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ABSTRACT OF THE DISSERTATION 
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Professor Michael K. Stenstrom, Chair 

Proper management of stormwater runoff is required to protect receiving water 

quality since most wastewater sources have been treated to secondary standards or 

beyond. Urban stormwater runoff has become the primary source of many pollutants, 

which is caused by runoff from highly developed, impervious land use, and managing 

stormwater has become the primary objective of new regulatory efforts. However, 

monitoring and modeling is inherently difficult, and empirical methods to estimate 

stormwater pollution have been developed using land use data Conventional land use 

data collecting methods from ground surveys are expensive and time consuming, and 

may not be available. 
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This study demonstrated alternative approaches to use satellite image 

classification using Bayesian networks. The Bayesian network structure shows the most 

influential input variables for classification. The network also reveals the relationships 

among variables, which is useful when dealing with missing information. First, urban 

land use in the given area was classified and converted to corresponding stormwater 

pollutant loading maps based on the existing relationships between land use and the 

pollutant loads. Secondly, the pollutant loads for each water quality parameter were 

estimated directly from satellite imagery. The resulting thematic maps spatially estimated 

stormwater pollutant loadings, which identified areas generating high stormwater 

pollutant emissions. The results show that stormwater pollutants are highly correlated to 

impervious areas because of their high runoff coefficients, even when they had low event 

mean concentrations. These results are useful in developing best management strategies 

for stormwater pollution and in establishing total maximum daily loads in the watershed. 
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Chapter I 

Introduction 

1.1 Problem Definition and Motivation 

Non-point source pollution including stonnwater runoff has been recognized as 

the major source of many contaminants in urban areas, since most point sources have 

been controlled to reduce their impact on receiving waters (EPA, 1994; Arnold and 

Gibbons, 1996; Sleavin et at., 2000; Brabec et al., 2002; Ackennan and Schiff, 2003). 

Impervious land uses in urban areas have impaired receiving water quality by increasing 

stonnwater runoff quantity and deteriorating the runoff quality. Therefore, recent efforts 

have focused on stonnwater runoff in order to mitigate its adverse impact on receiving 

waters. 

1 
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Environmental regulations ensure that the stormwater runoff impacts on receiving 

waters are acceptable. For example, urban stormwater runoff in the United States is 

subject to the National Pollutant Discharge Elimination Program (NPDES) permit 

program and should meet water quality standards (Swamikannu et al., 2003). For this 

purpose, best management practices (BMPs) have been implemented to reduce the 

stormwater pollution. Clean Water Act Amendments require regulatory agencies and 

local governments to develop total maximum daily loads (TMDLs) to properly allocate 

stormwater pollution loads. However, in many regions, development and approval of 

TMDLs are still in progress. In order to properly develop BMPs and TMDLs, monitoring 

and modeling of stormwater runoff is important. 

Monitoring stormwater runoff and estimating its pollutant load to receiving waters 

are inherently difficult due to the uncertain temporal and spatial characteristics of the 

domain (Wong et aI., 1997). The difficulty is associated with large areas, many emission 

points, and sampling episodic storm events. Moreover, monitoring and modeling 

stormwater runoff demand expertise and accumulated stormwater quality and rainfall 

data, but event and site specific data measurements are often not available (Vaze and 

Chiew, 2003). 

An alternative approach to modeling stormwater pollutant loads is using land use 

data (Stenstrom et al., 1984; Chiew and McMahon, 1999) since urban stormwater 

pollution is related to land use activities (Sliva and Williams, 2001; Burian et al. 2002; 

Tong and Chen, 2002). Therefore, urban land use information is important in properly 

managing stormwater pollution. However, conventional land use data collection methods 

2 
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such as ground surveys can be time consuming and resomce intensive. Generally, these 

land use collection methods are applicable only to small areas. Furthermore, the land use 

data are not available for many areas and not optimized for environmental purpose. 

New approaches are being developed to estimate land use from satellite imagery. 

Satellite imagery is inexpensive compared to ground surveys and provides temporal 

coverage. The quality of satellite imagery has been improved with advanced technology, 

which makes satellite imagery more reliable. Another advantage of satellite imagery is 

that it is inherently digital and readily lends itself to computer methodologies (Richards 

and Jia, 1997). In addition, the spectral signatmes of satellite images can provide 

meaningful environmental information. 

Land use classification with satellite imagery has been explored to assist mban 

planning and environment management. For instance, Landsat series imagery has been 

extensively used for land cover/use analysis since the first satellite was launched in 1972 

(Haack, 1983; Haack et a!., 1987; Pax-Lenney, 1997; Ridd and Liu, 1998; Stefanov, 

2001; Clapham, 2003; Wilson et al., 2003). Satellite imagery has been examined with 

various methods such as statistical methods and artificial intelligence (AI) applications 

(Benediktsson et a!., 1990; Civco, 1991; Short, 1991; Bischof et al., 1992; Foody et 

al., 1992; Heermann and Khazenie, 1992; Kanellopoulos et al., 1993; Li et a!., 1993; 

Paola and Schowengerdt, 1995). The last two decades have seen the increased use of AI 

techniques, i.e. decision trees and nemal networks, with varying degrees of success 

(Foody, 1995; Paola and Schowengerdt, 1995; Carpenter et al., 1999; Gopal et ai., 1999; 

Stefanov et at., 2001; Pal and Mather, 2003). Bayesian networks, one of the AI 

3 
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techniques, are principled and efficient probabilistic approaches to reasomng and 

inference. A Bayesian network provides dependency relationship between variables with 

graphical representation. This helps us to easily understand those relationships between 

variables in a given domain. Bayesian networks are also known as excellent diagnostic 

and predictive tools in many areas (Charniak; 1991; Sucar and Gillies, 1994; Russell and 

Norvig, 1995; Lucas and Abu-Hanna, 1999; Bang and Gillies, 2002; Zweig, 2003). 

However, Bayesian networks have received little attention in remote sensing image 

classification since it is relatively new AI technique. Only recently have researchers 

attempted to adopt Bayesian networks for satellite image classification (Pal et a!., 2001; 

Park and Stenstrom, 2003). 

1.2 Objectives 

In this research, we evaluated the performance of Bayesian networks for satellite 

image classification. We gained an understanding of the nature of classification from the 

network structure by identifying inputs that are important for pixel class labels. 

Furthermore, we compared different network structures to find the optimal network for 

the given domain. Once an optimal network for classification was obtained, we examined 

the effect of incorporating ancillary input data. 

The main goal was to generate spatial thematic maps of pollutant loads from 

stormwater since few attempts have been made to spatially estimate the pollutant loads. 

This research proposed the use of satellite imagery to estimate stormwater pollutant loads 

4 
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in a typical urban area. Estimating stormwater pollutant loads from a given area is 

important to develop best management strategies. First, we classified the satellite imagery 

of urban land use with Bayesian networks. The urban land use information in the given 

area can provide related information such as runoff coefficients associated with 

imperviousness, and event mean concentrations (EMCs) of a particular pollutant, which 

are necessary for calculating pollutant loads. 

After estimating pollutant loads from satellite land use classification, we explored 

an alternate approach that estimated stormwater pollutant loads directly from satellite 

imagery, which did not require land use or EMC thematic maps as intermediate 

processes. To facilitate this task, Bayesian networks were also used to predict stormwater 

pollutant loads from spectral signatures of satellite imagery. 

For both approaches, we aim to identify the areas that generate high pollutant 

loads into receiving waters. Identifying areas contributing to high pollutant loads is useful 

in developing BMPs and establishing TMDLs for stormwater pollutants. Finally, a 

thematic map was used to develop a new classification system for stormwater 

management purposes. 

Overall, we hope this dissertation provides improved tools for understanding and 

managing stormwater pollution using satellite imagery, and provides guidelines for future 

watershed planners and regulators. 

5 
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1.3 Organization of the dissertation 

This paper is organized in the following way. In Chapter 2, we review the general 

remote sensing system and existing classification algorithms that provide current state of 

art. Chapter 3 presents Bayesian networks as an alternative classification algorithm in 

detail. In Chapter 4, we review the existing stormwater pollution models. Chapter 5 

describes the study area and data acquisition. In Chapter 6, urban land use classification 

is explored using Bayesian networks from satellite imagery. In Chapter 7, we conduct 

Bayesian network classification of stormwater pollutant load from satellite imagery. 

Finally we present conclusion and propose our future study plan in Chapter 8 and 9, 

respectively. 

6 
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Chapter II 

Remote Sensing and Image Processing 

Remotely sensed data such as satellite imagery have been extensively used for 

many areas such as environment monitoring, global change detection, agriculture, natural 

resource management, weather forecasting, mapping, and military intelligence (Jensen, 

1996; Sabins, 1997; Schowengerdt, 1997; Mather, 1999; Jensen, 2001). However, the use 

of remotely sensed data demands intensive statistical and computational knowledge for 

proper digital image processing. 

In this chapter, we review the basic concept of the remote sensing and the existing 

processing methods. In section 2.1, we introduce the basic terminology related to remote 

sensing. In section 2.2, we explain Landsat system, one of the earliest and widely used 

satellite image data. In section 2.3, conventional image classification methods are 

reviewed. In section 2.4, incorporating ancillary data to assist classification is presented. 

7 
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In section 2.5, we explain image transformation to enhance image interpretation and 

classification accuracy. In section 2.6, accuracy assessment methods are discussed. 

2.1 Basic Concepts of Remote Sensing 

Remote sensing process detects electromagnetic (EM) energy from an interaction 

between incident radiation and target surfaces. The electromagnetic spectrum ranges vary 

and particular EM spectrum is useful for different purpose. Visible spectrum, blue, green, 

and red, is ranged from approximately 0.4 to 0.7 ~m. Infrared (IR) consists of two 

regions: reflected IR covers wavelengths from approximately 0.7 to 3.0 ~m and thermal 

IR region covers wavelengths from approximately 3.0 to 100 ~m. Microwave, ranged 

from about 1 mm to 1 m, covers the longest wavelengths. Figure 1 presents different 

range of wavelength used in remote sensing. 

The sensor detects the EM energy using either passive or active systems (Jensen, 

2000). Passive systems detect naturally occurring radiation from the target, i.e. solar 

radiation, where as active systems emit radiation and detect its backscattering, i.e. radar. 

Passive systems can detect energy only during daytime when the solar energy is 

available. However, thermal infrared can be detected either day or night. Conversely, 

active sensors can detect EM energy anytime since they provide their own energy source. 

Each remote sensing system associates four major resolutions: spatial, spectral, 

radiometric, and temporal resolution (Jensen, 1996; Sabins, 1997; Mather, 1999). The 

spatial resolution of the sensor is the size of the smallest feature that can be detected, 

8 
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which depends on Instantaneous Filed of View (IFOV). The IFOV is the angular cone of 

visibility of the sensor and determines the area on the Earth's surface. Low spatial 

resolution images contain large features whereas high resolution images can detect small 

objects. The spectral resolution is the ability of a sensor to define wavelength intervals. 

Higher spectral resolution has narrower wavelength range for a particular band. The 

radiometric resolution is its ability to discriminate EM energy from the target surface. 

Higher radiometric resolution detects a more detail in EM energy. Temporal resolution is 

the revisiting period. The temporal resolution of a sensor depends on several factors 

including the satellite capabilities, the swath overlap, and latitude. 

2.2 Landsat Systems 

The Landsat series is the first satellite system for land observation (Jensen, 2000). 

The data from Landsat series have been applied to source management, mapping, 

environmental monitoring, and change detection (CCRS, 2002). Tables 2.1 and 2.2 show 

the background information of Landsat satellite series and the resolutions of each sensor 

system. Each Landsat system is illustrated in Figure 2.2. 

The National Aeronautics and Space Administration (NASA) launched Landsat 1, 

2 and 3 satellites in 1972, 1975, and 1978, respectively (Schowengerdt, 1997; Mather, 

1999). These three Landsat satellites were also called Earth Resources Technology 

10 
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Table 2.1 History of the Landsat satellite series 
Satellite Date launched Date retired 

Landsat 1 7/23/1972 110611978 
Landsat 2 1/2211975 2/2511982 
Landsat 3 3/05/1978 3/3111983 
Landsat 4 7/16/1982 standby mode 
Landsat 5 310111984 operational 
Landsat 6 10/0511993 lost at launch 
Landsat 7 4115/1999 operational 

(adopted from Jensen, 2000; Lillesand et al., 2004) 

Table 2.2 Resolutions of Landsat sensor system 

Sensor Band 
Spectral Spatial 

Resolution Resolution 
4(green) 0.5 - 0.6 11m 

MSS 5 (red) 0.6 - 0.7 11m 79 x 79 m 
6(near IR) 0.7 - 0.8 11m 

Temporal 
Resolution 

18 days 

Sensor 
MSS 
MSS 
MSS 

MSS, TM 
MSS, TM 

MSS,ETM 
ETM+ 

Radiometric 
Resolution 

7 bits 

. ___________________ 2~~~~_!~~ _________________ Q_:~_:LLttE?: ____________________________________________________________ ~ __ ~~~ _______ _ 
1 (blue) 0045 - 0.52 11m 
2(green) 0.52 - 0.60 11m 
3 (red) 0.63 - 0.69 Ilffi 30 x 30 m 

TM 4(near IR) 0.76 - 0.90 11m 16 days 8 bits 
5(IR) 1.55 - 1.75 11m 
6(thennaIIR) lOA - 12.5 11m 120 x 120 m 

. _____________________ ?_~!~L _________________ ~_~_~_~_~:~~_~~ ______ }_~_~_~_~_~ ____________________________________________________________ _ 
1 (blue) 0045 - 0.52 11m 
2(green) 0.52 - 0.60 11m 
3 (red) 0.63 - 0.69 11m 30 x 30 m 

ETM+ 4(near IR) 0.76 - 0.90 11m 
5(IR) 1.55 - 1.75 11m 

16 days 8 bits 

6(thennal IR) lOA - 12.5 11m 60 x 60 m 
7(IR) 2.08 - 2.35 11m 30 x 30 m 
8 (pan) 0.52 - 0.90 gm 15 x 15 m 
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(c) 

Figure 2.2 Landsat systems (a) Landsat 1,2,3 with MSS (b) Landsat 4,5 with TM 
(c) Landsat 7 with ETM+ 
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Satellite (ERTS) senes (Lillesand et aI, 2004). The satellites operated in a sun­

synchronous near-polar orbit at the altitude of919 km. The sensor placed on the satellites 

was a multispectral scanner (MSS). The MSS collected data over a swath width of 

approximately 185 km that facilitates regional interpretation (Sabins, 1997). The MSS 

recorded the EM energy in four spectral bands with a spatial resolution of 79 m. Each 

pixel contains 6 bit data information with a range of digital numbers (DN) from 0 to 63 

and the first three band data are rescaled to 7 bits from 0 to 127 (Sabins, 1997; Richards 

and Jia, 1999). 

Landsat 4 and 5, launched in 1982 and 1984 respectively, are the second 

generation of Landsat series employing Thematic Mapper (TM) sensor systems. The TM 

sensor has seven bands such as visible, near infrared, two middle infrared and thermal 

infrared: Spatial resolution is 30 m for all bands except the thermal infrared band, which 

has 120 m resolution. All bands are recorded in 8 bits over a range of 256 DNs 

(Schowengerdt, 1997; Sabins, 1997; Richards and Jia, 1999; Mather, 1999). 

Improvements of the TM sensor over the MSS are longer dwell time and higher signal-to­

noise ratio since TM sensor records data on both eastbound and westbound sweeps of the 

mirror (Sabins, 1997). 

Landsat 6 was launched in 1993 but unfortunately failed to achieve orbit. Landsat 

7 was launched in 1999 and also carried Enhanced Thematic Mapper Plus (ETM+) 

(Sabins, 1997; Goward et af., 2001). ET~ bands from 1 to 5 and 7 are identical to those 

of TM with the spatial resolution of 30 m but the thermal infrared band has higher spatial 

13 
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resolution of 60 m. In addition, there is new panchromatic band that is a single broad 

spectral band with spatial resolution of 15 m (Richards and Jia, 1999; Mather, 1999). 

2.3 Image Classification 

Digital image classification assigns each pixel of the image to a particular class 

using spectral signature (CCRS, 2002). Classification procedures can be divided into two 

categories: supervised classification and unsupervised classification (Jensen, 1996; 

Schowengerdt, 1997; Richards and Jia, 1999; Mather, 1999). In a supervised 

classification, the analyst selects training data samples that represent different 

information classes. The selection of appropriate training data requires prior knowledge 

of the area of interest and each class of interest. The spectral signatures in each band are 

used to train the classification algorithm to recognize spectral similarity for each class 

and to assign a class to each pixel. In unsupervised classification, pixels with similar 

spectral signatures are grouped first and then labeled to a particular class by the analyst. 

In this case, the analyst specifies the number of classes prior to classification. 

2.3.1 Supervised Classification 

Supervised classification is most often used for remote sensing image data. In 

supervised classification, the analyst can control selected classes for a specific purpose 

and geographic region. Figure 2.3 shows a general process of supervised classification. 

14 
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Acquire image, 
training data set 
and ground truth 

~ 

Choose 
classification 

algorithm 

~ 
I 

Run classification 

~ 

Refine training data 
if necessary 

~ 

Assess accuracy 

Figure 2.3 General steps of supervised classification 
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The accuracy of supervised classification depends on the size and the selection of 

training data. The training data size must be sufficient to properly represent each class 

and to provide acceptable accuracy. The size is often related to the number of bands and 

the statistical properties. Increase in sample size improves the classification accuracy 

(Dobbertin et ai., 1996). The training data size can be estimated from the statistical 

techniques. For example, Fitzpatrick-Lins (Fitzpatrick-Lins, 1981; Jensen, 1996) 

suggested the following binomial formula: 

N = 4 x p(l 00 - p) 
[;2 

(2.1) 

where N is a training data size, p is the expected accuracy (%) and E is the allowable 

error. For example, with 85% of expected accuracy and 1% of allowable error, the 

required training data size becomes 5,100. However this provides only the total number 

of training data not the training data size for each class (Jensen, 1996). The rule of thumb 

that Congalton (1991) proposed is to collect a minimum of 50 data points for each class. 

Mather (1999) suggested the following formula as a minimum number of training data 

points: 

N= 30 x n xc (2.2) 
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where n is the number of spectral bands and c is the number of classes. This equation 

agrees with others (Swain, 1978; Foody et al., 1995) who found that training data size for 

each class should be at least 30 x n to form representative training samples. For example, 

if we have 7 spectral bands and 5 classes, at least 1,050 training observations are needed. 

The selection of sampling is also important for a reliable accuracy (Steh..'1lan et 

aI., 1998). A simple random sampling may be appropriate if the sample size is large 

enough to represent all classes. However, random sampling may be impractical due to 

undersampling small classes (Jensen 1996). It is also difficult to use randomly located 

sites to assess the accuracy over a very large area (Foody, 2002). Alternative sampling, 

stratified sampling, selects a minimum number of samples from each class. A 

combination of random and stratified sampling can provide a balance between statistical 

and practical validities. It is also important to select homogeneous samples representing 

each class (Schowengerdt, 1997). 

There are many supervised classification algorithms. In this section we discuss 

typical supervised classification methods: parallelepiped, minimum distance, maximum 

likelihood, and artificial neural networks. 

