecal (thermotolerant) coliforms constitute a subset of total coliforms. These bacteria 

conform to all the criteria used to define total coli forms, but in addition they grow and 

ferment lactose with production of gas and acid at 44.5 ± 0.2 C within the first 48 hours 

of incubation. The ratio of Fecal coliforms to total coliforms (FC/TC) is used to show the 

percentage of the total coliforms comprised of Fecal coliforms, i.e., coming from the guts 

of warm-blooded animals. If the Fecal coliforms to total coli forms ratio exceeds 0.1 

(fecal coliforms comprise I 0% or more than the total coliform group) suggests the 

presence of human fecal contamination. 

Hiraishi et al. (1984) measured TC, FC, and BOD from the Tamagawa River and its 

tributaries in Tokyo. Geometric means of the fecal coliforms to total coliforms ratios 

ranged from 0.007 to 0.069 in streams, which were located on the upstream of human 

contamination sources, but downstream of human sources, the ratio ranged from 0.21 to 

0.26. Noble et al. (2000) measured FCITC in a regional survey of the microbiological 

water quality along the shoreline of the Southern California. Although they used two 

total/fecal ratio criteria, more than 0.1 and more than 0.2, the results were very similar. 

Poor water quality was found at the point-zero freshwater outlets sites where 21.8 % of 

the shoreline-miles exceeded 0.1 at the ratio of Fecal coliforms to total coliforms. 
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This method roughly shows the possibility of Fecal pollution but this method is not for 

distinguishing human from animal-derived Fecal matter. One of this method's 

shortcomings is the potential growth of Fecal coli forms in soils in tropical areas. As a 

result, its application in tropical areas is questionable (Bartram and Rees, 2000). The 

method should not be discarded for tropical areas, since it maybe useful in conjunction 

with other methods. 

Bacteroides fragilis (strain HSP40) 

Bacteroides fragilis is one of about 11 species, which are loosely placed together in the 

'8. fragilis' group. They are gram-negative, anaerobic, pleomorphic rods. Tartera and 

Jofre (1987) tested twelve strains of different Bacteriodes species and found that one B. 

fragilis strain, HSP40, was detected in feces of 10 % of 40 human Fecal samples and was 

never detected in feces of other animal species. They suggested that the detection of 

Bacteriophages by strain HSP40 of 8. fragilis could be used to distinguish between Fecal 

pollution of human and animal origin. This observation confirmed by Grabow et al. 

(1995). They investigated the Fecal excretion of somatic and male-specific coli phages 

and phages of 8. fragilis strain HSP40 by human and a variety of animals. Bacteriodes 

fragilis phages were detected in only 13 % of90 human stool samples but not in any 

animal or birds feces. 

Many researchers have investigated the detection of bacteriophages infecting strain 

HSP40 of bacteroides fragilis. Table 4.2 summarizes levels of bacteriophages ofB. 
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fragilis HSP40 found in different countries. Tartera et ai. (l989) reported that phage 

infecting B. fragilis HSP40 have the same origin as human viruses and were able to 

multiply under anaerobic conditions, but did not replicate significantly in the 

environment. Jofre et al. (1989) found a significant correlation between the numbers of 

B. fragilis phages and human enteric viruses. Jagals et al. (1995) investigated a stream 

and river exposed to predominately Fecal pollution of domestic animal origin and to run­

off. B. fragilis HSP40 phages were not detected by direct plaque assays in any of their 

samples. They concluded that more sensitive detection methods were required for the 

phages. Sun et ai. (1997) reported that bacteriophages of Bateroides fragilis have been 

proven as specifically present in human feces and have relationships with water 

contamination by eterovirus. The researcher reported that the MPN method appeared to 

be more sensitive than that of PFU as reported previously Ajaujo et al. (1993) and Tartera 

et al. (1988). 

Puig et ai. (1997) tested 115 strains of B. fragilis isolated from humans and 6 of the 

strains were examined in feces from various animal species and in slaughterhouse 

wastewater. The strain HSP 40 and R YC4023 were similar in number of phages in urban 

sewage, but phages were not present in animal feces. Their study was performed in 

different countries (Puig et aI., 1999). Strain HSP40 was not detected in slaughterhouse 

wastewater of the different geographical areas. Counts ranging from a to 4.5x 104 pfu per 

lOami were found in urban sewage from different geographical areas (see Table 4.2). 

Bradley et al. (1999) reported that the numbers of B. fragilis bacteriophages, were higher 
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than the other bacteriophages. including F+ bacteriophages in their sampling site but they 

failed to isolate 8. fragilis HSP40. They pointed to a lack of these bacteriophages in 

sewage in their study area and a need to concentrate the samples before assay. 

The use of bacteriophages of 8.fragilis HSP40 has the advantage of their high specificity 

of human Fecal pollution. Strain HSP40 detects numbers of phages up to 105 per IOOml 

of urban sewage and polluted water in some areas. However they are present in low or 

zero concentrations both in sewage and in natural polluted water in some countries 

(Jagals et aI., 1995; Bradley et aI., 1999; Puig et aI., 1999). Therefore the use of 8. 

fragilis HSP40 for phages detection may limit their usefulness as a universal method. 

