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ABSTRACT OF THE DISSERTATION 

 

 

Characteristics of Pollutants in Highway Runoff:  

Regression, Representativeness, and First Flush 

by 

Jiun-Shiu Ma 

 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2002 

Professor Michael K. Stenstrom, Chair 

 

Stormwater pollution control is the new environmental problem, even though it was 

recognized in the 1972 Clean Water Act Amendments.  Impervious surfaces are the most 

problematic for stormwater management, and highways are especially important because 

of vehicular activities. To better understand the nature of highway runoff, three sites 

along major highways were monitored for 40 storm events over two seasons. 

Water quality parameters were measured and chemical oxygen demand (COD), total 

suspended solids, oil and grease and two metals were selected for basic statistical analysis 

and correlation.  The sampling distributions were skewed, and logarithmic 

transformations were useful to remove skewness.  The logarithmically transformed 

concentrations were used as basic data forms for further analysis. 

 xvii



Regression was performed to relate the COD concentrations to the following 

predictors: the corresponding accumulative rainfall (CumR), the event’s antecedent dry 

days (AtDry), and the previous event’s precipitation (AtR).  After evaluation a site-

pooled COD regression model was developed regressing log COD with log CumR, log 

AtDry and log AtR and a constant.  This model shows a strong agreement with the 

observations.  The site effect is not important in the further analysis.  This model 

structure can be applied to any parameter that correlates well with COD. 

The flow-weighted average concentration, called the event mean concentration (EMC) 

is currently used for estimating stormwater mass loading, and total maximum daily loads 

are established using EMCs.  EMCs can be estimated from a series of grab samples or by 

flow-weighted composite samplers.  Simulations show that a composite sample is a better 

way to obtain the EMCs due to the large number of individual samples.  

Simulations show that treating the entire first flush volume is a better strategy if mass 

removal efficiency is to be maximized.  Computer simulations show that as many as forty 

samples may be necessary to construct a reliable mass-load curve to characterize the first 

flush.  An improved, concentration-based first flush notation is proposed as an alternate 

way of defining first flush phenomenon.  A hypothetical scenario shows how this new 

notation could benefit best management practice selection. 
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1.  INTRODUCTION 

 

1.1 Dissertation Organization 

This dissertation is divided into seven chapters.  The first chapter includes a statement 

of the problem and scope of the work.  Chapter 2 describes a monitoring procedure that 

we used in a Caltrans (California Department of Transportation) highway runoff project.  

Chapter 3 provides an overview of experimental data from highway runoff monitoring.  

The subsequent chapters, from chapter 4 to 6, contain three independent and complete 

research works, which are the core of this dissertation.  Basically, these three works use 

the monitoring results as the basis to investigate some popular topics in stormwater field.  

Chapter 4 contains a regression analysis, which describes the concentration variation for 

selected water quality constituents during highway runoff processes.  Chapter 5 contains 

a reliability analysis of EMC (Event Mean Concentration) data, which provides 

guidelines for measuring EMCs and evaluating existing EMC data.  Chapter 6 contains a 

study of first flush notations and criteria, which gives detailed descriptions and discussion 

to current first flush notations and, furthermore, presents a new and more feasible first 

flush notation.  Therefore, although these three works are independent, the regression 

results obtained from Chapter 4 are used as the true process mechanism in the computer 

simulations in the EMC and the first flush studies.  Finally, Chapter 7 includes an overall 

conclusion of this dissertation. 
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1.2 Overview of the Problem 

The investigation of stormwater pollution has a long history in the states.  It can be 

traced back to the mid-1960s when government agencies had first identified stormwater 

discharge as a major pollution sources to the nation’s waterways.  In the 1972 

Amendments to the Clean Water Act, the Nationwide Urban Runoff Program (NURP) 

was established to help investigate the urban runoff pollution.  National Water Quality 

Inventory in a 1990 Report to Congress stated that 30% of identified cases of water 

quality impairment are attributable to storm water discharge or nonpoint source pollution 

(U.S. EPA 1990).  Many case studies show that nonpoint sources that have surpassed 

point sources and are now the major cause of surface water quality degradation (Gilliland 

and Baxter-Potter 1987; Driscoll et al. 1990; National 1990, US EPA 1983).  In addition, 

stormwater runoff may contain harmful toxic containments (Lau et at. 1993).   

Even after much investigation, many uncertainties still exist in understanding 

stormwater pollution processes.  These uncertainties reflect the lack of strong field 

verification.  Corbitt (1989) pointed out that nonpoint sources processes such as 

stormwater runoff are inherently difficult to model due to their stochastic nature in both 

time and space domains.  Like other complicated natural processes, the stochastic nature 

of stormwater pollution processes is possibly due to the complexity of the system.  Thus, 

it is almost foreseeable that stormwater pollution processes cannot be fully predicted in a 

purely deterministic way.  Therefore, from the engineering or management point of view, 

partial deterministic models are still useful.  Minimizing its stochastic nature can increase 

the performance of invented controls to mitigate stormwater pollution. 
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Comprehensive stormwater management should address both quantity and quality of 

runoff.  The quantity controls, such as flood control, have reached maturity due to 

continuing past effort.  The quality controls are still in the early stage of development.  

Human activity is so far recognized as the most important factor that affects the quality of 

runoff, such as urbanization or agriculture.  In fact, most human activities seriously 

impact runoff quality too due to changing perviousness of surfaces.  However, the step 

following the qualitative recognition is to be able to reasonably quantify each effect from 

different human activities.  The success of this task has to rely on large amounts of data 

collection and persuasive modeling on stormwater pollution processes. 

 

1.3 Objectives 

The goal of this dissertation is to gain more information about stormwater pollution 

processes and, furthermore, to deliver useful messages for management level decisions.  

Through a monitoring procedure on selected highway runoff systems, which comes with 

simple conveyance paths and purified catchment surfaces by single human activity, the 

complexity of the problem has been reduced.  Thus, the study can avoid unnecessary 

interferences.  The specific objectives are as follows, 

1. Provide information on proper stormwater monitoring procedures. 

2. Present highway monitoring results. 

3. Model stormwater pollution processes. 

4. Provide a method of evaluating and accurately measuring EMCs (Event Mean 

Concentrations). 
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5. Clarify the first flush phenomenon through improved notations and concepts. 

Determining the EMCs and quantifying the first flush phenomenon has been the 

subject of previous research.  The form of EMCs is a calculation factor from the NURP 

studies (USEPA, 1983) that was used to evaluate urban runoff pollution loading.  By its 

name, an EMC represents the average concentration of a pollutant emitted from a site 

throughout the whole storm event.  The subject of first flush is now very controversial 

among stormwater researchers and managers.  A neutral and consensus qualitative 

understanding of the first flush phenomenon is that “the first part of runoff in a storm 

event is the most polluted”.  Understanding the first flush phenomenon is believed to 

assist in selecting BMPs (Best Management Practice). 
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2.  EXPERIMENT PROCEDURE FOR HIGHWAY STORMWATER 

MONITORING PROGRAMS 

 

2.1 Introduction 

In this section, we will briefly review the experimental procedure used in our 

Caltrans highway monitoring project.  This project has continued for four seasons since 

September 1999.  The objective was originally to study first flush phenomenon from 

highway runoff, although trash and particle size investigation were added later.  However, 

only the first flush part will be reviewed here.  The experimental procedure includes the 

monitoring and analytical procedures.  The monitoring method basically covers the field 

sampling work, such as equipment setup and operation, and sample collection.  The 

whole stormwater team accomplished this part of the work.  The analytical procedure 

basically covers the lab analysis of collected samples.  The lab group accomplished this 

part.  The writer participated only in the monitoring work. 

 

2.2 Monitoring Procedures 

2.2.1 Sites 

Three monitoring sites were selected at the beginning of the project.  All of the sites 

are adjacent to the outlets of highway storm drains, and thus, receive typical highway 

runoff.  The considerations for site selection include personnel safety, proximity to 

UCLA, and access to the storm drain.  Caltrans’s technical manual (Caltrans, 2000) 
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provides more detailed descriptions of general considerations about site selection.  Figure 

2.1 shows the locations of these sites.   

There are several site characteristics that could affect flow rate and water quality in 

runoff, such as catchment area, average daily traffic (ADT), antecedent dry days, and 

other environmental conditions, such as wind.  Table 2.1 shows some of these site 

characteristics. 

 

2.2.2 Monitoring Equipment 

The monitoring equipment includes flow meters, rain gauges, automated samplers, 

and power supplies.  Figure 2.2 shows the photos of each site.  A brief description of 

component is provided below. 

 

2.2.2.1 Power Supply 

Generally, commercially available stormwater equipment is capable of running either 

AC or DC power.  When AC power is available, the preferred setup is to operate the 

equipment by AC power with battery backup.  Among our three sites, only Site 3 has AC 

power.  The other two sites have to rely on batteries.  Two types of batteries were used 

for our monitoring.  One is the gel cell battery, which is lighter and used for the flow 

meter.  The other is a lead acid battery, which is much heavier and used for the automated 

sampler.  Regular maintenance is required to recharge these batteries when the voltage is 

low.  These batteries were drained out more quickly than reported in the manual during 

the rainy season. 
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Figure 2.1 Locations of Monitoring Sites Including UCLA and Other Agencies 
 
 
 
 
 

Table 2.1 Site Descriptions 
 

Site Name Site Location ADT Catchment Area Approximate % 
  (cars/day) (hect) Impervious 

Site 1 101 Freeway 328,000 1.28 100 
Site 2 405 Freeway 260,000 1.69 95 
Site 3 405 Freeway 322,000 0.39 100 
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2.2.2.2 Flow Meter 

There are two basic types of flow measuring devices typically used for flow weighted 

stormwater sampling (American Sigma, 2002): (1) depth sensors, which convert level 

measurements to flow rates based on the know pipe or channel geometry and Manning’s 

flow equation; and (2) area velocity sensors, which measure both the depth and velocity 

of flow to produce more accurate flow measurements.  Among our three monitoring sites, 

the depth-only sensor was originally installed at one site.  All of sensors were changed to 

area velocity sensors after the first season (1999-2000).  The model is Ultrasonic 950 

Area-Velocity Flow Meter from American Sigma (Oakville, Ontario, Canada). 

There is a known calibration issue with existing flow-weighted composite samplers 

that are associated with the flow sensor.  The reference depth or datum can differ when 

the sensor is first activated, which produces a bias.  The bias can be removed by 

correcting the datum, but this is usually only done after the storm event.  The bias affects 

sample volume.  The volume may be too large for the sample bottle, or too small to meet 

laboratory needs. 

 

2.2.2.3 Automated Sampler 

An automated sampler system is comprised of a peristaltic pump, a sample 

distribution, a housing that contains the composite bottles, and a sampler intake system.  

The peristaltic pump creates suction by compressing a flexible tube within a rotating 

roller, drawing the sample into the pump.  As the roller turns, it pushes the sample out of 

the roller.  As long as the suction side is not clogged, a peristaltic pump is a positive 
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displacement pump.  According to the manufacturer’s recommendation, the pump 

operates best when placed close to the source, which reduces the required suction head. 

Proper installation of a sampler intake system assures the collection of representative 

samples.  The intake strainer is used to mount the intake tubing to the bottom of a pipe or 

channel, and should be placed in the main flow.  The vertical position of the intake 

strainer should avoid at very bottom or top of the flow in order to take a representative 

sample of heavy solids and floating material.  The intake must also be located in a 

turbulent area to avoid stratified flows.  Suitable protection for intake strainers can 

prevent rocks and debris from clogging or damaging the intake tubing and pump.  

Additionally, manufacturers recommend Teflon tubing due to its inert properties 

(American Sigma, 2002). 

Automated samplers (900MAX, American Sigma) were installed at all sites after the 

first season.  However, only a few composite samples were obtained in the first year.  

Based on our own learning experience, mastering automated samplers requires an 

extensive training period, including installation and programming. 

 

2.2.2.4 Rain Gauge 

An electronic “tipping bucket” rain gauge (from American Sigma) was used to 

measure precipitation at our sampling sites.  This type of rain gauge is very accurate and 

electronically records rainfall in a function of time.  It collects rainfall in a standard 8-

inch cylinder in small increments, usually from 0.01 to 0.05 inch, and automatically tips, 

emptying the bucket.  The rain gauge is connected to a datalogger (a flow meter), which 
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counts the number of tips.  After events, all of rainfall data along with flow data can be 

retrieved from the datalogger. 

 

2.3 Analytical Procedures 

The selection of water quality parameters should be based on the potential pollution 

sources in the catchment area (Ma et al, 2002).  For highway runoff, numerous 

constituents have been previously detected.  In addition, the requirements listed in the 

monitoring plan for the Los Angeles County storm water/urban runoff NPDES permit are 

good references for parameter selection.  The parameters in our study are divided into 

five groups, as follows: 

conventional, such as TSS, COD, hardness; 

nutrients, such as ammonia, nitrite, nitrate, phosphorous; 

metals, such as copper, lead, zinc; 

petroleum hydrocarbons, such as oil & grease, and  

bacteria, such as total and fecal coliforms. 

Polynuclear aromatic hydrocarbons (PAHs) were analyzed for a limited number of 

samples (Lau et al, 2002) but are not covered in this dissertation.  Table 2.2 lists the 

selected water quality parameters and their corresponding laboratory methods, including 

method reference, laboratory reporting limits, maximum sample holding time and 

preservation, requirements. 
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Figure 2.2 Photos of Monitoring Sites 
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Table 2.2 List of Target Water Quality Parameters and Their Corresponding 
Analytical Methods 
 

Parameters Units Reporting 
Limits 

Analytical 
Method 

Holding time and 
Preservation3 

General     
Total suspended 
solids 

mg/L 2 EPA1 160.2 7 days; refrigerated 
at 4°C 

Turbidity NTU 1 EPA 150.1 48 hours; 
refrigerated at 4°C 

Conductivity µmho/cm 1 EPA 180.1 28 days; 
refrigerated at 4°C 

pH pH 0.01 EPA 120.1 Analyze 
immediately 

Hardness mg/L as 
CaCO3 

2 EPA 130.2 6 months; acidify 
with HNO3 to pH < 
2 

Chemical oxygen 
demand 

mg/L 2 EPA 410.0 Analyze as soon as 
possible 

Dissolved organic 
carbon 

mg C/L 1 EPA 415.1 7 days; acidify to 
pH <2 with H3PO4 

Nutrients     
Ammonia mg N/L 0.01 EPA 350.3 Analyze as soon as 

possible 
Nitrite mg N/L 0.01 EPA 354.1 48 hours; 

refrigerated at 4°C 
Nitrate mg N/L 0.1 EPA 300.0 48 hours; 

refrigerated at 4°C 
Total Kjeldahl 
Nitrogen 

mg N/L 0.1 EPA 351.4  

Ortho-Phosphate mg P/L 0.1 EPA 300.0 48 hours; 
refrigerated at 4°C 

Phosphorus 
(Dissolved and Total) 

mg P/L 0.03 EPA 200.7 48 hours; 
refrigerated at 4°C 

Organics     
Oil and grease mg/L 1 C18 SPE2 28 days; acidify to 

pH < 2 with HCl 
Metals (Dissolved 
and particulate) 

  EPA 200.7 Filter immediately, 
acidity to pH < 2 
with HNO3 

Cadmium, chromium, 
nickel, zinc 

µg/L 1   

Copper  3   
Lead  5   
Microbiological     
Total coliform MPN/100 ml 2 SM3 B9221 24 hours 
Fecal coliform MPN/100 ml 2 SM C9221 24 hours 

 

1  EPA Methods and Guidance for Analysis of Water (USEPA, 1999) 
2  Lau and Stenstrom (1997) 
3  Standard Methods (1999) 
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3.  HIGHWAY STORMWATER MONITORING RESULTS 

 

This chapter provides an overview of experiment results from our highway runoff 

experiments.  The results include field physical and lab analytical results for a period of 

two years (1999 to 2001).  Over 40 storm events were monitored from three monitoring 

sites.  All statistics analysis in this chapter uses the computer program, Arc (Cook and 

Weisberg, 1999) 

 
3.1 Field Physical Results 

3.1.1 Characteristics of Monitored Events 

An event’s important characteristics include date, precipitation, rain duration, runoff 

volume, runoff duration, antecedent dry days, and antecedent precipitation.  An event’s 

characteristics are usually a function of sampling site.  For example, for the same event, 

different sites usually experience different precipitation due to their slightly different 

locations.  Some of an event’s characteristics are suspected to have physical meaning and 

affect runoff water quality.  For example, antecedent dry days might reveal a pollutant’s 

tendency to “build-up” during the dry days.  Antecedent precipitation might be correlated 

to a pollutant’s “leftover” amount from the previous event.  Brief descriptions about 

monitored events’ characteristics are covered here. 

Figure 3.1 shows the histogram of antecedent dry days for the monitored storm events.  

The bins are skewed to the right, and most antecedent dry days were less than 10 days.  

Since we almost monitored every event in the rainy season, the skewed distribution 

seems to be natural. 
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Figure 3.2 shows the histogram of antecedent rainfall for the monitored storm events.  

The bins are skewed to the right, and most antecedent precipitation is less than 1 inch.  

The skewed distribution is also natural. 

Figure 3.3 shows the histogram of event rainfalls for the monitored storm events.  The 

bins are skewed to the right too.  In fact, Figure 3 is a reflection of Figure 2.  Most event 

rainfalls are less than 1 inch. 

Figure 3.4 shows the histogram of rainfall duration for the monitored storm events.  

The bins are skewed to the right too, and most rain durations are less than 10 hours.  The 

skewed distribution is natural. 
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Figure 3.1 Histogram of Antecedent Dry Days of Monitored Events 

 
 
 
 
 
 

 
Figure 3.2 Histogram of Antecedent Rainfalls (inch) of Monitored Events 
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Figure 3.3 Histogram of Monitored Event Rainfalls (inch) 

 
 
 
 
 
 

 
Figure 3.4 Histogram of Monitored Event Durations (hour) 
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3.1.2 Characteristics of Sampling Time 

At each sampling time during an event, there are corresponding field conditions in 

flow and precipitation, such as flow rate, rainfall intensity, cumulative runoff volume, 

cumulative rainfall, and other environmental conditions.  These corresponding field 

conditions provide important additional information to examine the lab analytical results.  

Among field conditions, the corresponding precipitation and flow conditions should be 

highly correlated to each other, based on principles of runoff hydrology.  Thus, to avoid 

redundancy, the precipitation-related data are selected to represent corresponding field 

conditions. 

Figure 3.5 shows the histogram of corresponding rainfall intensities (inch-rainfall/15-

mins) at sampling time.  The bins are skewed to the right, and more than half cases are 

less than 0.04 inch-rainfall per 15-min.  There are two possible causes for this skewed 

distribution.  One is that we did not often sample for high rainfall intensity conditions; the 

other is that the high rainfall intensity conditions are naturally rare.  The second cause is 

more possible. 

Figure 3.6 shows the histogram of corresponding cumulative rainfall at sampling time.  

The bins are skewed to the right, and most of cases are in the interval of 0 to 0.5 inch-

rainfall.  Both the nature (from the histogram of event rainfalls) and our sampling 

strategy (we intend to collect first flush samples) might cause this skewed distribution. 
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Figure 3.5 Histogram of Rainfall Intensity (inch/15-min) at Sampling Time 

 
 
 
 
 
 

 
Figure 3.6 Histogram of Cumulative Rainfall at Sampling Time 
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3.2 Lab Analytical Results 

3.2.1 Constituents in Absence 

Table 3.1 lists constituents that are not often detected in highway runoff.  These listed 

parameters show at least 20% that are under the reporting limits.  The reporting limits are 

based on the machines’ detection limits but with more confidence.  Usually, we set the 

reporting limits at about three times higher than the detection limits.  All of the reporting 

limits and detection limits can be shown in Table 2.2. 

From Table 3.1, most listed metals shows significant absence in highway runoff, such 

as arsenic (As) in either dissolved phase (79%) or particular phase (92%), cadmium (Cd) 

in either dissolved phase (76%) or particular phases (92 %), lead (Pb) in dissolved phase 

(78%).  Chromium (Cr) in dissolved phase shows a moderate absence (25%).  Ortho-P is 

the only non-metal listed, showing really high absence (73%). 

 

 

Table 3.1 Constituents Showing Significant Absence in Highway Runoff 
 

Constituent Phase Total Cases Undetected Cases Undetected % 
Cd Dissolved 445 340 76% 
Cd Particulate 425 390 92% 
Pb Dissolved 445 349 78% 
Cr Dissolved 445 110 25% 
As Dissolved 228 179 79% 
As Particulate 228 209 92% 

Ortho-P  449 327 73% 
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3.2.2 Summary Statistics and Histograms 

It is convenient to describe the lab analytical results based on their parameter 

categories that are classified as conventional, nutrients, metals, and petroleum 

hydrocarbon.  For some categories such as metals, we also describe constituents in two 

phases: dissolved and particulate phases.  The summary statistics and histograms are 

described as a detailed manner for selected parameters. 

 

Conventional/COD (Chemical Oxygen Demand): 

Table 3.2 shows the pooled and the site-specific COD results.  For pooled COD, there 

are total 441 cases reported from three sites.  The average concentration is 187.6 mg/L.  

The median concentration is 80.6 mg/L.  The fact that the median is much smaller than 

the mean implies an asymmetric distribution of COD results.  The average difference 

between cases is 291.7 mg/L.  The maximum COD is 1583.3 mg/L, and the minimum 

COD is 24.1 mg/L, a factor of more than 700.  Figure 3.7a shows the histogram of pooled 

CODs.  The density smoothing function, GKS (Gauss Kernel Density), with Parameter 

set as 0.8 was used to sketch the density curve for each site.  Overall, the bins are skewed 

to the right, and there are several outliers found on the right with extreme high 

concentrations.  Three sites’ density curves are quite close except that Site 2’s curve is a 

little lower on the mode.  Since the bins are extremely skewed, a logarithmic 

transformation of COD responses is suggested to remove the skewness and display more 

information in COD results.  Figure 3.7b shows the logarithmically transformed 

histogram. 

 20



Conventional/TSS (Total Suspended Solid): 

Table 3.3 shows the pooled and the site-specific TSS results.  For pooled TSS, there 

are 441 cases reported from three sites.  The average concentration is 62.3 mg/L.  The 

median concentration is 37.4 mg/L.  The difference in the mean and median implies an 

asymmetric sampling distribution.  The average difference between cases is 98.2 mg/L.  

The maximum TSS is 1534.7 mg/L, and the minimum TSS is 2.9 mg/L, a factor of more 

than 500.  Figure 3.8a shows the histogram of pooled TSS, in which GKS with Parameter 

set as 0.8 is used to sketch the density curve for each site.  Overall, the bins are skewed to 

the right, and there are several outliers on the right with extreme high concentrations.  

Site 2’s density curve is obviously on the right of other two sites’, representing a data set 

with higher TSS values.  Since the bins are extremely skewed, a logarithmic 

transformation of TSS responses is suggested to remove the skewness and display more 

information in TSS results.  Figure 3.8b shows the logarithmically transformed histogram. 

 

Petroleum Hydrocarbon/Oil & Grease (O&G): 

Table 3.4 shows the pooled and the site-specific O&G results.  For pooled O&G, 

there are 437 cases reported from three sites.  The average concentration is 12.6 mg/L.  

The median concentration is 6.2 mg/L.  The difference in the mean and median implies 

an asymmetric sampling distribution.  The average difference between cases is 16.7 mg/L.  

