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Stormwater management is concerned with runoff control and water quality 

optimization.  A stormwater model is a tool applied to reach this goal. Hydrologic 

variables required to run this model are usually obtained from field surveys and aerial 

photo-interpretation. However, these procedures are slow and difficult. An alternative is 

the automated processing of satellite imagery. We examined various studies that utilized 

satellite data to provide inputs to stormwater models. The overall results of the modeling 

effort are acceptable even if the outputs of satellite data processing are used instead of 



 xix 

those obtained from standard techniques. One important model input parameter is land 

use because it is associated with the amounts of runoff and pollutants generated in a 

parcel of land. Hence, we also explored new ways that land use can be identified from 

satellite imagery.  

Next, we demonstrated how the combined technologies of satellite remote 

sensing, knowledge-based systems, and geographic information systems (GIS) are used 

to delineate impervious surfaces from a Landsat ETM+ data. Imperviousness is a critical 

model input parameter because it is proportional to runoff rates and volumes. We found 

that raw satellite image, normalized difference vegetation image, and ancillary data can 

provide rules to distinguish impervious surfaces satisfactorily. We also identified 

different levels of pollutant loadings (high, medium, low) from the same satellite imagery 

using similar techniques. It is useful to identify areas with high stormwater pollutant 

emissions so that they can be prioritized for the implementation of best management 

practices. The contaminants studied were total suspended solids, biochemical oxygen 

demand, total phosphorus, total Kjeldahl nitrogen, copper, and oil and grease. We 

observed that raw data, tasseled cap transformed images, and ancillary data can be 

utilized to make rules for mapping pollution levels. Finally, we devised a method to 

compute weights associated with the severity of misclassification errors. We proposed the 

use of the weighted equivalents of the overall accuracy and kappa coefficient to evaluate 

the quality of classifications for pollutant loadings estimation. Overall, we conclude that 

the automated classification of satellite imagery can provide valuable information that 

can be used in stormwater management. 



 1 

Chapter 1 

Introduction 

 

1.1  Background  

 The goal of stormwater management is to control runoff quantity and maintain 

water quality. Elevated volumes and flow rates of runoff can have a number of harmful 

effects including flooding, stream erosion, and habitat destruction. Surface runoff can 

also carry and distribute sediment, nutrients, oxygen-demanding organics, toxic 

substances, and pathogens to drainage systems and watercourses. These pollutants may 

also threaten aquifers.  

To solve problems associated with runoff, a stormwater model is used to simulate 

the movement of stormwater and transported materials through a watershed. Many 

parameters are required to run a stormwater model. Parameter acquisition is a tedious 

process because stormwater runoff is a poorly understood environmental system. 

Innumerable factors affect runoff including topography, precipitation characteristics, and 

human activities. Also, the large area that needs to be quantified makes data collection 

using conventional methods too time-consuming and expensive. Hydrologic variables for 

stormwater modeling are commonly acquired by means of conventional techniques such 

as field surveys and aerial photo-interpretation. With the introduction of space 

technologies, satellite data have turned out to be a more expedient option to these 
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traditional methods.  Satellite imagery can be acquired easily, can cover extensive areas, 

and is compatible with many stormwater modeling software packages.   

 

1.2  Objectives and Methodology 

In this investigation, we explore the use of satellite imagery for stormwater 

management. After discussing how satellite data are applied in stormwater management, 

we demonstrate the use of knowledge-based systems to classify areas on a satellite image 

that are of interest to stormwater managers. A knowledge-based system applies rules to a 

symbolic representation of knowledge to complete a task. Knowledge is in the form of 

spectral data but ancillary data, like elevation, housing density, or zoning information, are 

commonly incorporated. As such, knowledge-based classification normally utilizes a 

geographic information system (GIS), a potent set of techniques that can obtain, store, 

retrieve, analyze, and display spatial data.   

The following are the objectives of this study: 

1. To explain the concepts of satellite remote sensing and the procedures to process 

image data;  

2. To present the fundamentals of GIS and its capabilities; 

3. To discuss the rudiments of knowledge-based systems and examine the various 

means by which these systems are applied in image classifications; 

4. To explore the ways in which satellite data are used in stormwater modeling; 

5. To survey novel approaches for land use classification utilizing satellite imagery; 
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6. To detect impervious surface in the Marina del Rey area and vicinity using remote         

sensing, knowledge-based systems, and GIS technologies; 

7. To estimate levels of pollution for selected contaminants in the same study area 

using similar techniques, and  

8. To propose a method to assess the accuracy of classifications for pollutant 

loadings estimation. 