Parallelepiped Classification 

Parallelepiped is a very simple classification method (Jensen, 1996; Richards and 

Jia, 1999; Mather, 1999). It classifies every pixel within a specified range, which is a 

rectangle or parallelepiped. Figure 2.4 illustrates parallelepiped classification in a two-
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Band 2 

Band 1 

Figure 2.4 An example of parallelepipeds in two-dimensional spectral space 

Band 2 

Band 1 

Figure 2.5 An example of minimum distance in two-dimensional spectral space 

Band 2 

Band 1 

Figure 2.6 An example of maximum likelihood in two-dimensional spectral space 
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dimensional spectral space. The upper and lower bounds of the range are determined by 

training data statistics: the minimum and maximum DN values of each band; the mean ± 

standard deviations of each band; or any limits based on prior knowledge of the data and 

signatures. If the value of a pixel is between the bounds, the pixel is assigned to the 

particular class. The following equation provides the decision rule of classification: 

Decide x is in class Wj if Li :::; x :::; Hi (2.3) 

where x is pixel values in each band, Wi, i = 1, ... M, are the spectral classes and M is the 

total number of classes. Li and Hj are low and high bounds respectively. 

Parallelepiped classification is the fastest algorithm (Richards and Jia, 1999). 

However, it is not popular because of its several drawbacks. Pixels that do not belong to 

any parallelepiped will be unclassified. Some correlated data in the overlap of the 

parallelepipeds cannot be separated. In this case, the pixel is classified as the first class 

that passes the bounds tests, which makes the classification order dependent. 

Minimum Distance Classification 

Minimum distance classification assigns all pixels to the nearest class (Jensen, 

1996; Richards and Jia, 1999; Mather, 1999). The means of each class are calculated 

from training data and determine the centers of the class. Then the Euclidean distance 

from a pixel to the center in each class is calculated by: 
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(2.4) 

where x is pixel values in each band and ~i, i = 1, ... M, are means of each classes. This 

gives the following decision rule of classification: 

Decide x is in class Wj ifD(x, ~D < D(x, ~j) for allj ::j:. i. (2.5) 

This classification is slower than a parallelepiped classification (Richards and Jia, 

1999). The classification uses only the mean of each class and the boundaries between 

each class are linear, which reduce the flexibility of the classification. The classification 

may not be correct with classes that show high variance in a given direction (Hubert­

Moy, 2001). Figure 2.5 shows the classification in a two-dimensional spectral space. 

Maximum Likelihood Classification 

Maximum likelihood classification is the most commonly used supervised 

classification method with satellite imagery (Richards and Jia, 1999). This classification 

uses the training data for estimating means and covariance of the classes and then assigns 

all the pixels to the statistically most likely class (Swain, 1978). Figure 2.6 shows a two­

dimensional classification. A maximum likelihood algorithm assumes that the datahave 

normal distributions (Duda et ai., 2001), which provides an analytical solution to the 
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decision boundaries. In fact, image training data often show normal or nearly normal 

distribution (Schowengerdt, 1997). 

The classification is performed based on the following decision rule: 

Decide x is in class roi if p( roi Ix) > p( roj Ix) for all j ;:j; i (2.6) 

where p(roi Ix), i = 1, ... M, is the probability that the correct class is for a pixel x. 

However, P(roi Ix) is generally unknown but can be obtained based on Bayes' theorem 

using p(xlroj) since the likelihood can be easily estimated from sufficient training data. 

(2.7) 

where p(xlroD is the likelihood finding a pixel from class roj, p(roj) is a priori probability 

that class roj occurs in the image and p(x) is the probability of finding a pixel from any 

class, which can be considered as a scale factor. Then decision rule can be expressed as: 

Decide x is in class roj ifp(xl roD P(roi) > p(xl roj) p(roj) for allj * i (2.8) 

The mathematical expression for the likelihood for each class for N bands is: 

(2.9) 
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where lli is the mean vector of class i and ~i is the covariance matrix of class i. this 

equation can be reduced by taking natural logarithm and removing P(COi), which is the 

same for all class i. Then the final decision rule is as follows: 

Decide x is in class Wi if giCx) > gj{x) for all j ::I; i 

gJx)=-lnl~i 1-(X-llY~i-l(X-llJ 

(2.10) 

(2.11) 

This classification method is theoretically the most powerful classification 

method if provided accurate training data. If the distributions of classes are normally 

distributed, this method is the optimal classification (Hubert-Moy et al., 2001). 

Otherwise, this classification might not be valid. In addition, the classification can 

estimate the class of pixels in overlapping areas since the boundaries are quadratics 

(Hubert-Moy et al., 2001). However, maximum likelihood classification is slower than 

other classifications discussed earlier (Richeards and Jia, 1999). 

Artificial Neural Networks 

Neural network application to remote sensing image classification is relatively 

new compared to those previously discussed methods (Paola and Schowengerdt, 

1995b). Artificial neural networks are developed to emulate the information process of 
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human brain and nervous systems (Russell and Norvig, 1995; Ripley, 1996; Mitchell, 

1997). Thus a number of neurons are highly interconnected in the network structure. 

For image classification, most artificial neural networks derive the structure 

from the three-layer feed forward network: input, output, and hidden layers. Typically, 

each input node corresponds to each band of an image and each output node to each 

class. One hidden layer is generally recommended for image classification (Paola and 

Schowengerdt, 1995a). Every single node of input and output layers is connected to all 

nodes of the hidden layer. Each interconnection between nodes has an associated 

weight that contains the distributed information of the network. When training, each 

processing node sums the values of its inputs and passes the sums through an arbitrary 

activation function to produce the node's output value. The weight controls the 

threshold level of the activation function (Widrow and Lehr, 1990; Yoshida and 

Omatu, 1994; Paola and Schowengerdt, 1995a, 1995b; Ripley, 1996). 

Backpropagation algorithm is the first successful and one of the most 

commonly used for training a network (Rumelhart et at., 1986). The backpropagation 

algorithm learns the weights iteratively to minimize an error, E, between the original 

and the desired output (Paola and Schowengerdt, 1995a, 1995b; Ripley, 1996). 

(2.12) 

Ok = f(NETk ) = f(2(w kP)) (2.13) 
J 
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where dk and Ok are the desired and original outputs associated with output node k, 

NETk is the sum within output node k, Wkj is weight between the hidden G) and output 

layer (k) and OJ is the output of the hidden layer nodes. In order to adjust weights and 

minimize the error, gradient descent is commonly used. Thus the updated weight 

between the hidden G) and output layer (k) is: 

I BE 
w kj = w kj -11 ::l.., 

uW kj 

(2.14) 

(2.15) 

where Wkj r is updated weight and 11 is a positive constant that controls the amount of 

adjustment. If we use the chain rule, the gradient descent for output node and hidden 

node becomes 

(2.16) 

Aw .. =n(d -0)(1-0.)00. Jl '( J J J J 1 (2.17) 

Once training is complete, entire image is feed into the network to classify each pixel. 

An advantage of the artificial neural networks is that the network can learn the 

output from a given input without prior knowledge. Moreover, artificial neural networks 
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are nonparametric therefore they are robust although the data are not normally 

distributed. 

2.3.2 Unsupervised Classification 

Unsupervised classification reverses the supervised classification process 

(Niblack, 1986; Jensen, 1996; Richards and Jia, 1999; Mather, 1999) Unsupervised 

classification requires no prior knowledge of the region and therefore, the classification 

may not be biased by the prior knowledge. Unsupervised classification may recognize 

unique classes, which may be lumped into other classes with supervised classification 

creating error. However labeling spectral classes is not always easy. The analyst should 

understand the spectral characteristics of the area of interest. Figure 2.7 describes the 

process of unsupervised classification. We discuss two commonly used clustering 

algorithms with remote sensing image: K-means clustering and ISODATA. 

K-means Clustering 

K-means algorithm is simple and widely used clustering methods (Schowengerdt, 

1997; Mather, 1999). This method requires the number of clusters and arbitrarily locates 

the cluster centers. Then each pixel is assigned to the cluster of which means is the 

closest. The means for each cluster are recalculated and the process continues until no 
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-

Figure 2.7 General steps of unsupervised classification 
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significant change in the clusters. The result of this classification is not sensitive to the 

initial specification of mean vectors in each cluster but the number of iterations can 

change. Figure 2.8 shows the application of this algorithm to a two-dimensional spectral 

space. Three clusters are chosen and the initial means are seeded equidistantly along the 

space diagonal. Diamond-shaped points are cluster means, ellipses are spectral objects 

and dotted lines are boundaries among each cluster. 

ISODATA 

ISODATA algorithm modifies K-Means clustering (Jensen, 1996; Schowengerdt, 

1997; Mather, 1999) such that the algorithm includes merging clusters if the separation is 

below a certain threshold, and splitting a cluster into two if it is too large. ISODA TA 

requires additional input parameters to set threshold for merging and splitting: maximum 

number of clusters to be merged, minimum number of pixels for each cluster, minimum 

distance between clusters, and maximum standard deviation. Setting a maximum number 

of clusters to be merged avoids overmerging. Setting a minimum number of pixels in a 

cluster avoids many small clusters. A threshold on minimum distance between clusters 

allows two close clusters to be merged. A threshold on standard deviation within each 

band for each class splits a cluster with too much variability. 
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Figure 2.8 K-means algorithm in two-dimensional spectral space 
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2.3.3 Fuzzy Classification 

The classifiers described in previous sections are called hard classification given 

that decision boundaries are well defined. However, some pixels can have mixed 

memberships in several classes such that the decision boundaries are fuzzy. These mixed 

pixels often occur at the boundary between objects. Soft classification, also known as 

fuzzy classification, is developed to solve the mixed pixel problem (Wang, 1990a, 1990b; 

Jensen, 1996; Schowengerdt, 1997). The classification employs fuzzy membership grades 

for each pixel as a real number from 0 to 1. If the value is close to 1, then the pixel is 

more likely belong to the class. The following expression is a membership grade in 

matrix U. 

(2.18) 

where umn' m = 1, ... M and n = 1, ... N, is the membership value of pixel n in class m. M 

is total number of classes and N is total number of pixels. 

29 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Membership for each class can be defined based on the maximum likelihood 

classification or K-means clustering. In fuzzy C-means clustering algorithm, which is 

similar to K-means clustering, the membership values are updated by the normalized 

distance to the cluster means. In fuzzy supervised classification based on maximum 

likelihood, the membership values are updated by replacing mean and covariance with 

fuzzy mean and fuzzy covariance (Jensen, 1996; Schowengerdt, 1997). 

2.4 Incorporating Ancillary Data 

Image classification using only spectral signatures may not provide accurate 

results. Even high spatial resolution may not improve classification accuracy because 

high resolution increases spectral variation in each class (Marceau et at., 1994; Zhang, 

2001). Ancillary data in addition to spectral data have been incorporated to improve the 

accuracy of classification (Hutchinson, 1982; Fahsi et al., 2000; Zhang, 2001). Ancillary 

data are any type of nonspectral information such as elevation, topology and texture 

(Jensen, 1996; Mather, 1999). 

2.4.1 Texture 

Texture is the variation of tone on an image (Jensen, 1996; Sabins, 1997). 

Common texture algorithms include local statistical measures and gray-level co­

occurrence matrix (GLCM). Local statistics measures means, variance, standard 
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deviation and entropy. Gong et al. (1992) reported that the standard deviation was the 

best method (Jensen, 1996). GLCM represents the distance and angular spatial 

relationships among pixels over an image (Haralick et aI., 1973). GLCM measures the 

probability of occurrence of two gray-scale values separated by a given distance in a 

given direction. Several researchers found that GLCM improved classification (Peddle 

and Franklin, 1991; Gong et al., 1992; Jensen, 1996). In addition, Zhang (2001) proposed 

the use of conditional variance that outperformed common texture algorithms. However, 

no single algorithm has been widely used for image classification. 

2.4.2 Contextual Information 

The context of a pixel is spatial relationship of a pixel with other pixels in the 

Image (Jensen, 1996). Contextual classification incorporates neighboring pixel 

information because satellite imagery often exhibits high spatial correlation (Stuckens et 

aI., 2000; Hubert-Moy et aI., 2001). If the image has high spatial correlation, contextual 

classification will improve the accuracy. Contextual information can also correct the 

information class for isolated pixels. 

There are two general approaches to calculate context: a moving window and 

image segmentation. By imposing windows, contextual information is extracted from a 

pixel's neighborhood and the value is assigned to the pixeL Segmentation divides the 

image into regions, called segments, based on spectral similarity. All pixels of a segment 

will belong to the same information class. Contextual data can be incorporated, either 
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during the classification (Kittler and Foglein, 1984) or as a post-classification step. 

Several researchers reported that contextual data assists in improving classification 

accuracy (Flygare, 1997; Stuckens et al., 2000; Hubert-Moy et al., 2001). 

2.4.3 Digital Elevation Model 

Elevation data such as digital elevation model (DEM) may be useful in image 

classification if some classes may have similar spectral values but have different 

elevation. Moreover, DEM can correct the effects of terrain and slope variability. Some 

researchers proved that DEM successfully reduced the topographic effect and, as a result, 

improved the classification accuracy (Justice et aI., 1981; Fashi et aI., 2000). However, 

DEM accuracy is critical because inaccurate DEM may introduce additional errors in 

classification. 

2.4.4 Knowledge-based system 

Expert systems, especially knowledge-based systems, have been adopted to 

incorporate both spectral and ancillary data (Jensen, 1996; Richards and Jia, 1999). A 

knowledge-based system simulates the human reasoning process for problem solving 

(Jackson, 1990). The most commonly used system is a rule-based system that represents 

knowledge as a set of rules. The following form is the well known rule system. 
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IF premise THEN consequence 

where premise is logical expression that is true or false and if it is true the consequence 

part is justified. 

When handling multi source data, either a single knowledge base or a set of 

knowledge base can be adopted. A single knowledge base contains all the rules in the 

premise and determines a particular class. In contrast, a set of knowledge base contains 

one rule for each premise that determines its subclass and combines the individual results 

into a module (Richards and Jia, 1999). 

Many researchers have adopted rule-based systems. Mason et al. (1988) 

developed a rule-based system in conjunction with topographic map information. Their 

result showed improvement of classification. Bolstad and LiUesand (1992), Kartikeyan et 

al. (1995) and Stefanov et al. (2001) could achieve accuracy improvement using rule­

based system with ancillary data. They emphasized the strength of the system in 

flexibility with multi sources. 

2.5 Image Transformations 

Image transformation generates a new pixel value from arithmetic operation of 

pixel values of multispectral bands (Mather, 1999; Rees, 2001). Vegetation indices are 

the simplest image transformation that is used for vegetation feature extraction 

(Schowengerdt, 1997). Normalized difference vegetation index (NDVI) is one of most 
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widely used among more than 20 vegetation indices, which is based on two spectral 

bands. Tasseled cap transformation is based on six spectral bands of Lansat TM and 

ETM+. Another commonly used technique is principle component analysis (peA), which 

removes spectral redundancy due to highly correlated multispectral bands (Ready and 

Wintz, 1973; Schowengerdt, 1997) 

2.5.1 Normalized Difference Vegetation Index 

Simple ratio is the first vegetation index based on the ratios of the near IR band to 

the red band for each pixel (Birth and McVey, 1968; Jensen, 2000). 

(2.19) 

where BIR and BR are DN values of near IR and red band, respectively. This index 

reflects the fact that chlorophyll of vegetation absorbs red wavelength such that lower 

values of red band indicate higher chlorophyll content, and that leaves reflect near IR 

wavelengths such that higher values of near IR band indicate more vigorous vegetation 

growth (Sabins, 1997). 

NDVI is a more complex version of vegetation index (Rouse et al., 1974; Jensen, 

2000) 
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(2.20) 

The range of NDVI is between -1 and 1 and higher values indicate higher 

vegetation whereas lower values indicate less vegetation. NDVI is favorable over simple 

ratio since the value is not influenced by the absolute pixel values due to atmospheric 

conditions (Mather, 1999). 

2.5.2 Tasseled Cap Transformation 

Kauth and Thomas (1976) developed Tassled Cap transformation, which is a 

more sophisticated approach derived from linear transformation in four dimensional 

space (Schowengerdt, 1997; Lillesand et al., 2004). The transformation rotates the 

Landsat MSS band data and generates new axes: brightness, greenness, yellowness, and 

nonsuch. Brightness is an axis associated with variations in soil background reflectance. 

Greenness is orthogonal to the first axis, which is associated with variations in green 

vegetation. Yellowness is associated with the yellowing of senescent variation. Nonesuch 

is associated with atmospheric conditions. The transformation is as follows: 

brightness 0.433 0.632 0.586 0.264 DNB4 
greenness -0.290 -0.562 0.600 0.491 DNB5 

= (2.21 ) 
yellowness -0.829 0.522 -0.039 0.194 DNB6 
nonesuch 0.223 0.012 -0.543 0.810 DNB7 
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Crist (1985) extended Tassled Cap transformation for Landsat TM imagery 

(Schowengerdt, 1997; Mather, 1999; Jensen, 2000). In this system, three axes are 

considered important: brightness, greenness, and wetness. Brightness is a weighted 

average of the TM bands, greenness is a contrast between visible and near IR, and 

wetness is a contrast between bands 5 and 7, and bands 3 and 4 (Mather, 1999). 

DNBI 

[bri~t] [0.3037 0.2793 0.4343 0.5585 0.5082 0.1863] DNB2 

green = - 0.2848 -0.2435 -0.5436 0.7243 0.0840 -0.1800 
DNB3 (2.22) 

wet 0.1509 0.1793 0.3299 0.3406 -0.7112 -0.4572 
DNB4 
DNB5 
DNB7 

Both transformations are derived from empirical data of small part of the North 

America. Therefore, the application of the transformations to other area may not be 

successful (Mather, 1999). 

2.5.3 Principle Component Analysis 

Principle component (PC) analysis is a linear transformation of feature space to 

reduce the correlation of spectral bands since multispectral bands are often highly 

correlated, which results in redundancy (Ready and Wintz, 1973; Schowengerdt, 1997). 

New pixel values in PC are linear combination of the pixel values in the original axis and 
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the transformation coefficients, i.e. eigenvectors. Each component is orthogonal to the 

previous component. 

n 

DNpc = LekpDNk 
P k=l 

(2.23) 

where DNpc is new pixel DN value ofp component in PC image, ekp is eigenvector, and 
P 

DNk is pixel DN values in band k of original data. 

Eigenvectors and eigenvalues of the covariance matrix are computed from the 

following equation. 

Al 
A2 
A3 

Lpe = E L ET = A4 I (2.24) 

A5 
A6 
A7 

where E is eigenvector matrix for each bands (nxn), LpC and L are covariance matrix of 

PC image and the original data (nxn), respectively, Ai is eigenvalue, and I is identity 

matrix. The eigenvalues and eigenvectors represent the length and the direction of 

principle components (Mather, 1999). Then the percentage of total variance of each 

principle component is calculated by 
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(2.25) 

where Ap is eigenvalue for each principle component. The first component has the largest 

variance and the higher component has less variance. In general, the first three 

components contain most percentage of the total image variance, which results in 

dimensionality reduction (Rees, 2001). This is useful since the PCA can reduce 

computational cost. Therefore, PCA transformation can be effectively employed as a 

preprocessing method prior to image classification (Lillesand et al., 2004). 

2.6 Accuracy Assessment 

Accuracy assessment is not always easy for satellite image classification. Overall 

accuracy alone is not meaningful because it does not provide accuracy of individual 

classes (Foody, 2002). In order to provide the accuracy of individual classes, confusion 

matrix is most widely used (Jensen, 1996; Richards and Jia, 1999; Foody, 2002). A 

confusion matrix, also called error matrix, is a square table of the resulting map class 

labels as rows against the original class in the ground truth as columns. This matrix 

assumes that every pixel belongs to one of the classes that are exhaustive and mutually 

exclusive (Foody, 2002). 

There are two different error measures: omISSIon and commission errors. 