The maximum O&G is 108.0 mg/L, and the minimum O&G is under the reporting limit 

(1 mg/L).  Figure 3.9a shows the histogram of pooled O&G, in which GKS with 

Parameter set as 0.8 is used to sketch the density curve for each site.  Overall, the bins are 

 21



skewed to the right, and there are several outliers on the right with extreme high 

concentrations.  The site density curves are quite close.  Since the bins are extremely 

skewed, a logarithmic transformation of O&G responses is suggested to cure the 

skewness and display more information in O&G results.  Figure 3.9b shows the 

logarithmically transformed histogram. 

 

Nutrient/NH3-N (Ammonia): 

Table 3.5 shows the pooled and the site-specific NH3-N results.  For pooled NH3-N, 

there are 441 cases reported from three sites.  The average concentration is 3.04 mg/L.  

The median concentration is 1.07 mg/L.  The difference in the mean and median implies 

an asymmetric sampling distribution.  The average difference between cases is 5.93 mg/L.  

The maximum NH3-N is 35.96 mg/L, and the minimum NH3-N is 0.03 mg/L, a factor of 

more than 1000.  Figure 3.10a shows the histogram of pooled NH3-N, in which GKS with 

Parameter set as 0.8 is used to sketch the density curve for each site.  Overall, the bins are 

skewed to the right, and there are several outliers on the right with extreme high 

concentrations.  Thee sites’ density curves are a little different.  Since the bins are 

extremely skewed, a logarithmic transformation of NH3-N responses is suggested to 

remove the skewness and display more information in NH3-N results.  Figure 3.10b 

shows the logarithmically transformed histogram. 
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Metal/Zn_dis (Zinc in Dissolved Phase): 

Table 3.6 shows the pooled and the site-specific Zn_dis results.  For pooled Zn_dis, 

there are 437 cases reported from three sites.  The average concentration is 202.8 ug/L.  

The median concentration is 86 ug/L.  The difference in the mean and median implies an 

asymmetric sampling distribution.  The average difference between cases is 412.6 ug/L.  

The maximum Zn_dis is 6041 ug/L that is probably very unusual, and the minimum 

Zn_dis is 3.0 ug/L.  Figure 3.11a shows the histogram of pooled Zn_dis, in which GKS 

with Parameter set as 0.8 is used to sketch the density curve for each site.  Overall, there 

is only one obvious bin on the left.  The sites’ density curves are quite close.  Since the 

original data are all gathered on the left, a logarithmic transformation of Zn_dis responses 

is suggested to spread them out.  Figure 3.11b shows the logarithmically transformed 

histogram. 

For other water quality parameters’ summary statistics and histograms, Appendix A 

lists more results.  Basically, almost every parameter except coliforms shows a skewed 

distribution, and thus, a logarithmic transformation is suggested to remove this skewness 

and display more information.  Additionally, their site density curves show no significant 

difference, indicating that the site effect does not possibly exist. 
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Table 3.2 Summary Statistics of Analytical COD Results 
 

COD (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 441 123 163 155 
Minimum 11.1 15.8 11.1 11.1 
Maximum 2714.3 2714.3 2381.0 1800.0 
Median 80.6 66.7 80.6 83.3 
Mean 187.6 174.1 222.7 161.5 
Standard Dev 295.9 332.4 322.6 225.9 

 

 

 

 

 

Figure 3.7a (top) & b (bottom) Histograms of Analytical COD Results plus Simulated 

Density Curves Using Normal and Log Scales 
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Table 3.3 Summary Statistics of Analytical TSS Results 

 
TSS (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 441 123 163 155 
Minimum 2.9 2.9 4.5 6.3 
Maximum 1534.7 174.7 1534.7 331.6 
Median 37.4 20.6 68.3 31.8 
Mean 62.3 33.4 97.9 47.7 
Standard Dev 98.2 33.2 144.8 49.1 

 

 

 

 

 

Figure 3.8a (top) & b (bottom) Histograms of Analytical TSS Results plus Simulated 

Density Curves Using Normal and Log Scales 
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Table 3.4 Summary Statistics of Analytical O&G Results 
 

O&G (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 437 122 163 152 
Minimum 0.5* 1.3 0.5 0.5 
Maximum 108.0 73.0 102.3 108.0 
Median 6.2 5.6 5.9 7.3 
Mean 12.6 9.8 15.5 11.7 
Standard Dev 16.7 10.6 21.0 15.1 

 

 

 

 

 

Figure 3.9a (top) &b (bottom) Histograms of Analytical O&G Results plus Simulated 

Density Curves Using Normal and Log Scales 
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Table 3.5 Summary Statistics of Analytical NH3-N Results 
 

NH3-N (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 441 123 163 155 
Minimum 0.03 0.04 0.06 0.03 
Maximum 35.96 13.69 35.96 25.41 
Median 1.07 0.94 1.04 1.31 
Mean 3.04 1.69 4.94 2.13 
Standard Dev 5.93 2.27 8.72 3.21 

 

 

 

 

 

Figure 3.10a (top) & b (bottom) Histograms of Analytical NO3-N Results plus 

Simulated Density Curves Using Normal and Log Scales 
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Table 3.6 Summary Statistics of Analytical Zn_dis Results 
 

Zn_dis (ug/l) Pool Site 1 Site 2 Site 3 
N of cases 437 122 163 152 
Minimum 3.0 6.0 3.0 13.2 
Maximum 6041.2 590.9 6041.2 2180.7 
Median 86.0 105.5 69.0 102.2 
Mean 202.8 142.4 268.9 180.5 
Standard Dev 412.6 121.5 616.5 252.5 

 

 

 

 

 

Figure 3.11a (top) & b (bottom) Histograms of Analytical Zn_dis Results plus 

Simulated Density Curves Using Normal and Log Scales 
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3.2.3 Correlations between Constituents 

Correlations among the water quality parameters in the dissolved and particulate 

groups were investigated.  Figure 3.12 shows the correlation of the dissolved phase 

parameters.  The correlations are for logarithmically transformed data as suggested earlier.  

Table 3.7 shows the correlation coefficients, which range from 0.70 to 0.94. 

Figure 3.13 shows the correlations among the particulate phase parameters.  Table 3.8 

shows the correlation coefficients.  The coefficients range from 0.75 to 0.94 between 

Cu_prt, Ni_prt, Zn_prt, and Cr_prt.  TSS correlates to the metal concentrations, but not as 

well as the metal’s correlation among each other.  The correlation coefficients range from 

0.63 to 0.72.  The correlation between TSS and VSS is 0.93. 
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Figure 3.12 Scatterplot Matrix of Correlated Constituents in Dissolved Phase 
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Figure 3.13 Scatterplot Matrix of Correlated Constituents in Particulate Phase 
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Table 3.7 Sample Correlation Coefficients in Dissolved Group 

 
log[COD] 0.77 0.91 0.94 0.82 0.91 0.85 0.83 0.93 

0.77 log[Cl-] 0.78 0.78 0.69 0.76 0.68 0.71 0.81 

0.91 0.78 log[Cu_dis
] 0.94 0.83 0.91 0.84 0.89 0.89 

0.94 0.78 0.94 log[DOC] 0.81 0.94 0.85 0.84 0.91 

0.82 0.69 0.83 0.81 log[F-] 0.80 0.77 0.80 0.88 

0.91 0.76 0.91 0.94 0.80 log[O&G] 0.85 0.80 0.88 

0.85 0.68 0.84 0.85 0.77 0.85 log[P_dis] 0.70 0.90 

0.83 0.71 0.89 0.84 0.80 0.80 0.70 log[Ni_dis] 0.81 

0.93 0.81 0.89 0.91 0.88 0.88 0.90 0.81 log[TKN] 

 
 
 
 
 
 
 

Table 3.8 Sample Correlation Coefficients in Particulate Group 
 

log[Cr_prt] 0.90 0.85 0.75 0.72 0.73 
0.90 log[Cu_prt] 0.85 0.79 0.69 0.73 
0.85 0.85 log[Ni_prt] 0.76 0.71 0.74 
0.75 0.79 0.76 log[Zn_prt] 0.63 0.64 
0.72 0.69 0.71 0.63 log[TSS] 0.93 
0.73 0.73 0.74 0.64 0.93 log[TVSS] 
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4.  REGRESSION ANALYSIS ON SELECTED WATER QUALITY 

PARAMETERS IN HIGHWAY RUNOFF 

 

4.1 Regression Description 

4.1.1 Introduction 

Some people think that regression is the workhorse in statistics due to its popularity 

and functionality.  However, it is also quite common for people misusing or overusing it.  

In order to avoid this problem, a brief overview is provided. 

Basically, regression is a way to study relations among observations. These relations 

involve in responses (also called dependent variables), symbolized as y, and several other 

explained variables (also called independent variables, or predictors), symbolized as x.  

Usually for the single response case, y is in a scalar from (as y), and x is in a vector form.  

Regression models are approximations, which are obtained from these studying relations, 

to the mechanisms generating the observations (y and x). 

In general, x is viewed as observations with nonrandom values whereas y is treated as 

having random components.  Thus the essentials of regression without any assumptions 

are the conditional distribution of y on x.  The errors are calculated by subtracting the 

expected y from the observed y.  From here, several questions arise.  How do we get the 

expectation form of y conditioning on x?  And if we want separate errors from y, how do 

we treat them?  If we just simply treat the unknown conditional distribution of y without 

considering any assumptions on errors, the model is nonparametric.  If we treat errors as 
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independent identically distributed (i.i.d.) with arbitrary distribution F, the model is semi-

parametric.  If the distribution F is known, then the model is parametric. 

 

4.1.2 Gaussian Linear Models 

A Gaussian linear model is the most popular parametric model in regression, in 

which F has a Gaussian distribution, and the expectation of y is in the form of a linear 

combination of x.  For example, we can write a simple linear model as 

2
0 1y | ~ ( , )N xη η σ+x      (4.1.1) 

In this simple model, x is just a scalar variable, and the linear combination of x is just 

itself plus a constant.  The conditional distribution  has a Gaussian distribution with 

the mean

|y x

0 1xη η+  and the variance .  If we want to introduce the error term in the 

model, we can rewrite the above model as 

2σ

0 1y | x eη η= + +x      (4.1.2) 

2~ (0,e N σ )        

Where e is a random error, and has a Gaussian distribution with the mean zero and the 

variance . 2σ

Many hypothesis tests of regression rely on the Gaussian model’s normality 

assumptions.  However, we are often able to reject Gaussian models in the real world due 

to their intensive assumptions. 
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4.1.3 Mean and Variance Functions 

In order to focus on the study of how the conditional distribution of y changes as x is 

varied, we are mainly interested in the mean function and the variance 

functionVar .  Here  can be viewed as the subpopulation of the whole 

population y.  Among these two, the mean function is usually over the variance function 

in the study interest. 

( | )E y x

( | )y x |y x

From mathematical derivation, the mean function and variance function have the 

following properties: 

( ) ( ( | ))E y E E y= x      (4.1.3) 

( ) ( ( | )) ( ( | ))Var y E Var y Var E y= +x x    (4.1.4) 

We can interpret the above properties as the mean response is the weighted mean 

of from subpopulations, and the variance of responses Var is equal to the 

expectation of variance function plus the variance of the mean function.  The second 

equation is also recognized as ANOVA property, which states that the whole response’s 

variance can be divided into the “within group” variance and “between group” variance. 

( )E y

( | )E y x ( )y

When we study the mean function , the predictors x may take many forms, as 

long as they are known.  For example, they could be in logarithm, polynomial, or power 

form; or several predictors might be combined in some way into an index.  In order to 

distinguish between given predictors and predictors’ forms in the mean function, we 

usually use “terms”, which are built from the given predictors, to refer predictors’ forms 

in the mean function.  For example, 

( | )E y x
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0 0 1 1 1 1( | ) .... k kE y u u uη η η − −= + + +x     (4.1.5) 

There are k terms in this mean function, fromu to .  Each term  is a function of 

given predictors, u .  Thus, while conditioning on x, every term u  is also determined.  

Conventionally, the term  is a constant and equal to one for the model including the 

intercept. 

0 1ku − ju

( )j x j

0u

The simplest type of term is equal to one of the predictors, i.e. = u =1u 1( )x jx .  For 

complicated forms, terms can be the power of the predictors, transformations of the 

predictors, polynomial functions of the predictors, or interaction of the predictors.  In 

these complicated cases, since the coefficients, 0..... k 1η η −  are linear in the mean function, 

it is also said to be a “linear model”.  For categorical predictors, the corresponding terms 

could be their levels.  For example, one categorical predictor with l levels needs l-1 terms 

in the mean function. 

 

4.1.4 Estimates of Model’s Parameters 

The most common method of estimating a model’s coefficients uses the “Least Squares” 

estimation.  A least squares estimator manipulates parameter values to minimize a 

particular objective function.  In regression, the particular objective function is the 

residual sum of squares function, RSS (η). Suppose we have a mean function 

( | )E =y X Uη      (4.1.6) 
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where y is an response vector, X is a predictor vector, U is an n model 

matrix, and η is a parameter vector.  RSS (η) can be defined as 

1n ×

k

1k × k×

1×

( ) ( ) (TRSS = − −η )y Uη y Uη     (4.1.7) 

It is called “Ordinary Least Squares” (OLS) estimates.  Using calculus, minimizing 

(4.1.7) leads to the “normal equations”, as follows 

T =U Uη UT y       (4.1.8) 

Thus, if the inverse of exists, the OLS estimates are given by ( )TU U

1ˆ ( )T −=η U U UT y      (4.1.9) 

Suppose we have a weighted variance function 

2var( | ) σ −= 1y X W      (4.1.10) 

where W is a diagonal matrix whose diagonal elements wi are known positive weights.  It 

is called “Weighted Least Squares” (WLS) estimates.  The objective function becomes 

( ) ( ) ( )TRSS = − −η y Uη W y Uη    (4.1.11)  

We can convert a WLS regression into an OLS regression by converting y and U as 

follows 

* 1/ 2=y W y       (4.1.12) 
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* 1/ 2=U W U       (4.1.13) 

4.1.5 Statistical Inference 

We have described regression as a way to study the conditional distribution , 

usually through the mean and variance functions.  If we want to do more, we will 

probably apply statistical inference to address uncertainty in the data.  However, where is 

this uncertainty from?  It is from “sampling variability”.  When the data you have are a 

subset of a larger, full data set, and if you repeated the study, the data “on hand” (the term 

“on hand” refers to the specific sub dataset that was sampled in that run) would differ.  

Thus how does this sampling variability affect the result?  That is what statistical 

inference is about.  We usually use the term “population” for the full data set and 

“samples” for the subset. 

|y x

We can use statistical inference to judge the model (the mean and variance function) 

through hypothesis tests such as t-test, F-test, and curvature-test, etc.  In these tests, a p-

value, which is a standardized quantity, will be used to make the judgment.  However, 

statistical inference is only justified for the data that were actually generated by some 

random mechanism such as probability sampling, random assignments, or probability-

equivalent sampling, etc.  For the data that are a subset of a population, but were not 

selected by a random mechanism, we view them as “convenience samples”.   

Convenience samples might be biased, and not sufficient to represent the population 

in probability point of view.  Thus statistical inference is not justified for convenience 

samples. 
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There is often a debate whether or not the statistical inference is justified.  For most 

environmental data such as our highway experimental data, most statisticians think that 

they are convenience samples, and thus statistical inference is not justified.  In this case, 

we restrict using regression to only describe the data “on hand”. 

 

4.1.6 Conclusions 

Many modern regression techniques can help us to establish and evaluate the 

regression model, such as graphical regression and diagnostic plots.  We will apply some 

of them in this study.  Next, we do not intend to use the statistical inference in this study 

due to the convenience samples of our data set.  In addition, there is always a tradeoff 

between model’s fitting and clarity; in another words, simple models show a clearer 

relationship between response and predictors than complicated models, but may not fit 

the data as well as complicated models.  Finally, the mean function will receive more 

research attention than the variance function. 
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4.2 The Site-Pooled COD Regression 

The regression analysis involved in this chapter uses the computer program, Arc 

(Cook and Weisberg, 1999). 

 

4.2.1 Introduction 

In this section, we consider relating COD concentrations from grab samples to several 

potential predictors, including the corresponding cumulative rainfall, the corresponding 

rainfall intensity, the event’s antecedent dry days, and the previous event’s precipitation.  

All three sites’ data (441 cases) will be used together in this regression, but some field 

data are missing in some cases (Appendix B shows this data set).  The site’s effect will be 

checked after building the site-pooled model.  The abbreviations COD, AccR, RI, AtDry, 

and AtR will be used to represent these variables.  Table 4.2.1 describes these variables. 

We have examined the histogram and summary statistics for these variables in the 

previous chapter, and concluded that each should be logarithmically transformed.  Thus 

the basic terms of predictors and response will appear in a log scale in the regression.  In 

addition, before transforming, some of original variables need to be linearly rescaled in 

order to obtain better scale in the regression or to avoid singularity in a log scale.  Table 

4.2.2 describes the transformations for these basic terms and response. 
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Table 4.2.1 Descriptions of Responses and Potential Predictors 

Variable Description 

COD COD concentrations in mg/l 

CumR Cumulative rainfall corresponding to grab 

samples in inch 

AtDry Antecedent dry period before monitored events 

in days 

AtR Previous event’s precipitation before monitored 

events in inch 

RI Rainfall intensity before grab samples in 

inch/15-mins 

 

 

Table 4.2.2 Transformations of Responses and Potential Predictors 

Original Variable Transformed Variable 

COD log (COD) 

CumR log (CumRs); CumRs = CumR*100 

AtDry log (AtDry) 

AtR log (AtRs); AtRs = AtR*100 

RI log (RIs); RIs = RI *100 + 1 

 

 41



4.2.2 Building the Initial Model 

4.2.2.1 The Scatterplot Matrix 

A scatterplot matrix is a 2D array of 2D plots.  The diagonal elements are variable names, 

and each off-diagonal element is a 2D plot describing the corresponding pair of 

variables.  Scatterplot matrices actually tell us about “marginal” relationships 

between each pair of variables without reference to the other variables, or in another 

words, integrating over the other variables.  We usually put the response variable on 

the bottom, and thus the last row of scatterplot matrices, which is called marginal 

response plots, displays the dependency of the response on each potential predictor.  

Therefore, the marginal response plots provide a visual lower bound for the 

goodness-of-fit that can be achieved with the full regression.  However, without 

further qualification, the marginal response’s dependency of the response is not the 

same as in the full regression.  For example, if one marginal response plot suggests a 

non-linear trend between the response and some predictor, the trend is not necessarily 

non-linear in the regression. 

Figure 4.2.1 shows the scatterplot matrix for the COD data with all potential predictors in 

this study.  The COD and these predictors have been transformed to a natural log 

scale.  In evaluating the regression model, we first would like to check all of the 

marginal response plots.  The marginal response plot log [COD] versus log [CumRs] 

suggests that log [COD] linearly decreases with log [CumRs].  This marginal 

dependence between log [COD] and log [CumRs] is very strong, and CumRs is 

possibly a major component in the regression.  The marginal response plot log [COD] 

versus log [AtDry] suggests that log [COD] increases with log [AtDry].  Next, the 

marginal response plot log [COD] versus log [RIs] suggests that log [COD] roughly 

decreases with log [RIs].  Finally, the marginal response plot log [COD] versus log 

[AtRs] suggests that there is no marginal dependency between log [COD] and log 

[AtRs]. 

Next, we would like to check the dependency between predictors.  The only marginal plot 

showing a dependency is the plot log [CumRs] versus log [RIs], which suggests that 
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log [CumRs] increases with log [RIs].  This dependency may indicate that heavy rain 

comes later during the event. 

 

4.2.2.2 The Initial Model 

From the previous evaluating steps, we suggest the initial mean function as follows 

0 1 1 2 2 3 3 4( | )E y x x x x4η η η η η= + + + +x    (4.2.1) 

where 

1 2 3 4

log[ ]
( , , , ) (log[ ], log[ ], log[ ], log[ ])

y COD
x x x x CumRs AtDry AtRs RIs

=
= =x

 

 

Table 4.2.3 shows the brief regression result for the above initial model.  The R-

squared vale is 0.67, which means that the above predictors can account for 67% of the 

responses’ variation.  The coefficients for log [CumRs], log [AtDry], log[AtRs], and log-

[RIs] are -0.58, 0.39, -0.16, and -0.10 respectively 
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Figure 4.2.1 Scatterplot Matrix of Transformed Response and Potential Predictors 
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Table 4.2.3 Initial Regression Result for (4.2.1) 

Data set = wq_pool, Name of Fit = COD Reg0
Kernel mean function = Identity
Response = log[COD]
Terms = (log[CumRs] log[AtDry]

log[AtRs] log[RIs])
Coefficient Estimates
Label Estimate Std. Error
Constant 6.14279 0.128495
log[CumRs] -0.583173 0.0277896
log[AtDry] 0.390512 0.0259335
log[AtRs] -0.161859 0.0216586
log[RIs] -0.0980971 0.0439613
R Squared: 0.669661
Scale factor: 0.590761
Number of cases: 441
Number of cases used: 393
Degrees of freedom: 388 
Summary Analysis of Variance Table
Source df SS MS
Regression 4 274.505 68.6263
Residual 388 135.412 0.348999    

 

 

4.2.3 Checking the Model 

4.2.3.1 The 2D Added-Variable Plots 

2D added-variable plots are scatter plots of the residualized response and term in the 

mean function.  The properties of the plot can be derived as follows.  Suppose we have a 

mean function 

1 1 2 2( | ) T TE y uη η η= = +x u u     (4.2.2) 
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where we have divided the k × 1 vector of terms into two pieces, u1 with k – 1 terms and 

u2 with the remaining term.  The 2D added-variable plot for u2 is a plot 

of versus , where and e u are the residuals of y and u1ˆ( | )e y u 2 1ˆ( |e u u ) )

1u

1ˆ( | )e y u 2 1ˆ( | u 2 

regressed on respectively.  Fitting the simple linear mean function by OLS on the added-

variable plot gives 

1 2 1 2 2
ˆ ˆˆ ˆ ˆ( ( | ) | ( | )) 0 ( | )E e y e u e uη= +u u    (4.2.3) 

The estimated coefficient 2η̂  will remain be the same in (4.2.3) as in the OLS fit of 

(4.2.2).  In addition, the intercept is zero, and the residuals are also identical. 

From (4.2.3), we know that 2D added-variable plots will provide visual information 

on the numerical calculation of the coefficient of a term.  We can use them to assess the 

net effect of a predictor or term in model fitting.  In practice, if points scatter about a 

horizontal line on an added variable plot, it indicates that adding this term to the model 

does not really help the fit.  In addition, there is one condition we need to be aware.  If 

points gather in a tiny range of  compared to u2 1ˆ( |e u u ) 2, it means that u2 is strongly 

collinear with other terms.  In this case, the regression information from u2 is already 

available from others, and thus u2 works like a redundant term in the model. 

Figures 4.2.2 (a) to (d) show the 2D added-variable plots for each term except the 

intercept in the initial mean function (4.2.1).  We used a smooth function, lowess (Cook 

and Weisberg, 1999) with a smoothing parameter at 0.7, to help visualizing the trends.  

On the plot 4.2.2 (a), the smoothing line shows a large slope, and indicating that log 

[CumRs] is a useful additional term.  The smoothing line also looks nearly straight.  
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Next, on the plot 4.2.2 (b), the smoothing line also shows a large slope, indicating the 

large net effect for the additional term log [AtDry].  The smoothing line, however, shows 

some curvature.  Next, on the plot 4.2.2 (c), the smoothing line shows a small slope, and 

thus the net effect for the additional term log [AtRs] may not be large.  Finally, on the 

plot 4.2.2 (d), the smoothing line is nearly flat, and indicates that the additional term log 

[RIs] may not be useful. 