 

1.3  Overview of the Chapters  

 In Chapter 2, the concepts of remote sensing are discussed. Here, we see how 

materials with their unique properties interact with electromagnetic radiation. This 

chapter also tells us how sensors and platforms work to gather remotely sensed data and 

how the resulting images are formatted and interpreted. Particular emphasis is placed on 

the Landsat satellites. Processing of satellite imagery to provide useful information is the 

subject of Chapter 3. The details of image classification are stressed in this chapter. To 

evaluate the quality of the image classifications, the subject of accuracy assessment is 

also explained. In Chapter 4, the fundamentals of GIS are outlined. Data structures, data 

conversion, and standard GIS techniques, such as reclassification and neighborhood 

operations, are presented.  

Chapter 5 explores the basics of knowledge-based systems such as its 

components, knowledge acquisition, and knowledge representation. The chapter ends 

with the discussion of the variety of methods in applying knowledge-based systems to 

image classification. Chapter 6 illustrates how the concepts and techniques of remote 
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sensing, GIS, and other emerging technologies are utilized in the acquisition of 

parameters required for stormwater modeling. Examples of these hydrologic variables are 

land use, impervious surface, and elevation. Chapter 7 discusses how land use can be 

obtained from satellite data with new approaches like neural networks and fuzzy 

classifiers. The issues affecting land use classification for stormwater modeling are also 

treated.  Land use is a necessary input parameter to stormwater models because it is 

related to the amount of runoff and pollutants generated in a parcel of land. 

In Chapters 8, 9, and 10, we demonstrate the actual use of the techniques of 

remote sensing, knowledge-based systems, and GIS for stormwater management 

applications. In Chapter 8, impervious surface is identified on a Landsat ETM+ data in a 

highly urbanized portion of the Santa Monica Bay watershed in Los Angeles, the Marina 

del Rey area. Delineation of impervious surface is important because it is used to 

determine runoff rates and volumes. Calculating for the size of a storage facility to 

prevent flooding, for example, requires the knowledge of the amount of impervious 

surface in the watershed. In this chapter, we will see how well we can distinguish 

impervious surface from water, vegetation, soil, and beach. We also compared our results 

to those obtained from the maximum likelihood method, a standard statistical classifier. 

Next, we used similar strategies to directly estimate levels of pollution using the same 

imagery. The procedures and analysis are discussed in Chapter 9. The six water quality 

parameters studied were total suspended solids, biochemical oxygen demand, total 

phosphorus, total Kjeldahl nitrogen, copper, and oil and grease. It is necessary to know 

the areas in the watershed that generate high levels of pollution to be able to prioritize 
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these areas for the implementation of best management practices. In Chapter 10, a 

method is presented to evaluate the accuracy of the classifications made in Chapter 9. 

Essentially, we propose the use of the weighted equivalents of the overall accuracy and 

kappa coefficient to report the quality of the classifications. We also recommend a way to 

calculate the weights associated with misclassification errors. The specific accuracy 

measures will provide more information for pollution control. Chapter 11 presents the 

overall conclusions of this investigation and discusses ways where the techniques learned 

can be applied to other areas.  
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Chapter 2 

Remote Sensing 

 

2.1  Definition 

Remote sensing is the art and science of acquiring information about an object or 

phenomenon by means of a device not directly in contact with the object or phenomenon 

under observation. In a technological setting, remote sensing is usually associated with 

data obtained by sensors and instruments that measure emitted or reflected 

electromagnetic radiation. The data can be arranged in a digital format that can be 

analyzed using a computer to yield useful information (Sanchez and Canton, 1999). 