F -specific RJ."lA coUpbages subgroups 

The use of male-specific RNA (FRNA) coliphages has been proposed as potential sewage 

pollution indicator (Havelaar and Hogeboom 1984; Havelaar et aI., 1990; Furuse, 1987). 

The gastrointestinal tract of warm-blooded animals and domestic sewage are major 

habitats for these viruses (Furuse et aI., 1978). FRNA phages may also be source­

specific. FRNA phages fall into four distinct subgroups (groups I, II, III, and IV). 

Groups I and II are related, and together form major group A. Subgroups III and IV are 

very similar and are together called major group B. The subgroup identity of FRNA 

phages from environmental samples may help distinguish between human and animal 

waste. 
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Either serotyping or genotyping may achieve identification of the FRNA phage 

subgroups. Usually, identification of FRNA phages as members of one of the subgroups 

is achieved by serotyping (Osawa et aI., 1981; Furuse, 1987; Havelaar et aI., 1990). 

Osawa et ai. (1981) showed that FRNA phages belonging to group I were only detected 

in feces or gastrointestinal contents of domestic farm and feral zoo animals. FRNA 

phages isolates from pigs belonged to group I and II and those from humans groups II 

and III. Phages belonged to group III were exclusive to humans. Furuse (1987) found 

that subgroup II and III tend to be isolated from human faeces; subgroup I is usually 

isolated from the faces of non-human mammals and subgroup IV phages are mixed 

origin. Havelaar et ai. (1990) serotyped 178 FRNA phage strains from faeces and 206 

from wastewater. FRNA phages occur rarely in faces. FRNA phages strain from Fecal 

source belonged to either group I or IV with one exception. The group I and IV also 

predominated in wastewater samples in particular from slaughterhouse wastewater and 

gray water. Domestic and hospital wastewater samples sometimes yield group II and III 

phages. Subgroup II phages were abundant in wastewater of human origin but rare in 

feces. They suggested that FRNA phage should be considered as indicators of sewage 

pollution rather than Fecal pollution. 

However, serotyping is ambiguous and too time consuming for routine assay since it 

requires propagation of individual plaques, preparation, titration and maintenance of 

anti phage sera as well as neutralization assays (Beekwilder et aI., 1996). Some 
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researchers investigated genotyping method as an alternative approach to distinguishing 

the four groups of FRl"iA phages (Hsu et aI., 1995; Beekwilder et aI., 1996; Griffin et ai., 

2000). The method employs specific gene probes to differentiate between the four 

subgroups of FRNA phages. 

Hsu et al. (1995) developed a genotyping methods to group F-specific coliphages by 

nucleic acid hybridization with nonradioactive oligonucleotide probes, and compared this 

method with serotyping. Of the 203 isolates ofFRNA phages from environmental 

samples, wastewater and shellfish, 99.5 and 96.6% could be classified into each group by 

serotyping and genotyping, respectively. Beekwilder et al. (1996) reported that 

identification of organisms by nucleic acid hybridization is genome-targeted and 

therefore has a high probability of exposing true relationships between organisms. 

Furthermore, it is easily performed and it appears to be quantitative and highly specific. 

Griffin et al. (2000) demonstrated that F-specific RNA coliphages genotyping provide 

confirmatory data to determine the sources of Fecal contamination. In their study FRNA 

phage analysis indicated that Fecal contamination at a park and surrounding areas in 

Florida, influenced by animal and non-human sources and 86% of the isolated FRNA 

phages from wastewater treatment plants were subgroup II - human in origin. 

The use of FRNA phages is limited because FRNA phages are found in low occurrence 

in humans, although FRNA phages occur at reasonably high rates in sewage. (These 
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phages may be poor indicators of human contamination in nonpoint source areas.) 

Sharing serotype between human and animals such as pigs is also a problem. 

Clostridium perfringens 

Spores of Clostridium Perfringens are largely Fecal in origin (Sorensen et ai., 1989). 

They are ubiquitous in sewage sludge at concentrations several orders of magnitude 

higher than in soil or sediments (Fujioka and Shizumura, 1985). Contamination of deep­

water disposal sites has been confirmed by the distribution of Clostridium perfringens in 

sediments (Hill et ai., 1993 and 1996). The concentration of Clostridium perfringens as 

well as fecal sterols (discussed in detail in Chemical method section) in the Antarctic 

sediments have been used to investigate the contamination from untreated sewage outfall 

(Edwards et ai., 1998). 

A combined C. perfringens and fecal coliforms data can be used to differentiate between 

native birds and domestic pets (Leeming et ai., 1997). Dog and cat faeces contain 

roughly equal and higher numbers (106 -108 cfulg) of both fecal coliforms and C. 

perfringens pore, whereas the feces of native birds (seagulls, swans, rosellas, magpies and 

ducks) contained 106 -108 cfulg of fecal coliforms and generally less than 102 cfu Ig of 

C. perfringens spores. Therefore, the relatively higher ratio of Clostridium perfringens 

spores found in dog and cat feces may be a useful indicator when fresh fecal 

contamination is being investigated (Leeming et ai., 1998). Furthermore, C. perfringens 
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was found to significantly correlate to other pathogens like Giardia and Aeromonas from 

sewage-impacted waters (Ferguson et aI., 1996). 