Table 4.2.4 shows the regression result if we delete the term log [RIs].  The R 

Squared and the coefficients for the remaining terms only changed a little: the R Squared 

is still the same as 0.67, the intercept changed from 6.14 to 6.08, the log [CumRs] 

coefficient changed from -0.58 to -0.60, the log [AtDry] coefficient changed from 0.38 to 

0.40, and the log [AtR] coefficient is still the same as -0.16.  Thus, the additional term log 

[RI] is not useful in the initial mean function (4.2.1). 

Table 4.2.5 shows the regression result if we continue to delete the term log [AtRs].  

This time, the R Squared and the intercept changed more but the coefficients for the 

remaining terms only change slightly: The R Squared changed from 0.67 to 0.62; the 

intercept changed from 6.08 to 4.43; the log [CumRs] coefficient changed from -0.60 to 

0.59, and the log [AtDry] coefficient changed from 0.40 to 0.38.  We will still keep the 

log [AtR] in the initial mean function (4.2.1) due to the 8% decrease in fitting and the 

potentially physical meaning. 
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Table 4.2.4 Regression Result after Deleting log [RIs] in (4.2.1) 

Data set = wq_pool, Name of Fit = COD Reg1
Kernel mean function = Identity
Response = log[COD]
Terms = (log[CumRs] log[AtDry] log[AtRs])
Coefficient Estimates
Label Estimate Std. Error
Constant 6.08433 0.126437
log[CumRs] -0.604614 0.0262086
log[AtDry] 0.402204 0.0255283
log[AtRs] -0.164255 0.0217423
R Squared: 0.665422
Scale factor: 0.593775
Number of cases: 441
Number of cases used: 393
Degrees of freedom: 389

 

 

 

Table 4.2.5 Regression Result after Deleting log [RIs] and log [AtRs] in (4.2.1) 

Data set = wq_pool, Name of Fit = COD Reg2
Kernel mean function = Identity
Response = log[COD]
Terms = (log[CumRs] log[AtDry])
Coefficient Estimates
Label Estimate Std. Error
Constant 5.43378 0.0990119
log[CumRs] -0.586660 0.0279139
log[AtDry] 0.383873 0.0271782
R Squared: 0.616333
Scale factor: 0.635028
Number of cases: 441
Number of cases used: 393
Degrees of freedom: 390
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Figure 4.2.2(a) & (b) Added-Variable Plots for log [CumRs] and log [AtDry] in 

(4.2.1) 
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Figure 4.2.2(c) & (d) Added-Variable Plots for log [AtRs] and log [RIs] in (4.2.1) 
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4.2.3.2 The Model-Checking Plots 

A common way to expose lack of fit in a regression is to observe residuals plots 

against predictors, terms, or any linear combination of predictors or terms.  Since 

residuals should be independent of all the above variables, these residuals should have no 

pattern, such as curvature and have a zero mean.  One way of checking the regression 

without using statistical inference is to use a smoothing function, which constructs the 

estimate of the conditional mean of residuals against any above horizontal variable in 

residual plots.  If the curve produced by the smoothing function is close to a straight 

horizontal line located at zero, the mean function is validated. 

Nevertheless, residual plots are able to indicate that the mean function may not be 

appropriate for the data.  The residuals may sometimes be small relative to the range of 

response, and most of the variation in response can be explained by “incorrect” mean 

function.  These incorrect mean functions judged by residual plots still provide useful 

information. In this case, the systematic pattern presented in residuals can be ignored.  

Therefore, in this case, model-checking plots, which are related to residual plots, provide 

additional information to let us determine the usefulness of the mean function. 

Model-checking plots compare the estimated mean function computed from the 

model to the estimated mean function computed from a smoothing function.  With 

response y on the vertical axis, the quantity h on the horizontal axis can be any function 

of the original predictors x.  The mathematical derivation is as follows 
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(y | ) [ ( | ) | )]E h E E y h= u     (4.2.4) 

[ |TE hη= u )]  

where u means the terms.  If we substitute ˆˆ Ty η= u for Tη u , then for any h, we can 

estimate from the model that produced by smoothing the scatterplot of versus 

h.  If the model is correct, then the smoothed of y versus h and versus h should agree 

with each other.  In principle, we are required to examine model-checking plots for a 

variety of values of h. 

(y | )E h ŷ ŷ

ŷ

In practice, we usually check the model checking plots for the OLS fit and each 

individual term.  There is no standardized quantification for the discrepancy between the 

data and the model on the plots.  Thus, the judgment is made only through visualization.  

Additionally, the variance function can also be checked on model-checking plots.  

Similarly, we can compare the interval computed by the model to the interval computed 

by the smoothing function. 

Figures 4.2.3(a) to 4.2.3(d) show the model-checking plots for the mean function.  On 

plot 4.2.3(a), the data line is overall close to the model line under the horizontal variable 

as the OLS fitted values (shown as the symbol, eta’u, on the plot).  The data line shows a 

little curvature on the two ends.  Next, on the plot 4.2.3(b), the data line is very close to 

the model line under the horizontal variable as log [CumRs].  There is slight discrepancy 

between these two lines on the right end.  Next, on the plot 4.2.3(c), the data line is very 

close to the model line under the horizontal variable as log [AtDry].  No obvious 

discrepancy was observed.  Finally, on the plot 4.2.3(d), the data line is very close to the 
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model line under the horizontal variable as log [AtRs].  No obvious discrepancy was 

observed too.   

Figures 4.2.4(a) to 4.2.4(d) show the model checking plots for checking the variance 

function.  The data intervals are quite close to the model intervals on all of these four 

plots although some slight discrepancy happened somewhere.  The variance function is a 

constant in this regression. 

We can add some high-order polynomial terms in the mean function to correct the 

slight discrepancy as observed in Figure 4.2.3(a).  This decision was not made due to the 

consideration of balancing the model’s fit and complexity.  Overall, we are satisfied with 

the current model. 
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Figure 4.2.3(a) & (b) Model-Checking Plots for Checking OLS Fit (eta’u) and log 

[CumRs] in the Mean Function (the solid-blue line is for the data; the dashed-red 

line is for the model) 
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Figure 4.2.3(c) & (d) Model-Checking Plots for Checking log [AtDry] and  

log [AtRs] in the Mean Function (the solid-blue line is for the data; the dashed-red 

line is for the model) 
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Figure 4.2.4(a) & (b) Model-Checking Plots for Checking OLS Fit (eta’u) and 

log [CumRs] in the Variance Function (the solid-blue line is for the data; the 

dashed-red line is for the model) 
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Figure 4.2.4(c) & (d) Model-Checking Plots for Checking log [AtDry] and log 

[AtRs] in the Variance Function (the solid blue line is for the data; the dashed-red 

line is for the model) 
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4.2.3.4 The Cook’s Distance Plots 

In a regression, some cases are considered to have a large influence on the results of 

the analysis if deleting them from the data set produces conclusions quite unlike those 

based on the full dataset.  These influential cases are often far away from the rest of data.  

The explanation of these influential cases is a mistake, or a rare observations, or model 

shortcoming.  Thus, we always would like to find the influential cases, and understand 

them. 

Cook’s distance can be used to summarize essential information about the influence 

of each case on the estimated regression coefficients.  Cook’s distance is a mathematical 

measurement for the impact of deleting a case.  The measurement for accessing the 

influence of the ith case is based on the vector difference among the coefficients 

estimates, η̂ and ( )ˆ iη .  η̂  is estimated from all of the data, and ( )ˆ iη is estimated from the 

data but without ith case.  Cook’s distance is summarized by Di, which is proportional to 

the squared distance between η̂ and ( )ˆ iη .  If Di is sufficiently large, then the case is 

influential forη̂ .  For a linear model with mean function ( TE y | ) η=x u , the Di can be 

written as 

( ) ( )
2

ˆ ˆ ˆ ˆ( ) ( )(
ˆ

T T
i

iD
k

)iη η η
σ

− −
=

U U η
    (4.2.5) 

In (4.2.5), U denotes the  matrix defined by the terms in the mean function; n is the 

number of observations; k is the number of terms, and is the estimated variance.  

n k×

2σ̂
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Cook’s distance plots show Di values.  In practice, we are interested in studying the cases 

that have Di > 0.5, and always studying the cases with Di >1. 

Figure 4.2.5 shows the Cook’s distance plot for this regression and in no cases is Di 

greater than 0.5.  The three highest cases (marked by * on plot) are approximately 0.05.  

Table 4.2.6 shows the regression result if we delete these three cases.  The R Squared 

increased from 0.67 to 0.70. The intercept increased from 6.08 to 6.17.  The log [CumRs] 

coefficient decreased from -0.60 to -0.64.  The log [AtDry] coefficient and the log 

[AtR]’s coefficient are approximately the same, from 0.40 to 0.41 and from -0.16 to -0.17 

respectively. 
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Figure 4.2.5 Cook’s Distance Plot (three highest cases marked by *) 

 

 

Table 4.2.6 Regression Result after Deleting Three Highest Di Cases 

Data set = wq_pool, Name of Fit = COD Reg1
Deleted cases are
(S2-1999-09-C1 S3-1999-08-C2 S3-1999-10-01)
Kernel mean function = Identity
Response = log[COD]
Terms = (log[CumRs] log[AtDry] log[AtRs])
Coefficient Estimates
Label Estimate Std. Error
Constant 6.17190 0.121658
log[CumRs] -0.637184 0.0255451
log[AtDry] 0.409966 0.0244258
log[AtRs] -0.168405 0.0207767
R Squared: 0.697159
Scale factor: 0.56697
Number of cases: 441
Number of cases used: 390
Degrees of freedom: 386
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4.2.4 Conclusions 

One of the primary advantages of fitting a parametric mean function is that the 

regression can then be characterized by only a few numbers such as the estimates of the 

regression coefficients and .  Consequently, interpreting the regression coefficients is a 

necessary step to every regression analysis.  Because measurements generally have units 

attached to them, and sometimes the mean function is very complicated, it will be 

difficult for us to quantify the effect on the response just from the values of the 

coefficients.  In practice, the simple description of a regression coefficient is its net effect 

on response while keeping other terms fixed. 

σ̂

The result of the mean function for this site-pooled COD regression is 

(log | ) 6.08 0.60log 0.40log 0.16logE COD CumRs AtDry AtR= − + −x s  (4.2.6) 

The intercept of the regression line is 6.08, and anchors the regression.  Secondly, the 

term, log [CumRs]’s coefficient is -0.60.  It means that COD concentration will decrease 

0.6 % per 1% up of cumulative rainfall.  Next, the term, log [AtDry]’s coefficient is 0.40.  

It means that COD concentration will increase 0.4 % per 1% up of antecedent dry period.  

Finally, the term, log [AtRs]’s coefficient is -0.16.  It means that COD concentration will 

decrease 0.16 % per 1% up of previous rainfall. 

In order to understand more about the above interpretation, we use the following 

examples to illustrate each term’s effect on COD concentrations.  In example one, one 

event is given with 7 days of dry period and 0.5 inch of previous rainfall.  At 0.1-inch 

rainfall depth, the COD concentration is approximately 128 mg/l.  At 0.3-inch rainfall 
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depth, the COD concentration is approximately 66 mg/l.  The decrease is approximately 

48 % compared to at 0.1-inch level.  At 1.0-inch rainfall level, the COD concentration is 

approximately 32 mg/l.  The decrease is approximately 75 % compared to at 0.1-inch 

depth.  In fact, this relative ratio is fixed among rainfall levels for any event with given 

dry period and previous rainfall.  Figure 4.2.6 shows this decreasing trend for the range of 

rainfall depth from 0.1 to 3 inches. 

In example two, one event is given with 0.5 inch of previous rainfall and three dry 

period conditions, 7, 20, and 40 days respectively.  At 0.1-inch rainfall depth, the COD 

concentration is approximately 128 mg/l for 7 days of dry period, 195 mg/l for 20 days of 

dry period, and 257 mg/l for 40 days of dry period.  The relative concentration ratio 

among 7, 14, and 40 days is 1:1.5:2.  At 0.5-inch rainfall depth, the COD concentration is 

approximately 49 mg/l, 74 mg/, and 98 mg/l for 7 days, 20 days, and 40 days of dry 

period respectively.  The concentration ratio among 7, 14, and 40 days is still the same.  

In fact, this ratio is fixed too at any rainfall level for any event with given previous 

rainfall.  Figure 4.2.7 shows this relative trend for the range of dry period from 3 days to 

50 days. 

Similarly to example 2 with given, different previous rainfall, the concentration ratio 

is also fixed at any rainfall level for any event with given dry period.  Figure 4.2.8 shows 

this relative trend for the range of previous rainfall from 0.1 to 3 inches. 
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Figure 4.2.6 Relative Percentage Decrease in COD Concentration versus Cumulative 

Rainfall with Fixed Antecedent Dry Days and Previous Rainfall (reference level: 0.1-inch 

cumulative rainfall) 
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Figure 4.2.7 Relative Ratio in COD Concentration versus Antecedent Dry Period with 

Fixed Rainfall Depth and Previous Event Precipitation (reference level: three days of 

antecedent dry period) 
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Figure 4.2.8 Relative Ratio in COD Concentration versus Previous Event Precipitation 

with Fixed Rainfall Depth and Antecedent Dry Period (reference level: 0.1-inch of 

previous event precipitation) 

 65



4.3 The Site Effect on the COD Regression 

Continuing with the COD regression, we now consider the site effect on the mean 

function.  In order to distinguish the data from different sites, we have to use a categorical 

predictor that represents the site.  Usually a categorical predictor with k levels requires (k-

-1) indicator variables.  Each indicator variable is assigned the value one or zero. And for 

any case, no more than one of these indicator variables is assigned to one, and all the rest 

are equal to zero.  If they are all zeros, then this categorical predictor belongs to its base 

level.  In the COD regression, the site categorical predictor (using symbol S) has 3 levels.  

If we set Site 1 as the base level, thus we need two indicator variables to represent Site 2 

and 3. 

When considering categorical predictor S in the COD regression, we have to think of 

how S can affect the mean function.  We will illustrate the role of a categorical predictor 

from a simple case: a simple linear function with an intercept, one continuous predictor X, 

and one categorical predictor S with two levels (1 or 2).  Suppose that for each fixed level 

of S, the mean function can be expressed as 

0 1( | , ) s sE Y X S s Xη η= = +     (4.3.1) 

The additional subscript s on coefficients ηs implies the possibility that the effect of S 

could be reflected in the intercept, the slope, or both.  Thus for a simple mean function 

such as (4.3.1), there are four possibilities about the effect of a categorical predictor.  We 

will distinguish these four cases as below: 
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1. Unrelated Regression Lines:  This is the most general case.  The slope and intercept 

parameters for each level of S are totally different.  Even the trends can be opposite.  

From the regression point of view, we would say that there is an interaction between 

the categorical predictor S and the continuous predictor X, and each indicator 

variable should also be included in the mean function.  The mean function is as 

follows 

0 02 2 1 12 2( | , )E Y X S l X l Xη η η η= + + +     (4.3.2) 

where l2 is the indicator variable, so l2 = 1 when S = 2. 

2. Parallel Regression Lines:  In this case, the slopes are equal.  That is 11 12η η= , but 

the intercepts may differ.  Thus the effect of the categorical predictor S does not 

depend on X.  In regression point of view, only each indicator variable should be 

included in the mean function.  The mean function becomes 

0 02 2 1( | , )E Y X S l Xη η η= + +     (4.3.3) 

3. Equal Intercept Regression Lines:  In this case, the intercepts are equal ( 01 02η η= ) 

but the slopes may differ.  Thus, the ordering of the S levels are always the same, but 

the size of differences changes with X.  From the regression point of view, the 

interaction between S and X exists, but indicator variables should not be included in 

the mean function.  The mean function is as follows 

0 1 12 2( | , )E Y X S X l Xη η η= + +     (4.3.4) 
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4. Coincident Regression Lines:  In this case, all the intercepts and slopes are the same.  

Thus, the categorical predictor S has no effect on responses.  From the regression 

point of view, no additional terms about categorical predictor S should be included 

in the mean function.  The mean function is still the same 

0 1( | , ) ( | )E Y X S E Y X Xη η= = +    (4.3.5) 

The COD regression becomes more complicated due to S with three levels and more 

than one continuous predictor in the mean function.  For the full model (Case 1), we will 

have two more intercepts and six (2×3) more interaction terms based on the mean 

function (4.2.8).  Our goal was to examine how data from different site respond 

differently to the mean function.  The answer is among the four possibilities.  If we 

achieve a result that COD concentrations have totally opposite trends from different sites 

corresponding to the same predictor, it might imply that we missed very important 

information from sites, and that the missing site-related variable is more important than 

the current predictors for determining the COD concentrations.  Therefore, it seems 

unlikely because we know that the pooled COD regression fits well. 

In order to avoid complexity of using S in the beginning, we would like to use the 

dimension reduction technique that let the fitted values from the pooled COD regression 

become the only continuous predictor in the COD regression.  This technique is as 

follows 

6.08 0.60log 0.40log 0.16logFit Values CumRs AtDry AtRs− = + + −  (4.3.6) 
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Thus the case is now simplified into one categorical predictor and one continuous 

predictor.  We can then get a visual comparison for different levels of S in this simplified 

case by using S as a marking variable and plotting log [COD] versus Fit-Values.  Figure 

4.3.1 shows the 2D plot from different sites with different symbols and colors to indicate 

the marking variable S.  The points from different sites are distributed evenly around the 

regression line. 

Next we try to fit the simplified model with those different possibilities, by fitting the 

restricted model with the equal intercept but different slopes.  Figure 4.3.2 shows the 

result.  These three regression lines look close to each other although Site 2 has the 

highest slope and Site 3 has the lowest.  Next, we fit the restricted model with the equal 

slope but different intercepts.  Figure 4.3.3 shows the fitting result.  These three 

regression lines also look close to each other, and Site 2 is above Site 1 and Site 1 is 

above Site 3.  Finally, we fit the most general case with different slopes and different 

intercepts.  Figure 4.3.4 shows the fitting result.  These three regression lines also look 

close to each other and similar to the above two cases. 

We conclude that there is no site effect on the COD regression.  Even we think that it 

shows minor site effects on the plots (from Figure 4.3.2 to 4.3.4), the site effects are 

negligible compared to the other major predictors. 
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Figure 4.3.1 log [COD] versus Fit-Values Using a Site-Marking Variable S 

 

 

Figure 4.3.2 Fitting Case 3: Equal Intercept but Different Slope Regression Lines 
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Figure 4.3.3 Fitting Case 2: Parallel Regression Lines 

 

 

Figure 4.3.4 Fitting Case 1: Different Intercept and Slope Regression Lines 
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4.4 Regressions for COD-Correlated Parameters 

We know that if a parameter is correlated well with COD on the log scale, a similar 

regression can be achieved using the same model structure: 

0 1 2 3(log | ) log log logE y CumRs AtDry AtRsη η η η= + + +x   (4.4.1) 

Figure 4.4.1 shows the scatterplot matrix for COD and parameters that correlates well 

with COD using log scale, including Oil & Grease (O&G), Dissolved Organic Carbon 

(DOC), Total Kjeldahl Nitrogen (TKN), dissolved Phosphorus (P_dis), dissolved Copper 

(Cu_dis), and dissolved Nickel (Ni_dis).  The sample correlation coefficients are 0.91 for 

O&G, 0.94 for DOC, 0.93 for TKN, 0.85 for P_dis, 0.91 for Cu_dis, and 0.82 for Ni_dis.  

The model structure (4.4.1) works well for these parameters, showing the R Squared 

range from 0.65 to 0.77 except Ni_dis as 0.55.  No serious discrepancies were found on 

model-checking plots.  Appendix C shows these regression results. 
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Figure 4.4.1 Scatterplot Matrix of COD and COD-Correlated Parameters 
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5.  EVENT MEAN CONCENTRATIONS 

 

5.1 Introduction 

Event mean concentrations (EMCs) have been extensively used in the past to 

calculate pollutant loads.  The EMC, by its name, represents the average concentration of 

the pollutant throughout the storm event.  Some studies show that EMCs might be very 

different from case to case.  Driscoll (1986) used probability to describe the variation of 

EMCs, and concluded that EMCs vary from one storm to another following a log-normal 

distribution.  James et al. (1999) compared the mean and median of EMCs for 10 

parameters from NURP (Nationwide Urban Runoff Program) and the three-pooled data 

sources (NURP, USGS, NPDES), and concluded that the differences could be large 

enough to merit re-evaluating selected management strategies in existing control 

programs.  Generally, the land use type in catchments is believed to be the most 

important factor that causes EMCs to be different (Wong et al, 1997).  Although 

differences of EMC data have been noticed, the differences have never been addressed 

from the aspect of their estimation. 

Practically, an EMC is estimated from either an automated composite sampler or a 

series of grab samples taken during a storm event.  When estimating EMCs from grab 

samples, each grab sample, physically, represents an instant concentration of pollutants 

within a storm event, and the EMC is calculated from these instant concentration values.  

A reasonable calculation method, used by many authors (Charbeneau and Barrett, 1998; 

Wu et al., 1998, etc) is to use a discharge-weighted average of these instant 
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concentrations.  An automatic sampler collects a large number of individual samples, and 

is a series of instant concentration samples. The EMC is equal to the result of analyzing 

the single, large sample.  However, in this case, EMCs can still mathematically be viewed 

as a result from instant concentration measurements. 

The goal of this study is to investigate the reliability of EMC data from the aspect of 

their estimation.  A mathematical definition and its related calculation forms will be 

introduced first.  Then, a stochastic approach will be used through theories and computer 

simulations.  In the theory part, the objective is toward general cases, not parameter or 

site specific.  In the computer simulation part, a pre-described concentration model will 

be used for a particular case, in which the field data were collected from three highway-

monitoring sites for two seasons (1999-2001).  Therefore, the simulation results could 

still provide useful information that helps most storm water monitoring programs. 
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5.2 Methodology 

5.2.1 Definition and Calculation Forms of EMCs 

Mathematically, EMCs can be defined as total pollutant mass (M) discharged during 

an event divided by total volume (V) discharge of the storm event. 

∫
∫==

dttQ

dttQtC

V
MEMC

)(

)()(
    (5.2.1) 

In (5.2.1), C(t) is a smooth real-valued function of time that represents the pollutant 

concentration curve, and Q(t) is also a smooth real-valued function of time that represents 

the stormwater discharge flow rate curve.  However, in practice, we estimate the integrals 

in (5.2.1) not by the functions of Q(t) and C(t) but by the measurements of Q(t) and C(t).  

We estimate the EMC from discrete values.  If we assume we measure the concentration 

and the discharge rate based on equal time-interval in a storm event, the EMC can be 

estimated as 

i i
i

i
i

c q
EMC

q

∑
=

∑
      (5.2.2) 

where qi and ci are the measurements for the discharge rate and pollutant concentration in 

the ith interval.  From the point of view of approximating the continuous functions in 

(5.2.1), the more measurements we take, the more accurate approximation we can obtain 

by (5.2.2). 
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When we view the measurements of the discharge rate as the weights, (5.2.2) 

becomes the discharge-weighted average throughout the storm event. 

i i
i

EMC w c=∑      (5.2.3) 

i
i

i
i

qw
q

=
∑

      (5.2.4) 

where wi is the flow weight, and
1

1n
ii

W
=

=∑ .  In practice, one common situation is the 

number of concentration measurements does not match the number of discharge 

measurements.  Generally there are many fewer concentration measurements.  This 

occurs because concentration measurements are much more expensive and time 

consuming; discharge measurements can be easily and automatically obtained by the 

instrument.  For most situations we have to adjust the weights for each concentration 

measurement in (5.2.3).  One of the reasonable ways to adjust the weights is to use the 

discharge volume.  One approach (Charbeneau and Barrett, 1998) splits the discharge 

volume from the mid-point between two consecutive concentration measurements.  