  

2.2  Energy Interactions with Earth Surface Features  

When incident electromagnetic radiation or energy from the sun strikes an object 

on the earth’s surface, some of the radiation is absorbed, some is transmitted, and the rest 

is reflected. This incident radiation is of various types, depending on its location in the 

electromagnetic spectrum. Not all radiation types are utilized in remote sensing because 

some of them are scattered and/or absorbed by atmospheric particles. Therefore, only 

those in the atmospheric windows are utilized for remote sensing. They are the blue (0.4-

0.5 µm), green (0.5-0.6 µm), red (0.6-0.7 µm), near infrared (NIR) (0.7-1.3 µm), middle 

infrared (MIR) (1.3-3 µm), thermal infrared (TIR) (beyond 3 µm), and the microwave 
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energy (1 mm to 1 m). For a specific object, various kinds of incident energy will result 

in different amounts of absorbed, transmitted, and reflected energy. Water, for instance, 

reflects little blue and red energy, and completely absorbs NIR (Lillesand and Kiefer, 

1994). 

If the reflected energy is plotted against the wavelength, a spectral signature 

results. The characteristic patterns of spectral signatures of earth surface features are the 

basis for the recognition of their properties (Lillesand and Kiefer, 1994). There are 

typical signatures of earth materials, but they can vary according to several factors that 

are associated with the material itself or the environment (Curran, 1985). Vegetation, soil, 

and water are dominant surface features and their signatures are examined next. 

 

2.2.1  Vegetation 

The basic component of vegetation is the leaf. A leaf is made of layers of 

structural fibrous organic matter. Inside the leaf are pigmented, water-filled cells, and air 

spaces. These three characteristics, pigmentation, physiological structure, and water 

content, affect the way the leaf absorbs, transmits, and reflects the energy incident on it. 

All healthy green vegetation exhibits low reflectance of red and blue energy, medium 

reflectance of green energy and high reflectance of near infrared energy. This is due to 

the combined effects of leaf pigments and physiological structure. However, due to old 

age and disease, plant pigments can break down. Consequently, stressed vegetation will 

show a decrease in the amount of reflected near infrared energy and a rise in the 

reflection of blue and red wavelengths (Curran, 1985). The leaf pigment chlorophyll has 
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been particularly studied because of its influence on vegetation stress. Chlorosis, a plant 

disease characterized by yellowing or decoloring, and necrosis, death of narrow areas of 

living plant tissue, can result from pollution, pests, and agents of disease like bacteria or 

virus. In those areas affected, the concentration of chlorophyll pigments can diminish. 

Barton (2001) reported that these small diseased areas exhibit a disproportionately large 

effect on total leaf reflectance. 

Moisture in the plants will cause a decrease in the overall reflected energy. This 

happens because water generally absorbs energy, regardless of wavelength (Curran, 

1985). In analyzing satellite data, however, we do not usually deal with individual leaves 

or plants. What we see in an image is mostly a plant canopy. A canopy is the topmost 

expanding branchy stratum of a forest. In this case, factors in the environment can 

influence the amount of reflected energy. For example, when the sun is high in the sky, 

electromagnetic radiation will penetrate deeply into the canopy, and reflectance will be 

low. When the sun is low, radiation will only strike the canopy at shallow depths, and 

reflectance will be high (Ahmad and Lockwood, 1979). In open canopies, we can detect 

plant species in the understory (ground level plants). Williams and Hunt (2002) identified 

a perennial weed called leafy spurge among other green vegetation in northeastern 

Wyoming because of the unique yellow-green color of its bracts. 

Phenology, that branch of science that deals with the relationship between climate 

and recurrent biological phenomena, has an effect on the reflectance of plants (Steiner, 

1970). Wheat, for example, has a relatively high red reflectance, but low NIR reflectance 

during the winter. In the summer, the opposite is true. Red reflectance is low, while NIR 
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reflectance is high (Kauth and Thomas, 1976). Lanjeri et al. (2001) were able to 

distinguish different vineyard classes such as abandoned vineyards and young vineyards 

from multi-temporal remotely sensed data because of their phenology. 

 

2.2.2  Soil 

Most types of soils have the same reflectance properties. There is a positive 

relationship between the reflectance and the wavelength. Reflectance generally increases 

with the wavelength. There are five factors, which are interrelated, that describe the 

reflectance of soils. These are moisture content, organic content, texture, structure, and 

iron oxide content (Hoffer, 1978; Stoner and Baumgardner, 1981).  

We refer to two contrasting soil types to be able to see the relationship between 

texture, structure, and soil moisture. Clay soil particles hold fast to each other, and as a 

result, clay soil tends to have a strong structure.  This leads to rough surface on plowing. 