Omission error corresponds to those pixels actually belonging to the class of interest but 
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failed to be recognized as a member of that class whereas commission error corresponds 

to pixels from other classes that has incorrectly labeled as the class of interest 

(Congalton, 1991; Janssen and van der WeI, 1994). 

n­
Omission error = 1 __ IJ_ 

~n 
L. 1J 

n­
Commission error = 1 __ IJ_ 

Lnij 
j 

Lnkk 
overall accuracy = _k __ 

N 

(2.26) 

(2.27) 

(2.28) 

where nij is the number of pixels row i and column j, and N is the total number of test 

pixels in the confusion matrix. However, the confusion matrix has a problem in that some 

pixels may have been correctly allocated merely by chance. To resolve this problem, 

kappa coefficient has been used (Congalton 1991, Foody, 2002). 

(2.29) 

The accuracy of ground truth data should be ensured for proper accuracy 

assessment. Errors in the ground truth data can significantly influence the classification 

accuracy (Zhu et al.., 2000, Foody, 2002). 
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Chapter III 

Bayesian Networks 

Bayesian networks, also called probabilistic networks, belief networks, or causal 

networks, are powerful probabilistic approaches to knowledge representation and 

handling problems under uncertainty. Bayesian networks have been successfully applied 

to many areas such as pattern recognition, language understanding, computer vision, 

medical informatics, and decision-making (Heckerman, 1990; Goldman, 1990; Chamiak, 

1991; Sucar and Gillies, 1994; Lucas and Abu-Hanna, 1999; Bang and Gillies, 2002). 

Bayesian networks have been also adopted in environmental areas such as risk 

assessment, water quality management and wastewater treatment system (Varis, 1995; 

Chong and Wally, 1996; Sanguesa and Burrell, 2000; Borsuk and Stow, 2000; Sahely and 

Bagley, 2001; Borsuk et al., 2004). Bayesian networks have been compared with other 
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AI techniques such as rule-based systems and neural networks, which have been widely 

used in the environmental engineering area (Ozgur and Stenstrom, 1994; Zhang and 

Stanley, 1997; Brion and Lingireddy, 1999; Baeza, et al., 2002; EI-Din and Smith, 2002; 

Comas et al., 2003). They were found to outperform rule-based systems for diagnosis in 

wastewater treatment systems (Chong and Wally, 1996; Sanguesa and Burren, 2000) and 

an alternative to neural networks in wastewater treatment modeling (Hiirsalmi, 2000). 

In this chapter, we review Bayesian networks, especially naIve Bayesian 

classifiers, and Bayesian networks based on maximum weight spanning tree (MWST) 

algorithm. In section 3.1, we present the fundamental terminology of Bayesian networks. 

In section 3.2, we explain the discretization methods for Bayesian networks. In section 

3.3, Bayesian network structures are compared. In section 3.4, propagation process in a 

network is explained. In section 3.5, Bayesian networks are compared with other AI 

methods, i.e. decision trees and neural networks. 

3.1 Basic Concepts of Bayesian Networks 

A Bayesian network is a probabilistic approach that graphically represents 

relationships between variables in a given domain (Pearl, 1988; Neapolitan, 1990). The 

structure of the network provides cause and effect relationships among variables and an 

assessment of uncertainty. The network is graphically represented as a directed acyclic 

graph (DAG) consisting of nodes and arcs where the nodes stand for random variables 

and the arcs show direct link between variables. In a Bayesian network, the relationship 
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between variables is quantified with conditional probabilities, and any node is 

conditionally independent of it non-descendent variables given its parents. The following 

concepts and terminology are used in Bayesian network (Pearl, 1988; Neapolitan, 1990). 

Definition 3.1 Conditional probability 

Let X and Y be events and P(Y) '* O. The conditional probability, P(XIY) is defined as 

P(X I Y) = P(X, Y) . 
P(Y) 

Definition 3.2 Conditionally independency 

Two events X and Y are conditionally independent given Z if P(Z) '* 0 and it satisfies one 

of the followings. 

- P(xIY, Z) = P(XIZ) and P(XIZ) '* 0, P(YIZ) '* 0 

- P(XIZ) = 0, P(YIZ) = 0 

Definition 3.3 Bayes' Theorem 

Let X and Y be events such that P(X) '* 0 and P(Y) '* O. Then 

P(X I Y) = P(Y I X)P(X) . 
P(Y) 
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Furthermore, If there are n mutually exclusive and exhaustive events Xl, X2, ... , Xn such 

that P(XD * 0 for all i where 1 :::; i :::; n then, 

P(Xj I Y) = nP(Y I Xi )P(Xj ) • 

I P(Y I Xi )P(Xj ) 

i=1 

The Bayes' theorem can be rearranged by replacing a = _1_ 
P(Y) 

P(X I Y) = aP(X)P(Y I X) . 

where P(X) is a prior probability and P(YIX) is likelihood information. Prior probability 

represents our belief about the given domain and can be taken from statistics or in a 

subjective way. Likelihood represents uncertainty and should be obtained from data. 

Definition 3.4 Joint Probability Distribution 

Let V = {Xl, X2, .'" Xn} be a set ofn random variables and the domain of Xi be the same 

as the domain ofXj for 1 :::; i:::; n. A function assigning a real number P(Xl=XI, X2=X2, •. " 

Xn=Xn) to every combination of values of the Xi'S is a joint probability distribution of the 

variables in V if it holds that 

- For every combination of values of the Xi'S 
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The joint probability distribution in a Bayesian network is equal to the product of the 

conditional probability distributions of all nodes given values of their parents whenever 

these conditional probabilities exist. 

P({X}) = TIP(X j I PAx) 
I 

Definition 3.5 Markov Condition 

Let P be a joint probability distribution of variables in some set V and a DAG G=(V, E) 

where V is a finite, nonempty set whose elements are nodes and E is a set of ordered 

pairs of distinct elements of V, whose elements are arcs. (G, P) is in the Markov 

condition if for each variable X E V, {X} is conditionally independent of the set of all its 

non-descendents given the set of all its parents. Let PAx be the set of parents and NDx 

non-descendents of X then, 

Ip({X}, NDx I PAx). 

If X is a class node, its parent PAx is an empty set so that the Markov condition means 

{X} is independent ofNDx, which is denoted Ip( {X}, NDx). 
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Definition 3.6 D-separation 

Let X, Y and Z be disjoint subsets of nodes in a DAG, then Z is said to d-separate X from 

Y, denoted as 

<XIZIY>D. 

if there is no path between a node in X and a node in Y along which the following 

condition satisfies 

- Every node with converging arcs is in Z or has a descendant in Z. 

- Every other node is outside Z. 

D-separation is used for testing independence in a Bayesian network. 

Definition 3.7 I-map 

A DAG, G, is said to be an' I-map if every d-separation condition displayed III G 

corresponds to a valid conditional independence relationship, I, i.e. 

<X I Z I Y>G, ~ I(X, Z, Y)M 
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This means that a DAG is an I-map if aU the independencies in the DAG are present in a 

probability distribution. A DAG is a minimal I-map if it is an I-map with the minimum 

number of links, that is, if none of its arcs can be deleted without destroying its 

independence. 

Definition 3.8 Bayesian Network 

Let P be a joint probability distribution of the random variables in some set V, and G = 

(V, E), then (G, P) is a Bayesian network if (G, P) satisfies the Markov condition or if 

and only if G is a minimal I -map of P. In other words, a Bayesian network is a graph with 

the minimum number of links that faithfully represents all the probabilistic 

independencies for variables. 

3.2 Discretization of Data 

Bayesian networks normally require discrete data if the variables are not normally 

distributed. Therefore, continuous data should be converted into discrete data. In general, 

discrete data offer many advantages compared with continuous data. First, discrete data 

provide faster and more accurate learning (Dougherty et al., 1995; Liu et al., 2002;Yang 

and Webb, 2003). Secondly, discretization makes data easier to understand and more 

representative by simplifying the data (Liu et al., 2002). Thirdly, discretization requires 

no assumption of the probability distribution and therefore can avoid any inaccuracy 

related to the distribution (Yang and Webb, 2003). For example, many classification 
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algorithms, such as maximum likelihood classifiers, assume that the data are normally 

distributed, and if not, this assumption might bias the analysis. Finally, discretization 

particularly improves the Bayesian network application to those domains violating the 

independence assumption (pazzani, 1995). 

Many researchers have developed and categorized discretization methods in 

various ways: supervised vs. unsupervised (Dougherty et ai., 1995), dynamic vs. static 

(Liu et ai., 2002), global vs. local (Chmielewski and Grzymala-Busse, 1994~ Dougherty 

et ai., 1995), split vs. merge (Kerber, 1992; Yang and Webb, 2003), and direct vs. 

incremental (Cerquides and Mantaras, 1997; Liu et al., 2002). Supervised methods use 

class information of the training data for partitions whereas unsupervised methods do not 

use class information. Dynamic methods conduct discretization during classification 

whereas static methods discretize continuous values before classification. Global methods 

discretize the entire data space whereas local methods can be applied to localized space. 

Therefore, each attribute in the data set can be differently partitioned in local approach. 

Split methods start with the entire range with zero interval and partition it into 

subintervals whereas merge methods start with continuous values and merges adjacent 

values. Both methods continue the process until certain predefined threshold is met. 

Direct methods partition the range of intervals simultaneously, which requires the 

information of the number of intervals, whereas incremental methods starts with a simple 

discretization and improves, which requires information of stop point of discretization. 

Table 3.1 summarizes each discretization method. 
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Table 3.1 Examples of discretization methods 

Equal width interval 
Equal frequency interval 
lR (Holte '93) 
ID3 (Quinlan '86) 
C4.5 (Quinlan '93) 
Hierarchical maximum 
entropy (Chiu et al. '90) 
D2 (Catlett, '91) 
MDLP (Fayyad et al. '93) 
Mantaras distance 
(Cerquides et al. (97) 
Zeta (Ho et al. '97) 
Adaptive quantizer 
(Chan et al., '91) 
MCC 
(Van de Merckt, '93) 
Predictive value 
maximization 
(Weiss et aI., '90) 

Supervised! Dynamic! 
Unsupervised Static 

U S 
U S 
S S 
S D 

D 
S 

S S 
S S 
S S 

S S 
S,U S 

S,U 

S 

GlobaV 
Local 

G 
G 
G 
L 

L 

G 
L 
L 

G 
G 

G 

G 

Vector quantisation S L 
(Kohonen, '89) 

Split! 
Merge 

S 
S 
S 
S 
S 

S 
S 
S 

S 
S 

Direct! 
Incremental 

D 
D 
D 
I 

I 
I 
I 

D 
D 

ChiMerge (Kerber, '92) SSG M I 
Chi2 (Liu et al. '95) SSG M I 
StatDisc M 
(Richeldi et al. '95) 
k-means clustering U L 
(Maass, '94) 
Fuzzy learning S G 
(Kononenko, '92) 
Interative improvement SSG S, M 
(pazzani, (95) 
(adopted from Dougherty et at., 1995; Liu et ai., 2002; Yang and Webb, 2003) 
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Dougherty et al. (1995) and Liu et al. (2002) reviewed numerous discretization and 

concluded that entropy-based discretization such as minimum description length principle 

(MDLP, Fayyad and Irani, 1996) was the best method. Dougherty et al. also noted that 

simple methods such as equal width interval method could be successful under a normal 

distribution. Yang and Webb (2003) proposed proportional k-interval discretization and 

equal size discretization for naIve Bayesian classifiers. However, there exists no 

consensus on discretization methods. 

3.2.1 Binnmg Methods 

The simplest discretization method is collecting bins (Liu et al., 2002). The 

examples are equal width interval and equal frequency interval. Equal width interval 

method breaks the range of the observed data values with k equally sized intervals 

(Dougherty et al., 1995; Liu et al., 2002; Yang and Webb, 2003). The number of 

intervals k can be selected subjectively. Each interval width is defined as follows: 

. al'd h x -x· Interv WI t = max mm 

k 
(3.1) 

where Xmin and Xmax are the mlillmum and the maxImum value of a variable x 

respectively. This method can be applied to each variable independently of the others 

without considering the class node information. 
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Equal frequency interval method divides the range of the data values with k 

unequally sized intervals. Each interval contains the same number of data values: 

data numbers in an interval = n 
k 

(3.2) 

where n and k are the total number of data values and intervals respectively (Liu et ai., 

2002). In this case, those training data with identical values should belong to the same 

interval and therefore each interval may not always have the same number of data. These 

two methods have been widely used in many machine learning algorithms since they are 

simple and reasonably good in performance (Hsu et al., 2000). However, these methods 

are sensitive to the interval, k (Dougherty et ai., 1995). 

1 R algorithm is a different binning method from above methods since it requires 

class information (Holte, 1993; Dougherty et al., 1995; Liu et ai., 2002). The method 

breaks the range of the data values and adjusts the discretization boundaries based on the 

class associated with the data values. If each interval contains minimum number of values 

that is prespecified, the discretization will be terminated. 

3.2.2 Entropy-based Methods 

Another discretization method is using entropy measure to find a discretization 

boundary. The following equation represents Shannon entropy, which is one of the 

mostly widely used (Shannon and Weaver, 1949; Thornton, 1992; Liu et at., 2002): 
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H(X) = - LP(x)logp(x) (3.3) 
x 

where p(x) is probability of value x ofX. 

Hierarchical discretization method (Chiu et al., 1990) discretizes continuous 

variables maximizing the Shannon entropy. This method employs hill-climbing search to 

find discretization boundaries (Dougherty et al., 1995). 

ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) binarizes a range of values using 

entropy measure for decision trees (Liu et al., 2002). In these algorithms, a discretization 

boundary is selected where the entropy is the lowest. ID3 uses greedy search to find 

discretization boundaries. 

D2 algorithm (Catlett, 1991) is similar to ID3 except it discretizes before 

classification (Liu et al., 2002). This method is used for decision trees and increases the 

speed of induction. The discretization completes when the minimum number of samples 

in one partition, the maximum number of partitions, or the minimum information gain is 

obtained. 

Fayyad and Irani (1993) selected a discretization boundary to minimize the class 

entropy. The method uses MDLP to complete discretization (Dougherty et al., 1995; Liu 

et al., 2002; Yang and Webb, 2003) In this method, the class entropy is calculated as 

follows (Fayyad and Irani, 1993; Dougherty et al., 1995): 
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E(A T'S) = ~ ENT(S ) + 1 S21 ENT(S ) 
" 1 S 1 lis I 2 

(3.4) 

where E(A, T; S) is the class entropy, S is set of instances, A is a continuous variable and 

T is a discretization boundary. The method is repeatedly applied and completes if the 

following condition is satisfied: 

G . (A T'S) log2(N -1) ~(A, T;S) aln " < + ---'---'-
N N 

(3.5) 

Gain(A,T;S) = Ent(S) - E(A,T; S) (3.6) 

(3.7) 

where N is the total number of instances of Sand ki is the number of class labels in Sj. 

3.2.3 Accuracy Measure 

Zeta is the maximum accuracy achievable of a value assigned to different 

partition class (Ho and Scott, 1997). A discretization boundary is selected where the zeta 

value is the highest (Liu et al., 2002). 

Adaptive quantizer (Chan et al., 1991) starts with simple binning methods and 

tests classification rules for accuracy improvement. The splitting continues for the 

interval with the lowest accuracy. This method can compromise the limit of binning 

methods but is computationally expensive (Dougherty et at., 1995). 
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3.2.4 Contrast-based Method 

Monothetic Contrast Criterion (MCC) approach (Van de Merckt, 1993) uses an 

unsupervised clustering algorithm to find the most contrasted discretization boundary 

(Dougherty et al., 1995). However, this approach cannot distinguish two close cut-points 

with similar contrast nor evaluate the correlation between variables and class information 

(Bang, 2002). 

Mixed supervised/unsupervised MCC incorporates entropy measures into the 

previous MCC to overcome the limitation of the MCC (Dougherty et al., 1995). This 

approach can recognize the correlation between variables and their class information. 

3.2.5 Merge Method 

ChiMerge method (Kerber, 1992) considers the relationship between the feature 

and the class (Liu et al., 2002). The method tests X2 values of the adjacent intervals and 

merges them if they have the least X2 values, which is defined by: 

k m 
"\:"' A., x "\:"' A. 
L" IJ L" IJ 

E" = j=l i=1 
IJ k m 

IIAij 
j=I i=1 

53 

(3.8) 

(3.9) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

where k is the number of classes, m is the number of interval, Aij is the number of values 

in the interval, i and class, j, and Eij is expected frequency of Aij. 

Chi2 (Liu and Setiono, 1995) modifies chiMerge using inconsistency measure to 

set a proper threshold. This method has an advantage in that it can remove noisy 

attributes (Liu et a!., 2002). 

3.3 Structures of Bayesian Networks 

NaIve Bayesian classifiers are the simplest Bayesian network structure. Modified 

structures of naIve Bayesian classifiers have been developed to overcome the limit of 

strong conditional independence assumption (Clark and Niblett, 1987; Kononenko, 1991; 

Langley et al., 1992; Langley and Sage, 1994; Pazzani, 1995). Another approach to 

construct networks is adopting a tree structure using MWST algorithm. 

3.3.1 Naive Bayesian Classifiers 

Naive Bayesian classifiers, also called Bayesian classifiers or simple Bayesian 

classifiers, are the simplest Bayesian networks, which have only one class node. An 

example is shown in Figure 3.1. In this figure, C stands for the class node and the other 

nodes such as X, Y, and Z are all its child nodes. 
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Figure 3.1 An example of naIve Bayesian classifiers 

Figure 3.2 An example of selective naIve Bayesian classifiers 

Figure 3.3 An example of joint naIve Bayesian classifiers 

Figure 3.4 An example of tree-augmented naIve Bayesian classifiers 
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The basic assumption is that computation in the naIve Bayesian classifiers is 

under a strong conditional independence assumption between variables. This 

independence assumption reduces the number of dependency checks needed to connect 

the network. On the other hand, it has been pointed out as the limitation of the naIve 

Bayesian classifiers since its performance is doubtful to handle highly dependent 

variables. In a real world situation, there are few domains that absolutely satisfy the 

conditional independence assumption. But many researchers found that naIve Bayesian 

classifiers perform as well as or better than other more complicated networks (Clark and 

Niblett, 1989; Langley et al., 1992; Michie et al., 1994; Friedman et al., 1997; Webb and 

Pazzani, 1998). 

One of the advantages of the naIve Bayesian classifiers is that they are easier to construct. 

Another advantage also stems from their computational simplicity so that the networks 

require less time and memory. Besides, their inference is much simpler given that there is 

only one propagation step between the class node and any child node. The propagation 

does not rely on the order in which the evidence arrives. Another useful feature of naIve 

Bayesian classifiers is that additional information can be easily added into the existing 

network. This means there is no need to reconstruct the network whenever incorporating 

new information. 
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3.3.2 Modified Naive Bayesian Classifiers 

In order to overcome any violation of conditional independence in naIve Bayesian 

classifiers, some researchers developed modified naive Bayesian classifiers: selective 

Bayesian classifiers, joint naIve Bayesian classifiers, and tree-augmented naIve (TAN) 

Bayesian classifiers. Selective Bayesian networks modify naIve Bayesian classifiers by 

eliminating a redundant variable that lowers accuracy (Langley and Sage, 1994). This 

method starts with an empty set and then adds a variable if the variable increases the 

accuracy of the outcome. This process continues until all variables have been tested. 

Figure 3.2 shows an example. Some researchers reported successful performance of 

selective Bayesian classifiers compared with naIve Bayesian classifiers or decision trees 

(Langley and Sage; 1994; Michie and Al Attar; 1991). 

Joint naIve classifiers are extended version of naIve Bayesian classifiers by 

joining correlated variables (pazzani, 1995). This approach is useful for a domain that has 

strong dependency between variables. Figure 3.3 shows an example of joint NaIve 

Bayesian classifiers. The networks have a potential problem that the joint variable from 

two correlated variables might require a complex search. Therefore, the joining algorithm 

can be limited to pairs of variables (Pazzani, 1995). pazzani found that joint Bayesian 

classifiers outperformed naIve Bayesian classifiers. 