Use of Enterococci diversity 

The Enterococcus group is a subgroup of the fecal streptococci. The enterococci portion 

of the fecal streptococcus groups are being used as bacterial indicator for detecting the 

extent of fecal contamination of recreational surface waters (APHA, 1998). Water 

quality guidelines based on enterococci were incorporated in State of Calif omnia, 

Assembly Bi1l411 (35 enterococci/IOOml based on 30 day geometric mean). In the 

closure of Huntington Beach in Orange County, CA, during the summer of 1999, 

enterococci were the most frequent bacterial indicator that exceeded the thresholds. 

Enterococci are found inboth human and animal faeces and vegetation. Therefore 

identifying the specific sources of enterococci may be a good approach to indentify fecal 

pollution. 

In New Zealand, enterococci were specified and characterized to a sub-specific level to 

address the possible influence of these non-Fecal sources enterococci in a beach 

environment (seawater, sand, seaweed, stream water, sediment)(Anderson and Lewis, 

200 I). The genotypic diversity of Ent. faecium and Ent. Fecalis, and the phenotypic 

diversity of Ent. casseliflavus were examined using randomly amplified polymorphic 

DNA (RAPD)-PCR fingerprinting and biochemical screening, respectively. In their 

initial study, calculation of similarity coefficients from the sub-species revealed a 
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complexity of associations between beach environmental sources. There were limited 

relationships among specific enterococci strains and specific environments. Similarity 

coefficients from Ent. Fecalis and Ent. casselitlavus were found. For example, seaweed: 

sand; marine water: stream water; seaweed: marine water. A high similarity value 

suggests but does not confirm a biological or ecological association. 

Further research on the using enterococci species and sub-species is required to use 

identification to identify the specific sources of fecal pollution (Anderson and Lewis, 

200 I). This technique may be a promising method and deserves future development. 

Multiple Antibiotic Resistance (MAR) Analysis 

The patterns of antibiotic resistance have been used to identify sources of Fecal pollution 

in water. This approach is based on the fact that bacteria from wildlife species are 

generally Jacking in antibiotic resistance, while strains from humans and domestic 

animals exhibit varying mUltiple antibiotic resistance (Sargeant, 1999). For this 

procedure either Escherichia coli or Fecal streptococci from different animal species are 

analyzed to determine the resistance pattern for several different types and strengths of 

antibiotics. 

There have been several reports of the use of antibiotic resistance profiles to determine 

sources ofE. coli. Krumperman (1983) showed that the multiple antibiotic resistance 

index of E. coli from wild animals was generally low, while human and poultry isolates 
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had higher MAR indices. Kaspar and Burgess (1990) reported that there were larger 

multiple antibiotic resistance of E. coli isolated in urban areas than from rural areas, and 

postulated that human isolates are may present. Knudtson and Hartman (1993) measured 

antibiotic resistance of Fecal enterococci isolates from humans, pigs, and natural waters 

but found only slight differences among the various sources. Although the studies have 

measured antibiotic resistance of Fecal isolates from various sources, it has been difficult 

to use that information to identify the sources of Fecal pollution (Wiggins, 1996). 

Wiggins (1996) demonstrated that Discriminant Analysis (DA) of antibiotic resistance 

patterns of Fecal streptococci is a useful tool for differentiating human and animal 

sources of Fecal pollution in water. Discriminant function analysis is a variation of 

multivariate analysis of variance and can be used to classify individuals into groups on 

the basis of the values of several classification variables (Tabachnick and Fidell, 1983; 

Hair et aI., 1998). In the study an average of 74% of the known isolates were correctly 

classified into one of six possible sources (beef, chicken, dairy, human, turkey, or wild). 

92% of human isolates were correctly classified. Human versus animal isolates were 

correctly classified at an average rate of95%. In their recent study, more than 10,000 

Fecal streptococci isolates were obtained from 236 samples of human sewage and 

septage, cattle feces, pOUltry feces, and pristine waters (Wiggins et aI.1999). The average 

rates of correct classification into one of four possible groups (human, cattle, pOUltry, and 

wildlife) ranged 64 to 78 %. Parveen (1998) reported that DA of MAR profiles ofE. coli 
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isolates from the Apalachicola National Estuarine Research Reserve. Florida. classified 

82 % and 68% of human sources and nonhuman isolates, respectively 

Hagedorn et al. ( 1999) affirmed the work by Wiggins (1996) with the addition of Cluster 

Analysis. Patterns of antibiotic resistance in Fecal streptococci were analyzed in a rural 

Virginia watershed. They used 13 antibiotics and more than 7000 isolates from 147 

samples obtained from humans, dairy cattle, beef cattle, chickens, deer, and waterfowl. 

Correct classification into one of the six groups was above 87 %. Fecal streptococci from 

their study site were classified as being predominantly from cattle (>78% of isolates) 

The MAR method for differentiating between Fecal sources is promising. This method 

may successfully differentiate between human Fecal pollution and animals and even 

differentiate between animals. However, this method is time intensive for the field and 

laboratory work and its laboratory procedure is complicated and costly (Sargeant, 1999). 

Parveen et al. (1999) said the antibiotic resistance patterns of bacteria are influenced by 

selective pressure and thus may be different in other geographical areas and may vary 

over time. 