Clay soils usually have high moisture content. The combination of these factors causes 

clay soils to exhibit a fairly low reflectance. Clay is in contrast with a sandy soil which 

tends to have a weak structure. The particles stick less to each other. This causes a fairly 

smooth surface on plowing. In addition, sandy soils tend to drain water well, and hence, 

have low moisture content. Because of all of these, sandy soils exhibit high reflectance 

(Bowers and Hanks, 1965).  

Again, as water generally absorbs energy, its presence in any material will 

decrease that material’s reflectance. The same holds true for soil. In visible wavelengths, 

the reflectance of soil is greatly decreased by the presence of soil moisture (Jensen and 
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Hodgson, 1983).  However, when the soil becomes saturated, the addition of more 

moisture will have no effect on reflectance. In the near infrared and middle infrared, the 

same observation holds, but the decrease in reflectance is more rapid (Curran, 1985). 

The presence of dark organic matter will decrease the reflectance of soil. 

However, when the organic matter content of the soil is more than 5 per cent, the soil is 

already black. Additional increases in organic matter will have only a slight effect on 

reflectance (Page, 1974). Many soils have a rusty red color because of the presence of 

iron oxide, which selectively reflects red light and absorbs green light (Obukhov and 

Orlov, 1964). With this remarkable property, iron ore deposits can be delineated from 

satellite images (Vincent, 1973). 

The discussion above tells us that the spectral signature of a particular soil can be 

used to predict its properties. Bendor and Banin (1995) consulted the spectral reflectance 

curves in the near infrared portion of the electromagnetic spectrum to calculate the 

following soil properties: organic matter content, carbonate content, clay content, 

hygroscopic moisture, specific surface area, and cation-exchange capacity. The soils 

investigated were from arid and semi-arid regions. McCarty et al. (2002) referred to the 

near-infrared and mid-infrared regions to quantify the amount of organic and inorganic 

carbon in soil. They studied 14 soil series with contrasting temperature and soil moisture 

characteristics.
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2.2.3  Water 

The majority of the incident radiation on water is not reflected but is either 

absorbed or transmitted. In the visible wavelengths, little radiation is absorbed, a small 

amount, not more than 5 per cent, is reflected. The rest of the majority is transmitted. The 

near infrared and the middle infrared radiation are strongly absorbed by water, so very 

little is reflected or transmitted (Wolfe and Zissis, 1978). Because of this, the boundary 

between water and land shows a sharp contrast.  

Factors in the environment affect the reflectance of a water body. The depth of the 

water, the materials within the water, and the surface roughness of the water are some of 

the most significant factors (Curran, 1985). In shallow water, the majority of the 

reflectance comes from the bottom of the water body, not by the water itself. Hence, in 

these areas, the underlying material, not the water itself, determines the water body’s 

reflectance characteristics and color. Non-organic sediments, tannin, and chlorophyll are 

the most common suspended materials in water (Curran, 1985). Non-organic silts and 

clays tend to increase the scatter and reflectance in visible wavelengths (Weisblatt et al., 

1973). Using this property, amounts of suspended particulate matter can be calculated in 

prominently turbid waters (Doxaran et al., 2002). 

If the chlorophyll content of water is very high, the water body will partly exhibit 

the reflectance properties of vegetation where green reflectance is high, and blue and red 

reflectance are low (Piech et al., 1978). Zeichen and Robinson (2004) concluded that the 

large segments of water in the north-east Atlantic Ocean showing increased reflectance of 

visible radiation contained phytoplankton blooms.  
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The roughness of the water surface can also change the reflectance properties of 

water. A smooth water surface can show very high or very low reflectance depending 

upon the location of the sensor. If the surface is very rough, reflectance will increase as 

there is an increased scattering on the surface (Curran, 1985). 

 

2.3  Sensor and Platform Characteristics 

We have seen how surface materials respond to incident energy. These properties 

are used in remote sensing to gather beneficial information. The remotely-sensed data are 

acquired by a device or sensor on board a platform. The sensor and the platform together 

constitute a remote sensing system. A passive remote sensing system utilizes the sun’s 

electromagnetic radiation, while an active remote sensing system supplies its own source 

of energy to illuminate earth surface features (Lillesand and Kiefer, 1994). Aboard a 

satellite, remote sensing devices electronically code radiation in numeric format to 

produce a digital image. The most common sensing devices are the multi-spectral 

scanners and microwave sensors (Harrison and Jupp, 1989).  