TAN Bayesian classifiers represent the correlation between variables as opposed 

to eliminating or modifying the correlated variables (Friedman et al., 1997). The network 

structure has additional arcs between child nodes as shown in Figure 3.4. For example of 
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three variables, X, Y, Z, if X is correlated to Y and Z then the network connects X to both 

Y and Z to represent the dependence between them. Friedman et al. (1997) reported that 

this approach was better than both naIve Bayesian classifiers and decision trees based on 

C4.S. The approach is useful is for small domain problems and domains with many 

classes (Friedman and Goldszmidt, 1996). 

3.3.3 Tree Structured Bayesian Networks 

Another Bayesian network structure is based on MWST algorithm. The network 

structure can be constructed in a subjective way from expert knowledge or in an objective 

way from data. In order to establish a network from data, the spanning tree algorithm is 

widely used. Chow and Liu (1968) presented an approach to build an optimal dependence 

tree from data. Their intention was to minimize the number of measuring mutual 

information of variables to estimate an underlying n-dimensional probability distribution. 

Mutual information provides measurement of dependency. It is zero for completely 

independent variables but increases as the variables become dependent. 

(3.10) 

For constructing a network, it is needed to compute the joint probabilities of the 

variables and their mutual information as dependency measure. The procedure continues 
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by adding arc with the largest mutual information, also called weight, into the network. 

When the construction is completed, the sum of weight in the network is maximized 

(Chow and Liu, 1968). The resulting network does not contain the directions of the arcs. 

Finally the network would be completed by adding causal directions that represent cause 

and effect relationships between variables. Selecting causal directions as well as choosing 

link for the same mutual information pairs and the class node would require the 

intervention of expert's subjective knowledge. However, we can apply this algorithm 

only to tree structures. Figures 3.5 and 3.6 present an example of the network and the 

process of construction, respectively. In Figure 3.6, the numbers stand for the order of 

magnitude of dependency between variables. As shown in the figure, the arc with 

dependency values of 3 is not selected since this would form a loop. Instead, the arc of 

the next dependency is selected, which is arc with the value of 4. As a result, we can 

obtain a directed acyclic graph representing cause and effect relationships between 

variables. 

In complex problems, it would be difficult to elicit experts' knowledge since the 

expert might not completely understand all the dependencies of the problems. In this 

case, the causal direction can be objectively obtained. If we select one class node, the 

class node is presumably points all the arrows away from it. Similarly, for cases of two 

class nodes, we can set direction of all arrows from the class nodes. This would create a 

singly connected network as shown in Figure 3.7. On the other hand, if there is no 

information of the causal relationship, we can obtain the causal direction from the 
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Figure 3.5An example of tree structured Bayesian networks 

Mutual 
information 

Choose 
a class node 

Figure 3.6 Construction of a network based on spanning tree algorithm 

..... ., 
(a) (b) 

Figure 3.7 Adding causal directions to a spanning tree 
(a) with one root node (b) with two root node 
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conditional independence. For example, ifthere are three nodes in the network, i.e. A, B, 

C, and node A and node C are independent but dependent given node B, i.e. P(AjC)=P(A) 

and P(CjA) = P(C), provided P(AjC,B)*P(AjC) or P(AjB)=O, P(CjB)=O, the direction of 

arrows Vi.111 be from A and from C to B. For another example, if node A and node Care 

conditionally independent given node B, i.e. P(CjA, B) = P(CjB), then the arrow directs 

from A to B and from B to C. These are illustrated in Figure 3.8 but are not always very 

effective. 

MWSTs offer advantages compared with naive Bayesian classifiers. The 

networks can explicitly provide information of the most important variables to determine 

target variable values. This allows us to minimize the problem without considering all 

possible variables. Moreover, the trees can be constructed from data, which does not 

require any other knowledge except mutual information between variables. 

3.4 Probability Propagation 

Probabilistic reasoning in Bayesian networks comprises instantiating the input 

variables and propagating their influences through the networks to update the probability 

of the variables given the evidence. To facilitate the message passing, Pearl proposed a 

method for inference in tree-structured networks in which every node has only one parent 

except the class node (Pearl, 1982). Afterwards the message passing for singly connected 

networks was developed in which a node can have more than one parent with a single 

path between any two nodes (Kim and Pearl, 1983). Spiegelhalter (1986) and Lauritzen et 
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(a) 
(b) 

Figure 3.8 Causal directed networks (a) P(AIC)=P(A), P(ClA)=P(C) (b) P(ClA, B)=(ClB) 

(a) (b) (c) 

Figure 3.9 Three different network structures (a) tree (b) singly connected 
networks and (c) multiply connected networks 

Figure 3.10 A tree network for message passing 
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al. (1986) presented different approaches for multiply connected networks in which there 

can be more than one path between nodes. Figure 3.9 shows examples of these three 

different networks. 

In each node of a network, there are generally six different data stored: the link 

matrix, n evidence, A evidence, n message, A message and the posterior probability. The 

link matrix is a matrix form of the conditional probability of a node given its parent node. 

The n evidence is the prior evidence of a node derived from its ancestors where as the A 

evidence is likelihood evidence accumulated from its child nodes and derived from 

measurement from data. A n message passes from a parent node to a child node while a A 

message passes from a child node to a parent node, in the opposite direction to n 

message. When receiving and combining the evidences, a posterior probability 

distribution of a node is obtained. We will restrict our focus on the algorithm for singly 

connected networks since it provides a general idea. The algorithms are based on 

following five operating equations associated with the network structure in Figure 3.10. 

Operating Equation 1: The A messages 

ill 

AB( aD = L P(bj I ai) A(bj ) 
j~1 

Operating Equation 2: The n messages 

- If A is instantiated for aj: nB(ai) = 1 

- If A is instantiated, but not for ai: 1I:B(aD = 0 
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- If A is not instantiated: 

Operating Equation 3: The 'A, evidence 

- IfB is instantiated for bj : 

- IfB is not instantiated, but not for bj: 

- If B is not instantiated: 

Operating Equation 4: The n evidence 

m 

- For one parent: n(bj) = LP(b j I aJ1t B (a i ) 

i=l 

- For two parents: 

Operating Equation 5: Posterior Probability 

P' (b-) = a 'A,(b-) n(b-) J J 1 

where a is normalization factor. 

Initially, the information of the network contains only the prior probabilities of 

the class nodes and the link matrices of conditional probability. This initialization process 

is performed as follows. 

- Set all A messages and A values to 1. 
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- Set all n messages and n to 1. 

- Set n values to the prior probabilities for class nodes. 

- Post the n messages from the class nodes. 

There are two ways of massage passing:upward propagation and downward 

propagation. In upward propagation, evidences are posted up the network whereas 

evidences are passed down the network in downward propagation. If B receives a A 

message from a child node and B is not instantiated, upward propagation will be 

performed. If B is instantiated, the evidence from its child nodes does not affect. The 

upward propagation steps are as follows: 

- Compute a new A(B) value based operating equation 3. 

- Compute a new posterior probability P'(B) based on operating equation 5. 

- Post a A message to all B's parent nodes 

- Post a n message to B's other child nodes 

If B receIves a n message from a parent and B is not instantiated, the downward 

propagation will be performed as follows: 

- Compute a new nCB) value based on operating equation 4. 

- Compute a new posterior probability of the node based on operating equation 5. 
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- Post a 1t message to each child of B 

- Post a A, message to the other parents if there is A, evidence in C. 

When new information arrives to the network, a variable is instantiated. 

Instantiation of a network requires recalculation of the posterior probabilities of each 

node in the entire network. Evidence changes of a node should be informed to its 

neighbors to update their local parameters. The following steps are instantiation in the 

networks. 

- Set posterior probability of the instantiated state of a variable to 1 and that of all 

the other states of the variable to O. 

- Compute A, evidence of the variable based on operating equation 3. 

- Post a A message to each parent of the variable. 

- Post a 1t message to each child of the variable. 

In a singly connected network, the network will be in a steady state when there is 

no more variable needs updating. However, the message passing of a multiply connected 

network will not be terminated due to its topological characteristic of loop. Figure 3.] ] 

shows the method of message passing in a singly connected network with one class node. 
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(a) 

(b) 

(c) 

Figure 3.11 Schematic diagram of massage propagation in a singly connected network 
(a) upward propagation (b) downward propagation (c) instantiation 
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3.5 Comparison of Artificial Intelligence Approaches 

In recent years, several AI methods have been introduced into many areas. We 

compare some important AI techniques such as decision trees with rules, artificial neural 

networks and Bayesian networks. Figure 3.12 presents simple structure of each system. 

The decision tree is an inference diagram corresponding to the rules. The example of 

neural networks is a three-layered network consisting of an input layer, a hidden layer 

and an output layer. Bayesian networks show cause and effect relationships among 

variables. 

3.5.1 Decision Trees with Rules 

Decision trees are simple and yet widely used since they are very easy to 

comprehend and implement (Russell, 1995; Mitchell, 1997; Lucas and Abu-Hanna, 

1999). A decision is made by passing information from a class node down to some leaf 

nodes. These methods are suitable for problems with discrete values rather than 

continuous values. Decision trees may require disjunction of values of each node. 

However, decision trees can handle data containing error or missing values (Mitchell, 

1997; Ripley, 1996). Decision trees have been popular in medical diagnosis, engineering 

and other classification problems (Ripley 1996) and have been explored in pattern 

recognition and image processing (Pal and Mather, 2003). 
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(a) 

(b) 

(c) 

Figure 3.12 A schematic diagrams of AI structures 
(a) decision trees (b) neural networks and (c) Bayesian networks 
Note that a blue node is a class node (in a decision tree and a Bayesian 
network) or an output node (in a neural network) and a green node is a 
leaf node (in a decision tree) or an input node (in a neural network) 
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Decision trees are often represented as sets of rules. Rule-based approaches are 

suitable for problems with very strong dependencies. The requirement of the rule-based 

system is to satisfy detachment and locality, which implies that if there is a rule, then 

whenever the premise is true, consequence is certainly true regardless of how it was 

derived, i.e. detachment, and regardless of all other data in the database, i.e. locality. On 

the other hand, we cannot infer from the previous rule that if consequence is true then 

premise is true, which reveals the fact that inference in this system is unidirectional 

(Chong and Wally, 1996). Therefore, it is complicated to properly handle bidirectional 

reasoning in the system since adding the opposite direction of a rule leads cycle between 

premise and consequence and eventually an infinite loop (Chong and Wally, 1996; 

Sangfiesa and Burrell, 2000). Rule based approach is computationally efficient but it may 

not represent some problems under uncertainties because we cannot apply detachment 

and locality in this situation (Lucas and Gaag, 1991). The system is also unable to express 

correct probability values. The system becomes more complex as the number of 

evidences in the problem increases especially dealing with a large number of 

combinations of premises for each consequence. 

3.5.2 Artificial Neural Networks 

Artificial neural networks are practical and robust methods in that they can learn 

real-valued as well as discrete-valued problems (Mitchell, 1997; Ripley, 1996). Artificial 

neural networks are able to estimate the relationship between input and output without a 
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mathematical formulation or statistical information. These networks are suitable for 

dealing with incomplete, inconsistent or noisy data. Artificial neural networks are known 

to be very effective and therefore have been applied to many practical problems including 

pattern recognition, classification, function approximation, process control, optimization, 

and prediction (Jain et al., 1996; Ripley, 1996). 

Despite many applications of artificial neural networks, the relationships captured 

by the networks are not easy to understand. This black-box characteristic of the networks 

makes them less attractive to many researchers. The outputs of the networks can be 

represented with only either probabilities or variables but not both of them 

simultaneously. Artificial neural networks incorporate only objective probabilities, 

therefore, there is no possibility to include an expert's belief. 

3.5.3 Bayesian Networks 

Bayesian networks offer several merits compared with other AI algorithms. First, 

Bayesian networks create an understanding of the dependent and independent 

relationships among variables from their topological structure (Friedman and Koller, 

2003). Secondly, Bayesian networks can combine prior knowledge and data (Heckerman, 

1995) such that they are able to adopt subjective information elicited from expert's 

knowledge as well as objective information from data. Moreover, Bayesian network can 

be constructed automatically from the relationships among variables (Pearl, 1999) and 

generalize from data despite the limitation of conditional independence. In fact, their 
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assumption, conditional independence, reduces the complexity of learning (Mitchell, 

1997). Thirdly, Bayesian networks are flexible in many ways. The networks can readily 

include additional information into the existing network when updating. Additional data 

measured on different scales can also be easily adopted. Any subset of the variables in the 

networks can be treated as inputs and other as outputs (Russell and Norvig, 1995). The 

output can be either values or probability of each value, or both, to select the best result 

(Russell and Norvig, 1995). Fourthly, Bayesian networks can handle problem under 

uncertainty such as missing data (Heckerman, 1995). Even if some inputs are not 

observed, the networks may be able to accurately predict the target node value from the 

relationships of other variables. Finally, Bayesian networks are able to provide not only a 

classification tool but also higher level of explanation, for example, which inputs are 

informative to reach the conclusion (Ripley, 1996). 

However, Bayesian networks have been restricted to problems having variables 

with discrete values (Mitchell 1997) like decision trees. Although they can handle 

continuous values in normal distribution, the algorithm for dealing with continuous 

values has not extensively developed (Russell, 1995). Some researchers pointed out that 

Bayesian networks might be slow and NP-hard in the worst case (Cheng et al., 2002; 

Salmeron et al., 2000). 
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Chapter IV 

Stormwater Pollution Modeling 

Stonnwater runoff, one of the major contaminants to receiving waters, is related 

to land use activities in urban areas. For example, the stonnwater monitoring program in 

Los Angeles reported that the stonnwater quality was significantly different among 

different urban land uses (LADPW, 2000). Stonnwater from residential area is generally 

better quality than that from other land uses and might contain nutrients, fertilizers, 

pesticides from grass yards and vegetation (Pitt, 1999; Asaf et aI., 2004) and heavy 

metals from roof materials. Stonnwater quality from industrial area varies and case 

specific, and the pollutant concentration is generally high. Stonnwater quality from light 

industrial area might be similar to stonnwater quality from commercial area (Mikkelsen 

et al., 1994; Asaf et aI., 2004). Transportation area such as streets was identified as the 

highest pollutant loading land use (Bannerman et al., 1993; Arnold and Gibbons, 1996). 
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Many researchers reported that roof surfaces are also important stormwater pollution 

source since they are half of the impervious surfaces in urban areas (Forster, 1996). 

Therefore, urban land use information is important to manage stormwater runoff 

pollution. In recent years, land use information has been used for stormwater modeling 

since many land use data sets become more available and accessible (Burian et al., 2002). 

In this chapter, we review impact of imperviousness associated with urban land 

use on stormwater runoff and existing stormwater quantity and quality modeling. In 

section 4.1, we present the impact of impervious surface on receiving waters, the 

relationship between impervious surfaces and land use, and the estimates of 

imperviousness using remotely sensed data. In section 4.2, we review the stormwater 

runoff models associated with imperviousness. In section 4.3, we explain the concept of 

event mean concentration (EMC) of stormwater pollutants and its relationship with land 

use. In section 4.4 we present existing stormwater pollutant loading models related to 

runoff coefficient and EMCs, and other approaches. 

4.1 Imperviousness 

Many approaches to monitoring and modeling stormwater runoff have involved 

estimating impervious surfaces since impervious surfaces increase stormwater runoff 

(Morgan et al., 1993) and the runoff conveys contaminants into a receiving water body 

(Arnold et al., 1996). Therefore, impervious surfaces have been an indicator of 

urbanization and its impact on the receiving water (Arnold et al., 1996; Brabec, 2002). 
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Arnold et al. (1996) addressed that impervious surfaces degrade the receiving 

water body (1) by contributing to the hydrologic changes; (2) by containing land use that 

generate pollution; (3) by preventing infiltration into ground; and (4) by transporting 

contaminants into the receiving water. Figure 4.1 shows stormwater runoff associated 

with impervious surfaces and Figure 4.2 shows an existing relationship between 

impervious surfaces and the stream quality (Schueler, 1994; Arnold et ai., 1996). Stream 

degradation begins at 10% of imperviousness and becomes severe at 30% of 

imperviousness. The stream environment is classified into three categories as "protected", 

"impacted", and "degraded" (Arnold et al., 1996). Brabec (2002) summarized different 

degradation measures and reported that impervious threshold for degradation was ranged 

from 4% to 50% depending on the associated type of impact measurement as shown in 

Table 4.1. 

Impervious surfaces can be measured in several ways with different cost and 

accuracy such as ground surveys, aerial photographs, digital maps, or satellite remote 

sensing (Stoker, 1998; Sleavin et al., 2000). Other methods employ demographic 

parameters such as population density, number of households, etc., which are not always 

applicable to all urban areas (Brabec, 2002). Ground surveys are accurate but time­

consuming and labor intensive and therefore they are impractical especially in large study 

areas. Aerial photographs are accurate but still expensive compared to satellite images. 

Satellite images have advantages especially for large areas due to their inexpensive data 

and large coverage. Despite the current limit of pixel resolution for detail features, the 

accuracy is improving with advances in higher resolution and classification methods. 
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Table 4.1 Selected degradataion measures associated imperviousness 
Impact measurement parameter Impervious threshold (%) 

Biotic Fish diversity 3.6 - 12 
Physical Base flow 45 

Stream flow 21 
Peak flow 4.6 
Sediment 20 - 50 

Chemical Oxygen 7.5 - 43 
Nutrients 42 

Phosphorus 45 
Metals 50 

Zinc 40 
(modified from Brabec, 2002) 
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Satellite imagery has been extensively used for impervious surface measurement 

(Jackson, 1975; Jackson and McCuen, 1979; Morgan et at., 1993; Deguchi, and Sugio, 

1994; Civco and Hurd, 1997; Slonecker et aI., 2001; Wu and MUlTay, 2003). A general 

approach to estimate impervious surfaces is classification from its land use (Jackson, 

1975; Cermak et ai., 1979; Plunk et al., 1990; Slonecker, 2001; Brabec et al., 2002) 

because the impervious surface varies with land use (Arnold and Gibbons, 1996). 

Impervious surfaces mainly consist of rooftop and transportation areas such as highway, 

road, driveway and parking lot (Schueler, 1994; Arnold and Gibbons, 1996). These 

impervious surfaces consist of each land use with varied degrees. Jackson (1975) 

estimated impervious areas from Landsat MSS image using land use averaging and 

spectral mixing techniques and found that land use mixing technique including band 

ratio, parallelepiped classification, and principle components analysis was accurate. 

Cermak et al. (1979) estimated impervious surfaces from land use classification with 

Landsat MSS image using unsupervised clustering algorithm. Plunk et ai. (1990) 

extracted impervious surfaces from land cover using Landsat TM bands 2,3, and 4. Table 

4.2 displays existing finings on the relationship between imperviousness and land use. 

This table shows that commercial, industrial and transportation land uses contains high 

percentage of imperviousness although imperviousness can vary even within a land use 

type (Brabec et al., 2002). 

Recently, a new approach has emerged usmg sub-pixel analysis for 

imperviousness measures (Ji and Jensen, 1999; Smith, 2000; Flanagan and Civco, 2001; 
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Table 4.2 Average percentage of imperviousness depending on land use 
Percentage of imperviousness (%) 

NRCS Sullivan Alley & Stenstrom Amold 
(1975) et at. (1978) Veenhuis et at. (1993) & Gibbons 

Single- 1 
residential 0.5 
(acre lots) 0.33 

0.25 
Multiple- residential 
Commercial 

Industrial 
Other urban 

20 30 
25 
30 
38 
65 
85 81 

72 40 

Open 5 
"1: public 
*2: shopping center 
*3: downtown commercial 
*4: major roads 
*5: impervious surfaces, roof and paved 

(1983) (1996) 

15 
26 
39 
66 
88 

60 

42 20 

68 
92 

80*1 

91 
80 

o 

25 
30 
38 
65 
85 

95*2 

75 

Giannotti Cappiella Bannerman, 
et ai. (1998) & Brown, (2001) 

36 

85 
85 

50*4 
100*5 

(2001) 

33 

44 
72 

34*1 

53 

41 

49 
83 

39*1 
92'''2 
96*3 
69 
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Slonecker et al., 2001; Hung and Ridd, 2002; Yang et al., 2003). This approach resolves 

mixed pixel problems with the percent imperviousness of a pixel, which characterizes 

mixed pixels at higher resolution than their pixel resolution (Slonecker et al., 2001). 