DNA-based approach 

More recently DNA-based approaches have been evaluated to determine whether they 

can be used to differentiate among sources of Fecal contamination of water. Genotype is 

considered to be more reliable than phenotypic biochemical reaction. Genotypic 
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approaches differ with respect to the level of resolution of individual bacterial species or 

strains into distinct categories (Versalovic et aI., 1998). Genotypic bacterial typing 

methods are ShO\\-ll in Table 4.3. We will provide short description and some work of 

Rep-PCR technique, and Ribotyping method only. 

Ribotype Analysis 

Genetic testing has been found to be very effective in matching DNA patterns in 

microorganisms to their sources. Genetic fingerprinting uses collections of E. coli, which 

are easily modified and adapt to various host environments, leading to changes in genetic 

material that are thought to be specific to these host environments. As such, the genetic 

variability of E. coli can be used to identify their host organisms. The DNA patterns from 

each of these isolates, known as a ribotype, are used to match specific strains of E. coli 

from a contaminated site to potential sources. 

Ribotyping has been used to determine the sources of E. coli contaminating Little Soos 

Creek in Washington State (Samadpour and Chechowitz, 1995). In this study, 71 % of 

the source matches belonged to 57 identified strains, leaving 29% unmatched. Samadpour 

also conducted DNA analysis for an investigation of the sources of fecal contamination 

of four San Diego beaches (CSDDEH, 1999) and the Agua Hedionda watershed (URS, 

1999). From the 489 total isolates collected from San Diego beaches, storm drains and a 

river during wet and dry weather, 353(72.2%) were matched to 12 source groups; 179 

isolates were reported unknown. Human isolates were responsible for the highest 
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percentage of matches during dry weather conditions but were completely absence in wet 

weather samples: dog and bird isolates were generally the most abundant groups in wet 

weather samples. In the Agua Hedioda watershed, San Diego, the water samples 

provided bacteria for 656 E. coli isolates, 417 (63.6%) of which could be matched to a 

known source among a variety of warm-blooded animals (URS, 1999). The three 

dominant groups of source organisms were domestic pets (dogs and cat), birds, and 

human. 

Parveen et al. ( 1999) analyzed Ribotype profiles of 238 E. coli isolates from human 

sources and nonhuman sources. Human and nonhuman source isolates showed 41 and 61 

RT profiles, respectively. Ribotyping profiles with discriminant analysis showed that 

97% of the nonhuman source isolates and 100% of the animal Fecal isolates were 

correctly classified. 

Dombek et al. (2000) said ribotyping methods tend to require extensive manipulation of 

DNA and the use of labeled gene probes. Grouping may be influenced by a strain's prior 

exposure to antibiotics. Sargeant (1999) concluded this is an excellent method for 

determining some of the sources of Fecal contamination in a watershed, but laboratory 

analysis is expensive. Only a portion of receiving water isolates can be identified, 

leaving a significant percentage of unknown origin. 
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Rep-PeR DNA technique 

Repetitive sequence-based polymerase chain reaction (rep-PeR) was introduced by 

Versalovic et al. (1991) and yields DNA fingerprints comprised of multiple, differently­

sized DNA amplicons. The rep-PeR method has been useful for DNA fingerprinting of a 

large variety of prokaryotic and eukaryotic microorganisms (Versalovic et aI., 1994; de 

Bruijn et aI., 1995; Louws et aI., 1996). Versalovic et al. (1998) reported that key 

advantages of rep-PeR based chromosomal typing include its speed, reproducibility, 

convenience, and modest resource requirements. The required equipment is often 

available in molecular biology laboratories. 

Dombek et a1. (2000) investigated the rep-peR DNA fingerprint technique, which uses 

repetitive intergenic DNA sequences, to differentiate E. coli strains obtained from human 

and animal sources (geese, ducks, cows, pigs, chicken, and sheep). BOX and REP 

primers were used to generate DNA fingerprints. Their studies revealed that DNA 

fingerprints obtained with the BOX primer were more effective for grouping E. coli 

strains than with REP primers. Jackknife analysis of the similarity coefficients revealed 

that 100% of the chicken and cow isolates, 83 % of the human isolates and between 78 

and 90 % of the other animal isolates were assigned to the correct source groups. 

Genotypic analysis such as rep-peR is considered less subject to environmental effects 

than phenotypic analysis. Other advantages of rep-peR are its simplicity, accuracy, and 

speed, which are desirable for high-throughput analysis (Versalovic et aI., 1994; Dombek 

et aI., 2000). In addition, in the rep-PeR analyses performed in their study, DNA 

90 



tingerprints \vere generated by using whole cell suspensions. which eliminated the need 

for DNA puritication. 

Use of human enteric viruses 

Human enteric viruses can be used to con finn the presence of human Fecal material. 

Human enteric virus groups include Norwalk virus, rotavirus, hepatitis A virus, 

adenovirus, and enterovirus. Adenoviruses are the only human enteric viruses that 

contain DNA rather than RNA and are substantially more stable than either poliovirus or 

hepatitis A virus in tap water and seawater (Enriquez et a!., 1995). They are potentially 

good human source indicators. However, the methodologies involved in their detection 

and enumeration tend to be intensive, costly and time consuming (Sinton, 1998). Many 

researchers are trying to develop less expensive and reliable ways of finding viruses in 

seawater. 