Figure 5.2.1 shows this approach.  The adjusted weight can be written as: 

i
i

i
i

Vw
V

=
∑

      (5.2.5) 

where Vi is the corresponding discharge volume for the ith concentration measurement.  

This mid-discharge splitting method can also be applied for measurements at unequal 

time-interval bases. 
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Figure 5.2.1 Determination of Flow Weights (w1 to w10) for Grab Samples 
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When we take concentration measurements based on constant discharge volume, the 

weighted average of Cis from (5.2.3) is reduced to the arithmetic average 

nEMC C=      (5.2.6) 

Ideally, automated samplers can collect samples in proportion to discharge volume.  

Additionally there are always slight errors (noise) in sample volume and pace that change 

the equal weights.  Thus, EMC is still an inherent weighted average of concentration 

measurements. 

 

5.2.2 Asymptotic Distributions of EMCs 

In this section, we will check the asymptotic distributions of EMCs for several cases 

under different assumptions.  We can view these asymptotic distributions as theoretical 

treatment for obtaining reliable EMC estimates under these circumstances.  In principle, 

concentration measurement (Ci) will be treated as a stochastic property, usually having an 

identical independent distribution (i.i.d.) with finite mean and variance, or having a trend 

plus i.i.d. errors (with mean zero and finite variance).  Weights (Wi) will be considered as 

constants, except in one case.  The theoretical background in this section is the central 

limit theorem (CLT) and its extension from “Large Sample Theory”. 
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5.2.2.1 Case 1:  Sampling from Equal Discharge-Volume 

Assume concentration measurements (Ci) are i.i.d. with mean µ and finite variance σ2 

during a given storm event.  The concentration samples are collected using equal 

discharge-volume, which assumed perfect (without noise or error).  This is the case for 

(5.2.6).  Thus, from (5.2.6), we know 

*
nEMC C= n      (5.2.7) 

where means an estimate of the EMC based on n samples. *
nEMC

By CLT, we obtain 

2( ) (0,L
nn C N )µ σ−  →     (5.2.8) 

(5.2.8) means that ( nn C )µ− will converge (by law) to a normal distribution with mean 

0 and variance σ2. 

When Ci has a trend (µi) plus i.i.d. error (ε) with mean zero and finite variance σ2, 

then (5.2.8) becomes 

21( ) (
n

i Li
nn C N

n
µ

σ=−  →∑ 0, )     (5.2.9) 

 

5.2.2.2 Case 2:  Sampling from Equal Time-Interval 

Assume concentration measurements (Cj) are i.i.d. with mean µ and finite variance σ2 

during a given storm event.  The concentration samples are collected based on equal 
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time-interval.  It is the case for (5.2.5) that we could adjust the weights based on the mid-

discharge volume method, and the EMC estimate is a weighted average of Cjs.  Since the 

storm event is given, the weights can be deduced from the number of samples under 

equal-time sampling.  For this case, the Lindeberg-Feller Theorem (Ferguson, 1996), 

which is a type of generalized CLT in one dimension, can be applied to obtain the 

asymptotic distribution for EMCs. 

For applying the Lindeberg-Feller theorem, we have to use a new random 

variable, njZ  such that .  Let( ) 0njE Z = ( )nj nj jZ W C u= −

1
1n

njj
W

=
=

, then , 

and .  W is determined by the mid-discharge volume method for n 

samples using equal-time sampling, and 

( ) 0njE Z =

2var( njZ W σ= 2
nj)nj

∑ .  By the Lindeberg-Feller Theorem, 

let and
1

n

j=∑n njS Z= 2 2 2

1

n

nj
j

( )n nB Var S W
=

σ= = ∑ , then 

(0,1)Ln

n

S N
B

 →      (5.2.10) 

provided the Lindeberg Condition holds.  (5.2.10) can be written in the form of a 

weighted average of Cjs, 

1
( )

(0,1)
n

nj jj L

n

W C
N

B

µ
=

−
 →

∑
   (5.2.11) 

When Ci has a trend (µi) plus i.i.d. error (ε) with mean zero and finite variance σ2, 

then (5.2.11) becomes 
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1 1
( )

(0,1)
n n

nj j nj jj j L

n

W C W
N

B

µ
= =

−
 →

∑ ∑
   (5.2.12) 

 

5.2.2.3 Case 3:  Sampling from Equal Discharge-Volume with Weighting Noises 

Next we try to evaluate the actual working of an automated sampler, which is 

operated to collect equal discharge-volume samples, but coupled with weighting noise.  

The weighting noise may result from collecting individual samples with unequal sample 

volume or errors in flow pacing signals.  Even if we do not have actual experimental data 

for these weights, we still think that they are probably field-specific. 

In order to process this case in spite of the lack of experimental data, we need to make 

reasonable assumptions about these weighting noises.  The weighting noises are assumed 

to be i.i.d. under normal operations, although they are likely to be correlated to form an 

m-dependent sequence of data.  In addition, they are also assumed to be independent of 

concentration measurements.  A Beta distribution might be one reasonable guess because 

the weights will be centered somewhere in the range from 0 to 1. 

Assume that concentration measurement (Cj) is i.i.d. with mean µ and finite variance 

σ2 during a given storm event.  The weighting noise (Wi) is also i.i.d, and has a beta 

distribution, Beta (a, b).  For determining the asymptotic distribution of EMCs, we need 

to apply the Lindeberg-Fetter Theorem again. 

Let ( )nj j jZ W C u= −

( ) 0njE Z =

, such that 

                , andVar  2 2 2 2( ) ( ) ( ( ) ) (nj nj j j jZ E Z E W X E Wµ σ= = − = 2 )
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Wi has a Beta (a, b) distribution, so that 

               ( )j
aE W
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+
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( ) (j
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a b a b
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+ + +1)
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By the Lindeberg-Feller Theorem, 

     (5.2.13) 

provided the Lindeberg Condition holds.  Equation (5.2.13) can be written in the form of 

the weighted average of Cjs as 

   (5.2.14) 

When Ci has a trend (µi) plus i.i.d. error (ε) with mean zero and finite variance σ2, then 

(5.2.14) becomes 

   (5.2.15) 
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5.2.3 Computer Simulations of EMCs 

Computer simulations, compared to theoretical treatments, provide more flexible 

solutions to understand the EMCs, although the theoretical solutions are more general.  

For example, we can explore the relationship between known pollutant concentration 

trends and different flow patterns (which decide the weights).  We can also evaluate the 

performances of different “sampling protocols”.  For some cases, such as randomly 

collected samples during a storm event, it is really difficult to obtain the theoretical 

solution.  However, in order to precede the computer simulation, a model must be used as 

our knowledge to describe the washed-out concentration of pollutant during a storm event. 

 

5.2.3.1 Simulation Descriptions 

A previously developed COD regression model will be used in this simulation.  In 

principle, the regression’s mean function indicates the concentration trend, and the error 

term indicates the variability around the trend.  The COD regression model is describes 

as: 

(log | ) 6.08 0.60log 0.40log 0.16logE COD CumRs AtDry AtR= − + −x s

2

 (5.2.16) 

~ (0,0.59 )i Nε      (5.2.17) 

Table 5.2.1 describes the above variables, and Figure 5.2.2 shows the model’s fitted 

values vs. the observations. 
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Table 5.2.1 Description of Variables Used in Regression 

 
Variable Description 

COD COD concentrations in mg/l 

CumRs Cumulative rainfall corresponding to grab 

samples in 0.01 inch 

AtDry Antecedent dry period before monitored events 

in days 

AtRs Previous event’s precipitation before monitored 

events in 0.01 inch 

 

 

Figure 5.2.2 Regression’s Fitted Values vs. Observations 
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This model uses logarithm scale.  When we convert it back to normal scale, the 

responses will have a lognormal distribution around the regression line.  For a lognormal 

variable X, where log X has a normal distribution with mean µ and variance σ2, it is not 

true that ( )X E X eµµ = = .  The mean and median of X are respectively as 

2 2
X eµ σµ +=      (5.2.18) 

Xm eµ=      (5.2.19) 

The variance, Var (X), is derived as 

2 22µ σ σ+ −( ) ( 1)Var X e e=     (5.2.20) 

From (5.2.18), we know that the COD mean function actually represents the median 

concentration response on the normal scale.  From the Lindeberg-Feller Theorem, the 

weighted averages will converge to the weighted mean instead of the weighted median.  

Thus, the EMC estimates will not converge to iy
i

i

w e∑ , and in fact, they will be larger. 

There is a special simulation, in which COD concentrations are generated by (5.2.16) 

and (5.2.17) using one-minute interval.  This special simulation will be used as the 

benchmark in simulation tasks, because one-minute is the actual time interval in our 

rainfall and flow data.  The EMC is then calculated using (5.2.2), where the weights are 

the discharge rates.  Under this one-minute simulation, each EMC result, symbolized as 

EMCo, is not affected by the sampling strategy.  After multiple simulations, EMCos will 
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form a normal distribution, according to the Lindeberg-Feller Theorem.  From (5.2.18), 

the population mean of EMCo, symbolized as µo, is expressed as 

2 log2 ico
i

i

e w eσµ = ⋅∑      (5.2.21) 

In (5.2.21), wi is the weight, and i i
i

w q q= ∑ i

log ic

 (qi is the discharge rate); log ci is the 

generated COD response, and σ2 is the error variance  

In order to illustrate this one-minute simulation, one real event (dated on 01/25/99, at 

Site 1) is used for demonstration.  Figure 5.2.3 shows the original and the smoothed event 

hydrograph.  The smoothed hydrograph will be used in simulation to correct fluctuations 

in original data.  Figure 5.2.4 shows the histogram of EMCos after 1000 runs.  The 

sample mean is 116.36 (mg/l).  The population mean (µo), calculated by (5.2.21), is 

116.25 (mg/l).  The population median (=∑ ) is 97.69 (mg/l).  µi
i

w e o will be used as 

the true value of EMC in later error evaluation. 

In contrast to the one-minute simulation, we conduct other simulations by taking 

fewer samples during a storm event.  Each type of simulation will generate a distribution 

of EMCs after multiple runs.  The EMC calculated under simulations with larger intervals 

is called EMC*.  The more samples we collect, the closer the distribution of EMC*s to 

EMCo’s.  Figure 5.2.5 illustrates EMC*s by showing the histograms from different 

numbers of samples (n = 10, 20, 40, and 60) for the same tested event, where samples are 

collected using equal time sampling.
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Figure 5.2.4 Sampling Distribution for One-Minute EMC Simulation (event recorded 
on 01/25/00, Site 1) 
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Figure 5.2.5 Sampling Distributions for n = 10, 20, 40, and 60 Using Equal-Time 
Sampling (event recorded on 01/25/00, Site 1) 
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To analyze the difference between EMCos and EMC*s, the mean squared error (MSE) 

will be used.  The MSE of EMC*, which depends on the variance and the bias of EMC*, 

is given by 

* * 2 *)( ) ( ) (MSE EMC Bias EMC Var EMC= +   (5.2.22) 

The bias of EMC*, which can be thought as the “long-run average error”, is given by 

* * o( ) nBias EMC EMC µ= −     (5.2.23) 

where nEMC is the sample mean of EMC* simulated from n samples, and µo is the 

population mean from the one-minute simulation.  Therefore, we probably prefer using 

the expression of error percentages, given by 

*

*
* ( )%( )

o

o

MSE EMCErr EMC µ
µ

−=    (5.2.24) 

The error percentage for the one-minute simulation (EMCo) is caused by its variance.  

Since no other simulation can achieve a lower error bound, we will use this error 

percentage as to evaluate EMC*s.  The error percentages for the case (Figure 5.2.5) are 

64%, 26%, 18%, and 14% for n=10, 20, 40, and 60 respectively.  The error percentage 

for the one-minute simulation is 3%.
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5.2.3.2 Simulation Tasks 

Several specific simulations were performed to check the influence of sample size on 

estimating EMCs.  Each simulation task used 35 monitored event patterns, in which the 

flow and rainfall data were well measured at one-minute intervals with automatic 

electronic logging.  The COD regression was also partially derived from these events.  In 

each simulation task, the error percentage is calculated for each event after 1000 runs.  In 

addition, some special sampling protocols are tested to find the best sampling approach 

for this particular highway case.  Table 5.2.2 summarizes the hydrologic characteristics 

for used events. 

 

 

Table 5.2.2 Hydrologic Characteristics for 35 Monitored Events 
 

Hydrologic Property Average StdDev Minimum Median Maximum 

Total Rainfall (in) 1.17 1.54 0.08 0.67 6.14 
Max Rain Intensity (in/hr) 0.31 0.33 0.02 0.19 1.28 
Discharge Volume (gal) 75022 99293 1799.5 36808 374217 
Max Discharge Rate (gpm) 340 304 17 258 1465 
Rain Duration (min) 660.51 512.66 93 610 2376 
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Task 1: Random Sampling 

The simulation assumes a sample set with specified size (n) that is randomly collected 

from all possible time elements during each tested event.  It is a random permutation of 

size n for a sequence.  Theoretically, this is the most general case for a sample set with 

fixed size.  The influence of sample size on EMC results is evaluated by setting n = 10, 

20, 40, 60, and 100. 

 

Task 2: Equal-Time Sampling 

The simulation assumes a sample set with specified size (n) that is equally spaced in 

tome during each tested event.  To avoid the extreme result of a sample sequence, each 

selected sample sequence will be randomly shifted forward or backward in a range (10 

minutes) in simulations.  The influence of sample size on EMC results is evaluated by 

setting n = 10, 20, 40, 60, and 100. 

 

Task 3: Equal-Rainfall Interval Sampling 

The simulation assumes a sample set with specified size (n) that is equally spaced in 

rainfall depth during each tested event.  The influence of sample size on EMC results is 

evaluated by setting n = 10, 20, 40, 60, and 100. 
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Task 4: Equal Discharge-Volume Sampling 

The simulation assumes a sample set with specified size (n) that is equally spaced in 

the discharge volume during each tested event.  No weighting noise is assumed in this 

task.  The influence of sample size on EMC results is evaluated by setting n = 10, 20, 40, 

60, and 100. 

Task 5: Equal Discharge-Volume Sampling with Weighting Noise 

Task 5 has almost the same setup as Task 4 but with independent weighting nose.  

The weighting noise is assumed to have a Beta (5, 2) distribution.  Figure 3.2.6 shows the 

probability density for Beta (5, 2).  The influence of sample size on EMC results is 

evaluated by setting n = 10, 20, 40, 60, and 100. 

Task 6: First Flush vs. Non-First Flush Sampling 

Task 6 evaluates the performance of “first flush” and “non-first flush sampling 

protocols.  A first flush protocol assumes a more frequent sampling pace in the beginning 

of a storm event, and then gradually reduces to a slower constant pace near the end of the 

event.  In contrast to first flush sampling, a non-first flush protocol always keeps the 

same pace throughout the storm event.  The paces for first flush protocols can depend on 

the time or rainfall.  Two proposed first flush protocols are FFR (based on rainfall) and 

FFT (based on time).  Similarly, two proposed non-first flush protocols are CSR (based 

on rainfall) and CST (based on time).
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These protocols are described as follows: 

FFR: Collect five samples during the first 0.1-inch rainfall depth of an event.  Next, 

collect four samples during the rainfall depth from 0.1 to 0.3 inch.  Afterwards, 

collect one sample for every 0.1-inch rainfall depth. 

CSR: In contrast to FFR, collect one sample for every 0.05-inch rainfall depth. 

FFT: Collect five samples during the first hour of an event, each separated by 15 

minutes.  Next, collect four samples in the next two hours, each separated by 

30 minute.  Afterwards, collect one sample for every hour. 

CST: In contrast to FFT, collect one sample every 45 minutes.   

There are two approaches to evaluate these four protocols.  One is to set the maximum 

number of samples as 15 in each protocol; the other is to keep sampling according to each 

protocol until the end of an event. 
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Figure 5.2.6 Probability Density of Beta (5, 2) 
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5.3 Results and Discussion 

5.3.1 Results of Simulation Tasks 

Figure 5.3.1 shows the sample distributions from Task 1.  The worst error percentage 

can be up to 80% for n = 10.  Table 5.3.1 shows the summary statistics for Task 1’s result.  

The average error percentages for n = 10, 20, 40, 60, and 100, are 47.0%, 30.2%, 19.5%, 

15.3%, and 11.6% respectively.  The medians of errors are slightly lower than the 

averages.  The corresponding standard deviations are 13.9%, 7.2%, 4.1%, 2.9% and 2.2%.  

Task 1’s result provides a benchmark on the influence of sample size for estimating 

EMCs, and is the most general sample set in Task 1. 

Figure 5.3.2 shows the sample distributions from Task 2.  Only one outlier was found 

for each n.  The worst case is for n = 10 and is approximately 66%, which is much 

improved from Task 1.  Table 5.3.2 shows the summary statistics for Task 2’s result.  The 

average error percentages for n = 10, 20, 40, 60, and 100, are 37.2%, 21.7%, 15.2%, 

12.4%, and 9.2% respectively.  The medians of errors are generally the same as the 

averages.  The corresponding standard deviations are 11.1%, 4.4%, 2.7%, 2.8% and 1.7%.  

These statistics show an improvement over random sampling. 

Figure 5.3.3 shows the sample distributions from Task 3.  Although several outliers 

were found for n = 10, the worst case is only around 30%, which is much improved over 

Task 2.  Table 5.3.3 shows the summary statistics for Task 3’s result.    The average error 

percentages for n = 10, 20, 40, 60, and 100, are 23.9%, 17.5%, 13.5%, 11.9%, and 10.5% 

respectively.  The medians of errors are generally the same as the averages.  The 

 97



corresponding standard deviations are 2.2%, 2.2%, 2.6%, 3.2% and 3.7%.  These 

standard deviations show an improvement over equal time sampling. 

Figure 5.3.4 shows the sample distributions from Task 4.  It is obvious on plot that 

this is the best result from the aspect of outliers, averages, or variances.  Table 5.3.4 

shows the summary statistics for Task 4’s result.  The average error percentages for n = 

10, 20, 40, 60, and 100, are 23%, 16.6%, 12.0%, 9.7%, and 7.5% respectively.  The 

medians are generally the same as the averages.  The corresponding standard deviations 

are 2.5%, 1.6%, 1.2%, 1.0% and 0.7%. 

Figure 5.3.5 shows the sample distributions from Task 5.  Even though we added 

independent noise, the noise has little effect.  Table 5.3.5 shows the summary statistics 

for Task 5’s result.  The average error percentages for n = 10, 20, 40, 60, and 100, are 

23.5%, 17.1%, 12.3%, 10.1%, and 7.8% respectively.  The corresponding standard 

deviations are 2.1%, 1.6%, 1.3%, 0.9% and 0.8%. 

Figure 5.3.6 shows the sample distributions from Task 6’s limited case (the maximum 

number of samples is set as 15).  The average numbers of samples for CSR, FFR, CST, 

and FFT are 11.5, 11.7, 12.5, and 12.8 respectively.  Several outliers were found for each 

group.  Without considering outliers, FFT and FFR appear a little better than CST and 

CSR on plot due to fewer worse cases and smaller variances.  Table 5.3.6 shows the 

summary statistics.  The average error percentages for CSR, FFR, CST, and FFT are 

37.6%, 32.7%, 35.7%, and 34.9% respectively.  The medians are smaller than the 

averages in each group.  The corresponding standard deviations are 29.5%, 25.2%, 28.9%, 

and 38.6%. 
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Figure 5.3.7 shows the sample distributions for Task 6’s unlimited case (keep 

sampling until the end of an event).  The average numbers of samples for CSR, FFR, 

CST, and FFT are 22.7, 16.9, 17.9, and 18.5 respectively.  No outliers occurred.  FFT and 

FFR are obviously better than CST and CSR on plot due to better worse cases and 

smaller variances.  Table 5.3.7 shows the summary statistics.  The average error 

percentages for CSR, FFR, CST, and FFT are 23.8%, 21.5%, 27.0%, and 21.3% 

respectively.  The medians are a little smaller than the averages in each group.  The 

corresponding standard deviations are 11.7%, 6.7%, 9.9%, and 3.8%. 
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Table 5.3.1 Simulation Summary for Random Sampling (as n = 10, 20, 40, 60, and 100) 
plus One-Minute Simulation 
 
Case N Average Err% StdDev Err% Minimum Err% Median Err% Maximum Err%
1-Min 35 4.0 1.3 2.2 3.6 7.3 
EMC10 35 47.0 13.9 29.5 43.2 80.8 
EMC20 35 30.2 7.2 20.8 28.0 49.5 
EMC40 35 19.5 4.1 13.5 18.8 31.6 
EMC60 35 15.3 2.9 11.2 14.8 24.3 
EMC100 35 11.6 2.2 8.0 11.3 17.8 

 

 

Table 5.3.2 Simulation Summary for Equal-Time Sampling (as n = 10, 20, 40, 60, and 
100) plus One-Minute Simulation 

 
Case N Average Err% StdDev Err% Minimum Err% Median Err% Maximum Err%
1-Min 35 4.0 1.3 2.2 3.6 7.1 
EMC10 35 37.2 11.1 22.8 33.2 66.1 
EMC20 35 21.7 4.4 15.8 21.2 41.1 
EMC40 35 15.2 2.7 10.8 15.2 22.2 
EMC60 35 12.4 2.8 8.8 12.0 22.9 
EMC100 35 9.2 1.7 6.9 8.9 14.3 

 

 

Table 5.3.3 Simulation Summary for Equal-Rainfall Depth Sampling (as n = 10, 20, 40, 
60, and 100) plus One-Minute Simulation 
 
Case N Average Err% StdDev Err% Minimum Err% Median Err% Maximum Err%
1-Min 35 4.0 1.3 2.2 3.6 7.4 
EMC10 35 23.9 2.2 20.5 23.4 29.2 
EMC20 35 17.5 2.2 14.2 17.2 23.2 
EMC40 35 13.5 2.6 10.8 12.7 23.2 
EMC60 35 11.9 3.2 9.0 10.8 24.2 
EMC100 35 10.5 3.7 7.2 9.1 23.5 
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Table 5.3.4 Simulation Summary for Perfect Equal-Discharge Volume Sampling (as n 
= 10, 20, 40, 60, and 100) plus One-Minute Simulation 

 
Case N Average Err% StdDev Err% Minimum Err% Median Err% Maximum Err%
1-Min 35 4.0 1.3 2.1 3.5 7.2 
EMC10 35 23.0 2.5 20.1 22.3 30.5 
EMC20 35 16.6 1.6 13.9 16.3 21.5 
EMC40 35 12.0 1.2 10.2 11.6 15.2 
EMC60 35 9.7 1.0 8.4 9.5 12.9 
EMC100 35 7.5 0.7 6.5 7.4 9.5 

 

 
Table 5.3.5 Simulation Summary for Noised Equal-Discharge Volume Sampling (as n 
= 10, 20, 40, 60, and 100) plus One-Minute Simulation 

 
Case N Average Err% StdDev Err% Minimum Err% Median Err% Maximum Err%
1-Min 35 3.9 1.3 2.2 3.5 6.9 
EMC10 35 23.5 2.1 20.6 23.1 29.8 
EMC20 35 17.1 1.6 15.0 16.5 21.7 
EMC40 35 12.3 1.3 10.5 12.0 15.8 
EMC60 35 10.1 0.9 8.7 9.8 12.7 
EMC100 35 7.8 0.8 6.7 7.6 10.5 

 

 

Table 5.3.6 Simulation Summary for the Limited Case in Task 6 (maximum: 15 
samples) plus One-Minute Simulation 

 
Case N Average Err% StdDev Err% Minimum Err% Median Err% Maximum Err%
1-Min 35 3.9 1.3 2.2 3.5 7.0 
CSR 35 37.6 29.5 17.2 25.9 134.1 
FFR 35 32.7 25.2 17.4 24.2 124.0 
CST 35 35.7 28.9 18.1 25.4 144.5 
FFT 35 34.9 38.6 19.7 24.0 210.7 
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Table 5.3.7 Simulation Summary for the Unlimited Case in Task 6 plus One-Minute 
Simulation 
 
Case N Average Err% StdDev Err% Minimum Err% Median Err% Maximum Err%
1-Min 35 4.0 1.3 2.2 3.5 7.2 
CSR 35 23.8 11.7 8.0 21.6 57.2 
FFR 35 21.5 6.1 9.3 21.7 33.3 
CST 35 27.0 9.9 13.8 23.6 54.3 
FFT 35 21.3 3.8 14.5 21.4 28.5 
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Figure 5.3.1 Sampling Distributions for Random Sampling (as n = 10, 20, 40, 60, 

and 100) plus One-Minute Simulation 
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Figure 5.3.2 Sampling Distributions for Equal-Time Sampling (as n = 10, 20, 40, 60, 

and 100) plus One-Minute Simulation 
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Figure 5.3.3 Sampling Distributions for Equal-Rainfall Interval Sampling (as n = 10, 

20, 40, 60, and 100) plus One-Minute Simulation 
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Figure 5.3.4 Sampling Distributions for Perfect Equal-Discharge Volume Sampling 

(as n = 10, 20, 40, 60, and 100) plus One-Minute Simulation 
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Figure 5.3.5 Sampling Distributions for Equal-Discharge Volume Sampling with Noise 

(as n = 10, 20, 40, 60, and 100) plus One-Minute Simulation 
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Figure 5.3.6 Sampling Distributions for First Flush vs. Non-First Flush Sampling 

(maximum 15 samples) plus One-Minute Simulation 
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Figure 5.3.7 Sampling Distributions for First Flush vs. Non-First Flush Sampling 

(the unlimited case) plus One-Minute Simulation 
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5.3.2 Reliability Checking of Existing EMC Data 

As shown in the simulation and theory, the reliability of an EMC result is highly 

controlled by the number of its composite instant concentrations and their related weights.  