4.2 Stormwater runoff 

As a watershed becomes impervious or urbanized, stormwater runoff volume 

increases (Riordan et al., 1978; Corbett et al., 1997). One of the main component to 

determine annual average storm runoff volume is the runoff coefficient, which is defined 

as the average ratio of runoff to rainfall (Wong et al., 1997). The runoff coefficient 

represents the fraction of rainfall that actually reaches the receiving water. The runoff 

coefficient is highly correlated to imperviousness of the area. The following equation is 

an example ofthis relationship (Wong et aI., 1997): 

RC=0.7xI+O.1 (4.1) 

where RC is runoff coefficient, I is impervious fraction. Morgan et al. (1993) suggested 

an empirical relationship for the north Texas area: 

RCp = 0.3 x I + 0.2 

RCimp = I - 0.15 
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where RCp is runoff coefficient for the pervious areas (I < 50%) and RCimp is runoff 

coefficient for the impervious areas (I > 50%). 

Then the annual average storm runoff volume can be calculated as follows: 

RV = RC x A x CF x RF (4.4) 

where RV is annual storm runoff (m3/yr), A is drainage area (m2), CF is conversion 

factor, and RF is annual storm rainfall (rum). The following equation is also proposed for 

calculating annual runoff considering runoff from both impervious and pervious areas 

(Chiew and McMahon, 1999): 

RV = RCimp X Aimp X CF x RF + RCp x (l-Aimp) x CF x (RF + W) (4.5) 

where Aimp is fraction of effective impervious areas and W is outdoor water use. In this 

equation, effective impervious areas are a main factor in calculating runoff volume. 

As impervious surfaces can be estimated from land use types in Table 4.2, runoff 

coefficient can be also estimated from land use of the given area. Corbett et al. (1997) 

found that stormwater runoff volume from urban area was approximately 5.5 times 

higher than runoff from forest, and runoff coefficient of urban area was 15% higher than 

runoff coefficient of forest. Table 4.3 presents existing relationship among 

imperviousness, runoff coefficient and land use in the Santa Moruca Bay Watershed. 
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4.3 Event Mean Concentrations 

In order to estimate stormwater runoff pollutant loads, EMCs of pollutants have 

been widely used (Wong et al., 1997) since the concentration of the pollutant 

considerably varies during an entire storm event. The EMC is an average pollutant 

concentration during the storm event and defined as the total pollutant mass divided by 

total runoff volumes as follows (Huber, 1993): 

M L:C(t)Q(t) 
EMC=-y= L:Q(t) (4.6) 

where M is total mass of pollutant during the storm event (kg), V is total stormwater 

runoff volume (m\ C(t) is pollutant concentration varied over time (mg/L), Q(t) is flow 

over time (Umin), and T is total duration of runoff (min). 

EMCs might be dependent on sites and storm events (Smullen et at., 1999). 

Generally, EMCs are characterized mainly by the land uses in the watershed (Wong et 

at., 1997). Table 4.4 shows the EMCs related to the land use in the Santa Monica Bay 

watershed. 
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Table 4.3 Runoff coefficients and imperviousness based on urban land use 
Land use Imperviousness Runoff Coefficient 

single family residential 0.42 
multiple family residential 0.68 
commercial 0.95 
public 0.80 
industrial 0.91 
transportation 0.80 
open 0.00 
(adopted from Stenstrom and Strecker, 1993; Wong et at., 1997) 

Table 4.4 Water quality characteristics (EMCs) based on urban land use 
Land use COD BOD5 TSS TKN N02&3 TP Cu Pb 

0.39 
0.58 
0.74 
0.66 
0.74 
0.66 
0.1 

Zn 
single 140 17 290 4.3 1.85 0.85 0.095 0.350 0.350 

0.380 
0.694 
0.694 
0.694 
0.380 
0.440 

multiple 130 15 210 2.4 1.00 0.62 0.100 0.440 
commercial 90 14 180 2.0 1.20 0.43 0.072 0.225 
public 90 14 180 2.0 1.20 0.43 0.072 0.225 
industrial 90 14 180 2.0 1.20 0.43 0.072 0.225 
transportation 130 15 210 2.4 1.00 0.62 0.100 0.440 
open 95 2 490 2.8 1.45 0.52 0.055 0.140 
(adopted from Stenstrom and Strecker, 1993; Wong et at., 1997) 
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4.4 Pollu.tant loading 

Stormwater runoff carries various pollutants including suspended solids, organic 

matters such as BOD and COD, inorganic materials, nutrients, heavy metals, and fecal 

coliforms (Corbett, 1997). TSS, BODs and COD have been used to estimate urban 

stormwater runoff quality (Shinya et al., 2003). Tong and Chen (2002) reported that 

nitrogen and phosphorus loads were generated mainly from agriculture and impervious 

urban areas than other land uses. Asaf et al. (2004) reported that volatile organic 

compound (VOC) concentrations generated from the industrial area are higher than those 

form residential area. Heavy metals are also one of the main pollutants in stormwater 

runoff from urban area (Macdonald et ai., 1997; Yuan et ai., 2001). Heavy metals are 

mostly generated from transportation area such as highway, street and parking lots 

(Morrison et ai., 1984; Yuan et ai., 2001) and roof materials (Gromaire et ai., 2001). For 

example, major sources of lead are roofing and paint materials (Davis et ai., 2001; Asaf 

et al' J 2004) and vehicular emission since lead has been used for a vehicle fuel additive 

(Yuan et aI., 2001). Major sources of cupper and zinc are reported to be roofing materials 

and drain water systems due to the corrosion (Forster, 1996; Gromaire et ai., 2001; He et 

al., 2001). Fecal coliforms are mainly transported from urban land uses despite seasonal 

variation (Gannon and Busse, 1989; Kelsey et ai., 2004). 

Many researchers have tried to develop empirical models for stormwater runoff 

pollutant loads based on land use data (Stenstrom et al., 1984; Stenstrom and Strecker, 

1993; Wong et al., 1997; Burian et al., 2002; Ackerman and Schiff, 2003). If we have 
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information of runoff volume and EMCs for each pollutant, we can obtain annual 

pollutant load from the following equation (Wong et al., 1997): 

(4.7) 

where PLj and EMCj are annual pollutant loading and the EMCs for pollutant i, 

respectively. If we assume that the rainfall and annual number of storms are equal for all 

pixels, the following equation represents pollutant loads per unit pixel and unit rainfall: 

PLj = a x RC x EMC j (4.8) 

where a is a normalization factor that depends on units and conversion factors. 

When considering dry weather pollution, the following equation can be used to 

calculate stormwater pollutant loads (Chiew and McMahon, 1999): 

PLj=RV x EMCj +BF x DWC (4.9) 

where BF is baseflow and DWC is dry weather concentration. Dry weather flow pollutant 

load was reported to be significant with lower precipitation (McPherson et at., 2002). 

Some researchers suggested simple empirical models of stormwater pollutant 

loads (Chiew and McMahon, 1999; Vaze and Chiew, 2003): 
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PL=u x RV~ 

PL= u x RF~ 

PL =axL;(l-RImin )13 

PL = axL;(l-RR min )13 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

where u and 13 are optimizing parameters, RImin is minimum rainfall intensity, and RRmin 

is minimum runoff rate. Some researchers reported that stormwater pollutant loads are 

positively related to the antecedent dry period (Brezonic and Stadelmann, 2002; Vaze and 

Chiew, 2002), which confirms first flush phenomenon. 

86 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter V 

Study Area and Data 

This chapter describes our methodology to classify satellite image for urban land 

use and stormwater pollutant loading. In section 5.1, we describe our study area, Marina 

del Rey in the Santa Monica Bay Watershed. In section 5.2, we explain satellite imagery 

used in this study: Landsat TM and ET~ images. The ground truth data are also given 

for both image classification. In section 5.3 ancillary data such as Iocational data, digital 

elevation model (DEM), and vegetation indices such as normalized difference vegetation 

index (NDVI) and Tasseled Cap Transformation are presented. 
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5.1 Study Area 

The study area was focused on Marina del Rey and its vicinity (latitudes 33° 56' 

42"-33° 59' 45", longitudes 118°24' 42"-118°27' 34") as shown in 5.1. This area 

includes Banona Wetlands located in the southern part of the Santa Monica Bay 

watershed. Santa Monica Bay is popular recreational resources and important ecological 

resources of natural habitat (Dojiri et al., 2003). Santa Monica Bay watershed covers total 

area of 1,465 km2 (EPA) from Point Dume on the north to Palos Verdes point on the 

south (Wong et al., 1997) as shown in Figure 5.2. It receives various contaminants 

including municipal and industrial wastewater and stormwater runoff from the City of 

Los Angeles that impair the water quality. Improved sewage treatment plants in the 

watershed have reduced the pollutant emissions from wastewater discharges (Bay et ai., 

2003). Therefore, emissions from stormwater runoff are receiving more concern since 

stormwater runoff constitutes the dominant source of contaminants (Bay et ai., 2003). 

As shown in Figure 5.2, there are two main drainages to Santa Monica Bay: 

Ballona Creek and Malibu Creek. The Malibu Creek watershed is located in the northern 

part of the Bay (Bay et aI., 2003). Majority of the watershed is open area (Dojiri et al., 

2003) i.e. 9% of residential, 1% of commercial and industrial respectively, and 88% of 

open area (Bay et ai., 1999). Conversely, the Ballona Creek watershed is located in the 

south central part of the Bay and most of the watershed is urban area, i.e. 83% of the 

watershed is urbanized (Bay et aI., 1999; Dojiri et ai., 2003). The watershed consists of 

64% of residential, 8% of commercial, 4% of industrial, and 17% of open areas (Bay et 
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N 

s 
Figure 5.1 Study area of Marina del Rey and its vicinity 

Point Dume 

Santa Monica Bay 

Peninsula 

Figure 5.2 Location of Marina del Rey and Santa Monica Bay watershed. 
Note that the red box area is the study area 
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aZ., 1999). Therefore stormwater runoff from Banona Creek watershed more impairs the 

receiving water quality than that from Malibu Creek watershed (Bay et al., 2003a; Dojiri 

et aZ., 2003). Moreover the runoff from Ballona Creek watershed has been increased 

during the last century due to the population growth and an increase in impervious 

surfaces. Accordingly, pollutant emissions from the watershed have been reported to 

increase (Dojiri et aZ., 2003). 

The south of Ballona Creek is receiving growing concern due to the importance of 

the Ballona Wetlands (Ballona Wetlands Foundation). The Ballona Wetlands have been 

degraded by urban growth especially the development of Marina del Rey and its vicinity. 

Its freshwater marsh is important for wildlife habitat and water quality. In order to 

preserve the marsh, it is important to properly monitor and manage stormwater quality 

and urban features since the freshwater marsh is fed mainly by the stormwater runoff 

from urban area. 

The size of the study area is approximately 25 km2 that is including Ballona 

Wetland with area of 8 km2
• The surrounding urban area is dominated by residential land 

use but contains other urban features such as commercial, industrial, and transportation 

land uses. This area has a Mediterranean climate with an average annual rainfall of 360 

mm (NOAA), which occurs mainly during winter. The area is relatively flat with the 

maximum elevation of approximately 60 m. 
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5.2 Satellite Imagery 

5.2.1 Landsat TM 

We used Landsat Thematic Mapper (TM) images (obtained on September 3, 

1990, path 41 row 36) for classification. Figure 5.3 shows three visible color composite 

of the study area. A subimage of the study area, which consists of 173 pixels by 227 

pixels as columns and rows respectively, was extracted from all bands 1 to 7. The spatial 

resolution of the image was 25 m2 instead of 30 m2 due to the post-processing of edge 

enhancement. 

Figure 5.4 shows the distribution of each TM band and the distribution of each 

band is mostly skewed. Band 6 has narrow range with high peak since it is thermal band. 

Table 5.1 gives statistical information of each Landsat TM band and Table 5.2 shows 

correlation of each band. The table shows that bands 1, 2 and 3 are highly correlated, 

since they are visible bands. Bands 5 and 7 also show high correlation since both are 

middle infrared. 

Official land use data obtained from Southern California Association of 

Governments (SCAG, 1993) was used as ground reference for both training data and test 

data for accuracy assessment. Figme 5.S shows the SCAG land uses in the given study 

area. This land use data had been resampled to match the resolution of TM image using 

GIS (Lee, 2003). The data contained 26,614 homogeneous land use pixels. 
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Figure 5.3 Three color composite of Landsat TM visible bands for the study area 
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Figure 5.4 Distribution of Landsat TM bands 
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Table 5.1 Statistics of Landsat TM data 

Input Min Max 

band1 5 255 
band2 0 255 
band3 0 255 
band4 0 255 
band5 0 255 
band6 134 193 
band7 0 255 

Table 5.2 Correlation of Landsat TM bands 
band 1 band2 band3 

band 1 1 
band2 0.91 1 
band3 0.87 0.95 1 
band4 0.40 0.53 0.52 
band5 0.30 0.37 0.48 
band6 0.06 0.08 0.14 
band7 0.40 0.47 0.57 

Median Mean 
Standard 
deviation 

107 113 
49 52 
65 68 
65 66 
94 98 
163 163 
53 56 

band4 band5 band6 

1 
0.43 1 
-0.02 0.29 1 
0.33 0.88 0.34 

Land use 

single-family residential 
multiple-family residential 

II commercial 
II public 
II industrial 
II transportation 
· .... open 

33 
19 
29 
23 
39 
6 

26 

band7 

1 

Figure 5.5 Southern California Association of Govemments land use data (1993) 
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5.2.2 Landsat ETM+ 

A Landsat ETM+ image (obtained on August 11, 2002, path 41 row 36) was also 

used. All bands except panchromatic band were examined for our study. A subimage of 

the study area is shown in Fif:,TUre 5.6, which was extracted from bands 1 to 7 consisting 

of 153 pixels by 200 pixels as columns and rows respectively. The total number of pixel 

of the subimage was 30,600 but the pixels that belong to water was excluded using 

masking. Therefore, total number of land use pixel in the given area was 27,416. The 

spatial resolution of band 1 to 5 and 7 was 28.5 m2 whereas band 6 (thermal band) has the 

spatial resolution of 57 m2
• The thermal band was resampled to match the resolution of 

28.5 m2 based on nearest neighbor. The training data and testing data for accuracy 

assessment were collected from all classes to avoid undersampling the small classes 

(Jensen, 1996). The total number of training data pixels was 2,067 and the total number 

of test data pixels was 1,033, which correspond to 8.5 % and 4.3 % of total data 

respectively. Figure 5.7 shows the distribution of each band and the detail information of 

satellite image data is given in TableS.3. Table 5.4 provides the correlation of each band 

and visible bands and middle infrared bands exhibit high correlation. 

As ground reference data, official land use obtained from SCAG (2003), aerial 

photo, and field survey were used for both training data and test data for accuracy 

assessment. Figure 5.8 shows the SCAG land use data. Some land use has been changed 

compared to 1993 data, i.e. public from open land use next to Loyola Marymount 

University and commercial converted from open land use on Washington Blvd. 
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Figure 5.6 Three color composite of Landsat ETM+ visible bands for the study area 
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Figure 5.7 Distribution of Landsat ETM+ bands 
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Table 5.3 Statistics of Landsat EMT+ data 

Input Min Max 

band 1 80 255 
band2 50 255 
band3 43 255 
band4 20 155 
band5 9 255 
band6 138 210 
band7 8 255 

Table 5.4 Correlation of Landsat ETM+ bands 
bandl band2 Band3 

band 1 1 
band2 0.98 1 
band3 0.95 0.97 1 
band4 0.25 0.34 0.31 
bandS 0.24 0.32 0.47 
band6 0.21 0.20 0.27 
band7 0.51 0.58 0.70 

Median Mean 
Standard 
Deviation 

band4 

1 
0.36 
-0.18 
0.25 

111 114 15 
94 96 17 

102 105 22 
63 63 12 
96 101 28 

180 179 9 
75 79 25 

band5 band6 band7 

1 
0.25 1 
0.90 0.30 

Land use 
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1m industrial 
III transportation 
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W&E 
~~ 
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1 

Figure 5.8 SCAG land use data of the study area (2001) 
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5.3 Ancillary Data 

5.3.1 Locational Data 

In order to incorporate horizontal spatial information of the study area, Iocational 

ancillary data was created, i.e. X and Y coordinate values. The coordinate values of each 

pixel were obtained from Landsat images using RSI ENVI 4.0 based on WGS 1984 UTM 

(zone lIN). The unit of the coordinate values were meters. The purpose of the ancillary 

data was to check whether including Iocational information improves the classification 

accuracy and to compare the result with the classification using spectral data only. Table 

5.5 shows the statistics of the Iocational data of the study area. 

5.3.2 Digital Elevation Models 

To investigate the effect of the vertical elevational information on classification, 

we used Shuttle Radar Topography Mission (SRTM) data and National Elevation Dataset 

(NED) as DEM ancillary data. 

Shuttle Radar Topography Mission 

SRTM collected elevation radar data on a near-global scale (NASA lPL). The 

mission was cooperated by NASA, the National Imagery and Mapping Agency (NIMA) 
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Table 5.5 Statistics of geospatial ancillary data 
Input Min Max 

X 365213.25 369545.25 
Y 3756969.75 3762641.25 

SRTM -8388607 61 
NED -0.1997 57.1982 

Mean 
367550.66 

3759933.66 
-163983 

16.70158 

Mode 
367692.75 

3762641.25 
11 

2.27 

Figure 5.9 SRTM image of the Marina del Rey 

Figure 5.10 NED image of the Marina del Rey 
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of the U.S. Department of Defense and the German and Italian space agencies and is 

managed by NASA's Jet Propulsion Laboratory (lPL). The purpose of SRTM is to 

produce high-resolution digital topographic information of Earth. A radar system onboard 

Space Shuttle Endeavour was launched on February 11, 2000 and the mission lasted for 

11 days. SR TM used radar interferometry to collect elevation data. Radar interferometry 

uses two radar images taken from different locations, from which surface elevation is 

calculated. By using interferometry, SRTM collected data over 80% of Earth's land mass. 

The SRTM data were resized to match the Landsat image size of the study area. 

The resized data were resampled based on nearest neighbor to meet the resolution of 

Landsat image. Table 5.5 shows the statistics of the SRTM data. In this table, the 

negative elevation is below the sea level. Figure 5.9 shows the color coded SRTM image 

of the study area. This figure shows that the red color areas have higher elevation and the 

Santa Monica Bay has negative values. 

N adonal Elevation Dataset 

NED is a raster elevation data assembled by the U.S. Geological Survey (USGS) 

(Gesch et al., 2002). The purpose of NED is to provide nation wide coverage of elevation 

data in a seamless format with consistent bases. Tiled DEM data were assembled with 

edge matching to minimize artifacts of adjacent tiles. Removing artifact improves slope 

and shaded-relief, and accordingly information that derived from the elevation data. NED 

has a resolution of approximately 30 m for the continental United States, and Hawaii, and 
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60 m for Alaska. The horizontal datum is the North American Datum of 1983 (NAD 83), 

and the vertical datum is the North American Vertical Datum of 1988 (NA VD 88), in 

which the elevation values are converted to decimal meters. The projection is converted 

from UTM coordinate system of the source DEM to a geographic coordinate system, i.e. 

decimal degrees of latitude and longitude. 