Worldwide, only a few laboratories are capable of tracking viruses in ocean water. 

Sassaroli et a!. (2000) collected 43 samples of raw sewage and sewage-polluted creek 

water near San Paulo, Brazil. Adenoviruses were detected in 25(58.1 %) samples by PCR 

using the primers hexAA1885 and hexAA1913. Jiang et a!. (2001) tested human 

adenovirus with Coliphages and bacterial indicators (TC, FC, enterococci) in coastal 

waters of Southern California. Human adenoviruses were successfully detected in 4 of 

the 12 samples using the nested peR method. They suggested that the detection of 
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adenovirus could be used as an index for human fecal pollution, and the presence of other 

human viruses. 

Host-specific molecular markers 

Unlike antibiotic resistance and ribotyping analysis, which require culturing indicator 

organisms, detection of host-specific molecular markers does not require culturing and 

holds promise as a precise, rapid method for identifying sources of fecal contamination 

(Bernhard and Field, 2000b). Several researchers have suggested that members of the 

genera Bacteroides could be used an altemative fecal pollution indicator (Allsop and 

Stickler, 1985 and Kreader, 1995). Members of these genera are strict anaerobes, are 

restricted to warm-blooded animals, and make up a significant portion of fecal bacteria. 

The use of these organisms as indicators however, has been limited because strict 

anaerobes are often difficult to grow. Using molecular methods rather culture-based 

methods to detect them can circumvent the difficulty of growing strict anaerobes. 

Bernhard and Field (2000a) identified host-specific Bacteroides-Prevotella 16S rONA 

markers for human and cows by screening fecal DNAs by length heterogeneity PCR 

(LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) analysis. 

LH-PCR (Suzuki et aI., 1998) and T-RFLP (Bruce, 1997;Clement et aI., 1998; Liu et aI., 

1997) are methods that are used to analyze differences in the lengths of gene fragments 

due to insertions and deletions and to estimate the relative abundance of each fragment. 

Following the study, they identified additional clones, recovered from water samples, and 
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developed cluster-specific primers that can discriminate between human and ruminant 

feces using the sequences from fecal and water clones (Bernhard and Field. 2000b). 

They believe that these PCR assays provide a promising diagnostic tool for identifying 

nonpoint sources of fecal pollution, although extensive field-testing is required to 

determine the efficiency of the assays and the geographic distribution of the host-specific 

markers. 

In the past, most of the DNA related technologies involved characterization of individual 

isolates. Since we are limited in the number of isolates we can test, there is always a 

statistical problem if a high abundance of target organism present in the contaminated 

water (Jiang, 200 I). This method could overcome conventional culture-dependent 

technique's problem that mentioned above, it is promising, and further investigation of 

this approach is required. 

Chemical Methods 

Fecal sterols 

The term "Fecal sterol"is a broad term covering the various A-C27, C28, and C29 

cholestane-based sterols found in Fecal material (Sinton et aI., 1998). Using Fecal sterol 

such as coprostanol has been proposed as an alternative measure of Fecal pollution by a 

large number of researchers (Walker et aI., 1982). Coprostanol is formed in the gut of 

human and higher mammals by enzymatic hydrogenation of choleserol or by stereo­

specific bacterial reduction of cholesterol (MacDonald et aI., 1983). Therefore it is 
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present in sewage effluent and sewage contaminated waters. Several studies have 

highlighted the usefulness of coprostanol for examining sewage pollution in many 

diverse environments (Venkatesan and Kaplan, 1990; Venkatesan and Mirsadeghi, 1992). 

Fecal sterols analysis has been extended to differentiate human and animals sources of 

pollution. The distribution of sterols found in faeces and hence their source specificity is 

largely determined by the following three factors (Leeming et aI., 1994): (l) The animal's 

diet. For example, humans, cows, and dogs, respectively, are omnivorous or herbivorous 

or carnivorous. Each type of diet contains a different sterol profile and the proportions of 

sterol precursors entering the digestive tract are different; (2) irrespective of dietary 

habits, many animals can biosynthesize sterols, and (3) anaerobic bacteria in the 

digestive tract of some animals biohydrogenate sterols to stano Is of different isomeric 

configurations. This is probably the major factor in dictating the composition and 

characteristics of the sterols fingerprint. Because of this feature, Fecal sterols offer an 

advantageous approach that can help distinguish among sources of Fecal pollution. 

Fecal sterol such as coprostanol, which constitutes -60% of the total sterols found in 

human faces, has been successfully used to trace sewage in many countries. Coprostanol 

is produced in the intestine of humans and some higher mammals by bacterial 

biohydrogenation of cholesterol to the 5~(H)-stanol. Coprostanol profiles from a wide 

variety of animals show difference in the presence/absence or relative amounts of 

individual sterols (Venkatesan, 1995; Leeming et ai, 1996; DNRP, Broward County, 
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1998). Figure -+.1 shows coprostanol content (ug Ig) in Fecal matter from various 

sources. 

Venkatesan (1995) analyzed Fecal sterols from humans, several animals and influent and 

effluent samples of Hyperion Plant, and four stonn drains. The relative and absolute 

amounts of coprostanol were much higher in human feces compared to the animals and 

avian species. For example, the human specimen contained at least 10 times as much 

coprostanol than the specimens from carnivores and 20-100 times the specimens from 

herbivores. She suggested that coprostanol in conjunction with other specific sterols 

parameters can be used to distinguish input of humans from domestic animals and birds. 