When this number is large, the EMC result is stable and the influence of their related 

weights is not significant.  On the other hand, when this number is small, the EMC result 

is not stable and the influence of their related weights is significant.  Generally, it is better 

to have at least 40 composed samples for reliable EMCs while the average error could 

reasonably limit to around 10%. 

EMC results obtained from composite samples collected by automated samplers are 

generally more reliable due to the large number of their composite instant concentrations.  

It is almost cost-and effort-free to achieve this large number by programming.  The only 

remaining concerns for automated samplers are mainly field problems, such as sensors or 

tubing clogging during an event.  Our experience was 30% failure of automatic samplers. 

EMC results obtained from grab samples contain more uncertainty due to fewer 

composite concentrations.  It is very expensive and unfeasible to manually collect more 

than 20 grab samples for a storm event, and it is rare to find EMC results obtained from 

over 20 grab samples.  Therefore, EMC results obtained from less than 10 samples should 

be used cautiously because the errors might be over 50%.  For an existing EMC result 

obtained from 10 to 20 samples, the weight distribution provides additional information 

to check the reliability.  For example, as shown earlier, the average error is around 46% 

under random sampling for the sample size as 10.  While all of weights are less than 0.2, 

the average error was reduced to 36%; while at least one weight is greater than 0.4, the 
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average error increased to 56%.  Thus, the value of “2/n” might be used as the maximum 

weight to check the weight distribution. 
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5.4 Conclusions 

In brief, the following conclusions can be made: 

1. Realistically, an EMC result is a weighted average of its composite instant 

concentration values, even if they were obtained from an automated sampler. 

When obtained from grab samples, the corresponding discharge distribution 

determines the weights; when obtained from composite samples, the inherent 

equipment noise determines the weights.  At least 40 composite samples might be 

needed for obtaining reliable EMCs. 

2. In spite of performance concerns for equipment and operational problems, 

composite samples collected by automated samplers are a better way to obtain 

EMCs, because of the large number of composite concentrations achieved by 

programming.  Unfortunately equipment failures detract from this result, and our 

experience was 30% failure of automatic samplers.  

3. EMC results obtained from less than 10 grab samples should be cautiously used 

because the error might be above 50%.  The 2/n principle in the weight 

distribution could be used for further reliability checking when the number of 

grab samples ranges from10 to 20.  It is very rare to find existing EMC results 

obtained from more than 20 grab samples. 

4. Stochastic approaches are proper way to handle natural data due to the complexity 

of the system.  The derived asymptotic distributions provide general ideas about 

the reliability of EMC data.  However, to precisely estimate the reliability, 

knowledge describing the behavior of washed-out concentrations is needed. 
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5. For this particular highway COD case, stratifying grab samples as much equal 

weights as possible still assures obtaining better results.  Practically, it is possible 

to distribute the weights more equally by using equal-rainfall interval sampling.  

Additionally, it is worth collecting more samples earlier during an event by 

applying “first flush sampling” due to the rapid change in COD concentration in 

that period.  Therefore it is valuable to sample the entire event to achieve better 

results. 
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6.  STUDY OF FIRST FLUSH NOTATIONS AND CRITERIA 

 

This chapter contains existing and new first flush notations and criteria.  Each section 

includes background, methodologies, results and discussion.  The introduction includes a 

statement of the problem and objectives.  The conclusions summarize both notations and 

include recommendations. 

 

6.1. Introduction 

In the past 15 years, the first flush phenomenon has been the subject of research and 

debate.  Although interest in the subject has been high, the understanding of this 

phenomenon is still in a very early stage, and even this phenomenon’s existence is 

debated.  Previous researchers (Geiger, 1987; Bertrand-Krajewski et al., 1998) have 

proposed mass emission based definitions, and many events do not have a sufficiently 

large initial mass discharge to qualify as a first flush.  Large watersheds may not exhibit a 

first flush because of the large transportation lag (Ma et al, 2002).  In spite of the debate, 

a neutral and consensus upon qualitative description of the first flush phenomenon is “the 

first part of runoff in a storm event is the most polluted”.  Based upon this understanding, 

many facilities and devices have been invented and installed to treat or capture the first 

flush.  For example, one frequently used Best Management Practice (BMP) is a 

sedimentation basin, which functions as suspended solids removal device as well as a 

detention basin.  These sedimentation basins or storage tanks are usually designed to 

store the first few centimeters of runoff (Novotny and Olem, 1994). 
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Why is there no consensus of the first flush phenomenon?  It is useful to review what 

other authors have written about the first flush.  “A strongly distinctive first flush effect 

of suspended solids was not recorded at either catchment”; “The first flush of 

conductivity was not a regular feature at either catchment” (Deletic, 1998).  “The 

characteristics of the M (V) curves (used to compare pollutant discharge) depend on the 

pollutant, on the site, on the rainfall event and the overall operation of the sewer system”; 

“No clear and general multi-regression relationships can be established to explain their 

shapes and their variability” (Bertrand-Krajewski et al., 1998).  “The first flush load was 

shown to correlate well with the peak rainfall intensity, the storm duration and the 

antecedent dry weather period” (Gupta and Saul, 1996).  “For all of the events of our 

records, the first flush is observed only once” (Saget et al., 1996).  “The run-off from this 

specific catchment has shown significant first flush effects”; “The total run off per event 

of SS, COD, and BOD clearly depend on the preceding dry weather period” (Larsen et al., 

1998).  “The first flush for the particulate-bound fractions of these metals was not well 

defined”; “A first flush occurred for all events for all solids fractions” (Sansalone and 

Buchberger, 1997). 

From the above citations, it is obvious that no consensus exists.  Generally, several 

factors might affect the existence of the first flush phenomenon, such as the rainfall’s 

characteristics, the catchment’s characteristics, the nature of the pollutant, and the 

observer’s definition of a first flush. , The lack of consensus of a definition and notation 

for first flush is a large aspect of the debate.  
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The objective of this chapter is to examine current and widely used first flush 

notations and criteria, and through better notation and criteria, clarifies the understanding 

of the first flush phenomenon.  In addition, we show the impact of first flush on BMP 

selection.  Finally, we develop a new first flush notation to overcome some existing 

weaknesses of current notations.  
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6.2. Existing First Flush Notations and Criteria 

6.2.1 Background 

Most existing first flush concepts are established around the belief that the first 

portion of the discharge volume contains a higher fraction of pollutant mass load that is 

transported later in the storm event.  From the above concept, a quantitative criterion has 

been developed.  For example, many researchers have used plots of the cumulative 

fraction of total pollutant mass load versus the cumulative fraction of total runoff volume 

for the event to define the first flush phenomenon.  The type of curves, which we call FF 

(First Flush) Mass-Load Curves in this study, can be used as a dimensionless 

representation for every storm event.  Geiger (1987) defined a first flush notation when 

such curves have an initial slope greater than 45 percent.  Gupta and Saul (1996) used 

Geiger’s criteria, as did Larsen et al (1998).  Sansalone and Buchberger (1997) used a 

more liberal notation than Geiger’s that first flush is perceived when a mass cumulative 

curve is above the runoff volume curve.  Saget et al (1995) suggested a very strict first 

flush notation that at least 80 percent of the pollutant mass is transferred in the first 30 

percent of the runoff volume.  Some researchers preferred to compare the fraction of the 

mass load at the same point in the first part of the runoff cumulative volume like Saget et 

al (1995).  For example, Vorreiter and Hickey (1994) chose 25 percent of the runoff 

cumulative volume; Deletic (1998) chose 20 percent of the runoff cumulative volume.  In 

a summary, researchers have frequently used FF mass-load curves to create various first 

flush criteria. 
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6.2.2 Methodology 

6.2.2.1 Mathematical Derivations 

The mathematical expression for defining FF Mass-Load curves is as follows 

1 1

0 0
( ) ( ) ( )

( , ) ( , )

t t
Q t dt C t Q t dt

x y = ∫ ∫
V M

    (6.2.1) 

where M is total mass load, V is total discharge volume for a storm event, and t1 is 

event’s running time since beginning.  From (6.2.1), y/x can be expressed as 

1

1

1 1
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0

0 0

( ) ( )
( ) ( )
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t t

C t Q t dt
C t Q t dty

x Q t dt Q t dt
= =

∫
∫
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VM
M

V

×    (6.2.2) 

In fact, M/V is Event Mean Concentration (EMC) by definition (Ref).  Thus, V/M in 

(6.2.2) is the inverse of EMC.  Therefore, 1 1

0 0
( ) ( ) ( )

t t
C t Q t dt Q t dt∫ ∫  in (6.2.2) is the EMC 

for the storm event up to time t1, which we will call the “running EMC” in this study.  

From (6.2.2), y/x can be rewritten as 

1

r
tEMCy

x EMC
=       (6.2.3) 

When t1 is zero, (x, y) is defined as (0, 0) because = 0.  When tr
tEMC 1 is the entire storm 

time, (x, y) is defined as (1, 1) because = EMC.  Thus (0, 0) and (1, 1) are the two 

fixed points on the FF mass-load curve. 

r
tEMC
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From (6.2.3), we know that FF Mass-Load curves actually record the change of 

running EMC with cumulative flow volume or time.  They also record the relative 

relationship between running EMC and EMC.  For example, when , the 

curve will fall above the diagonal line; when , the curve will fall below the 

diagonal line.  In addition, when is increasing, the curve’s slope will be greater 

than 45 degrees; when is decreasing, the curve’s slope will be less than 45 degrees. 

r
iEMC EMC>

r
iEMC EMC<

r
iEMC

r
iEMC

To further understand FF Mass-Load curves, we need to study discrete cases of 

running EMCs.  For example, based on a fine and equal discretization on discharge 

volume, a running EMC sequence is as follows 

1 2 3 10, , , ,............, ,r r r r
nEMC EMC EMC EMC EMC−

r
n    (6.2.4) 

The last element in the running EMC sequence, , is the EMC for the event.  To 

define y/x on the FF Mass-Load curve, the above running EMC sequence is divided 

by = EMC.  Equation (6.2.4) becomes 

r
nEMC

r
nEMC

1 2 30, , , ,.............., ,1
r r r r

n
r r r r
n n n n

EMC EMC EMC EMC
EMC EMC EMC EMC

−1    (6.2.5) 

The sequence defined by (6.2.5) actually sketches the profile of a FF Mass-Load curve. 

From (6.2.5), we know that both running EMC and EMC determine each point on the 

FF Mass-Load curve.  Thus, even though we may obtain several accurate estimates of 

running EMCs, we will distort the curve with an inaccurate estimate of the EMC.  For 
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example, if we overestimate the EMC by 30 percent, the curve will be underestimated by 

23 percent.  In addition, discretization plays a role in defining FF Mass-Load curves.  For 

example, for poorly representative discretization, the points that define the curve will 

have gaps, which are filled with a straight line.  This introduces error in FF Mass-Load 

curve. 

 

6.2.2.2 Constructing FF Mass-Load Curves 

Theoretically, we can construct each FF Mass-Load curve from normalizing the 

running EMC sequence defined in (6.2.4) and the corresponding cumulative flow 

sequence.  Practically, these two sequences need to be constructed from discrete 

measurements.  For most cases, we are able to measure flow accurately and frequently.  

Thus, the cumulative flow sequence will be determined without much difficulty.  

Constructing the pollutant mass sequence is more difficulty because samples are less 

frequently collected.  Composite samples could be collected up to defined points in the 

runoff event; for example, ten automated samplers could be programmed to collect 

samples from the storm beginning to defined volumes, which can be compared to total 

runoff volume. This method is unlikely since composite samplers are expensive. It is 

more likely that the EMC will be determined from grab samples collected at defined 

times.  

When analyzing grab samples, calculating the EMCs or running EMCs is not as 

straight forward as analyzing composite samples, because each concentration 

measurement represents an instantaneous value during an event.  The EMCs or running 

 116



EMCs must be estimated from the flow-weighted average of these instantaneous 

concentrations.  A common way to decide the weights is to split the discharge volume 

between two consecutive measurements at the mid-volume point.  The process of 

constructing a FF Mass-Load curve from grab samples is illustrated as follows: 

Suppose we collect 10 grab samples in time order during an event, and the measured 

concentrations are 20.1, 14.2, 11.5, 11.7, 8.0, 9.5, 7.0, 7.2, 6.1, and 4.9.  The 

corresponding normalized cumulative flow volumes are 0.02, 0.07, 0.12, 0.20, 0.25, 0.42, 

0.52, 0.59, 0.70, and 0.78.  The determination of the flow weights for each sample is 

illustrated in Figure (6.2.1).  The result of the weighting sequence is 0.045, 0.05, 0.065, 

0.065, 0.11, 0.135, 0.085, 0.09, 0.095 and 0.26.  The cumulative flow sequence is just the 

cumulative sequence of the weight sequence as 

(0.045, 0.095, 0.16, 0.225, 0.335, 0.47, 0.555, 0.645, 0.74, 1) 

Then, the running EMC sequence is calculated by 

1

1

i

j j
jr

i i

j
j

C W
EMC

W

=

=

∗
=
∑

∑
     (6.2.6) 

The result of the running EMC sequence is 

(20.1, 17.0, 14.8, 13.9, 11.9, 11.2, 10.6, 10.1, 9.6, 8.4) 
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From the cumulative flow sequence and the running EMC sequence, the (x, y) pairs 

of the FF Mass-Load curve can be defined as 

{   (0, 0), (0.045, 0.108), (0.095, 0.193), (0.16, 0.282), (0.225, 0.373), (0.335, 0.478), 

(0.47, 0.631), (0.555, 0.702), (0.645, 0.779), (0.74, 0.845), (1, 1)   } 

Figure 6.2.2 shows the above FF Mass-Load curve. 
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Figure 6.2.1 Determination of Flow Weights (w1 to w10) from Grab Samples 
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Figure 6.2.2 FF Mass-Load Curve 
 

 119



6.2.2.3 Error Analysis for FF Mass-Load Curves 

In this section, we try to evaluate the errors associated with constructed FF Mass-

Load curves.  Two factors can affect the accuracy of estimated FF Mass-Load curves.  

One is from the intervals of a running EMC sequence.  The other is from the estimation 

of running EMCs themselves.  For example, to accurately describe an x-y curve from 

discrete points in a specified range, the adequacy of number of points and their 

distribution belong to the interval problem.  The accuracy of each data point belongs to 

the estimation problem.  The interval problem is clearly related to the discretization.  

However, discretization also exists in the estimation problem. This results because the 

EMCs or running EMCs are estimated from discretizing the continuous concentration 

quantity during an event, irrespective of the source of concentration data (grabs or 

composite samples).  When EMC or running EMC is obtained from grab samples, the 

EMC or running EMC is clearly a flow-weighted average of analytical results of grab 

samples.  When the EMC or running EMCs is obtained from composite samples, the 

EMC or running EMC is an inherently a flow-weighted average of an analytical 

measurement of a collection of samples taken by automated samplers.  Both methods 

have discretization-related errors, and to evaluate their impact it is necessary to use 

simulation.  

To perform this error analysis, we need a model to describe the pollutant’s 

concentration variation.  The COD regression model suggested below is used. 
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(log | ) 6.08 0.60log 0.40log 0.16logE COD CumRs AtDry AtR= − + −x s  (6.2.7) 

2~ (0,0.59 )i Nε       

Table 5.2.1 previously describes the variables in (6.2.7).  There are 391 cases for the 

regression analysis.  These data were collected over a period of two years (from 1999 to 

2001) from three highway runoff-monitoring stations.  Figure 5.2.2 previously shows the 

fitted values versus observations.  The R-squared is 0.66. 

In the computer simulations, we used 35 monitored events, in which the flow data 

were well measured at one-minute interval and the concentration data were used for the 

regression.  To evaluate the errors on a continuous curve, several specific locations on the 

curve are examined.  These locations are defined as First Flush ratios (FF ratios).  A FF 

ratio is the ratio as y/x on First Flush Mass-Load curves.  For each test event, we simulate 

COD concentration using (6.2.7) and random noise defined by the standard error, for 

every minute.  One minute is the finest interval based on the source, and is consider the 

most precise.  Multiple simulations were performed (1000 runs) to obtain a representative 

curve (mean and variance) for each event.  This case is represents a benchmark for other 

cases, where the COD sampling interval is increased. Each sampling strategy (equal-time, 

equal-discharge volume, random) was evaluated with sample sizes varying from 10, 20, 

40, 60, and 100.  For equal time, and equal discharge volume strategies, the starting point 

was also randomly varied to avoid any situation that might cause error associates with a 

specific sampling sequence.  Multiple simulations were performed (1000 runs) to obtain a 

representative curve (mean and variance) for each event.  The square root of MSE (Mean 
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Squared Error) was used for comparing cases.  The MSE is defined as the square of the 

estimator’s bias plus the estimator’s variance.  In this case, the bias is the difference 

between the benchmark mean and the cases mean, and the variance is just the case 

variance.  Through thirty-five test events, first flush ratios were recorded at 10, 20, and 

30 %of the runoff volume, symbolized as “FF10”, “FF20”, and “FF30” respectively in 

this dissertation. 

 

6.2.3 Results and Discussion 

6.2.3.1 Results of Error Analysis 

Figure 6.2.3 shows the boxplots of MSE , evaluated at 10%, 20%, and 30% of total 

runoff volume, for different number of samples using a random sampling strategy.  

Figures 6.2.4 and 6.2.5 show similar results, except for equal-time and equal-discharge 

volume sampling strategies.  Figures 6.2.4 to 6.2.6 show that the decline in error as a 2nd-

order concave curve while the number of samples increases from 10 to 100.  And as 

expected, the variability decreases as the volume fraction increases. 
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Figure 6.2.3 Boxplots of MSE for Random Sampling with Sample Size as 10, 20, 
40, 60, and 100 plus One-Minute Sampling 
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Figure 6.2.4 Boxplots of MSE for Equal-Time Sampling with Sample Size as 10, 
20, 40, 60, and 100 plus One-Minute Sampling 
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Figure 6.2.5 Boxplots of MSE for Equal-Discharge Volume Sampling with Sample 
Size as 10, 20, 40, 60, and 100 plus One-Minute Sampling 
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Figure 6.2.6 compares the event’s mean FF ratios among the benchmark (one-minute 

sampling) and different samplings with sample size as 10, 20, and 40.  For low number of 

samples, equal-time and equal-discharge volume samplings are biased.  For high number 

of samples, every sampling strategy is unbiased. 

For each sampling strategy, the benchmark’s MSE reflects model’s inherent randomness 

in (6.2.7).  Based on R-squared as 0.66, the inherent randomness contributes one third 

of concentration variation in samples.  Other samplings’ MSE, therefore, includes 

model’s inherent randomness and discretization errors.  As a result, the benchmark’s 

MSE is quite small compared to other simulations’.  It implies that discretization 

errors strongly impact the accuracy of FF Mass-Load curves. 

The equal-discharge volume strategy has large negative bias with fewer samples. This 

may result because the strategy misses the first flush. If only 10 samples are used, the 

first 10% of the storm is not sampled. The average FF10 from the benchmark cases is 2.2, 

which means that an equal volume strategy will miss 22% of the discharge mass.  The 

random and equal time strategies show less bias, and this occurs because the first part of 

the storm is not always missed. 

The simulation results show that it is necessary to collect approximately 40 samples 

to reduce discretization error to the benchmark case.  20 samples’ sampling is generally 

unbiased, but with larger variances. 

Figure 6.2.7 shows the comparison among regression FF ratios (calculated from 

regression) and field FF ratios (calculated directly from grab samples).  The average 

number of samples is approximately 10 for 35 used events.  As expected, there is more 
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variability in FF Mass-Load curves from field than from regression. There is little 

difference in the bias. 
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Figure 6.2.6 Comparison of Mean FF Ratios from Benchmark and Different 
Samplings (r, t, v) as 10, 20, and 40 Samples 
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Figure 6.2.7 Comparison among Regression’s and Field’s FF Ratios (g: from grab 
samples; m: from regression) 
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6.2.3.2 Implications for BMP Selection 

A very important reason to use FF Mass-Load curves for defining first flush 

phenomenon is to obtain information for pollutant loading and potential mass removal 

efficiency.  It is necessary to estimate removal efficiencies and mass loads to comply 

with Total Maximum Daily Load (TMDL) provisions issued by the US EPA regulations 

in 1985 and 1992 that implement section 303(d) of the Clean Water Act. A TMDL 

specifies the maximum amount of a pollutant that a water body can receive and still meet 

water quality standards, and allocates pollutant loadings among point and nonpoint 

pollutant sources. By law, states, territories, and authorized tribes are required to develop 

lists of impaired waters, and establish priority rankings for waters on the lists to develop 

TMDLs.  The TMDL makes pollutant loading an important aspect for stormwater 

management.  Therefore, FF Mass-Load curves provide related mass loading information. 

Here we suggest a hypothetical scenario to illustrate how to use FF Mass-Load curves 

in a BMP for a stormwater treatment plan.  This treatment plan is designed to remove 

potential first flush pollution for COD from highway runoff by filtration.  The filtration 

capacity is designed to be able to treat 5-year flow.  Assume the treatment efficiency 

fixed at 80%.  The only cost consideration is related to the treated flow volume, and the 

cost constraint limits treatment to no more than 15% of annual runoff volume.  The 

corresponding decision to make is to determine the filter operation for each storm event.  

To simplify the decision, there are only four operation options:
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(d0) do not treat; 

(d1) treat first 10% of flow volume; 

(d2) treat first 20% of flow volume, or  

(d3) treat first 30% of flow volume. 