NED data used here was obtained on February 11, 1999 (USGS). The image was 

reprojected and resized to be consistent with the Landsat image of the study area and 

resampled using nearest neighbor since it's resolution is 30 m that is slightly different 

from the resolution of Landsat ET~ image (28.5m). As shown in Table 5.5, the 

maximum of elevation of the study area is 57m and the elevation is not much varied. The 

elevation below the sea level is close to O. Figure 5.10 shows the NED image of the study 

area. This figure shows that the elevation of the southern part adjacent to BaHona 

Wetlands is higher than northern part. 

5.3.3. Vegetation Index 

Normalized Difference Vegetation Index 

Vegetation index was calculated in order to investigate whether it assists in 

improving classification accuracy. NDVI was calculated using RSI ENVI 4.0 from 

Landsat ET~ image. The resulting NDVI image of the study area Figure 5.11, which is 

color coded. In this figure, green color areas are vegetated areas corresponding to open 
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areas such as Banona Wetlands, Westchester recreation center and other parks, and 

single-family residential areas. Red color areas are nonvegetated or impervious surfaces 

such as Los Angeles International airport, commercial and industrial areas. Dockweiler 

state beach and the open area under construction also exhibit redish color although they 

belong to open land use. 

Tasseled Cap Transformation 

Tasseled Cap transformation was calculated using RSI ENVI 4.0 in order to assist 

in selecting training data and to improve classification accuracy. Figure 5.12 shows the 

resulting Tasseled Cap transformation of the study area where brightness, greenness and 

wetness were represented by red, green and blue respectively. Therefore, highly 

impervious surfaces such as Los Angeles International airport, commercial and industrial 

areas show red due to their high brightness values. Dockweiler state beach also exhibites 

high brightness in this case. On the other hand, vegetated areas in open land use such as 

Ballona W etlands, Westchester recreational center and parks, and in other land uses such 

as residential areas and Loyola Marymount University are green and Santa Monica Bay 

and fresh water marsh of Ballona Wetlands are blue due to their water content. 
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Figure 5.11 Color coded NDVI of the Marina del Rey 
Green: vegetated, red: non vegetated 

Figure 5.12 Tasseled cap image of the Marina del Rey 
red: brightness, green: greenness, blue: wetness 
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Chapter VI 

Urban Land Use Classification 

Many approaches to land use classification with satellite imagery have been 

widely explored to assist urban planning and environment management. For instance, 

Landsat series imagery has been extensively used for land cover/use analysis (Haack, 

1983; Haack et al., 1987; Pax-Lenney, 1997; Ridd and Liu, 1998; Stefanov, 2001; 

Clapham, 2003; Wilson et al., 2003). However, the use of Landsat imagery for urban 

areas poses problems since urban areas are highly heterogeneous. Most pixels in the 

Landsat imagery contain a mixture of different urban features with different proportions. 

For example, a pixel of residential land use could contain mixed signatures of buildings, 

pavement, driveways and vegetation such as grass yards and trees (Clapham, 2003). 

Another problem with urban classification arises from spectral signature similarity among 

different land uses. For example, pixels of commercial and industrial land uses could 
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exhibit similar spectral signatures if the pixels consist of similar roof materials (Stefanov, 

2001). Therefore, a method to resolve these problems is needed. 

In this chapter, we evaluate the performance of Bayesian networks to classify 

urban land use from Landsat images. In section 6.1, we investigate the optimal conditions 

of discretization and training data size for Bayesian network classification. In section 6.2, 

the performance of different network structures is compared for classification and the 

most informative input variables are identified. In section 6.3, we investigate the effect of 

incorporating ancillary data on accuracy. In section 6.4, we discuss the performance of 

Bayesian networks. We aimed to gain an understanding of the nature of urban land use 

classification. 

6.1 Optimal Conditions for Bayesian Networks Performance 

Landsat TM image data were used to investigate the effect of discretization and 

training data size on classification. Although the resolution allows at most level II 

classification (Anderson et al., 1976; Ridd, 1995), it is consistent with our categories of 

classification. The categories we used were urban classification level II based on U.S. 

Geological Survey (USGS) classification system (Anderson et al., 1976): residential, 

commercial, industrial, transportation, and open area. 
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6.1.1 Training Sample Size 

Bayesian networks require prior knowledge of the study area and data set to select 

representative training data. In particular, training data size, which is related to the 

number of spectral bands and statistical properties, affects the accuracy of classification. 

It is important to select sufficient training data size for proper training (Hay, 1979; 

Foody, 2002) and homogeneous training data representing each class (Richards and Jia, 

1999; Schowengerdt, 1997). The accuracy of the classification usually increases with 

large number of training data (Dobbertin and Biging, 1996) but large training data sets 

are not always affordable. There is no universal rule for selecting training data size and 

the required training data size from the same imagery could vary for different classifiers. 

For example, the maximum likelihood algorithm is known to require a smaller training 

data set than neural networks (Swain, 1978; Paola and Schowengerdt, 1995), although 

some researchers reported that neural networks needed smaller training data sets (Hepner 

et al., 1990; Foody et al. 1995a; Paola and Schowengerdt, 1995). Presently there is very 

limited research that examines the effect of training data size on Bayesian network 

classification with satellite imagery. Therefore, we tried to find the sufficient training 

data size for Bayesian network classification. If Bayesian networks can be properly 

trained with small training data sets, they become more attractive as an alternative 

classifier of satellite imagery. 

In order to test the effect of training data size, we used ten subsets of training data 

with sizes of 400, 800, 1600, 2000, 4000, 8000, 16000 and 20000. The proportion of each 
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land use is consistent for all different training data size. All input data were discretized 

into 15 values based on equal width intervals. A total of 400 pixels of test data were 

selected for accuracy assessment, which did not include any pixels from the training data, 

and were fixed for each case. These conditions are summarized in Table 6.1. 

Figure 6.1 shows the relationships between training data size and accuracies. The 

results show that accuracy increases with the size of the training data, up to 2,000 or 

4,000 pixels. The increase in accuracy with increasing numbers of pixels is monotone, 

except for 1,600 (MWSTs) and 1,200 (naIve Bayesian classifiers) pixels. The reason for 

the decline is not known, but may be an artifact of the specific data set at those pixels. 

For MWSTs with locational ancillary data, the accuracy and K coefficient converged to 

approximately 76% and 65% respectively at the 2,000 pixels, which is 7.5% of total data. 

F or naIve Bayesian classifiers with locational ancillary data, the accuracy and K 

coefficient converged to approximately 74% and 62 % respectively at 4,000 pixels. The 

increase in accuracy between 2,000 and 4,000 pixels is only 1 to 2 %. These results 

indicate that a training data set size of 2,000 pixels, or 7.5% of the data set, will be 

sufficient for both networks when incorporating locational ancillary data. 

The results without locational ancillary data show no significant difference in 

accuracies as the training data set increased from 800 to 20,000 pixels. Interestingly, both 

networks produced better accuracies with small training data size of 800 pixels than those 

with large training data size. The results exhibited a similar decrease in accuracy when 

using 1200 (MWSTs) and 1600 (naIve Bayesian classifiers) pixels. The accuracies 
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Table 6.1 Summary of test condition for the effect of discretization and training data set 
training data size discretization methods variable states 

training data size 
testing data size 
discretization methods 

400 - 20,000 4,000 4,000 
400 400 400 

equal width equal width 
equal frequency 
standard deviation 

input variable states 15 10 
7 

class variable states 5 5 

-+- Na"we -fm- MII\IST i 
--<?- k na"we -a- k MII\IST! 

400 1200 2000 8000 16000 
Training data size 

(a) 

50 

.~ ijH ijn~.~;.~.i 
-+- Na"we -fm- MII\IST ! 
--<?- k na"we -a- k MII\Isr 

400 1200 2000 8000 16000 
Training data size 

(b) 

Figure 6.1 Bayesian network performance depending on training data size 
(a) with spectral and geospatial data (b) with spectral data only 

equal width 

5 - 50 

5 

Note that solid lines with closed markers represent overall accuracy and those 
with open markers represent kappa coefficient. 
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become almost constant when using more than 2,000 pixels. Overall, MWSTs slightly 

outperformed naIve Bayesian classifiers. 

The number of training pixels may depend more on the reliability of training as 

opposed to the final accuracy. The accuracy increased by only 5 to 6% as the pixels 

increased from 400 to 2,000 then reaching a plateau. The size of the required training 

data set for these examples is comparable to Mather's (1999) suggestion. Using equation 

2.2, the required size of the training dataset is 1,050 (e.g., 30x7x5). The anomaly in 

accuracy from 1,200 to 1,600 pixels may be an artifact of the randomly selected pixels. 

Therefore choosing a sufficient number of pixels may be more important in avoiding 

anomalies than in maximizing accuracy. 

6.1.2 Discretization Methods 

We compared three different discretization methods widely used in classification: 

equal width interval, equal frequency interval and standard deviation breaks. The equal 

width interval method breaks the range of the observed data values with equally sized 

intervals whereas the equal frequency interval method divides the range with unequally 

sized intervals (Liu et al., 2002; Yang and Webb, 2003). In case of satellite imagery, 

there are so many pixels with equal DN values that it is impossible to create intervals 

containing equal numbers of observations without splitting pixels with equal DN values 

into different intervals. To avoid this problem, the intervals may not have equal numbers 

of observations. The standard deviation method breaks the range at standard deviation 
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intervals from the mean (Minami, 2000). For example, each interval is calculated as mean 

± a·standard deviation and a is a scale factor, e.g. 0.25,0.5, or 1, that can be determined 

by the number of intervals. Those observations beyond a certain number of intervals from 

the mean can be aggregated. 

For testing different discretization methods, training data size was set to 4,000, 

which corresponds to 15% of total data. Total test data was fixed to 400 for accuracy 

assessment. In this case, we discretized input data to 10 states for equal width and equal 

frequency interval and 7 states for standard deviation breaks with a equal to 1 for spectral 

signature data. 

Figure 6.2 presents the relationships of discretization methods and the accuracies. 

In this figure, the equal frequency interval method gave the best accuracy among the 

three methods. The differences among discretization methods were 2 to 7% in overall 

accuracy and 3 to 11 % for K coefficient. This appears to agree with our intuition in that 

the distribution has a bell shape as shown in Figure 5.4. The equal frequency interval 

method better represented the data than the other methods, which placed a large number 

of pixels in just a few intervals. The equal frequency interval method also benefited more 

with the inclusion of locational ancillary data. The largest differences in MWSTs' overall 

accuracies and K coefficients were 7% and 11%, respectively. For naive Bayesian 

classifiers, the largest differences were only 3% and 4% for overall accuracy and K 

coefficient, respectively. 

When considering the classification accuraCIes with spectral data only, the 

difference between three discretization methods became triviaL The difference of overall 
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Figure 6.2 Bayesian network performance depending on discretization methods 
(a) with spectral and geospatial data (b) with spectral data only 
Note that solid lines with closed markers represent overall accuracy and those 
with open markers represent kappa coefficient. 
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accuracy was only 1 to 2 % for both networks. Similarly, the difference in K coefficient 

was only 1 to 3%. In the absence of Iocational ancillary data, the differences in accuracy 

using different discretization methods were small. 

6.1.3 Number of Input Variable States 

The number of input variable states is known to affect Bayesian network 

performance. A small number of states may improve the accuracy but may lose 

information from the original distribution. A large number of states can represent the 

original distribution more accurately but may suffer from accuracy and complexity. There 

is no study that systematically evaluates the optimal number of input variable states. 

Therefore, we try to empirically determine an optimal number of input variable states for 

discretization. The number of variable states may different depending on input data 

characteristics, but may be constant for our application since many satellite multi-spectral 

signature consists of 8-bit information. 

The number of input variable states was varied from 5, 10, 15, 20, 25, and 50. 

Each variable consists of 8-bit spectral signature and we fixed the number of states for all 

variables in each case. The Iocational ancillary data was also discretized in the same way 

when applicable. We used a fixed size of 4,000 training data based on equal width 

interval to investigate the effect of the number of the input variable states. For accuracy 

assessment, 400 data were selected for a consistent test. 
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Figure 6.3 illustrates the relationships between the number of input states and the 

classification accuracy. The accuracy increased as the number of input variables states 

increased. This was especially true for the first half of the subsets. 

For MWSTs incorporating Iocational data, the overall accuracy and K coefficient 

increased monotonically with the number of input variable states, except for the 

anomalous results at 20 states. The naIve Bayesian classifiers achieved the peak 

accuracies with the 15 states and then decreased. 

For the classification with spectral data only, larger numbers of input variable 

states actually lowered the accuracy. Overall accuracy of both networks was greatest 

using 15 states. The greatest value of K coefficient was achieved with 15 states for 

MWSTs. NaIve Bayesian classifiers had the best accuracy with 20 states, although this 

accuracy was almost the same as the accuracy with 15 states. 

These results show that fifteen states were the most effective. Slightly higher 

accuracy achieved with 25 and 50 states for MWSTs, but the increase was trivial. The K 

coefficient for naIve Bayesian classifier was slightly greater using 20 states. For these 

examples, 15 states are optimal for classifying the satellite image data consisting of 8-bit 

DNvalues. 
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Figure 6.3 Bayesian network perfonnance depending on the number of variable states 
(a) with spectral and geospatial data (b) with spectral data only 
Note that solid lines with closed markers represent overall accuracy and those 
with open markers represent kappa coefficient. 

113 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

6.2 Bayesian Network Classification 

6.2.1 Characteristics of Data 

F or urban land use classification, we used Landsat ETM+ images. We used the 

land use categories based on U.S. Geological Survey (USGS) level II classification 

system for urban (Anderson et al., 1976): residential, commercial, industrial, 

transportation, and open area. Furthermore, we also used level III classification system: 

single-family residential, multi-family residential, commercial, public, light industrial, 

transportation, and open area. 

Table 6.2 shows the percentage of each class in the training data set. All classes 

were collected from each class to avoid undersampling (Jensen, 2000). The statistics of 

each land use in training data are given in Table 6.3. The tables show that range of each 

land use category overlapped with other categories in each band. 

Figure 6.4 shows distribution of pixels of each land use category in two 

dimensional spectral space. In this figure, none of the classes were separated from other 

classes in the space of highly correlated bands, e.g. bands 1,2 and 3, bands 5 and 7, and 

bands 61 and 62. 

The spectral separability of each class was calculated based on the Jeffries­

Matusita equation (Richards and Jia, 1999). The potential separability range is from 0.0 

to 2.0, and values greater than 1.9 indicate that the pairs have good separability. Table 

shows the separability of each class in level II and III classification. Pairs of multiple-
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Table 6.2 Ratios ofland uses in the training data set 
USGS level II class USGS level III class Ratio (%) 

Residential (11 ) single-family residential (111) 

Commercial (12) 

Industrial (13) 
Transportation(14) 
Open 

multiple-family residential (112) 
commercial (121) 
public (122) 
light industrial (13) 
transportation (14) 
agriculture (2) parks(122) 

Total 
Note that ( ) is the USGS land use category. 

Table 6.3 Statistics of training data 
(a) Range ofDN values of each class in level III classification system 
Band S M C P I T 
Bl 91-124 94-192 104-211 95-214 114-228 107-181 
B2 71-110 71-1982 82-192 71-210 91-216 86-168 
B3 67-124 68-206 83-220 69-247 95-253 84-190 
B4 53-87 46-106 43-106 35-108 44-123 41-89 
B5 53-133 52-202 61-255 39-187 65-255 80-161 
B61 81-131 74-131 63-159 67-170 88-152 63-131 
B62 166-192 163-191 158-205 160-210 169-201 157-192 
B7 38-105 38-194 46-255 37-170 55-255 68-158 

(b) Mean ± std of DN values of each class in level III classification system 
Band S M C P I T 
BI 107±6 124±16 133±20 132±19 144±18 144±19 
B2 90±7 105±I8 114±21 113±21 126±20 129±20 
B3 94±9 112±22 123±26 124±27 138±25 144±25 
B4 68±5 62±10 61±11 64±13 65±12 66±9 
B5 92±10 89±19 97±31 98±21 103±27 122±17 
B61 107±7 105±1O 116±15 120±17 126±12 110±9 
B62 179±3 178±5 I 84±8 186±8 189±6 181±5 
B7 69±10 72±17 83±33 81±18 88±26 113±20 
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Figure 6.4 Two dimensional spectral space of distribution ofETM+ training data 
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Table 6.4 Separability of each land use class in training data 
(a) Level n classification system 

R C I T 0 
Residential 
Commercial 1.39 
Industrial 1.82 0.72 
Transportation 1.81 1.26 1.32 
Open 1.74 1.89 1.99 1.89 

(b) Level In classification system 
S M C P I T 0 

single 
multiple 1.59 
commercial 1.98 0.97 
public 1.77 0.71 0.77 
industrial 1.99 1.50 0.71 0.94 
transportation 1.99 1.54 1.21 1.49 1.32 
open 1.81 1.870 1.94 1.84 1.99 1.89 
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family residential & public, commercial & industrial, commercial & public, public & 

industrial, and multiple-family residential & commercial showed low separability, less 

than 1.0. The separability of pairs of multiple-family residential & industrial, multiple­

family residential & transportation, commercial & transportation, industrial & 

transportation, and public & transportation was also low ranged from 1.2 to 1.5. 

Conversely, pairs of single-family residential & industrial, single-family residential & 

transportation, industrial & open, single-family residential & commercial, and 

commercial & open exhibited high separability, which is more than 1.9. This result shows 

that single-family residential, and open land uses can be easily distinguished from other 

land uses. But the other land uses are not easily separable. 

6.2.2 Bayesian Network Structures 

We conducted urban land use classification using naIve Bayesian classifiers and 

MWSTs with the given data by selecting land use category as a class node. All data 

values used here were discretized to 15 values based on equal frequency interval, which 

was found to be optimal for Bayesian network classification in the previous section. The 

class node had 5 or 7 values corresponding to each land use category of interest. 

Figure 6.5 shows the resulting Bayesian network structures. The structures 

revealed the most informative inputs to the class node. As shown in the figure, all input 

variables, bands 1 to 7, contributed to the value of the class node in naIve Bayesian 

classifiers, because the number of child nodes equaled the number of input variables. In 
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(a) 

(b) 

Figure 6.5 Bayesian network structure for urban land use classification 
(a) naIve Bayesian classifiers (b) MWSTs 

Table 6.5 Overall accuracy of Bayesian network classification 

NaIve 
MWST 

accuracy 
73% 
77% 

Level II 
K 

63% 
67% 
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accuracy 
69% 
71% 

Level TIl 
K 

60% 
63% 
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contrast, the structure of MWSTs showed that bands 1, 5 and 6 contributed to the value of 

the class node. MWSTs also provided strong dependency between visible bands (1, 2, 

and 3) and middle infrared bands (5 and 7), which is consistent to their high correlation. 

6.2.3 Accuracy Assessment 

For assessment of the performance of Bayesian network classification, the overall 

accuracies and K coefficients for each case are given in Table 6.5. The MWSTs slightly 

outperform naIve Bayesian classifiers with overall accuracies of 77% and 71% (K 

coefficients of 67% and 63%) for classification level II and III, respectively. The 

differences of overall accuracy between level II and III classification systems were less 

than 5% for both overall accuracy and K coefficient. 

Confusion matrices for level II and III classification systems are presented in 

Table 6.6. In level II classification, residential and open were fairly well predicted 

whereas commercial and industrial were not. For example, the omission and commission 

errors of residential and open land uses were all below 20% whereas those for 

commercial and industrial land uses were above 50%. In level III classification, single­

family residential, transportation, and open were well assigned but multiple-family 

residential, commercial, public and light industrial were not. For example, commission 

errors of single-family residential, transportation and open land uses were all below 20% 

whereas those for commercial and public land uses were above 40%. The pixels 
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Table 6.6 Confusion matrix of urban land use classification 
(a) Level II classification system using naIve Bayesian classifiers 

R C I T 0 total user 
R 322 30 7 20 14 393 82% 
C 31 61 22 17 8 139 44% 
I 0 25 27 10 0 62 44% 
T 8 19 4 64 

,.., 
98 65% .) 