Leeming et al. (1996) examined the Fecal sterols from humans and 14 species of animals 

common to rural or urban environments. Human faeces contained ten times more 

coprostanol on a dry weight basis than faeces from cats and pigs. Herbivores such as 

cows, sheep and horse feces contained some coprostanol, but their sterol profiles were 

dominated by CZ9 sterols (24-ethylcoprostanol and 24-ethylcholesterol). They concluded 

the 'Sterol fingerprints' of the feces of humans and animals are sufficiently distinctive to 

be of diagnostic value in determining whether Fecal pollution in water samples are of 

human or animal origin. They also studied the use of a wider range of Fecal sterols, in 

combination with conventional bacterial indicators, to distinguish the source of Fecal 

pollution in Lake Tuggerah, Australia, and found that native birds were a major source of 

the Fecal pollution using an empirical basis and sterol ratio (Leeming et aI., 1997). 
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A Fecal sterol study was conducted in Florida to determine coprostanol, epicoprostanol. 

cholestanol and epicholesterol from surface water, feces and sediment (DNRP, Broward 

county, 1998). From the initial data they suggested that it was possible to tell the 

difference between fresh Fecal samples of human and nonhuman origin based upon the 

concentration ratios of two of the Fecal sterols. The coprostanollcholestanol 

concentration ratio was shown to be greater than 1.0 in human sources and less than 1.0 

in non-human feces. 

More study is needed on this method if it is to be used for nonpoint sources. This method 

requires expensive gas chromatography and requires up to 10 liters of samples to be 

filtered through a glass fiber filter to concentrate particulate stano Is. Nevertheless, it is an 

appropriate method for specific studies investigating the proportion of human and animal 

Fecal contamination (Bartram and Rees, 2000). 

Long-Chain Alkylbenzenes 

Long-chain alkylbenzens (LABs) having C IO -C 14 normal alkyl chains are sulfonated in 

the industrial production of linear alkylbenzene sulfonates. They are widely used as 

anionic surfactants in commercial detergents (Eganhouse et aI., 1983). A number of 

studies have found LABs in the waters and sediments exposed to sewage. Observations 

have been made worldwide and especially in Southern California. Table 4.4 shows the 

occurrence of LABs in different California locations. LABs are purely synthetic and are 
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derived solely from direct industrial discharges and domestic wastes (Eganhouse, 1986). 

They are therefore strongly indicative of human sources. However, they may not be 

related to sewage such as industrial pollution (Bartram and Rees, 2000). They are also 

generally present up to one order of magnitude lower than the corresponding Fecal sterol 

in human derived wastes (Sinton et ai., 1998). They are therefore regarded as 

complimentary to the Fecal sterols as domestic sewage pollution. 

Caffeine 

Caffeine is a compound that is present in several beverages, coffee, tea, and carbonated 

drinks, and in pharmaceutical products. Caffeine and its metabolites are excreted in the 

urine of individuals who have consumed beverages and pharmaceuticals containing 

caffeine. It has been speculated that caffeine has promise as an indicator of human fecal 

pollution if the population being studied uses caffeine, is uniquely and unambiguously 

associated with human activity. Caffeine has been detected in domestic wastewater 

effluent, environmental surface water samples, ground water and finished drinking water 

in several locations worldwide. Caffeine was present in municipal wastewaters of 

populations that use caffeine at levels between 20 and 300 ugIL (Rogers et ai., 1986). C 

affeine has also been detected in Los Angels County wastewater treatment plant effluent 

samples, 1980-1981, at 40 ugiL (Spectrum Laboratories, 1998). Concentrations of 

caffeine in water along the main stem of the Mississippi River, from Minneapolis, 

Minnesota, to New Orleans, Louisiana, ranged from 0.01 to 0.07 ugIL (Barber et ai., 

1995). Caffeine was present in samples collected from wastewater treatment plant 
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effluent. and agricultural and urban runoff in Canada and United States, in both dissolved 

and particulate phases at concentrations up to 0.115 ugiL and 0.044uglL, respectively 

(Standley et aI., 2000). Although caffeine has been extensively detected in environments 

exposed to human wastes, there are only a small number of studies that can be used to 

estimate the probable concentrations of caffeine that might result from sewage spills. 

Also, because caffeine is extensively metabolized; only 3 percent of ingested caffeine is 

excreted unmetabolized in the urine (Tang-Liu et aI., 1983), its sensitivity as a marker of 

human fecal pollution is unknown. Therefore, further investigations are required. 

Conclusions 

There is no easy, low cost method for differentiating between human and non-human 

sources of bacterial contamination. No single indicator or approach is likely to represent 

all the facets and issues associated with contamination of waterways with Fecal matter. 

At present, the best hope of distinguishing Fecal pollution of human and animal origin is 

an appropriate combinations of indicators. Statistical analyses of appropriate groups of 

methods offer the best possibility of identifying human sources. Unfortunately, relying 

on a combination of methods will probably require a longer period of analysis than 

relying on a single method. A combination of methods may be useful to determine 

sources in chronic situations as opposed to episodic events. 
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Many promising methods have been identified in this review. [\jone, at least at the time 

of this writing, has been demonstrated in a full scale monitoring program. Most 

techniques have been limited to research laboratories. Such demonstrations are needed to 

demonstrate the utility of the methods. Also, commercial laboratories will need 

assurances that the required investments in training and equipment are justified and 

recoverable. 