 

The objective is to remove as much pollutant mass as possible within the cost 

constraint.  In implementing this BMP, we used the 35 previously events and divide them 

into four groups based on rainfall size: S (Small), MS (Medium Small), ML (Medium 

Large), and L (Large).  The group size is selected so that each group has approximately 

the same frequency.  Thus, each group ranges as: S <= 0.3, 0.3 < MS <= 0.9, 0.9 < ML 

<= 2.4, and 2.4 < L.  Therefore, the decision now can be simplified to choose the fraction 

option for treatment for each group. 

The representative values of FF10, FF20, and FF30 for each group need to be used 

for calculation.  The COD regression (6.2.7) is used to calculate the FF ratios.  The 

relationship between FF ratios and event rainfall is used.  Figure 6.2.8 shows the second 

order OLS (Ordinary Least Square) fit and the lowess smoothing fit for the FF ratios as a 

function of log EventRain.  As seen earlier, the fitted line of FF10 is always higher than 

FF20 and then FF30.  Based on the OLS fit in Figure 6.2.7, the representative FF10, 

FF20, and FF30 are selected for each group based on the median rainfall in each group. 

Several assumptions are used to facilitate the calculations: the runoff coefficient is 

equal to 1.0; the catchment area is equal to 1.0 and the EMC is equal to 1.0.  These 

assumptions make the calculations dimensionless.  Thus, based on the above assumptions, 
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representative FF ratios, and representative rainfall (median rainfall), the representative 

mass removal can be calculated.  Table 6.2.1 shows the mass removal calculations for 

each group under each operation option. 

There are total 44 = 256 decision types.  After searching for all qualified decisions 

(satisfying the cost constraint), the BMP decision is that d3 for S, d3 for MS, d2 for ML, 

and d1 for L.  As shown in Table 6.2.2, the mass removal is approximately 32 percent, 

and the treated volume is approximately 15%.  

This hypothetical case shows that accounting for first flush effects can improve 

treatment.  It can be extended to multiple pollutants cases, where the optimal decision 

needs to be searched among multiple decision tables.  In addition, more realistic and 

complicated conditions can be considered, such as variable treatment efficiency, variable 

event mean concentration, variable runoff coefficients, etc.  The data requirements will 

be greater for these cases. 
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Figure 6.2.8 2nd-Order OLS and lowess Smoothing Fits for FF10 (black), FF20 (red), 
and FF30 (blue) 
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Table 6.2.1 Mass Removal Calculation 

 
Event Group S MS ML L 

Option 
Unit Event Vol 0.21 0.57 1.00 3.64 

Unit Vol Treated 0.00 0.00 0.00 0.00 
d0 

Unit Mass Rem 0.00 0.00 0.00 0.00 

FF10 1.96 2.33 2.49 2.74 

Unit Vol Treated 0.02 0.06 0.10 0.36 d1 

Unit Mass Rem 0.04 0.13 0.25 1.00 

FF20 1.66 1.86 1.95 2.07 

Unit Vol Treated 0.04 0.11 0.20 0.73 d2 

Unit Mass Rem 0.07 0.21 0.39 1.51 

FF30 1.50 1.61 1.66 1.74 

Unit Vol Treated 0.06 0.17 0.30 1.09 d3 

Unit Mass Rem 0.09 0.27 0.50 1.90 

 
 
 
 

Table 6.2.2 Efficiency Calculation for Selecting BMPs 
 

Event Group S MS ML L   

BMP Decision d3 d3 d2 d1 Efficiency %  

Mass Removal 0.09 0.27 0.39 1.00 1.75/5.41 = 32% 

Volume Treated 0.06 0.17 0.20 0.36 0.79/5.41 = 15% 
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6.3 New First Flush Notations and Criteria 

6.3.1 Background 

6.3.1.1 Observations of First Flush Phenomenon 

The most persuasive evidence that the first flush “believers” provided to document 

the first flush phenomenon is simple observations. For example we can confirm their 

observations, especially for the first event of a season, because of the very dark and 

turbid runoff during the beginning of an event.  The disbelievers may discredit these 

observations because they cannot verify the first flush from the collected data using their 

criteria.  Both positions are acknowledged, but there must be some unexplored criteria 

that can unify their conclusions.  The criteria or definition of a first flush is a candidate.  

The color or turbidity in the runoff reflects pollutant concentration, which suggests that 

the believers observe a decreasing trend in pollutant concentration.  For most unbelievers, 

their first flush criteria are probably based on Mass-Loading concepts.  The interpretation 

of this type of criteria: “the main portion of total pollutant mass load is transported during 

the early part of a storm event”.  This type of criteria relates to mass load fraction.  The 

mass fraction can never be evaluated by simple observation and requires mathematical 

analysis.  So we realize that the believers and the disbelievers focus on different aspects 

on the first flush phenomenon: the concentration aspect versus the mass load aspect. 
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6.3.1.2 Concentration Aspects vs. Mass Load Fraction Aspects  

Using concentration criteria could show results for the first flush effect than using 

mass load fractions.  For example, when the concentration declines rapidly in a certain 

absolute amount of runoff volume, and stabilizes at a lower value, storm event size will 

affect the FF mass fraction. Large events will have lower FF ratios for any given volume 

fraction, even though the declining concentration mechanism is independent of storm size.  

The only situation where FF ratios could be the same for different storm sizes would 

occur if the concentration decline were proportional to runoff volume.  

When we recall the qualitative description about the first flush phenomenon - “the 

first part of runoff in a storm event is the most polluted”, concentration aspects actually 

are more meaningful than mass load fraction aspects because we generally define the 

pollution from concentration.   

Concentration aspects could also be better than mass load fraction aspects from the 

data requirement point of view.  We have shown that it is not easy to get reliable FF mass 

load curves using only a few grab samples; however, concentration aspects can be 

focused on just the partial event profile instead of the whole profile, in contrast to mass 

load fraction aspects.  Thus, taking a few grab samples could efficiently describe an 

event’s partial information for studying first flush. 

When considering BMPs, concentration aspects have many advantages over mass 

aspects.  Theses advantages lost when performing first flush characterizations using 

dimensionless analysis.  For example, consider two equal rainfall events, A and B.  Event 

A discharges 50% of the pollutant mass in the first 20% of the runoff volume, and Event 
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B discharges 30% of the pollutant mass in the same volume fraction.  Using mass loading 

criteria, Event A is a more significant first flush effect than Event B.  The actual pollutant 

masses are not known, since the masses are normalized. Suppose that the pollutant 

concentration in event B is five times higher than in event A. In this case, if a BMP were 

used that was limited by runoff volume, it would be more beneficial to treat Event B even 

though it has a lower mass FF ratio that Event A.   

Another example shows the difficulty of making BMP decisions from mass load 

aspects.  Assume there is an event that produces a significant first flush; say 80 percent of 

pollutant mass in first 30 percent of runoff volume.  However, if the washed-off pollutant 

concentration is always below a critical or regulatory limit, there is little value in treating 

the runoff.  In this case it would be better to treat a more harmful pollutant, even if it does 

not exhibit a first flush.   

In this section, we develop the concentration-based first flush criteria and notation.  

The purpose of developing the new first flush notation is to provide a less controversial 

and more applicable notation for quantifying first flush phenomenon. 

 137



6.3.2 Methodology 

The concentration-based first flush notation could characterize first flush 

phenomenon as “the concentration decreases during the event”.  From our collected data, 

we have found that several pollutants routinely show this decreasing concentration trend, 

such as COD, oil & grease, DOC, TKN, dissolved phosphorus, and dissolved copper, etc.  

Figure 6.3.1 shows the decreasing trends. The data for this graph is the pooled grab 

sample data from all events, divided into groups based on corresponding cumulative 

rainfall.  Although some concentrations increased during an event, the magnitude and 

number of theses trends is very small compared to the general decreasing trends.  We 

could conclude that a concentration-decreasing trend exists for these parameters. 

There are several considerations for developing a new first flush notation.  We could 

create a new first flush criterion to indicate whether or not first flush phenomenon occurs.  

This notation would be less useful that continuous index which is able to indicate much 

more than a binary result (yes or no).  Secondly, this index should be standardized and 

flexible for all parameters and events so that we have a standard way to compare different 

cases.  Next, the data requirement cannot be too intensive or hard to satisfy.  Finally, it 

should be applicable for BMPs. 
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Figure 6.3.1 Concentration Downside Trends (log scale) Described by Cumulative 
Rainfall Depth (symbolized as cumRain on plot) in Inches 
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Based on the above principles, a new concentration-based first flush index is 

proposed from measured pollutant concentrations at a base condition and other reference 

conditions.  The cumulative rainfall is selected to represent the reference condition 

because it can represent the time series, and it is normalized to the catchment area.  The 

base level, where we measure the concentration for representing the initial condition for 

the event, is selected at 0.1-inch cumulative rainfall.  The 0.1-inch cumulative rainfall is 

selected because this amount of rainfall should produce runoff for impervious surfaces.  

In order to characterize different size storms, two reference cumulative rainfall depths are 

selected. These two reference levels are 0.3-inch and 0.5-inch cumulative rainfall.  The 

0.3-and 0.5-inch cumulative rainfalls are selected because for BMP selection and rainfall 

frequency.  Most rainfall events in the study area are less than 0.5 inch, and regulators are 

likely to require BMPs for this range of rainfall. To reduce error, replicate samples are 

suggest at each reference rainfall, and the actual rainfall might be flexibly defined (e.g., 

+/- 0.03 inch).  Then, we transform each measured concentration into nature logarithm 

scale.  The logarithm transformation is used to create a standardized way to accommodate 

different concentration ranges.  Finally, a new concentration-based first flush notation 

(cFF) is suggested as below: 
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In cFF notation, the super script indicates the reference level at either 0.3-or 0.5-inch 

cumulative rainfall; n is the number of replicate samples taken at each rainfall level.  This 

index is a simple subtraction of the average log-transformed concentration at the 

reference level from the average at the base level.  The interpretation of this first flush 

index is analogous to the percentage drops for pollutants at reference levels. 

 

6.3.3 Results & Analysis 

6.3.3.1 Field Data Analysis 

From our collected data in two seasons, there are 14 events that can be used for 

calculating cFFs.  Among these events, nine events can be used for calculating cFF0.3; 

seven events can be used for calculating cFF0.5; and two events can be used for both.  The 

number of samples for the base level (at 0.1-inch cumulative rainfall) is usually two or 

three, and the number for the reference level (at 0.3-or 0.5-inch cumulative rainfall) is 

usually one or two.  Since the number of samples is not consistent for calculating cFFs, 

we will drop the subscript n for the moment.  The above sample counts considered the 

tolerance range (within +/− 0.03-inch rainfall at each sample-taken level). 

Figure 6.3.2 shows the cFF0.3s for COD, dissolved copper, DOC, oil & grease, and 

dissolved phosphorous, where the event sequence is sorted by their cFF0.3s of COD.  For 

convenience of this study, we set cFF0.3 >= 0.7 (which equals the concentration decline 

of approximately 50 percent) as indicating “first flush confirmed” and cFF0.3 >= 2 (which 

equals the concentration decline of approximately 90 %) as indicating “significant first 

flush”.  There are two events showing “significant first flush” for COD, and four events 
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showing “first flush confirmed” for almost every parameter except for dissolved 

phosphorous (cFF  ~ 0.5).  The remaining five events do not show any obvious 

decreasing trends.  Figure 6.3.3 shows the cFF s for the same parameters.  All cFF s 

of nine events are greater than 0.7 (most are greater than one).  The results of cFF s are 

higher than the previous results of cFF s as we expect.   

0.3

0.5 0.5

0.5

0.3

Figure 6.3.4 shows the cFF0.3s for solid related parameters, such as TSS, VSS, and 

turbidity, where the event sequence is sorted by their cFF0.3s of TSS.  There are four 

events for TSS and VSS and two events for turbidity showing “first flush confirmed”.  

No event shows “significant first flush”.  There are three events showing negative values 

for each parameter.  Figure 6.3.5 shows the cFF s for the same parameters.  Basically, 

these cFF

0.5

0.5s show approximately the same range as the cFF0.3s.  Thus, it seems either 

that solid related parameters do not show a strong decreasing tendency in concentration, 

or that there are unconsidered factors, which control their washoff concentrations. 

Figure 6.3.6 shows the comparison between two notations, cFF0.3s and FF20, for the 

parameter COD.  The cFF0.3s are from the same events as above.  The FF20s are the 

mean values that are calculated by the regression model (6.2.7), using the real data of the 

same events as calculating the cFF0.3s.  The event sequence in Figure 6.3.6 is sorted by 

their cFF0.3s.  We found that all FF20s are about the same (~ 1.8), and the corresponding 

cFF0.3s show a wide value range of from 0.04 to 2.8.  Thus, this concentration based 

criteria is more sensitive. 
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Figure 6.3.2 Field Observations for cFF0.3s Showing First Flush 
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Figure 6.3.3 Field Observations for cFF0.5s Showing First Flush 
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Figure 6.3.4 Field Observations for cFF0.3s for Solid-Related Parameters 
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Figure 6.3.5 Field Observations for cFF0.5s for Solid-Related Parameters 
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Figure 6.3.6 Comparison between FF20 and cFF0.3 
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6.3.3.2 Implications for cFFs from Regression 

The COD regression (6.2.7) accounts for antecedent dry days and antecedent rainfall, 

which implies that the mean of cFF  or cFF  should be independent of these two 

parameters.  Based on (6.2.7), the mean of  is calculated as 

0.3
n s 0.5

n s

0.3
ncFF s

0.3µ  = -0.6 (log 10-log 30) = 0.7 

Similarly, the mean of cFF0.5s is calculated as 

0.5µ = -0.6 (log 10-log 50) = 1.0 

The variance of cFFs includes two random errors in (6.2.7).  So let ei and ej be these two 

independent random errors.  Then, from 

2 ( ) ( ) ( ) 2 ( ,i j i j i jVar e e Var e Var e Cov e eσ = − = + − )  

Since and V , ( , ) 0i jCov e e = ( ) ( )i jar e Var e=

2 22 ( ) 2 0.59 0.7iVar eσ = = × ≅ , and  0.8σ ≅

Based on the central limit theorem, 

0.3 (0.7,0.7 / )ncFF N n→ , and cFF   (6.3.2) 0.5 (1.0,0.7 / )n N n→
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Equation (6.3.2) means that cFF  will converge to a normal distribution with mean 0.7 

and variance 0.7/n.  Similarly, cFF  will converge to a normal distribution with mean 

1.0 and variance 0.7/n. 

0.3
n s

0.
n

5s

We evaluate the field results by using (6.3.2).  In most cases, there is just one sample 

(n = 1) used for calculating cFFs.  Thus, the 95% confidence interval for  is from 

1 to 2.3, and for  is from -0.7 to 2.6.  After checking the field results, only one 

from 16 cases is not within 95% confidence interval. 

0.3
1cFF
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6.3.4 Discussion 

Using , we can judge whether there exists a decreasing concentration trend in 

pollutant concentrations, and we can also know exactly which part of a storm event is 

under examination. is preferred because of the large difference in rainfall in 

defining .  The reason is that there is more possibility that the concentration trend 

is not a monotone in the interval covered by .  Thus, is should be used as an 

additional tool to extend the rainfall interval for examination.   

x
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From the stormwater management point of view,  can provide simple answers 

for decision makers.  For example, if cFF shows a first flush, decision makers choose a 

criterion among first 0.3 and 0.5-inch rainfall depth, and send the corresponding flow for 

treatment based on the efficiency.  Other rainfall values could be used by interpolation.  

This type of answer is clear and easy to follow.  If does not show first flush, 

x
ncFF

x
n

x
n

cFF
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decision makers at least know that the first part of a storm event is not special in emitting 

a pollutant, and they can use the average concept to consider the whole profile of 

stormwater pollution. 

From the watershed management point of view, decision makers need to use both 

information derived from and information collected from point sources.  The 

treatment cost efficiency (mass removal/cost) needs to be explicitly evaluated.  Our field 

data suggests that the decreasing trend in pollutant concentration can be used to derive 

the cost savings presented by a first flush.   

x
ncFF

One hypothetical scenario is used to illustrate the watershed management regarding 

of a receiving water body.  In this drainage basin, there is one point source (P1 that might 

represent a wastewater treatment plant) and two non-point sources (NP1 and NP2 that 

might represent two areas with different land use types).  The pollutant oil & grease is 

being evaluated and load reductions are required.  The point source P1 shows a constant 

loading contribution. The non-point sources, NP1 shows significant first flush 

phenomenon as indicated by and , but NP2 does not.  The decision makers’ 

job is to set a priority list to treat or abate the sources, based on the cost of treatment.   

Since NP2 does not show a first flush, and there is no further information to reveal the 

concentration trend, NP2 is treated the same as P1, which has constant oil & grease 

contribution.  Therefore they just have one average unit cost estimate.  For NP1, there are 

four unit cost estimates corresponding to two first flush costs, one residual cost, and one 

average cost.  The assumed first treatment unit cost for NP1 are 0.6 kg/$1 for first 0.3-

inch rainfall, 0.4 kg/$1 for first 0.5-inch rainfall, and $1 for residual (> 0.5-inch rainfall).  

0.3
10cFF 0.5

10cFF
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The average unit costs for both NP1 and NP2 are 0.15 kg/$1.  The average unit cost for 

P1 is 0.2 kg/$1.  Table 6.3.1 shows the above cost structures.  After comparing the 

efficiencies, the order of treatment priority should be NP1 (first 0.5-inch), P1, NP2, and 

NP1 (residual). 

 
 
 
 
 
 
 

Table 6.3.1 Hypothetical Treatment Unit Costs 
 

Target Pollutant Oil & Grease 

Source Type Non-point Source Point Source 

Source ID NP1 NP2 P1 

First Flush?    

cFF0.3 Yes No  

cFF0.5 Yes No  
 
Mass Removal 
Efficiency: 

   

First 0.3 inch 0.6 (kg/$1)   

First 0.5 inch 0.4 (kg/$1)   

Residual (>0.5 in) 0.1 (kg/$1)   

Average 0.15 (kg/$1) 0.15 (kg/$1) 0.2 (kg/$1) 
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6.4. Conclusions 

Based upon the field data and analysis, the first flush phenomenon probably occurs 

for most pollutants.  The pollutant source is greater at the beginning of a storm and if the 

washed off mass is proportional to the accumulated mass in the catchment, there must be 

a declining concentration.  The lack of consensus over the existence of a first flush 

probably exists because of the difficulty in measuring and documenting the first flush, as 

well as differences in definitions.  For example the equal volume sampling strategy 

missed the first flush for a small number of samples (~10).  

Thus, a standard and easy-to-follow measuring protocol is needed for studying first 

flush.  This measuring protocol needs to be capable of verifying and quantifying the first 

flush.  In addition, it needs to produce useful information for engineers who are abating 

stormwater pollution.  Otherwise, the first flush is a topic of only academic interest. 

First flush Mass-Load curves and related first flush ratios, which are based on the 

concept of mass load, have been frequently used in quantifying first flush.  However, 

they produce some confusion about understanding first flush.  This confusion is partially 

caused by improper discretization of a continuous Mass-Load curve.  In generally xx 

discrete samples are need to minimize the error in creating a Mass-Load curve, which is 

probably much higher than used in most monitoring programs.  Additionally, the first 

flush Mass-Load curve is dimensionless, which is sometimes difficult for practicing 

engineers to use.  

The concentration-based first flush notation, cFF , was developed to provide a less 

confusing, more reliable, and less expensive way to quantify first flush.  The  ratio 

x
n

x
ncFF
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quantifies a pollutant’s change in concentration from the beginning of a storm event to a 

specific point later in the event.  The cFF ratio can just be calculated from grab samples.  

One advantage for is that it does not need intensive field samples for evaluation; 

the entire runoff period need not be sampled.  Five samples for each rainfall depth are 

proposed.  The ratio can also assist decision makers determine if the first portion of 

a storm event is a promising candidate for treatment.  The  ratio does not provide 

information to examine the whole profile of a storm event. 

x
n

x
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x
ncFF

x
ncFF

For future research, the mechanism of first flush can be studied after the definition of 

first flush is clarified.  It may be helpful to reexamine previously published data to clarify 

the existence of a first flush. 
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7.  CONCLUSIONS 

 

This dissertation has showed the procedures and results of highway runoff monitoring, 

the exploration of a regression model for water quality in highway runoff, and the 

evaluation of methods for estimating EMCs and first flush phenomenon.  Although 

highway was under investigation in this dissertation, any catch-basin with high 

imperviousness and short transportation lag could respond similarly to the highway 

surface. 

 

The overall research framework takes advantage of stochastic methods to reduce the 

complexity of problems.  This approach was successful in complicated runoff systems 

where the pure deterministic approach is difficult because of its intensive data 

requirement.  In addition, a stochastic approach was also used to estimate the errors from 

the discretization of time series variables. 

 

Stormwater monitoring is very expensive and labor consuming, but produces large 

quantities of data.   To efficiently use the monitoring results, it was necessary to compile 

the existing data into database that facilitated its storage and retrieval.  A monitoring 

database could be established at the watershed level to facilitate comprehensive 

watershed master planning.  Recording the corresponding field conditions, such as the 

rainfall and flow, will extend the usage of monitoring results for further study. 
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The flow-weighted average concentration, called the event mean concentration (EMC) 

is currently used for estimating stormwater mass loading, and total maximum daily loads 

(TMDLs), are established using EMCs.  This dissertation has discussed the approaches to 

properly measure and estimate EMCs.  EMCs can be estimated from a series of grab 

samples or by flow-weighted composite samplers.  Simulations show that a composite 

sample is a better way to obtain the EMCs due to the large number of individual samples. 

 

Understanding the first flush phenomenon will benefit BMP selection for stormwater 

pollution control, because the best mass removal efficiency can be potentially achieved 

by treating the first flush volume.  However, many factors affect the evaluation of these 

first flush BMPs.  For example, there is a large data requirement for properly analyzing 

the first flush phenomenon using the current notations.  Controversy exists in 

documenting the first flush phenomenon, which may be caused by incomplete data sets.  

Additionally, runoff systems vary a lot, and it is difficult develop protocols which 

adequately address all situations.  An improved, concentration-based notation, which was 

designed to require less data, is provided, and shows applicability for BMP selection.  