The multi-spectral scanners utilize the visible, near infrared, middle infrared, and 

thermal infrared parts of the electromagnetic spectrum to obtain data. One wavelength 

range (e.g., 0.4-0.5 µm) corresponds to one band or channel (e.g., blue band) (Lillesand 

and Kiefer, 1994). Multi-spectral scanners, which depend on natural illumination from 

the sun (passive system), operate in various ways. There are three types that are 

categorized according to the mechanism used by the sensor to view each pixel. 

Electromechanical scanners have a sensor which oscillates from side to side to form the 
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image. In a linear array scanner, there is an array of detectors that sense the pixel values 

along a line simultaneously. While in a central perspective scanner, the sensing device 

does not move during data acquisition. Hence, the sensor views all pixels from the same 

central position. In this aspect, this sensor is similar to a photographic camera (Harrison 

and Jupp, 1989).   

The microwave sensors function between the wavelengths of about 1-1,000 mm.  

These devices are employed in both active and passive systems. In active systems, like 

radar, the device not only supplies the energy but also detects the response from the 

features of interest. In the passive system, the earth sends out natural radio emission that 

the microwave devices can sense (Lillesand and Kiefer, 1994). Data from the microwave 

sensors, however, are not usually utilized for land use classification because of the 

configuration of the data acquisition process that makes shadows more pronounced 

(Harrison and Jupp, 1989). 

Platforms carry the sensors that gather data. The most common platforms are 

aircraft and spacecraft (Lillesand and Kiefer, 1994).  Some of the multi-spectral and 

hyperspectral instruments aboard an aircraft are the AMS which operates in 10 

wavelength bands in 8-bit and 12-bit resolutions, AVIRIS which utilizes the 400 to 2,500 

nm region in 224 channels, CASI which uses the 400 to 1000 nm region in up to 288 

channels, and HYDICE with the capability of imaging in 210 spectral bands in the 400 – 

2,500 nm range of the electromagnetic spectrum ( CARSTAD, 2004). 

Spacecraft can be manned or unmanned (Harrison and Jupp, 1989). Mercury, 

Gemini, Apollo (launched in the 1960s), Skylab (1970s), and the Space Shuttle (1980s) 
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are some of the manned spacecraft operated by the United States which have taken 

numerous images of the earth (Sanchez and Canton, 1999). Unmanned spacecraft may be 

categorized into two general groups: polar orbiting earth observation satellites and 

geostationary meteorological satellites. Geostationary satellites orbit at an altitude of 

about 36,000 km above the equator. They always view the same point on the earth’s 

surface. This is caused by the satellite’s circling around the earth with the same angular 

velocity as the earth’s rotation. Hence, the satellite views images of the same part of the 

earth at regular intervals (CEOS, 2003). Some of the satellites that monitor the 

atmosphere covering the entire globe include Meteosat 7, Insat 3E, Himwari/GMS5, 

GOES-10 and GOES-12 (Satellite Signals, 2004). 

Polar-orbiting satellites invariably pass a specific latitude at the same solar time. 

They cover regions between the latitudes 82° north and 82° south of the equator. Hence, 

they are called polar, sun-synchronous satellites. Their orbits in space can vary from 700 

km to 1,500 km from the surface of the earth. Because of the orbital characteristics of 

these satellites, the near global imaging of the earth’s surface can be done on a routine 

and predictable basis (Harrison and Jupp, 1989). The Landsat series of satellites have 

been the best-known satellites of this nature. Imageries that they acquire are also the most 

commonly utilized. But there are many other polar orbiters in space. One of these is the 

SPOT satellite which carries the multi-spectral (MSS) and panchromatic sensors. The 

MSS operates in three channels; the panchromatic, in one channel. Another example is 

the NOAA satellite which contains the AVHRR instrument operating in five wavelength 

bands (Kerr and Ostrovsky, 2003). 
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Landsat data have been used in many applications in numerous disciplines.  This 

is because Landsat data have a relatively high resolution (30 meters in most bands) which 

is sufficient for most areas of study. It also has seven bands that can be combined to suit a 

scientist’s particular application. Perhaps the greatest advantage of Landsat data is its 

availability to the public. Landsat data will be used in this study, and is the topic of the 

next section. 