A good course of action to further this technology would be to conduct several, long-term 

investigations, where an advanced method is used in parallel with existing monitoring 

techniques. Monitoring agencies will need to be involved, in order to evaluate the 

required retraining and adjustments in their current procedures. 
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Table 4.1. Bacterial densities in warm-blooded animals feces. 
(S p. 1998 G dfr 1992 G ld . h 1 1962) ources: itt. . 0 ey. , e nc et a., 

Source I Fecal coliform Fecal streptococci Ratio FC'FS 
I 

(density/gram) (density/gram) I 
Human 1.3 x 10 1 3.0 x 10° 4.33 

Cats 7.9 x lOb 2.7 X 10' 0.29 

Dogs 2.3 x 10 1 9.8 X 10M 0.02 

Rats 1.6 x 103 4.6 x 10 0.003 

Cows 2.3 x 10J 1.3 X 10' 0.02 

Ducks 3.3 x 107 5.4 x 10' 0.61 
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Table 4.2. Levels of active bacteriophages against B. fragilis HSP40 in wastewater and 
surface water. 

Samples 

Sewage 
Highly polluted river 
Moderately polluted river 
Pollted sea water 
Non-sewage polluted water 

! Country I 

Spain 

Range (mean) 
pfu or cfu or MPNIl 00 ml 

(8.9 x IOJ
) 

(4.8 x IOJ
) 

(6.5 X 10J) 
(7.3x 10) 
o 

~/o 

positive 
samples 

100 
100 
59 
44 
o 

~-w--Se-~age-I~~-----------r~S~p-a7m----~2.~I-x7107-r_-47.~6x~10~J~(75.~3-x~10~~O 

RawSewage2b 2.3xl02-4.6xI03(1.3xl0J
) 100 

Slaughterhouse wastewater! 0 - 1.2 20 
Slaughterhouse wastewater2 0 0 
River 0 - 43 (6.7) 46 
!\:on-sewage polluted water 0 0 

Reference 

T artera et al. 
1988 

T artera et al. 
1989 

--- ---------~------------+-=--:----+_----_.__----__.__::__...,.___..-i-.-----I---------
Spain 1.0x 1 oj - 2.6x 1 O~ (2.5x 1 0"') 100 Comaz et al. Sewage 

Seawater 
10m from sewage discharge 
100 m from sewage disch. 
1000 m from sewage disch. 

Non-sewage polluted seawater 

Highly polluted river 
Low-pollute river 

Spain 

2. 9x I oj - l.Ox lOS (l.8x 10"') 
<10 - l.Oxl0"' (3.4xl02) 
< 10 - 7.9xl02 ( < 10) 
< 10 « 10) 

10 - l.6x 1 OJ (1.2x 102) 

BLDc - l.Oxl0: (10) 

100 
70 
80 
100 

100 
36.4 

1991 

Joffe et al. 
1995 

--------~-------------~~~~~---------------------r--~---~~~--~----
Stream and river water S. Africa 0 Jagals et al. 

Sewage (influent) France 
Sewage (effiuent) 
River (downstream treatment) 
River (upstream treatment) 

Sewage. river water Spain 
River water 

Stream PA. US 

Marine bathing water UK 

~ 4.4x 1 0"' 
~ 4.4x1OJ 

~ l.6xl0J 

<40 

(2.3x 1 oj) 
(2.3xlO l

) 

101 

100 
75 
100 
50 

100 
83.3 

o 

1997 

Sun et al. 
1997 

Araujo et al. 
1997 

Brenner et al. 
1999 

Bradley et al. 
1999 



Table 4.2. Continued. 
Samples 

, 
Country 

I 
Range (mean) I 0/

0 Reference i I 
pfu or cfu or MP~1l00 ml positive 

samples 
Sewage (different countries) Netherlands l.OxlO- - 2.6xlO- 0 Puig et al. 

Ireland 1.4xlO! - 1.6xl01 1999 
Austria O.5x 1 01 

- 8.5x 101 

Portugal 0- 0.4x101 

Gennany 1.3 x 101 - 2.2xlO1 
Sweden 0.9xl02 

France 3.1xlOl 

S. Africa 

Slaughterhouse wastewater different l.lz104 
- 4.5xlO" 

countriesd 

Samples were colleted from Colector Prim which receives mamly domestic sewage. 
b Samples were collected from de Levante, which receives a mixture of domestic and industrial waste 

water 
BDL. below detection limit 

d The countries are Netherlands. Ireland, Denmark. Portugal. Gennany, South Africa 
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I 

Table 4.3. List of bacterial genotypic typing methods according to ability 
to distinguish genus/species or subspecies/strains (Versalovic et aL 
1998). 
Cenw;/Species Subspecies/Strain 

Ribotyping ARDRA 

t&"lA-PCR Chromosomal RFLP 

ITS-PCR ITS Sequencing 

16S r&"lA sequencing Plasmid RFLP 

Pulsed-field gel electrophoresis (PFGE) 

Randomly amplified polymorphic DNA (RAPD) 

Rep-PCR 

ARDRA: Amplified nbosomal DNA RestrlctlOn AnalysIs 
ITS: Internal Transcribed Spacer 
RFLP: Restriction fragment length polymorphisms 
PCR: Polymerase chain reaction 
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Table 4.4. Levels of LABs in the state of California. 