Future BMP selection should utilize the improved understanding of the first flush 

phenomenon; otherwise, the phenomenon is only of academic interest. 
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APPENDIX A. Water Quality Monitoring Results 
 
A.1: COD 
 

Summary Statistics: 
 

COD (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 441 123 163 155 
Minimum 11.1 15.8 11.1 11.1 
Maximum 2714.3 2714.3 2381.0 1800.0 
Median 80.6 66.7 80.6 83.3 
Mean 187.6 174.1 222.7 161.5 
Standard Dev 295.9 332.4 322.6 225.9 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.2: TSS 
 

Summary Statistics: 
 

TSS (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 441 123 163 155 
Minimum 2.9 2.9 4.5 6.3 
Maximum 1534.7 174.7 1534.7 331.6 
Median 37.4 20.6 68.3 31.8 
Mean 62.3 33.4 97.9 47.7 
Standard Dev 98.2 33.2 144.8 49.1 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.3: O & G 
 

Summary Statistics: 
 

O&G (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 437 122 163 152 
Minimum 0.5* 1.3 0.5 0.5 
Maximum 108.0 73.0 102.3 108.0 
Median 6.2 5.6 5.9 7.3 
Mean 12.6 9.8 15.5 11.7 
Standard Dev 16.7 10.6 21.0 15.1 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.4: Nitrite 
 

Summary Statistics: 
 

NO2-N (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 441 123 163 155 
Minimum 0.01 0.03 0.01 0.02 
Maximum 2.22 2.22 1.72 1.37 
Median 0.16 0.19 0.16 0.14 
Mean 0.26 0.33 0.28 0.18 
Standard Dev 0.30 0.40 0.30 0.17 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.5: Nitrate 
 

Summary Statistics: 
 

NO3-N (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 441 123 163 155 
Minimum 0.05* 0.05 0.05 0.05 
Maximum 24.74 15.73 20.89 24.74 
Median 1.13 1.37 0.97 0.94 
Mean 1.97 2.26 2.08 1.63 
Standard Dev 2.86 2.71 3.14 2.64 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.6: Ammonia 
 

Summary Statistics: 
 

NH3-N (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 441 123 163 155 
Minimum 0.03 0.04 0.06 0.03 
Maximum 35.96 13.69 35.96 25.41 
Median 1.07 0.94 1.04 1.31 
Mean 3.04 1.69 4.94 2.13 
Standard Dev 5.93 2.27 8.72 3.21 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.7: TKN 
 

Summary Statistics: 
 

TKN (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 219 63 82 74 
Minimum 0.87 0.97 0.87 1.14 
Maximum 161.30 123.60 161.30 50.02 
Median 4.23 4.43 3.97 4.67 
Mean 8.47 8.88 8.75 7.82 
Standard Dev 15.54 16.77 19.16 8.63 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.8: Dissolved Phosphorous 
 
Summary Statistics: 
 

P_dis (mg/l) Pool Site 1 Site 2 Site 3 
N of cases 434 121 162 151 
Minimum 0.02* 0.02 0.02 0.02 
Maximum 4.97 2.02 4.97 2.28 
Median 0.18 0.19 0.18 0.18 
Mean 0.31 0.27 0.39 0.27 
Standard Dev 0.44 0.31 0.62 0.27 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.9: Particulate Phosphorous 
 
Summary Statistics: 
 

P_prt (mg/l) Pool Site 1 Site 2 Site 3 
hN of cases 417 121 156 140 
Minimum 0.02* 0.02 0.02 0.02 
Maximum 0.68 0.68 0.61 0.34 
Median 0.08 0.10 0.12 0.06 
Mean 0.12 0.12 0.16 0.08 
Standard Dev 0.12 0.11 0.15 0.06 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.10: Dissolved Chromium 
 
Summary Statistics: 
 

Cr_dis (ug/l) Pool Site 1 Site 2 Site 3 
N of cases 437 122 163 152 
Minimum 0.5* 0.5 0.5 0.5 
Maximum 19.3 11.1 19.3 14.6 
Median 1.5 1.6 2.0 1.0 
Mean 2.2 2.3 2.8 1.4 
Standard Dev 2.2 2.2 2.6 1.5 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.11: Particulate Chromium 
 
Summary Statistics: 
 

Cr_prt (ug/l) Pool Site 1 Site 2 Site 3 
N of cases 417 121 156 140 
Minimum 0.5* 0.5 0.5 0.5 
Maximum 24.3 24.3 22.4 15.0 
Median 3.7 3.3 5.6 2.7 
Mean 4.8 3.9 6.9 3.2 
Standard Dev 3.9 3.1 4.7 2.0 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.12: Dissolved Zinc 
 
Summary Statistics: 
 

Zn_dis (ug/l) Pool Site 1 Site 2 Site 3 
N of cases 437 122 163 152 
Minimum 3.0 6.0 3.0 13.2 
Maximum 6041.2 590.9 6041.2 2180.7 
Median 86.0 105.5 69.0 102.2 
Mean 202.8 142.4 268.9 180.5 
Standard Dev 412.6 121.5 616.5 252.5 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.13: Particulate Zinc 
 
Summary Statistics: 
 

Zn_prt (ug/l) Pool Site 1 Site 2 Site 3 
N of cases 417 121 156 140 
Minimum 0.5* 6.5 0.5 7.5 
Maximum 400.8 294.9 346.2 400.8 
Median 48.4 47.2 73.6 34.7 
Mean 74.9 65.8 104.6 49.5 
Standard Dev 69.7 58.7 82.5 47.6 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
 

 

 

 168



A.14: Dissolved Copper 
 
Summary Statistics: 
 

Cu_dis (ug/l) Pool Site 1 Site 2 Site 3 
N of cases 437 122 163 152 
Minimum 3.0 6.0 3.0 3.0 
Maximum 882.4 198.6 882.4 435.1 
Median 21.0 23.0 20.2 21.0 
Mean 44.4 33.6 56.2 40.5 
Standard Dev 71.0 31.8 98.1 56.1 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
 

 

 

 169



A.15: Particulate Copper 
 
Summary Statistics: 
 

Cu_prt (ug/l) Pool Site 1 Site 2 Site 3 
N of cases 417 121 156 140 
Minimum 1.5* 1.5 1.5 1.5 
Maximum 107.8 107.8 88.1 68.9 
Median 12.9 12.5 21.0 8.0 
Mean 18.1 16.3 26.2 10.7 
Standard Dev 16.7 14.8 19.9 8.4 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.16: Dissolved Nickel 
 
Summary Statistics: 
 

Ni_dis Pool Site 1 Site 2 Site 3 
N of cases 437 122 163 152 
Minimum 0.5* 0.5 0.5 0.5 
Maximum 264.2 52.6 264.2 94.9 
Median 5.0 6.0 5.0 5.0 
Mean 11.2 8.7 14.7 9.5 
Standard Dev 18.9 8.6 27.1 12.9 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.17: Particulate Nickel 
 
Summary Statistics: 
 

Ni_prt (ug/l) Pool Site 1 Site 2 Site 3 
N of cases 417 121 156 140 
Minimum 0.5* 0.5 0.5 0.5 
Maximum 59.9 59.9 17.1 12.6 
Median 2.7 2.4 3.8 2.2 
Mean 4.3 5.0 5.2 2.6 
Standard Dev 6.1 9.9 4.1 1.7 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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A.18: Particulate Lead 
 
Summary Statistics: 
 

Pb_prt (ug/l) Pool Site 1 Site 2 Site 3 
N of cases 417 121 156 140 
Minimum 2.5* 2.5 2.5 2.5 
Maximum 700.7 700.7 268.0 107.8 
Median 17.8 10.1 22.4 18.6 
Mean 26.8 25.0 32.5 21.9 
Standard Dev 44.1 67.6 37.5 15.5 

 
 
 
Histograms plus Site’s Density Curves Using Normal and Log Scales: 
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Appendix B. Dataset for COD Regression 
 

SN Site SampleID COD 
 (mg/l) 

cumR
(inch)

RI 
(inch/15min) 

AtDry 
(day) 

AtR 
(inch) 

1 s1 s1-1999-02-01 1509.98 0.07 0.01 8 0.05 
2 s1 s1-1999-02-02 250 0.09 0.02 8 0.05 
3 s1 s1-1999-02-03 944.44 0.11 0.02 8 0.05 
4 s1 s1-1999-02-04 88.89 0.15 0.02 8 0.05 
5 s1 s1-1999-02-05 66.67 0.18 0.03 8 0.05 
6 s1 s1-1999-02-06 77.78 0.23 0.02 8 0.05 
7 s1 s1-1999-02-07 41.67 0.3 0.04 8 0.05 
8 s1 s1-1999-02-08 44.44 0.36 0.03 8 0.05 
9 s1 s1-1999-02-09 52.78 0.42 0.04 8 0.05 

10 s1 s1-1999-02-10 61.11 0.48 0.03 8 0.05 
11 s1 s1-1999-02-11 44.44 0.52 0.02 8 0.05 
12 s1 s1-1999-02-12 61.11 0.57 0.02 8 0.05 
13 s1 s1-1999-02-13 63.89 0.6 0.02 8 0.05 
14 s1 s1-1999-03-03 253.52 0.03 0.01 5 0.67 
15 s1 s1-1999-03-04 216.67 0.03 0 5 0.67 
16 s1 s1-1999-03-05 200 0.04 0.01 5 0.67 
17 s1 s1-1999-03-06 197.22 0.07 0.01 5 0.67 
18 s1 s1-1999-03-07 191.67 0.07 0 5 0.67 
19 s1 s1-1999-04-01 64.12 0.14 0 10 0.1 
20 s1 s1-1999-04-02 117.65 0.16 0.02 10 0.1 
21 s1 s1-1999-04-03 117.65 0.17 0 10 0.1 
22 s1 s1-1999-04-04 105.4 0.18 0.01 10 0.1 
23 s1 s1-1999-04-05 107.97 0.18 0 10 0.1 
24 s1 s1-1999-04-06 128.53 0.19 0 10 0.1 
25 s1 s1-1999-04-07 102.83 0.27 0.01 10 0.1 
26 s1 s1-1999-05-01 38.55 0.25 0.05 1 0.29 
27 s1 s1-1999-05-02 36.14 0.28 0.04 1 0.29 
28 s1 s1-1999-05-03 26.51 0.37 0.09 1 0.29 
29 s1 s1-1999-05-04 26.51 0.49 0.12 1 0.29 
30 s1 s1-1999-05-05 26.51 0.59 0.08 1 0.29 
31 s1 s1-1999-05-06 24.1 0.68 0.08 1 0.29 
32 s1 s1-1999-06-01 39.47 0.17 0.02 4 0.42 
33 s1 s1-1999-06-02 39.47 0.19 0.02 4 0.42 
34 s1 s1-1999-06-03 31.58 0.22 0.02 4 0.42 
35 s1 s1-1999-06-04 36.84 0.23 0.01 4 0.42 
36 s1 s1-1999-06-05 42.11 0.23 0 4 0.42 
37 s1 s1-1999-06-c1 55.26 0.23 0 4 0.42 
38 s1 s1-1999-06-c2 50 1.45 0 4 0.42 
39 s1 s1-1999-07-01 91.57 0.07 0.03 4 1.6 
40 s1 s1-1999-07-02 171.08 0.1 0.03 4 1.6 
41 s1 s1-1999-07-03 57.83 0.12 0.02 4 1.6 
42 s1 s1-1999-07-04 50.6 0.12 0 4 1.6 
43 s1 s1-1999-07-c1 55.42 0.13 0.01 4 1.6 
44 s1 s1-1999-09-01 35.71 0.07 0.02 2 1.8 
45 s1 s1-1999-09-02 45.24 0.08 0.02 2 1.8 
46 s1 s1-1999-09-03 38.1 0.09 0 2 1.8 
47 s1 s1-1999-09-04 39.52 0.12 0.03 2 1.8 
48 s1 s1-1999-09-05 32.38 0.14 0.01 2 1.8 
49 s1 s1-1999-09-c1 26.19 0.15 0.01 2 1.8 
50 s1 s1-1999-10-01 68.35 0.41 0.09 40 0.7 
51 s1 s1-1999-10-02 63.29 0.47 0.09 40 0.7 
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52 s1 s1-1999-10-03 60.76 0.52 0.08 40 0.7 
53 s1 s1-1999-10-04 63.29 0.52 0 40 0.7 
54 s1 s1-1999-10-05 63.29 0.52 0 40 0.7 
55 s1 s1-1999-10-c1 65.82 0.52 0 40 0.7 
56 s1 s1-2000-01-01 530.12 0.12 0.01 33.6 0.14 
57 s1 s1-2000-01-02 626.51 0.14 0.02 33.6 0.14 
58 s1 s1-2000-01-03 313.25 0.15 0.01 33.6 0.14 
59 s1 s1-2000-01-04 171.05 0.19 0.04 33.6 0.14 
60 s1 s1-2000-01-05 163.16 0.21 0.02 33.6 0.14 
61 s1 s1-2000-01-06 145.27 0.35 0.06 33.6 0.14 
62 s1 s1-2000-01-07 57.89 0.45 0.02 33.6 0.14 
63 s1 s1-2000-01-08 71.05 0.53 0.02 33.6 0.14 
64 s1 s1-2000-01-09 47.37 0.67 0.03 33.6 0.14 
65 s1 s1-2000-01-10 50 0.93 0 33.6 0.14 
66 s1 s1-2000-01-11 15.79 0.94 0 33.6 0.14 
67 s1 s1-2000-02-01 2714.29 0.04 0.01 69 0.65 
68 s1 s1-2000-02-02 952.38 0.07 0.01 69 0.65 
69 s1 s1-2000-02-03 595.24 0.09 0.01 69 0.65 
70 s1 s1-2000-02-04 500 0.11 0.01 69 0.65 
71 s1 s1-2000-02-05 404.76 0.13 0.01 69 0.65 
72 s1 s1-2000-02-06 404.76 0.15 0 69 0.65 
73 s1 s1-2000-02-07 428.57 0.15 0 69 0.65 
74 s1 s1-2000-03-01 95.24 0.09 0.04 1.9 0.15 
75 s1 s1-2000-03-02 71.43 0.13 0.04 1.9 0.15 
76 s1 s1-2000-03-03 85.71 0.16 0.03 1.9 0.15 
77 s1 s1-2000-03-04 77.92 0.2 0.05 1.9 0.15 
78 s1 s1-2000-03-05 57.14 0.25 0.04 1.9 0.15 
79 s1 s1-2000-03-06 51.95 0.54 0.05 1.9 0.15 
80 s1 s1-2000-03-07 46.75 0.77 0.07 1.9 0.15 
81 s1 s1-2000-03-08 46.75 1.04 0.07 1.9 0.15 
82 s1 s1-2000-03-09 33.77 1.34 0.09 1.9 0.15 
83 s1 s1-2000-03-10 31.17 1.69 0.08 1.9 0.15 
84 s1 s1-2000-03-11 25.97 2.11 0.08 1.9 0.15 
85 s1 s1-2000-04-01 309.52 0.08 0.02 14.2 0.48 
86 s1 s1-2000-04-02 238.1 0.09 0.01 14.2 0.48 
87 s1 s1-2000-04-03 162.86 0.1 0.01 14.2 0.48 
88 s1 s1-2000-04-04 140 0.1 0 14.2 0.48 
89 s1 s1-2000-04-05 137.14 0.11 0.01 14.2 0.48 
90 s1 s1-2000-04-06 85.71 0.17 0.01 14.2 0.48 
91 s1 s1-2000-04-07 37.14 0.49 0.05 14.2 0.48 
92 s1 s1-2000-04-08 57.14 0.51 0 14.2 0.48 
93 s1 s1-2000-04-09 68.57 0.51 0 14.2 0.48 
94 s1 s1-2000-05-01 255.81 0.01 0.01 5.4 4.8 
95 s1 s1-2000-05-02 232.56 0.02 0.01 5.4 4.8 
96 s1 s1-2000-05-03 163.89 0.04 0.02 5.4 4.8 
97 s1 s1-2000-05-04 113.89 0.06 0.01 5.4 4.8 
98 s1 s1-2000-05-05 100 0.08 0.02 5.4 4.8 
99 s1 s1-2000-05-06 63.89 0.13 0.02 5.4 4.8 
100 s1 s1-2000-05-07 44.44 0.26 0.02 5.4 4.8 
101 s1 s1-2000-05-08 41.67 0.27 0 5.4 4.8 
102 s1 s1-2000-05-09 57.22 0.28 0 5.4 4.8 
103 s1 s1-2000-07-01 250.67 0.01 0.01 6 2.91 
104 s1 s1-2000-07-02 213.33 0.02 0.01 6 2.91 
105 s1 s1-2000-07-03 158.33 0.04 0.02 6 2.91 
106 s1 s1-2000-07-04 105.56 0.07 0.03 6 2.91 
107 s1 s1-2000-07-05 63.89 0.09 0.02 6 2.91 
108 s1 s1-2000-07-06 38.89 0.2 0.02 6 2.91 
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109 s1-2000-07-07 47.22 0.23 0.01 6 2.91 
110 s1-2000-07-08 50 0.26 0 6 2.91 
111 s1-2000-07-09 50 0.26 0 6 2.91 
112 s1-2000-07-10 55.56 0.26 0 6 2.91 
113 s1-2000-08-01 98.7 0.19 0 13.2 1.32 
114 s1-2000-08-02 93.51 0.19 0 13.2 1.32 
115 s1-2000-08-03 106.49 0.2 0.01 13.2 1.32 
116 

44.44 0.57 0.03 8 0.07 
141 s2 s2-1999-03-14 50 0.63 0.03 8 0.07 
142 s2 s2-1999-03-c1 63.89 0.69 0.01 8 0.07 
143 s2 s2-1999-04-04 91.67 0.13 0.01 5 0.99 
144 s2 s2-1999-04-05 66.67 0.17 0.03 5 0.99 
145 s2 s2-1999-04-06 80.56 0.21 0.01 5 0.99 
146 s2 s2-1999-04-07 102.78 0.22 0 5 0.99 
147 s2 s2-1999-04-c1 122.22 0.23 0 5 0.99 
148 s2 s2-1999-05-01 164.71 0.12 0.01 10 0.5 
149 s2 s2-1999-05-02 235.29 0.12 0 10 0.5 
150 s2 s2-1999-05-03 258.82 0.12 0 10 0.5 
151 s2 s2-1999-05-04 70.59 0.2 0.08 10 0.5 
152 s2 s2-1999-05-05 51.41 0.29 0.08 10 0.5 
153 s2 s2-1999-05-06 65.81 0.34 0.03 10 0.5 
154 s2 s2-1999-05-c1 131.11 0.35 0.01 10 0.5 
155 s2 s2-1999-06-01 77.11 0.13 0.06 1 0.46 
156 s2 s2-1999-06-02 142.17 0.19 0.06 1 0.46 
157 s2 s2-1999-06-03 44.82 0.24 0.05 1 0.46 
158 s2 s2-1999-06-04 19.28 0.4 0.16 1 0.46 
159 s2 s2-1999-06-05 28.92 0.59 0.19 1 0.46 
160 s2 s2-1999-06-c1 14.46 0.67 0.08 1 0.46 
161 s2 s2-1999-07-01 36.84 0.14 0.02 4 0.75 
162 s2 s2-1999-07-02 36.84 0.15 0.02 4 0.75 
163 s2 s2-1999-07-03 50 0.16 0.01 4 0.75 
164 s2 s2-1999-07-04 57.89 0.16 0 4 0.75 
165 s2 s2-1999-07-05 60.53 0.19 0.01 4 0.75 

s1 
s1 
s1 
s1 
s1 
s1 
s1 
s1 s1-2000-08-04 85.71 0.26 0.06 13.2 1.32 

117 s1 s1-2000-08-05 0.28 0.02 13.2 
118 s1 s1-2000-08-06 57.14 0.32 13.2 1.32 
119 s2 

80.52 1.32 
0 

s2-1999-02-01 641.98 0.04 0 17 0.05 
120 s2 s2-1999-02-02 691.36 0.05 17 0.05 

s2 s2-1999-02-03 567.9 0.05 0.01 17 
122 s2 s2-1999-02-04 617.28 

0.01 
121 0.05 

0.05 0.01 17 0.05 
123 s2 s2-1999-02-05 567.9 0.05 0 17 
124 s2 617.28 0.05 0 17 0.05 

s2 s2-1999-02-07 706.17 0.05 0 17 

0.05 
s2-1999-02-06 

125 0.05 
126 s2 s2-1999-02-08 814.81 0.05 0 17 0.05 
127 s2 814.81 0.05 0 0.05 
128 s2 s2-1999-03-01 583.33 0.01 8 0.07 
129 

s2-1999-02-c1 17 
0.04 

s2 s2-1999-03-02 555.56 0.05 0.02 8 0.07 
130 s2 s2-1999-03-03 0.05 0.01 8 
131 s2 s2-1999-03-04 111.11 0.05 8 0.07 
132 s2 

722.22 0.07 
0.01 

s2-1999-03-05 216.67 0.06 0.01 8 0.07 
133 s2 s2-1999-03-06 138.87 0.01 8 0.07 
134 s2 s2-1999-03-07 250 0.11 0.02 0.07 
135 s2 s2-1999-03-08 

0.07 
8 

38.89 0.21 0.02 8 0.07 
136 s2 s2-1999-03-09 38.89 0.26 0.03 8 0.07 
137 s2 s2-1999-03-10 30.56 0.34 0.03 8 0.07 
138 s2 s2-1999-03-11 38.89 0.42 0.04 8 0.07 
139 s2 s2-1999-03-12 38.89 0.51 0.04 8 0.07 
140 s2 s2-1999-03-13 
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166 s2 s2-1999-07-c1 86.84 0.19 0 4 0.75 
167 s2 s2-1999-07-c2 65.79 1.56 0.08 4 0.75 
168 s2 s2-1999-07-c3 11.08 3.26 0 4 0.75 
169 s2 s2-1999-08-01 166.27 0.03 0 4 1.76 
170 s2 s2-1999-08-02 101.2 0.03 0 4 1.76 
171 s2 s2-1999-08-03 93.98 0.03 0 4 1.76 
172 s2 s2-1999-08-04 74.7 0.04 0.01 4 1.76 
173 s2 s2-1999-08-05 62.65 0.09 0.05 4 1.76 
174 s2 s2-1999-08-c1 33.73 0.12 0.03 4 1.76 
175 s2 s2-1999-09-c1 114.57 1.77 0 2 0.34 
176 s2 s2-1999-09-c2 14.81 1.78 0 2 0.34 
177 s2 s2-1999-10-01 21.43 0.1 0.04 2 2 
178 s2 s2-1999-10-02 19.05 0.11 0.02 2 2 
179 s2 s2-1999-10-03 23.81 0.13 0.02 2 2 
180 s2 s2-1999-10-04 15.71 0.17 0.04 2 2 
181 s2 s2-1999-10-05 14.29 0.23 0.05 2 2 
182 s2 s2-1999-10-c1 16.67 0.24 0.03 2 2 
183 s2 s2-1999-11-01 134.18 0.54 0.11 40 0.92 
184 s2 s2-1999-11-02 83.54 0.61 0.1 40 0.92 
185 s2 s2-1999-11-03 81.01 0.65 0.07 40 0.92 
186 s2 s2-1999-11-04 53.16 0.7 0.06 40 0.92 
187 s2 s2-1999-11-05 78.48 0.85 0.09 40 0.92 
188 s2 s2-1999-11-06 50.63 0.91 0.06 40 0.92 
189 s2 s2-2000-01-01 361.45 0.1 0 33.6 0.14 
190 s2 s2-2000-01-02 265.06 0.11 0.01 33.6 0.14 
191 s2 s2-2000-01-03 265.06 0.11 0 33.6 0.14 
192 s2 s2-2000-01-04 216.87 0.12 0.01 33.6 0.14 
193 s2 s2-2000-01-05 313.25 0.14 0.02 33.6 0.14 
194 s2 s2-2000-01-06 265.06 0.21 0 33.6 0.14 
195 s2 s2-2000-01-07 168.42 0.43 0.05 33.6 0.14 
196 s2 s2-2000-01-08 71.05 0.53 0.02 33.6 0.14 
197 s2 s2-2000-01-09 47.37 0.67 0.03 33.6 0.14 
198 s2 s2-2000-01-10 26.32 0.93 0 33.6 0.14 
199 s2 s2-2000-02-01 2380.95 0.01 0 69 0.65 
200 s2 s2-2000-02-02 1309.52 0.03 0.02 69 0.65 
201 s2 s2-2000-02-03 785.71 0.05 0.02 69 0.65 
202 s2 s2-2000-02-04 690.48 0.06 0.01 69 0.65 
203 s2 s2-2000-02-05 500 0.08 0.02 69 0.65 
204 s2 s2-2000-02-06 428.57 0.12 0 69 0.65 
205 s2 s2-2000-02-07 380.95 0.16 0.01 69 0.65 
206 s2 s2-2000-02-08 380.95 0.2 0.01 69 0.65 
207 s2 s2-2000-03-01 166.67 0.01 0.01 1.9 0.2 
208 s2 s2-2000-03-02 166.67 0.07 0.06 1.9 0.2 
209 s2 s2-2000-03-03 148.05 0.12 0.05 1.9 0.2 
210 s2 s2-2000-03-04 179.22 0.15 0.03 1.9 0.2 
211 s2 s2-2000-03-05 122.07 0.19 0.04 1.9 0.2 
212 s2 s2-2000-03-06 59.74 0.42 0.07 1.9 0.2 
213 s2 s2-2000-03-07 41.56 0.76 0.09 1.9 0.2 
214 s2 s2-2000-03-08 38.96 1.06 0.08 1.9 0.2 
215 s2 s2-2000-03-09 25.97 1.37 0.09 1.9 0.2 
216 s2 s2-2000-03-10 36.36 1.77 0.1 1.9 0.2 
217 s2 s2-2000-03-11 23.38 2.27 0.22 1.9 0.2 
218 s2 s2-2000-03-12 23.38 2.92 0.16 1.9 0.2 
219 s2 s2-2000-05-01 232.56 0.03 0.02 4.8 5.07 
220 s2 s2-2000-05-02 279.07 0.03 0 4.8 5.07 
221 s2 s2-2000-05-03 279.07 0.03 0 4.8 5.07 
222 s2 s2-2000-05-04 255.81 0.05 0.02 4.8 5.07 
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223 s2 s2-2000-05-05 502.33 0.05 0 4.8 5.07 
224 s2 s2-2000-05-06 42.78 0.23 0.06 4.8 5.07 
225 s2 s2-2000-05-07 19.44 0.51 0.08 4.8 5.07 
226 s2 s2-2000-05-08 29.44 0.73 0.06 4.8 5.07 
227 s2 s2-2000-05-09 33.33 0.86 0.01 4.8 5.07 
228 s2 s2-2000-05-10 33.33 0.87 0.01 4.8 5.07 
229 s2 s2-2000-06-01 170.73 0.03 0.01 1 0.08 
230 s2 s2-2000-06-02 146.34 0.04 0.01 1 0.08 
231 s2 s2-2000-06-03 117.81 0.06 0.02 1 0.08 
232 s2 s2-2000-06-04 112.33 0.06 0 1 0.08 
233 s2 s2-2000-06-05 104.11 0.07 0.01 1 0.08 
234 s2 s2-2000-06-06 93.15 0.1 0.01 1 0.08 
235 s2 s2-2000-06-07 79.45 0.13 0 1 0.08 
236 s2 s2-2000-06-08 90.41 0.16 0.01 1 0.08 
237 s2 s2-2000-06-09 73.97 0.2 0.01 1 0.08 
238 s2 s2-2000-06-10 54.79 0.21 0 1 0.08 
239 s2 s2-2000-06-11 76.71 0.22 0.01 1 0.08 
240 s2 s2-2000-06-12 60.27 0.27 0.02 1 0.08 
241 s2 s2-2000-07-01 506.67 0.01 0.01 5.5 3.74 