0 13 6 0 39 283 341 83% 
total 374 141 60 150 308 1033 
prod 86% 43% 45% 43% 92% 

(b) Level II classification system using MWSTs 
R C I T 0 total user 

R 348 13 5 15 12 393 89% 
C 50 55 16 13 5 139 40% 
I 1 29 22 8 2 62 36% 
T 17 11 2 65 3 98 66% 
0 14 1 0 23 303 341 89% 
total 430 109 45 124 325 1033 
prod 81% 51% 49% 52% 93% 

(c) Level III classification system using naIve Bayesian classifiers 
S M C P I T 0 total user 

S 252 6 1 4 0 0 10 273 92% 
M 15 73 8 5 1 11 7 120 61% 
C 1 10 41 6 10 1 3 72 57% 
P 7 11 9 23 9 5 3 67 34% 
I 0 0 17 2 40 3 0 62 65% 
T 1 10 1 2 0 74 10 98 76% 
0 2 3 5 4 0 10 317 341 93% 
total 278 113 82 46 60 104 350 1033 
producer 91% 65% 50% 50% 67% 71% 91% 

(d) Level III classification system using MWSTs 
S M C P I T 0 total user 

S 253 6 0 1 0 0 13 273 93% 
M 16 79 9 2 1 4 9 120 66% 
C 8 13 35 4 9 1 2 72 49% 
p 13 6 8 26 9 3 2 67 39% 
I 0 2 10 2 47 1 0 62 76% 
T 4 5 1 3 0 78 7 98 80% 
0 5 7 3 1 0 5 320 341 94% 
total 299 118 66 39 66 92 353 1033 
producer 85% 67% 53% 67% 71% 85% 91% 
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originally belonging to commercial and public land uses were often mislabeled with each 

other, multiple-family residential, and industrial land uses. 

6.2.4 Urban Land Use Thematic Maps 

The resulting urban land use thematic maps shown in Figure 6.6. For level II 

classification, both networks well captured residential, transportation and open land uses. 

The other classes visually agreed with their real land use although their prediction 

accuracy was not high enough, as shown in Table 6.6. For level III classification, both 

networks also well assigned pixels belonging to single-family residential, transportation 

and open land uses. However, public land uses were not well predicted especially for 

those pixels in Loyola Marymount University. Some pixels inside Los Angeles 

International Airport were misclassified as commercial land use and many pixels in 

Dockweiler state beach as transportation land uses. Those pixels in under construction 

areas in Playa del Rey exhibited transportation land use due to the construction. For both 

classification system, MWSTs appeared to be better than naIve Bayesian classifiers. 

6.3 Inco:rpo:rating Ancilla:ry Data 

In order to improve classification accuracy, several ancillary data, in addition to 

spectral data, were incorporated. We investigated the effect of locational data, elevational 

data, and image transformation data such as NDVI and Tasseled Cap transformation. 
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Figure 6.6 Urban land use maps using (a) naive Bayesian classifiers for level II 
classification system (b) MWSTs for level II classification system (c) naive 
Bayesian classifiers for level III classification system (d) MWSTs for level III 
classification system 
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6.3.1 Locational Data 

Figure 6.7 shows the Bayesian network structure when incorporating ancillary 

data. Incorporating locational ancillary data improved urban land use classification 

accuracy. 6.8 shows that the average improvements of overall accuracies were up 

to 7% and 10% for classification level II and III, respectively. Even the differences for 

the same network between classification level II and III became smaller when 

incorporating locational ancillary data. For example, the difference of overall accuracies 

when using spectral data only was 5% on the average whereas the difference when 

including locational ancillary data was 2%. The K coefficients were also improved by 9% 

and 14% for classification level II and III, respectively for both network structures. In the 

same way, the differences between level II and III classification for the same network 

become smaller. For example, the range of different K coefficients when using only 

spectral data was up to 4% whereas the range when including locational ancillary data 

was up to 2%. 

Incorporating locational ancillary data also reduced the omission and commission 

errors for each land use. For example, omission errors of multiple-family residential, 

commercial, public, industrial and transportation land uses were reduced by 12% to 35% 

and commission errors of the land uses were reduced by 9% to 33%. In this case, 

MWSTs slightly outperformed naIve Bayesian classifiers when incorporating locational 

ancillary data. 
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(a) 

(b) 

(c) 

(d) 

Figure 6.7 Bayesian network structure with ancillary data (a) naIve Bayesian classifiers 
with locational data (b) MWSTs with locational data (c) naIve Bayesian 
classifiers with elevation data (d) MWSTs with elevation data 
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Figure 6.8 Level m classification accuracy (a) overall accuracy (b) kappa coefficient 
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The land use map in Figure 6.9 shows improved urban land use maps when 

incorporating locational ancillary data. Compared to the land use map with spectral data 

only, those pixels in Los Angeles International Airport were correctly assigned as 

transportation land use and those in Dockweiler state beach were as open land use. 

Moreover, the pixels in Loyola Marymount University were predicted as public land use. 

On the whole, incorporating locational ancillary data achieved better classification. 

6.3.2 DEM 

Incorporating elevational ancillary data also improved the classification accuracy. 

For example, incorporating SRTM and NED data improved overall accuracies by up to 

3% and 6% and K coefficients by up to 5% and 7%, respectively for level III 

classification system. Incorporating elevational ancillary data also improved individual 

class prediction. For level III system, omission errors were reduced by up to 17% and 

26%, and commission errors were reduced by up to 19% and 22% by incorporating 

SRTM and NED, respectively. Especially public, industrial, and transportation land uses 

were better assigned. Interestingly, the commission errors of single-family residential and 

commercial land uses incorporating DEM were not lower than those using spectral data 

only. 

Figure 6. shows the companson of accuraCIes usmg different geospatial 

ancillary data. This figure shows that all accuracies were improved by using ancillary 

data. However, the improvement by including elevational data was not as significant as 

127 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

(a) (b) 

(c) (d) 

Land use 
residential 

II commercial 
II industrial 
II transportation 

open 

Land use 
single-family 
residential 

multiple-family 
residential 

II commercial 
II public 
II industrial 
II transportation 
~;open 

Figure 6.9 Urban land use maps incorporating locational data using (a) naIve Bayesian 
classifiers for level il classification system (b) MWSTs for level il 
classification system ( c) naIve Bayesian classifiers for level ill classification 
system (d) MWSTs for level ill classification system 
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incorporating locational data. Moreover, omISSIon and commission errors were more 

reduced by incorporating locational data. Using locational ancillary data was even better 

than or using both locational and elevation data for many cases. 

6.3.3 Vegetation Index 

Apart from spatial and elevation ancillary data, we also investigated the effect of 

incorporating other ancillary data obtained from image transformation such as NDVI and 

brightness, greenness and wetness from Tasseled Cap. The result shows that these 

ancillary data did not significantly improve accuracies compared to using spectral data 

only or incorporating locational ancillary data. For example, incorporating NDVI 

improved the overall accuracy of 1 % and K coefficient of 2% for level III classification. It 

reduced omission errors of single-family residential, public and transportation land uses 

by 8% to 17% and commission errors of multiple-family residential, commercial, public, 

and industrial land uses by 2% to 13%. 

Incorporating Tasseled Cap transformation did not significantly improves 

classification accuracy. The overall accuracy was improved only up to 2% and K 

coefficient was reduced by up to 6% to 14%. Therefore, additional information from the 

image transformation was not useful as other ancillary data. Figure 6.11 shows the 

comparison of accuracies incorporating different vegetation indices. 
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Figure 6.11 Level III classification accuracy incorporating vegetation indices (a) overall 
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6.4 Discussion 

U sing satellite imagery for land use classification is an effective alternative to the 

conventional ground surveyed land use. Estimating land use from spectral signatures of 

satellite imagery reduces time to collect information. Moreover potential errors in ground 

surveyed land use can be avoided since ground surveyed land use that are not developed 

for environmental purposes often group environmentally different land uses into the same 

category. For example, the vegetation areas inside the Los Angeles International Airport 

were assigned to open land use instead of transportation as in SCAG land use. Vegetated 

areas and parking lots in Loyola Marymount University were assigned to open and 

transportation land uses respectively, which both belonged to public in the SCAG land 

use data. The areas under construction in Playa Vista showed transportation and 

industrial land uses depending on the degree of construction. 

Bayesian networks are useful in urban land use classification from satellite 

imagery. The networks can be trained with small size of training data. Bayesian networks 

can be successfully applied to a broad range of datasets, which may have been collected 

without considering data distribution. 

Both naIve Bayesian classifiers and the networks based on MWST algorithm were 

useful, but MWSTs slightly outperformed naIve Bayesian classifiers. NaIve Bayesian 

classifiers have all the inputs connected to the class node under conditional independence 

assumption among the input nodes. In other words, the input nodes are not dependent on 

one another given the value of the class node and the value of the class node is affected 

132 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

by all the input nodes. This assumption could be violated since visible bands 1, 2 and 3 

and middle infrared bands 5 and 7 are highly correlated. Therefore, this might inhibit the 

performance of naIve Bayesian classifiers. In addition, naIve Bayesian classifiers do not 

present information of which input nodes more contribute to prediction of the class node 

value. Conversely, the structure of MWSTs explicitly showed the dependence 

relationships among variables. The structure of MWSTs reveal that bands 1, 5 and 6 are 

the most contributing input to the class node value. The mutual information of band 1 and 

class node was the largest which, shows that band 1 is critical in the urban land use 

classification using Landsat TM data. This is consistent with the existing finding that 

band 1 is important in urban features (Jensen, 2000). MWSTs also exhibit strong 

dependency between visible bands (l, 2, and 3) and middle infrared bands (5 and 7), 

which is consistent with their high correlation. Compared with naIve Bayesian classifiers 

and other existing AI techniques, MWSTs are an effective structure to understand the 

relationships among input variables for classification and identify the most important 

input variables for determining target node value. 

In order to validate the accuracy improvement, the overall accuracies of Bayesian 

networks were compared with the accuracy by random classification. For example, 

classification with two states can provide 50 % of accuracy even with random prediction. 

The comparison between these two accuracies is given in Table 6.7 Bayesian networks 

provide approximately 80% of accuracy whereas the random classification accuracies are 

20% and 14% for level n and III classification system. Therefore, the classification 

accuracy provided by Bayesian networks was at least four times better than random 
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Table 6.7 Bayesian network accuracy compared with random classification accuracy 

NaIve 
MWST 
Random 

accuracy 
80 
82 
20 

Level II Level III 
ratio 
4.0 
4.1 
1.0 
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79 
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14 

ratio 
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classification. This demonstrates that Bayesian network classification of urban land use 

classification from Landsat ETM+ image was successful and effective even for level III 

classification system. 

Incorporating ancillary data, especially Iocational information, is important in 

predicting the class node value. Incorporating locational ancillary data achieved better 

classification for both network structures. This is a logical conclusion since the same 

types of land uses tend to be located together and incorporating locational ancillary data 

help lumping the surrounding pixels. This is confirmed from the thematic maps. Those 

poorly assigned pixels using spectral data only were corrected when incorporating 

Iocational ancillary data. In fact, incorporating Iocational data was better than including 

elevational data or combination of both. Incorporating Iocational ancillary data was 

favorable and practical since they can be simply obtained from the given Landsat ETM+ 

Image. However, this might be case specific since our study area is rather flat so the 

effect of the elevation might be insignificant. 

Incorporating other ancillary data from image transformation such as vegetation 

indices derived from the image did not significantly improve classification accuracies. 

This is logical conclusion since these data were calculated from image DN values, which 

were correlated to the spectral data. Correlated data are not helpful in learning of 

Bayesian networks since the ancillary data are more related to the spectral data not to the 

class node. 
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The inaccuracies might result from the fact that urban features are difficult to 

distinguish spectrally using Landsat ETM+ image. The results of training data distribution 

and separability showed the spectral signatures from some land uses were similar to one 

another. Most land uses were hard to separate except single-family residential and open 

land uses. Some pairs exhibited low separability less than 1, which might result from the 

similar spectral signature from the similar roof materials. This is often reported as a 

problem of urban land use classification due to the heterogeneity and small size of the 

target materials (Ridd, 1995; Foody, 2000; Stefanov, 2001) and different urban land uses 

often have similar characteristics. This problem becomes worse when more land use 

categories are classified (Stefanov, 2001). These facts might lower the overall accuracy 

from the given resolution of the data. 

The land use classification of TM lmage referenced only to SCAG data is 

particularly problematic. The potential sources of error in the classification might stem 

from SCAG land use data. The SCAG data set is typical of available land use data, but is 

conected for tax purposes such that some of their land uses are not necessarily 

representative environmental land uses. Furthermore the land use data defined in SCAG 

data have been lumped into neighborhoods so they can contain varying degrees of mixed 

land use information, which cannot be distinguished by spectral information. Another 

explanation is the difference in timing in that SCAG data and Landsat TM data were 

collected three years apart. The development and changes that occurred during the three 

years are undefined. 
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As a result, the Bayesian network classification gives reasonable accuracy. For 

some cases, the accuracy of classification measured from spectral signatures can be more 

accurate than shown in many cases. 
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Chapter VII 

Stormwater Pollution Estimates 

Monitoring stormwater runoff and predicting pollutant loads to receiving waters 

are not easy tasks since these demand expertise and accumulated data (Duncan, 1995; 

Vaze and Chiew, 2003), and the event specific data, i.e. EMCs of stormwater pollutants, 

and site specific data measurements, i.e. runoff coefficient and rainfall, are not always 

available (Vaze and Chiew, 2003). Alternative approach has been developed using land 

use and rainfall data (Stenstrom et ai., 1984; Chiew and McMahon, 1999). However, few 

attempts have been made to spatially estimate the pollutant loads in an inexpensive and 

consistent way. This chapter proposes the use of satellite imagery to estimate stormwater 

pollutant loads in a typical urban area. 

In this chapter, we generate spatial estimate of pollutant loads from stormwater 

runoff in our study area. In section 7.1, we use land use that was classified from satellite 
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Images usmg Bayesian networks and convert the land use data to related runoff 

coefficients associated with imperviousness, EMCs of a particular pollutant, and 

corresponding stormwater pollutant loads. In section 7.2, we predict stormwater pollutant 

loads directly from satellite imagery. For both approaches, we examined ten water quality 

parameters: chemical oxygen demand (COD), biochemical oxygen demand (BODs), total 

suspended solids (TSS), nutrients such as total Kjeldahl nitrogen (TKN), nitrite and 

nitrate (N02&3) and total phosphorus (TP), heavy metals such as total copper (Cu), total 

lead (Pb), total zinc (Zn), and oil and grease (O&G). We identify the areas that generate 

high pollutant loadings into receiving waters. In section 7.3, we propose new 

classification system optimized for stormwater management purpose replacing 

conventional USGS land cover/use classification system. In section 7.4, we discuss 

different approaches to estimate stormwater pollution load and compare the pollutant 

loading areas with SCAG data. We also discuss the benefits of our approach in 

stormwater monitoring. 

7.1 Pollutant Loading Estimate from Land use Classification 

Land use classified from a Landsat ETM+ image based on USGS Land CoverlUse 

level III classification system in the previous chapter was converted to runoff 

coefficients, EMCs and pollutant loading maps. These land uses were selected since the 

limited number of land use types can be used for more reliable stormwater quality 

information (Burian et al., 2002). 
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Figure 7.1 shows of impervious surface maps associated with runoff coefficients 

in the study area. Impervious surfaces were classified into four states. The areas of the 

lowest runoff coefficient with the value of 0.1 corresponded to open land use. The areas 

of the next lowest runoff coefficient with the value of 0.4 corresponded to single-family 

residential land use. The areas with runoff coefficient of 0.6 corresponded to multiple­

family residential land use. The areas of the highest runoff coefficient with the value of 

approximately 0.7 corresponded to all the other land uses such as commercial, public, 

industrial and transportation. 

Figure 7.2 shows of EMCs maps for each pollutant in the study area. We should 

stress that the EMCs in the Santa Monica Bay watershed tend to be higher than those 

reported in US EPA's Nationwide Urban Runoff Program (NURP) database (Driscoll et 

a/., 1990; Wong et ai., 1997). EMCs were generally classified into three states but COD, 

Zn, and O&G maps displayed only two states. Residential and transportation land uses 

tended to increase the COD EMC, while the rest of land uses tended to lower the EMC. 

All land uses but single-family residential and open land uses increased BODs EMC. 

Open land use tended to increase the TSS EMC while the other land uses except single­

family residential lowered the TSS EMC. Single-family residential land use was the most 

significant contributor of nutrients. The EMC maps of Cu and Pb were identical in that 

residential and transportation land uses were responsible for high EMC and open land use 

corresponded to low EMC areas. The EMC map of Zn exhibited different behavior than 

other water quality parameters; commercial, public and industrial land uses showed high 

EMC and residential, transportation and open land uses showed low EMC. The high 
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Figure 7.1 Impervious surface map associated with runoff coefficients converted from 
land use classification 
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Figure 7.2 EMC maps converted from land use classification (a) COD (b) BOD5 (c) TSS 
(d) TKN (e) N02&3 (f) TP (g) Cu (h) Pb (i) Zn (j) oil and grease 
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EMC of O&G is mainly caused by multiple-residential, commercial, public, industrial, 

and transportation land uses and contribution of the other two land uses was trivial. 

Figure 7.3 shows stormwater pollutant loading maps for each pollutant type, in 

which the pollutant load is proportional to the product of runoff coefficient and EMC. 

Pollutant loads were also classified into three states but TSS, TKN, TP and O&G maps 

had only two states such that the medium state was not represented in the final result. 

High COD emissions were generated from multiple-family residential, commercial, 

industrial, and transportation land uses. Single-family residential and public land uses 

corresponded to medium load and open land use to low load. High BOD5 emission areas 

were similar to high COD emission areas in addition to public land use. The pollutant 

loading maps ofTSS, TKN and TP were identical because all land uses except open area 

significantly contributed to high load. High N02&3 loads came from single-family 

residential, commercial, public, industrial, and transportation land uses. The Cu map 

shows that single-family residential land use corresponded to medium load, open land use 

to low load, and all the other land uses to high load. For the Pb, the high load mainly 

came from multiple-family residential and transportation land uses. Open land use also 

generated low load and the other four land uses created medium load. Zn map shows low 

loads from open land use, medium loads from residential and transportation land uses, 

and high loads from commercial, public and industrial land uses. Multiple-family 

residential, commercial, public, industrial, and transportation land uses created high O&G 

loads whereas single-family residential and open land uses produced low loads. O&G 

loading map was identical to its EMC map, which was not true for the other pollutants. 
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Figure 7.3 Pollutant loading maps converted from land use classification (a) COD (b) 
BODs (c) TSS (d) TKN (e) N02&3 (f) TP (g) Cu (h) Pb (i) Zn (j) oil and grease 
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Figure 7.4 compares the pollutant loads and EMCs as a percentage of total area. 

The percentage of areas corresponding to the high, medium and low categories are 

compared. The result shows that the pollutant loads did not necessarily correspond to the 

EMCs. The differences were due to the varying imperviousness or runoff coefficient. 

Over 65% of the area generated high pollutant loads for TSS, TKN, and TP. Only 15% of 

the area generated high Zn loads, and only 22% of the area generated high Pb load. Open 

areas tended to reduce pollutant loads, and 33% of the areas were classified as low due to 

the contribution of the open area, for all pollutants except O&G. 