 

2.4  The Landsat Program 

2.4.1  Overview 

In more than thirty-five years of space exploration, many space imaging missions 

have been flown by countries such as the United States, Britain, Canada, China, 

Germany, India, Japan, and Russia. Particularly, the United States has been playing a 

major role in earth remote sensing. Its Landsat program is the longest running mission 

and has produced the largest collection of earth images available (more than three 

million) (Sanchez and Canton, 1999). 

On June 23, 1972, the first Landsat satellite was launched. From then on, more 

Landsat satellites were brought in space. Each new satellite carried with it sensors more 

powerful than their predecessors (Sanchez and Canton, 1999). Table 2.1 shows the 

essential attributes of the Landsat satellites. 

The Landsat satellites can be grouped into three classes. The first group consists 

of Landsats 1, 2, and 3 which held the Multi-spectral Scanner (MSS) and the Return 

Beam Vidicon (RBV) camera. Next is the Landsats 4 and 5 group which carried the 
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Thematic Mapper (TM) in addition to the MSS. The last group combines Landsats 6 and 

7 with the Enhanced Thematic Mapper (ETM) and the Enhanced Thematic Mapper Plus 

(ETM+) sensors on board respectively (Sanchez and Canton, 1999). The more recent 

satellites have enhanced sensor and communication capabilities and are the only ones to 

be discussed further. Specifically, we focus our discussion on Landsats 4, 5, and 7. 

Although Landsat 4 was recently decommissioned, and Landsat 5 will be shut down soon 

(U.S. Geological Survey, 2003), the images they collected are still available to the public. 

After reviewing the characteristics of the satellite platform, the sensor Thematic Mapper 

and its enhanced counterpart will be discussed. 

  

Table 2.1: Characteristics of the Landsat satellites 

Satellite Launch Date Decommission Date Sensors 
Landsat 1 July 23, 1972 Jan. 16, 1978 MSS, RBV 
Landsat 2 Jan. 23, 1975 Feb. 25, 1982 MSS, RBV 
Landsat 3 March 5, 1978 March 31, 1983 MSS, RBV 
Landsat 4 July 16, 1982 June 15, 2001 MSS, TM 
Landsat 5 March 1,1984 Operational MSS, TM 
Landsat 6 Oct. 5, 1993 Crashed at launch ETM 
Landsat 7 April 15, 1999 Operational ETM + 

 
(from Sanchez and Canton, 1999; Australian Centre for Remote Sensing, 2003; and 
Goddard News, 2001) 
 
MSS = Multi-spectral Scanner 
RBV = Return Beam Vidicon 
TM  = Thematic Mapper 
ETM  = Enhanced Thematic Mapper 
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2.4.2  Landsat -4, - 5, -7 Technical Characteristics 

Landsats 4 and 5 were both positioned on circular, sun-synchronous, near-polar 

orbits (within 9° of the North Pole). Each spacecraft weighing approximately 4,400 lbs 

was placed at an altitude of about 705 km above the earth. The solar panels are 1.5 m 

long and 2.3 m wide. The antennas directly transmit data to receiving stations on earth. 

The period, the time a satellite takes to complete an entire orbit, is 98.9 minutes. This 

results in a 16-day repeat cycle. This simply means that a specific point on the earth’s 

surface is viewed by the satellite every 16 days. This also means that the entire globe is 

covered by the satellite after 16 days. The ground track is the path of the satellite when 

traced on the surface of the earth. At the equator, the distance between ground tracks is 

2,752 km. The equatorial crossing, where the path crosses the equator, takes place at 9:45 

AM local time. Because of the earth’s rotation, each satellite orbit is placed westward of 

the preceding one. Hence, everyday, the satellite orbit progresses slowly westward 

(Sanchez and Canton, 1999).  Data are gathered on the illuminated side of the earth on 

the descending path (northeast to southwest). Because it is a passive system, in the night 

during the ascending path, the sensors are turned off. The image swath width is 185 km. 

This means that the sensor sweeps through 185 km of ground in one imaging instance. 