s2-2000-07-02 346.67 0.02 0.01 3.74 
243 s2 s2-2000-07-03 320 0.04 0.02 5.5 3.74 
244 s2 s2-2000-07-04 80.56 0.09 0.05 5.5 3.74 
245 s2 s2-2000-07-05 72.22 0.13 0.04 5.5 3.74 
246 s2 s2-2000-07-06 58.33 0.28 0.02 5.5 3.74 
247 s2 s2-2000-07-07 91.67 0.3 0.01 5.5 3.74 
248 s2 s2-2000-07-08 75 0.34 0 5.5 3.74 
249 s2 s2-2000-07-09 58.33 0.35 0 5.5 3.74 
250 s2 s2-2000-07-10 47.22 0.35 0 5.5 3.74 
251 s2 s2-2000-08-01 129.27 0.35 0.05 31.5 2.8 
252 s2 s2-2000-08-02 46.34 0.42 0.07 31.5 2.8 
253 s2 s2-2000-08-03 59.1 0.45 0.03 31.5 2.8 
254 s2 s2-2000-08-04 129.27 0.49 0.04 31.5 2.8 
255 s2 s2-2000-08-05 24.39 0.55 0.06 31.5 2.8 
256 s2 s2-2000-08-06 12.2 0.66 0.01 31.5 2.8 
257 s2 s2-2000-08-07 24.39 0.76 0.01 31.5 2.8 
258 s2 s2-2000-08-08 29.27 0.83 0.01 31.5 2.8 
259 s2 s2-2000-08-09 63.41 0.91 0.03 31.5 2.8 
260 s2 s2-2000-08-10 34.15 1.08 0.05 31.5 2.8 
261 s2 s2-2000-08-11 24.39 1.19 0.01 31.5 2.8 
262 s2 s2-2000-08-12 80.49 1.19 0 31.5 2.8 
263 s3 s3-1999-03-01 355.56 0.03 0 17 0.02 
264 s3 s3-1999-04-01 277.78 0.04 0.01 8 0.06 
265 s3 s3-1999-04-02 444.44 0.04 0.01 8 0.06 
266 s3 s3-1999-04-03 138.89 0.06 0.02 8 0.06 
267 s3 s3-1999-04-04 472.22 0.07 0.01 8 0.06 
268 s3 s3-1999-04-05 338.03 0.09 0.02 8 0.06 
269 s3 s3-1999-04-06 55.56 0.14 0.02 8 0.06 
270 s3 s3-1999-04-07 55.56 0.17 0.02 8 0.06 
271 s3 s3-1999-04-08 44.44 0.23 0.03 8 0.06 
272 s3 s3-1999-04-09 44.44 0.28 0.03 8 0.06 
273 s3 s3-1999-04-10 41.67 0.37 0.05 8 0.06 
274 s3 s3-1999-04-11 41.67 0.43 0.03 8 0.06 
275 s3 s3-1999-04-12 44.44 0.5 0.04 8 0.06 
276 s3 s3-1999-04-13 50 0.54 0.01 8 0.06 
277 s3 s3-1999-05-01 83.33 0.05 0.03 5 0.72 
278 s3 s3-1999-05-02 75 0.06 0.02 5 0.72 
279 s3 s3-1999-05-03 83.33 0.06 0 5 0.72 

242 s2 5.5 
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280 s3 s3-1999-05-04 58.33 0.08 0.02 5 0.72 
281 s3 s3-1999-05-05 69.44 0.1 0.02 5 0.72 
282 s3 s3-1999-05-06 58.33 0.12 0.01 5 0.72 
283 s3 s3-1999-05-07 52.78 0.14 0.02 5 0.72 
284 s3 s3-1999-05-08 61.11 0.15 0.01 5 0.72 
285 s3 s3-1999-05-09 69.44 0.21 0.03 5 0.72 
286 s3 s3-1999-05-10 47.22 0.28 0.04 5 0.72 
287 s3 s3-1999-06-01 92.54 0.12 0.07 10 0.53 
288 s3 s3-1999-06-02 56.56 0.13 0.08 10 0.53 
289 s3 s3-1999-06-03 92.54 0.16 0.04 10 0.53 
290 s3 s3-1999-06-04 69.41 0.23 0.1 10 0.53 
291 s3 s3-1999-06-05 53.98 0.26 0.07 10 0.53 
292 s3 s3-1999-06-06 64.27 0.29 0.03 10 0.53 
293 s3 s3-1999-06-07 58.1 0.34 0.05 10 0.53 
294 s3 s3-1999-07-01 130.12 0.03 0.02 2 0.59 
295 s3 s3-1999-07-02 130.12 0.05 0.03 2 0.59 
296 s3 s3-1999-07-03 65.06 0.07 0.04 2 0.59 
297 s3 s3-1999-07-04 48.19 0.11 0.04 2 0.59 
298 s3 s3-1999-07-05 28.92 0.24 0.11 2 0.59 
299 s3 s3-1999-07-06 19.28 0.44 0.07 2 0.59 
300 s3 s3-1999-08-01 68.42 0.05 0.03 4 0.87 
301 s3 s3-1999-08-02 71.05 0.08 0.04 4 0.87 
302 s3 s3-1999-08-03 81.58 0.09 0.03 4 0.87 
303 s3 s3-1999-08-04 78.95 0.11 0.02 4 0.87 
304 s3 s3-1999-08-05 60.53 0.14 0.02 4 0.87 
305 s3 s3-1999-08-06 68.42 0.15 0.01 4 0.87 
306 s3 s3-1999-08-c1 31.58 0.48 0.09 4 0.87 
307 s3 s3-1999-08-c2 103.61 2.23 0 4 0.87 
308 s3 s3-1999-09-01 178.31 0.01 0.01 4 1.21 
309 s3 s3-1999-09-02 139.76 0.01 0.01 4 1.21 
310 s3 s3-1999-09-03 101.2 0.02 0.01 4 1.21 
311 s3 s3-1999-09-04 72.29 0.05 0.03 4 1.21 
312 s3 s3-1999-09-05 60.24 0.09 0.03 4 1.21 
313 s3 s3-1999-09-c1 33.73 0.18 0.09 4 1.21 
314 s3 s3-1999-10-01 64.2 0.01 0.01 6 0.4 
315 s3 s3-1999-10-02 41.98 0.05 0.04 6 0.4 
316 s3 s3-1999-10-03 27.16 0.14 0.1 6 0.4 
317 s3 s3-1999-10-04 39.51 0.17 0.03 6 0.4 
318 s3 s3-1999-10-c1 32.1 0.21 0.01 6 0.4 
319 s3 s3-1999-11-01 47.62 0.03 0.02 2 1.61 
320 s3 s3-1999-11-02 40.48 0.06 0.04 2 1.61 
321 s3 s3-1999-11-03 47.62 0.07 0.03 2 1.61 
322 s3 s3-1999-11-04 42.86 0.11 0.04 2 1.61 
323 s3 s3-1999-11-05 30.95 0.15 0.01 2 1.61 
324 s3 s3-1999-12-01 1800 0.01 0.01 40 0.74 
325 s3 s3-1999-12-02 377.78 0.03 0.02 40 0.74 
326 s3 s3-1999-12-03 311.11 0.06 0.04 40 0.74 
327 s3 s3-1999-12-04 200 0.11 0.05 40 0.74 
328 s3 s3-1999-12-05 154.43 0.18 0.05 40 0.74 
329 s3 s3-1999-12-c1 103.79 0.24 0.06 40 0.74 
330 s3 s3-2000-02-01 500 0.03 0 69 0.65 
331 s3 s3-2000-02-02 309.52 0.06 0.03 69 0.65 
332 s3 s3-2000-02-03 309.52 0.08 0.02 69 0.65 
333 s3 s3-2000-02-04 285.71 0.09 0.01 69 0.65 
334 s3 s3-2000-02-05 238.1 0.11 0.02 69 0.65 
335 s3 s3-2000-02-06 309.52 0.15 0.01 69 0.65 
336 s3 s3-2000-02-07 309.52 0.2 0.01 69 0.65 
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337 s3 s3-2000-03-01 714.29 0.02 0.02 2 0.21 
338 s3 s3-2000-03-02 142.86 0.05 0.03 2 0.21 
339 s3 s3-2000-03-03 96.1 0.09 0.04 2 0.21 
340 s3 s3-2000-03-04 90.91 0.13 0.04 2 0.21 
341 s3 s3-2000-03-05 75.32 0.17 0.04 2 0.21 
342 s3 s3-2000-03-06 36.36 0.41 0.08 2 0.21 
343 s3 s3-2000-03-07 25.97 0.72 0.08 2 0.21 
344 s3 s3-2000-03-08 20.78 1.03 0.09 2 0.21 
345 s3 s3-2000-03-09 20.78 1.31 0.05 2 0.21 
346 s3 s3-2000-03-10 28.57 1.58 0.04 2 0.21 
347 s3 s3-2000-03-11 15.58 2.23 0.21 2 0.21 
348 s3 s3-2000-03-12 15.58 2.78 0.12 2 0.21 
349 s3 s3-2000-04-01 166.67 0.06 0.03 14.2 0.48 
350 s3 s3-2000-04-02 190.48 0.08 0.02 14.2 0.48 
351 s3 s3-2000-04-03 82.86 0.1 0.02 14.2 0.48 
352 s3 s3-2000-04-04 100 0.12 0.02 14.2 0.48 
353 s3 s3-2000-04-05 94.29 0.14 0.02 14.2 0.48 
354 s3 s3-2000-04-06 40 0.3 0.03 14.2 0.48 
355 s3 s3-2000-04-07 62.86 0.36 0.01 14.2 0.48 
356 s3 s3-2000-04-08 42.86 0.58 0.01 14.2 0.48 
357 s3 s3-2000-04-09 88.57 0.61 0 14.2 0.48 
358 s3 s3-2000-05-01 979.74 0.02 0.01 5.3 5.07 
359 s3 s3-2000-05-02 348.84 0.04 0.02 5.3 5.07 
360 s3 s3-2000-05-03 127.78 0.05 0.01 5.3 5.07 
361 s3 s3-2000-05-04 113.89 0.07 0.02 5.3 5.07 
362 s3 s3-2000-05-05 63.89 0.12 0.05 5.3 5.07 
363 s3 s3-2000-05-06 22.22 0.49 0.11 5.3 5.07 
364 s3 s3-2000-05-07 11.11 0.91 0.09 5.3 5.07 
365 s3 s3-2000-05-08 16.67 1.16 0.02 5.3 5.07 
366 s3 s3-2000-06-01 368.85 0.02 0.01 1 0.08 
367 s3 s3-2000-06-02 219.51 0.04 0.02 1 0.08 
368 s3 s3-2000-06-03 82.19 0.09 0.05 1 0.08 
369 s3 s3-2000-06-04 43.84 0.1 0.01 1 0.08 
370 s3 s3-2000-06-05 63.01 0.11 0.01 1 0.08 
371 s3 s3-2000-06-06 82.19 0.14 0.01 1 0.08 
372 s3 s3-2000-06-07 98.63 0.16 0.01 1 0.08 
373 s3 s3-2000-06-08 101.37 0.17 0 1 0.08 
374 s3 s3-2000-06-09 60.27 0.2 0.01 1 0.08 
375 s3 s3-2000-06-10 95.89 0.21 0 1 0.08 
376 s3 s3-2000-06-11 101.37 0.22 0.01 1 0.08 
377 s3 s3-2000-06-12 35.62 0.26 0.01 1 0.08 
378 s3 s3-2000-07-01 906.67 0.02 0.02 5.5 3.09 
379 s3 s3-2000-07-02 373.33 0.03 0.01 5.5 3.09 
380 s3 s3-2000-07-03 118.33 0.07 0.04 5.5 3.09 
381 s3 s3-2000-07-04 83.33 0.09 0.02 5.5 3.09 
382 s3 s3-2000-07-05 102.78 0.09 0 5.5 3.09 
383 s3 s3-2000-07-06 69.44 0.14 0.04 5.5 3.09 
384 s3 s3-2000-08-01 1108.43 0.11 0.01 31.6 1.19 
385 s3 s3-2000-08-02 722.89 0.16 0.05 31.6 1.19 
386 s3 s3-2000-08-03 289.16 0.22 0.06 31.6 1.19 
387 s3 s3-2000-08-04 216.87 0.35 0.13 31.6 1.19 
388 s3 s3-2000-08-05 207.23 0.41 0.06 31.6 1.19 
389 s3 s3-2000-08-06 29.27 0.57 0.05 31.6 1.19 
390 s3 s3-2000-08-07 17.07 0.76 0.02 31.6 1.19 
391 s3 s3-2000-08-08 29.27 0.8 0.01 31.6 1.19 
392 s3 s3-2000-08-09 85.37 0.84 0 31.6 1.19 
393 s3 s3-2000-08-10 107.32 0.85 0 31.6 1.19 
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APPENDIX C. Regression Results for COD-Correlated Parameters 
 
 
C.1 Oil & Grease (O&G) 

The mean function for log [O&G] is as 

(log & | ) 3.31 0.56log 0.43log 0.18logE O G CumRs AtDry AtR= − + −x s  (C.1) 

The total eligible cases for the O&G regression are 389.  The R-squared is about 0.66.  

Table C.1 shows the brief regression result.  Figure C.1 (a) and (b) show the model-

checking plots for checking the mean function and the variance function, where the 

horizontal variable is the OLS fitted values (eta’u).  The data line shows a very little 

curvature, and the data interval is quite consistent.  Consequently, we think that (C.1) 

properly reflects the data. 

 

Table C.1 Regression Results for (C.1) 

Data set = wq_pool, Name of Fit = O&G Reg
Kernel mean function = Identity
Response = log[O&G]
Terms = (log[CumRs] log[AtDry] log[AtRs])
Coefficient Estimates
Label Estimate Std. Error
Constant 3.30686 0.126547
log[CumRs] -0.558414 0.0261632
log[AtDry] 0.430439 0.0254400
log[AtRs] -0.176893 0.0217630
R Squared: 0.657808
Scale factor: 0.591404
Number of cases: 441
Number of cases used: 389
Degrees of freedom: 385
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Figure C.1 (a) & (b) Model-Checking Plots for Checking (C.1) (the solid-blue line 

is for the data; the dashed-red line is for the model) 
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C.2 TKN 

The mean function for log [TKN] is as 

(log | ) 3.38 0.60log 0.33log 0.16logE TKN CumRs AtDry AtR= − + −x s  (C.2) 

The total eligible cases for the TKN regression are 200 only from the period of 2000 to 

2001.  The R-squared is about 0.77.  Table C.2 shows the brief regression result.  Figure 

C.2 (a) and (b) show the model-checking plots for checking the mean function and the 

variance function, where the horizontal variable is the OLS fitted values (eta’u).  The data 

line shows mild curvature, and the data interval gets narrower on the left lower end.  The 

inconsistent data interval might be caused by limited cases.  Therefore, we think that 

(C.2) is still useful to reflect the data. 

 

Table C.2 Regression Results for (C.2) 

Data set = wq_pool, Name of Fit = TKN Reg
Kernel mean function = Identity
Response = log[TKN]
Terms = (log[CumRs] log[AtDry] log[AtRs])
Coefficient Estimates
Label Estimate Std. Error
Constant 3.38856 0.136406
log[CumRs] -0.608409 0.0269510
log[AtDry] 0.330106 0.0251255
log[AtRs] -0.165478 0.0239235
R Squared: 0.768131
Scale factor: 0.464762
Number of cases: 441
Number of cases used: 200
Degrees of freedom: 196
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Figure C.2 (a) & (b) Model-Checking Plots for Checking (C.2) (the solid-blue line 

is for the data; the dashed-red line is for the model) 
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C.3 Dissolved Organic Carbon (DOC) 

The mean function for log [DOC] is as 

(log | ) 4.44 0.57log 0.42log 0.17logE DOC CumRs AtDry AtRs= − + −x  (C.3) 

The total eligible cases for the DOC regression are 393.  The R-squared is about 0.67.  

Table C.3 shows the brief regression result.  Figure C.3 (a) and (b) show the model 

checking plots for checking the mean function and the variance function, where the 

horizontal variable is the OLS fitted values (eta’u).  The data line shows a little curvature 

on the left end, and the data interval is quite consistent.  Consequently, we think that 

(C.3) properly reflects the data. 

 

Table C.3 Regression Results for DOC 

Data set = wq_pool, Name of Fit = DOC Reg
Kernel mean function = Identity
Response = log[DOC]
Terms = (log[CumRs] log[AtDry] log[AtRs])
Coefficient Estimates
Label Estimate Std. Error
Constant 4.43776 0.124312
log[CumRs] -0.569784 0.0257681
log[AtDry] 0.424184 0.0250992
log[AtRs] -0.174477 0.0213769

R Squared: 0.665034
Scale factor: 0.583796
Number of cases: 441
Number of cases used: 393
Degrees of freedom: 389

 

 185



 

 

 

Figure C.3 (a) & (b) Model-Checking Plots for Checking (C.3) (the solid-blue line 

is for the data; the dashed-red line is for the model) 
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C.4 Dissolved Phosphorus (P_dis) 

The mean function for log [P_dis] is as 

(log _ | ) 0.59 0.43log 0.35log 0.16logE P dis CumRs AtDry AtRs= − − + −x  (C.4) 

The total eligible cases for the P_dis regression are 387.  The R-squared is about 0.49.  

Table C.4 shows the brief regression result.  Figure C.4 (a) and (b) show the model 

checking plots for checking the mean function and the variance function, where the 

horizontal variable is the OLS fitted values (eta’u).  The data line shows mild curvature, 

and the data interval is overall consistent except for the left end.  Therefore, we think that 

(C.4) is still useful to reflect the data. 

 

Table C.4 Regression Results for P_dis 

Data set = wq_pool, Name of Fit = P_dis Reg1
Kernel mean function = Identity
Response = log[P_dis]
Terms = (log[CumRs] log[AtDry] log[AtRs])
Coefficient Estimates
Label Estimate Std. Error
Constant -0.591316 0.140533
log[CumRs] -0.425109 0.0295018
log[AtDry] 0.355199 0.0281248
log[AtRs] -0.158143 0.0240224
R Squared: 0.490238
Scale factor: 0.653122
Number of cases: 441
Number of cases used: 387
Degrees of freedom: 383
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Figure C.4 (a) & (b) Model-Checking Plots for Checking (C.4) (the solid-blue line 

is for the data; the dashed-red line is for the model) 
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C.5 Dissolved Nickel (Cu_dis) 

The mean function for log [Cu_dis] is as 

(log _ | ) 4.38 0.48log 0.41log 0.16logE Cu dis CumRs AtDry AtRs= − + −x  (C.5) 

The total eligible cases for the Cu_dis regression are 390.  The R-squared is about 0.65.  

Table C.5 shows the brief regression result.  Figure C.5 (a) and (b) show the model 

checking plots for checking the mean function and the variance function, where the 

horizontal variable is the OLS fitted values (eta’u).  The data line shows mild curvature, 

and the data interval is quite consistent.  Consequently, we think that (4.4.6) properly 

reflects the data. 

 

Table C.5 Regression Results for Cu_dis 

Data set = wq_pool, Name of Fit = Cu_dis Reg
Kernel mean function = Identity
Response = log[Cu_dis]
Terms = (log[CumRs] log[AtDry] log[AtRs])
Coefficient Estimates
Label Estimate Std. Error
Constant 4.38654 0.116773
log[CumRs] -0.482444 0.0241533
log[AtDry] 0.408707 0.0234832
log[AtRs] -0.164237 0.0200603
R Squared: 0.645253
Scale factor: 0.546032
Number of cases: 441
Number of cases used: 390
Degrees of freedom: 386
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Figure C.5 (a) & (b) Model-Checking Plots for Checking (C.5) (the solid-blue line 

is for the data; the dashed-red line is for the model) 
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C.6 Dissolved Nickel (Ni_dis) 

The mean function for log [Ni_dis] is as 

(log _ | ) 3.06 0.51log 0.42log 0.18logE Ni dis CumRs AtDry AtRs= − + −x  (C.6) 

The total eligible cases for the Ni_dis regression are 390.  The R-squared is about 0.55.  

Table C.6 shows the brief regression result.  Figure C.6 (a) and (b) show the model 

checking plots for checking the mean function and the variance function, where the 

horizontal variable is the OLS fitted values (eta’u).  The data line shows some curvature, 

and the data interval gets bigger on the left end.  Consequently, we think that (C.6) is 

useful to moderately reflect the data. 

 

Table C.6 Regression Results for Ni_dis 

Data set = wq_pool, Name of Fit = Ni_dis Reg
Kernel mean function = Identity
Response = log[Ni_dis]
Terms = (log[CumRs] log[AtDry] log[AtRs])
Coefficient Estimates
Label Estimate Std. Error
Constant 3.05913 0.149023
log[CumRs] -0.513983 0.0308240
log[AtDry] 0.419359 0.0299689
log[AtRs] -0.177199 0.0256006
R Squared: 0.552058
Scale factor: 0.696836
Number of cases: 441
Number of cases used: 390
Degrees of freedom: 386
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Figure C.6 (a) & (b) Model-Checking Plots for Checking (C.6) (the solid-blue line 

is for the data; the dashed-red line is for the model) 
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