Samples 
! 

Area of study Characteristic Concentration' I Reference 
I 

Treated CSDOCD 8.2 ± 1.8 Phillips et al.. 1997 
wastewater 
effiuent PLWTpc Particulates 1.92 - 2.76 Zeng et al.. 1997 
(ugjL) 
River water Tijuana river runoff. Particulates 0.057-0.714 Zeng et aI., 1997 

San Diego 
Sewage sludge JWPCpd Prirnary- 200,000 Bayona et aI., 1997 
(nglg) secondary 
Sediments Santa Monica basin Box-core (0-1. 236 ± 124 Bayona et al.. 1997 
(nglg) 0-4 cm) 

Santa Ana river 10 ± 7 Phillips et al.. 1997 

Newport bay 18 ± 12 Phillips et al.. 1997 

I Off the coast of San NDe _ 39.2 Zeng et aI., 1997 
i Diego 

• Arithmetic mean of total concentrations ± standard deviation or range of concentration. 
b CSDOC: County Sanitation Districts of Orange County. 
C PL WTP : Point Lorna Wastewater Treatment Plant. 
J JWPCP: Joint Water Pollution Control Plan. 
e NO: not detectable. 
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Chapter 5. 

Conclusions 

The primary objective of this study was to develop a neural network model to classify 

landuses from water quality data. For non-point source such as stormwater, load 

allocations are often based on landuse types. Identifying landuse with water quality data 

will help set the Total Maximum Daily Loads level and eventually provide opportunities 

for better management to control stormwater pollution. 

The existence of storm water monitoring programs should represent progress towards 

achieving clean water goals. However, studies have not yet been performed to understand 

the utility of the current program or to improve their usefulness. Several monitoring 

programs were evaluated to determine if the results will be helpful to planners and 

regulators in reducing stormwater pollution. 

Fecal bacterial contamination from human and animal wastes is a major cause of 

deteriorating water quality in receiving waters. A method that can distinguish sources of 

fecal matter would be the first step to solving this problem. The methods to detect human 

fecal pollution and differentiate it from other sources such as animals and soil are 

reviewed. The review includes microbial methods, especially those using molecular 

biology, and chemical methods. 
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The conclusions from each study are summarized. 

Identification of land use with water quality data in stormwater 

using a neural network 

A neural network model for identifying the various types oflanduse with storrnwater 

quality data was successfully developed using LADPW storrnwater monitoring data, 

collected during 1996-200 I. A Bayesian Network model was best and had ten water 

quality input variables, four neurons in the hidden layer and five landuse target variables. 

The statistical quality of the neural model was high. We obtained 92.3 and 94.5 percent 

of correct classifications, and 0.157 and 0.154 in the RMSE on the test and training files 

(173 cases). The model was used as a simulation tool to predict landuse type from 

highways storrnwater monitoring data that was not used to develop the model. The 

simulations showed the sensitivity to classification and demonstrated a method to identify 

water quality variables that affect classification. 

This research has demonstrated that a neural network can be used to classify landuses 

from water quality data, and that the technique can be automated. An approach for 

identifying opportunities for water quality improvement could be developed using this 

concept. 
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Utility of stormwater monitoring 

The utility of three storm water monitoring programs has been assessed based upon the 

programs' ability to accurately estimate the emissions for different classes oflanduses, as 

well as other obvious benefits. The following conclusions are made: 

1. Data collected by grab samples had much higher variability than composite 

samplers. The coefficients of variation (standard deviation divided by the mean) 

for the same parameters were generally 2 to 9 times higher for the grab samples. 

The variability suggests that composite samples should be collected, even if it 

means a reduction in the total number of samples or facilities that can be 

monitored. 

2. The time required to analyze a sample must be commensurate with the intended 

use of the results. Beach water quality monitoring suffers from analysis time for 

indicator organisms. The data suggests that 70% of the beach postings are out of 

phase with the water quality parameter exceedence. 

3. Metals (zinc, copper, lead, nickel) are potentially more useful to distinguish 

landuse patterns. Adding them to existing permits might double or triple the cost, 

but will add value to the resulting monitoring database. 

Managing storm water is a developing technology and much remains to be done. This 

research has shown that even with the limited experience we have so far, that there are 

improvements that can be made. 
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Methods to Identify Human and Animal Fecal pollution in \Vater: A Review 

There is no easy, low cost method for differentiating between human and non-human 

sources of bacterial contamination. No single indicator or approach is likely to represent 

all the facets and issues associated with contamination of waterways with fecal matter. 

At present, the best hope of distinguishing fecal pollution of human and animal origin is 

an appropriate combination of indicators and water quality parameters. Statistical 

analyses of appropriate groups of methods offer the best possibility of identifying human 

sources. Unfortunately, relying on a combination of methods will probably require a 

longer period of analysis than relying on a single method. A combination of methods 

may be useful to determine sources in chronic situations as opposed to episodic events. 
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