7.2 Pollu.tant Loading Estimate from Satellite Imagery 

7.2.1 Pollutant Loading with Low, Medium and High Scheme 

As an alternative approach, pollutant loads were estimated from satellite imagery 

using Bayesian networks. MWSTs were constructed from data using mutual information 

with the pollutant loads as the class node. For each pollutant, unit pollutant loads were 

calculated from runoff coefficients and EMCs based on equation (4.8) developed for the 

Santa Monica Bay watershed. The class node had 3 states, which corresponded to low, 

medium, and high loads. The network structures in Figure 7.5 shows that bands 1,5, and 

6 mainly contributed to the class node values for TSS, TKN, TP, N02&3, Pb, and Zn 

whereas Bands 4 also contributed to class node for COD, BODs, Cu and O&G. 
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Figure 7.5 Bayesian network structures for loading of (a) COD (b) TSS, TKN, N02&3, 

TP, Pb, and Zn (c) BODs, Cu, and oil and grease 
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7.6 shows each stormwater pollutant loading maps. The figure also shows 

that each pollutant shows different pattern. For example, TSS, TKN, TP, and O&G were 

classified into two classes whereas the other maps were classified into three classes. Each 

map also shows different high pollutant loading areas although transportation areas 

corresponded to high pollutant loading areas for most water quality parameters except 

Zn. Multi-family residential, commercial, public, and industrial land uses often 

contributed to high pollutant loads for most pollutants although it could be case specific. 

For all cases, open land use corresponded to low pollutant loading area. 

The overall accuracies and K coefficients of classification were varied as shown in 

Figure 7.7. Overall accuracies ranged from 80% to 94% and K coefficients from 66% to 

86%. Classification of BODs, TSS, TKN, TP, Cu and O&G loads was highly accurate i.e. 

more than 90% of overall accuracy and 80% of K. The omission errors of high pollutant 

loads ranged from 6% to 36%. Especially omission errors of BOD5, TSS, TKN, TP, Cu 

and O&G loads were much lower than that of other pollutants, i.e. less than 11 % errors. 

The commission errors of low pollutant loads were not so varied for each pollutant, 

ranged from 7% to 13%. 

The accuracies were improved by incorporating ancillary data for N02&3, Pb and 

Zn by up to 6% and 11 % for overall accuracy and K coefficient respectively. For other 

pollutants, the improvement was trivial. Accuracy improvement by incorporating 

Iocational ancillary data was better than incorporating elevational data or including both 

in most cases. Moreover, incorporating Iocational data reduces the omission errors of 

high pollutant loading areas especially for N02&3, Pb, and Zn by up to 13% and the 
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Figure 7.6 Pollutant loading maps using MWSTs with spectral data and geospatial data 
(a) COD (b) BODs (c) TSS (d) TKN (e) N02&3 (f) TP (g) Cu (h) Pb (i) Zn (j) oil and 
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Figure 7.7 Accuracies of pollutant loading estimates from satellite imagery (a) overall 
accuracy (b) kappa coefficient (c) omission errors (d) commission errors 
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commission errors of low pollutant loading areas especially for BODs, N02&3, Cu and Zn 

by 5%. Therefore, incorporating locational ancillary data was also more useful and 

practical for pollutant loading classification in our study area. 

7.2.2 Normalized Pollutant Loading Scheme 

We classified normalized pollutant loads in order to examine which pollutants 

have more severe impact on receiving water. The class node had seven states 

corresponding to the degree of pollutant loads: very low, low, medium-low, medium, 

medium-high, high, and very high. In this case, 'very low' state indicates that no 

pollutant load is discharged. The state of 'low' is the minimum pollutant load except zero 

loading. The rest of the states were normalized based on 'low' state of unit pollutant 

loading values as shown in Table 7.1. The resulting Bayesian network structures are 

shown in Figure 7.8. For all cases, bands 1,5 and 6 mainly contributed to the class node 

values. In addition, band 4 was also connected to the class node in the structure for Cu, 

Zn, and 0&0. 

Figure 7.9 shows the normalized pollutant loading maps. Each pollutant shows a 

different level of classification: BODs, TSS, TKN, and TP were classified into two 

classes; COD, N02&3, Cu, and Pb were classified into three classes; and Zn and 0&0 

were classified into four classes. Only 0&0 loading map displayed the level of 'very 

low' and only BODs and Pb loading maps displayed 'very high' leveL The normalized 

pollutant loading maps show the lowest pollutant loading areas mostly correspond to 
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Table 7.1 Classification states for water quality parameter 
State Normalized loading values 

very low 0 
low 1 
medium low :5:4 
medium :5:8 
medium high :5: 12 
high :5: 16 
very high > 16 

(a) (b) 

Figure 7.8 Bayesian network structures for normalized pollutant loading of (a) COD, 
BODs, TSS, TKN, N02&3, TP, and Pb (b) Cu, Zn, and oil and grease 
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Figure 7.9 Normalized pollutant loading maps from Landsat ETM+ image (a) COD (b) 
BODs (c) TSS (d) TKN (e) N02&3 (f) TP (g) Cu (h) Pb (i) Zn (j) oil and grease 
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open land uses. Transportation areas correspond to the highest pollutant loading areas for 

all pollutants except Zn, which was highest in commercial and industrial land uses. This 

shows the significance of transportation land uses for stormwater management. Multiple­

family residential areas are also important for Pb, which may result from greater numbers 

of vehicles associated with the land use. Table 7.2 shows percentage of normalized 

pollutant loading areas. Most pollutants had only approximately 113 of the areas as low 

loading areas and the others generated higher loads except O&G. 

The accuracies for each case are given in Figure 7.] O. Accuracies for BODs, TSS, 

TKN, TP, and eu were higher than other water quality parameters. The overall accuracies 

were all above 90 % and 1( coefficients were above 85% using spectral data only. For 

other pollutants, overall accuracies ranged from 80% to 88% and 1( coefficients from 66% 

to 79% when using spectral data only. Omission errors of the highest pollutant load 

varied depending on the pollutant types. Omission errors for BODs, TSS, TKN, TP and 

Cu were the lowest, less than 10 %. The errors for other pollutants were above 20% and 

especially the error of COD was above 40%. Commission errors of the lowest pollutant 

load from other areas showed little variation for different pollutants compared with the 

omission errors. The commission errors of all pollutants were varied only between 9% 

and 14%. The magnitudes of commission errors of COD, N02&3, Cu, Pb, Zn and O&G 

became smaller compared with the omission errors whereas those of BODs, TSS, TKN, 

and TP became larger. 

Including locational ancillary data improved overall accuracies of COD, N02&3, 

heavy metals and O&G by up to 7%. The improvement of 1( coefficient was more 
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Table 7.2 Percentage of nonnalized pollutant loading area of each pollutant 
COD BODs TSS TKN 

very low 0 0 0 0 
low 30 29 29 29 
med-low 0 0 71 0 
medium 63 71 0 71 
med-high 7 0 0 0 
high 0 0 0 0 
very high 0 0 0 0 

~ 

-,R. 
~ 
>- 90 u 
~ 
:::l 
U 
U 
co 

~ 80 
Q) 
> 
0 

70 , 
a a en z (') a.. :::l .0 c (9 
0 0 en ~ oIj f- (.) a.. N oIj 
(.) co f- f- C\l 0 0 z 

(a) 

60 
---@- 8M MWST 
-m-XYMWST 
---7",,"--- SRIM MWST : 

. XY -SRTM MWST 

(c) 

N02&3 

0 
30 
13 
57 

0 
0 
0 

C 80 
Q) 

Ti 

~ 
8 
~ 70 
a. 
~ 

S,15 
~ 

g 
Q) 

§ 10 
-iii 
-E 
E 5 
8 

TP Cu Pb Zn 
0 0 0 0 

29 31 31 33 
0 0 0 27 

71 27 0 22 
0 41 51 18 
0 0 0 0 
0 0 18 0 

\\,1 
---@- 8M MWST\:~ ... i ___ .... _ .... _ .. 1~/_._ ...... . 
--m- XY MWST \ i 
--*-_.- SRTM MWST ;J 
. .. XY -SRTM MWST 

(b) 

(d) 

Figure 7.10 Accuracies of nonnalized pollutant loading estimates from satellite imagery 
and ancillary data ( a) overall accuracy (b) kappa coefficient (c) omission 
errors (d) commission errors 
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significant, which is up to 11 %. Including locational data reduced omission elTors for 

COD, N02&3, heavy metals, and O&G by up to 16%. Commission elTors were also 

reduced especially for N02&3, Cu, Zn, and O&G by up to 6% but the decrease was not as 

significant as omission elTors. However, including elevational data was not so useful as 

incorporating locational data for improving accuracies and reducing omission and 

commISSIOn elTors. 

7.3 New Classification System for Stormwater Modeling 

The results given in the previous chapters imply that classification system for 

stormwater pollutant loads should be developed differently for individual pollutant. The 

only common class for all pollutants is low loading area. For the other classes, each 

pollutant exhibited different classification scheme. For example of normalized scheme, 

COD had only transportation land use as higher pollutant loading areas than other land 

uses. But other pollutants often included commercial, public, and industrial land uses as 

higher pollutant loading areas. Conversely Zn does not have transportation land use as 

higher pollutant loading area. 

The new classification system for managing stormwater pollutant loads was 

proposed as shown in Table 7.3. In this system, residential, commercial, public, industrial 

and transportation land uses are lumped together as the very high pollutant loading areas 

if BODs is of concern. Similarly, multiple-family residential and transportation land uses 

belong to the very high Pb loading areas. For O&G, commercial, public, industrial, and 
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Table 7.3 New classification system for normalized stormwater pollutant loadings 

very low 
low 
med-low 
medium 
med-high 
high 

COD BODs TSS TKN&TP N02&3 Cu 

o o o 
s,m,c,p,i,t 

s,m,c,p,l 
t 

. 0 

s,m,c,p,i,t 

o 
m 

s,c,p,i,t 

o 

s 
m,c,p,i,t 

Pb 

o 

S,C,p,l, 

very high s,m,c,p,i,t m,t 

Zn O&G 
o 

o s 
s 

m, t 
C,p,l, m 

c,p,i,t 

Note that's' is single-family residential, om' is multiple-family residential, 'c' is commercial, 'p' is public, 'i' is industrial, 
't' is transportation and '0' is open land use . 
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transportation land uses become high loading areas. These areas should be addressed first 

to reduce the stormwater pollution impact on receiving water quality. 

7.4 Discussion 

The methodologies we used have shown that satellite image classification is 

useful in estimating stormwater pollutant loads. Our methodology has advantages over 

conventional approaches based on ground surveys due to its applicability to areas where 

land use data are not available, such as in developing countries. 

Estimating stormwater pollutant loads converted from land use classification is 

useful although some urban land uses in the satellite image exhibit similar spectral 

signatures and are not easily distinguished. Commercial and public land uses were often 

misclassified. Omission and commission errors for commercial and public land uses were 

more than 40%. Fortunately, misclassification of commercial and public land uses does 

not significantly affect the spatial estimates of pollutant loads since they often generate 

similar pollutant loads. 

The stormwater pollutant loading maps converted from land use classification 

show that low pollutant loading areas correspond to open land uses, which exhibit low 

runoff coefficient, whereas high pollutant loading areas mostly correspond to the areas 

with high runoff coefficient, i.e. commercial, public, industrial and transportation land 

uses. Those land uses with high runoff coefficient corresponded to at least medium or 

high pollutant loading areas. Therefore, it is important to identify areas with high runoff 
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coefficient to properly manage stormwater pollutant loads. This is logical conclusion 

because stormwater may be retained by vegetation or infiltrated through the pervious 

ground whereas stormwater overland runoff is conveyed into receiving water through 

impervious surfaces. With the exception of Zn, multiple-family residential land use also 

generates high pollutant loads, despite its medium runoff coefficient. 

The comparison of between EMC maps and pollutant loading maps shows that 

high EMC generating areas do not always match high pollutant loading areas. For 

example, open areas generated high TSS concentrations, but generated only low loads 

due to the very low runoff coefficient. Furthermore, areas with low EMCs are often high 

pollutant loading areas; for example, COD, TSS, TKN, and TP maps show that 

commercial, public, and industrial land uses had low EMCs, but high pollutant loads. 

These results emphasize that low EMC generating areas should not be underestimated or 

ignored for their potential impact on the receiving water quality. This results from the 

ratio of high to low EMCs ranges from 1.6 to 3.1 (except for O&G), while the ratio of 

runoff coefficients is 7.4. These differences translate into higher ranges of pollutant 

loads. For example, the ratio between low and high EMCs for Cu, Pb, and Zn is only 2 to 

3 fold whereas the ratio between low and high pollutant loads is 12 to 21 fold. 

The new methodology predicted pollutants from satellite imagery with accuracies 

ranging from 80% to 94%. The land use classification approach using a Bayesian 

network was less accurate, yielding 81% accuracy with Iocational data (71% without 

Iocational data). Therefore, the new methodology improved accuracy up to 13% when 

using Iocational data and up to 23% without Iocational data. The new methodology 
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provides better prediction and is a promising method for future environmental planning 

and management. Moreover, the new method does not require potentially expensive land 

use data based on ground surveys. 

Figure 7.11 compares each pollutant loading areas from SCAG land use data, land 

use classification, and satellite imagery. The result shows that percentage of each 

pollutant loading area for different approaches are similar. However, estimates directly 

from satellite imagery gives more high pollutant loading areas for TSS, TKN, TP and 

N02&3 and less low loading areas for all pollutants except O&G. This result also 

demonstrates that the new approach is valuable alternative and useful for managing 

stormwater pollution. 

The normalized pollutant loading maps show important differences among 

pollutant types. Heavy metals and O&G emission rates varied by 12 to 21 fold between 

the lowest and the highest emission rates, whereas COD, TSS, TKN, TP, and N02&3 

varied by only 3 to 9 fold. BODs was the extreme case since the difference was over 50 

fold. This suggests that there is greater opportunity to impact BODs, heavy metals, and 

O&G emission rates by identifying high emitters. Environmental planners and regulators 

need to be aware of these important differences. The new strategy provides this 

information along with spatial information to locate environmental opportunities. 

The example in this study is small and is intended to be illustrative of larger 

applications. The simple ratios of pollutant loads can be inferred from the runoff and 

EMC data, but cannot be spatially identified. The value of the thematic maps is not only 

to determine the high loading areas but also to locate and visualize them so that planners 
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can better develop BMPs and regulation agencies can establish total mass daily limits 

(TMDL). The Bayesian technique also reclassified areas that are chronically 

misclassified, providing more accurate estimates. 
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Chapter VIII 

Conclusion 

This study has shown that satellite image classification is useful in estimating 

urban land use and stormwater pollutant loads. Compared with conventional approaches 

based on ground surveys, satellite imagery offers several benefits. Satellite imagery can 

be applicable to areas where land use data are not available. Information from satellite 

images can be optimized for environmental purposes since potential errors in 

conventional land use data are avoided. 

The study has shown that Bayesian networks are useful for satellite image 

classification of urban land use and pollutant loads in an example watershed. Both naive 

Bayesian classifiers and Bayesian networks based on MWST algorithm were useful, but 

the latter structure was better in many ways. First, they reveal the relationships among 

variables such that we can predict the class node value even though particular band 
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information is mlssmg. The mlssmg band information can be inferred from the 

relationship from other bands. This is a valuable property since it does not require 

correction for sensor system error when a detector fails to function during a scan. 

Secondly, the networks identify the most informative input variables to classification. For 

urban land use and pollutant loading classification, bands 1 (blue), 5(middle IR), and 

6(thermaIIR) are the most important in most cases. Thirdly, the problem domain can be 

minimized with a reduced number of input variables required for classification once the 

most contributing inputs were found. Finally, they reduce the risk of overestimating or 

underestimating stormwater pollutant loads as well as urban land uses in the given area. 

For both urban land use and stormwater pollutant loading classification, 

incorporating ancillary data improved the classification performance. Locational 

information improved the classification accuracy and reduced omission and commission 

errors more significantly than other ancillary data such as digital elevation model (DEM) 

and image transform data. Therefore, incorporating Iocational ancillary data is useful and 

practical since they can be simply obtained from the given satellite image. 

The stormwater pollutant loading maps show that pollutant loads were more 

affected by runoff coefficients than EMCs for most of the land uses. This results from the 

fact that there is more variation in runoff coefficients than EMCs among the land uses. 

Therefore, elimination or reduction of impervious surfaces may be more important than 

BMPs that reduce the EMCs by partial treatment. In typical urban areas, multiple-family 

residential, commercial, industrial, and transportation land uses contribute proportionally 
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more pollutant loads. These land uses should be targeted for the first application of 

BMPs. 

The new approach to estimate stormwater pollutant loads directly from satellite 

imagery has advantages over approaches based upon land use information. Compared to 

ground surveyed land use, the new approach provides information optimized for 

stormwater management purpose. The new approach also provides better accuracy 

compared to the pollutant loading estimates converted from land use classification with 

satellite images. Therefore, training Bayesian network classification based upon pollutant 

loadings is a promising alternative to conventional land use models. 

The normalized pollutant loading maps show different impacts among pollutant 

types on receiving waters. The maps demonstrate that there is greater opportunity to 

impact BODs, heavy metals, and oil and grease loads by identifying high emitters. Urban 

planners and regulation agencies need to recognize these important differences. The new 

strategy provides this information along with spatial information to locate environmental 

opportunities. 

This approach can be extended to regional and global scales. The spatial 

information from stormwater pollutant load thematic maps is important to detect the high 

loading areas and to locate and visualize them. This will be useful to develop BMPs and 

TMDLs for urban planners and local regulation agencies. The Bayesian networks were an 

effective classification method in that they provide more accurate estimates by 

reclassifying areas that are chronically misclassified. 
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Chapter IX 

Future Study 

For urban land use classification, Landsat images have limited ability to separate 

urban features based upon the spatial resolution. Therefore, higher resolution image such 

as IKONOS and aerial photos will be useful to delineate more detailed urban features. 

Moreover, higher resolution images can be used to resolve the mixed pixel problem using 

subpixel analysis. Unfortunately, using high resolution images will increase 

computational cost. In this case, high resolution images might not be applicable to a large 

coverage for watershed management. For stormwater management, we can use both low 

and high resolution images. For example, low resolution can be used for watershed scale 

and high resolution image can be used for local scale. 

In order to enhance image classification, other ancillary data, in addition to 

locational data, DEM and image transformation, can be incorporated. For example, radar 
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images can identify man-made structures on the landscape since man-made structures 

have strong radar returns. Texture and contexture information can be included for further 

classification. In this case, information fusion of multi source data can be useful 

(Slonecker, 2001). Alternatively, Bayesian networks can be particularly useful since they 

provide the most contributing information to classification among multi source data. In 

addition, other study areas can be explored to investigate the effect of incorporating DEM 

since our study did not show much elevational variation. 

An alternative way of estimating pollutant loads might be to use impervious 

surfaces instead of land use, since impervious surface estimates may be more easily 

predicted from satellite imagery. Urban land uses are highly heterogeneous such that they 

can contain a mixture of different urban features with different portions. For example, 

residential and commercial land uses could contain buildings, pavement, driveways and 

vegetation (Clapham, 2003), which have different imperviousness and impact on 

stormwater quality. Moreover, different land uses might have similar imperviousness and 

impact on stormwater quality if the land uses consist of similar urban features, i.e. roof 

materials (Stefanov, 2001). Therefore, impervious surface measurements could be more 

effective than land use classification for stormwater management. In this case, the 

relationship between EMCs and/or pollutant loads of each water pollutant type, and 

imperviousness should be investigated. 

A future research topic might be to estimate land use change in Santa Monica Bay 

watershed and predict urban sprawl and stormwater pollutant loading changes in a given 

watershed. Landsat data are useful in this sense because they provide temporally 
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accumulated data over last three decades. For example, the temporal changes of BaUona 

Wetlands can also be monitored from satellite image. 
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