Coverage of adjacent swaths happens every seven days, and the coverage cycle is 16 days 

(Sanchez and Canton, 1999). Landsat 7, as can be seen in Table 2.2, is similar to 

Landsats 4 and 5, except that it contains an enhanced version of the Thematic Mapper.  
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Table 2.2: Landsat 7 characteristics 
 

Launch date: April 15, 1999 
Sensor data acquired: ETM (Enhanced Thematic Mapper) + 
Data reception commenced: ETM data from July 6, 1999 
Altitude: 705 km 
Swath Width: 185 km 
Orbit type: near polar, sun synchronous 
Orbit period: 99 minutes 
Repeat cycle: 16 days 

               
              (from the Australian Centre for Remote Sensing, 2003) 

 

2.4.3  The Thematic Mapper 

The Thematic Mapper (TM) is carried on board Landsats 4 and 5. The TM has a 

flat, oscillating mirror that scans both west-to-east and east-to-west directions. This 

produces a ground swath of 185 km. The ground track is perpendicular to the orbital 

track. The satellite movement results in the along-track dimension of the image. The 

scanning mirror directs the reflected and emitted radiation to the inside of the instrument. 

Here, various stationary mirrors focus the gathered energy onto a fiber optic collector. 

From the collector, the energy is transmitted to detectors which are sensitive to seven 

spectral regions (called bands or channels) (Sanchez and Canton, 1999).  

We call the surface area imaged by the sensor at a given instant in time as the 

instantaneous field of view (IFOV). For the Thematic Mapper, the IFOV is 30 m by 30 m 

(except for band 6). Remote sensing practitioners often regard the word pixel to mean 

IFOV. Consequently, we can also say that each TM pixel covers an area 30 m by 30 m. 

The size of the pixel determines how well we can resolve specific objects on the earth’s 

surface covered by that pixel. Hence, another word for pixel size is resolution or spatial 
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resolution (Sanchez and Canton, 1999; Harrison and Jupp, 1989). Table 2.3 details the 

characteristics and applications of TM data. 

 

Table 2.3: Thematic Mapper spectral bands and applications 

Band Resolution Wavelength 
(µµµµm) 

Spectral 
Location Applications 

1 30 m 0.45- 0.52 Blue 

Water body penetration in 
coastal water mapping 
Soil/vegetation discrimination 
Forest type determination 
Cultural features identification 

2 30 m 0.52- 0.60 Green 

Vegetation’s green reflectance 
peak 
Vegetation type discrimination 
Vegetation vigor assessment 
Cultural feature identification 

3 30 m 0.63-0.69 Red 

Chlorophyll absorption 
determination 
Plant species determination 
Cultural feature identification 

4 30 m 0.76-0.90 Near 
Infrared 

Vegetation type determination 
Vegetation vigor determination 
Biomass contents determination 
Delineating water bodies 
Soil moisture discrimination 

5 30 m 1.55-1.75 Mid-
Infrared 

Vegetation moisture 
determination 
Soil moisture determination 
Snow/clouds differentiation 

7 30 m 2.08-2.35 Mid-
Infrared 

Mineral types determination 
Rock types determination 
Vegetation moisture 
determination 

6 120 m 10.4-12.5 Thermal 
Infrared 

Vegetation stress analysis 
Soil moisture discrimination 
Thermal mapping 

 
(from Sanchez and Canton, 1999) 
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Landsat 7 carries the Enhanced Thematic Mapper + which is an improved version 

of the Thematic Mapper. The resolution of the thermal band was increased to 60 m (120 

m for the TM). Also, there is a panchromatic band which has a higher resolution of 15 m. 

Table 2.4 summarizes the characteristics of the ETM+.  

 

Table 2.4: ETM + characteristics 
 

Band Resolution Wavelength 
(µµµµm) 

Spectral 
Location 

1 30 m 0.450- 0.515 Blue 
2 30 m 0.525- 0.605 Green 
3 30 m 0.63-0.69 Red 
4 30 m 0.75-0.90 Near Infrared 
5 30 m 1.55-1.75 Mid-Infrared 
7 30 m 2.09-2.35 Mid-Infrared 
6 60 m 10.4-12.5 Thermal Infrared 

Panchromatic 15 m 0.52-0.90 Visible Range 
                    
                   (from Sanchez and Canton, 1999) 

 

2.5  Image Data 

The resulting remotely sensed data is an image which has a square or rectangular 

array format. This raster image (Figure 2.1) which shows different levels of gray is made 

of square elements called pixels. Each image is associated with one band or channel. 

Every pixel has a digital number (DN) which represents the reflected energy or 

reflectance of that parcel of land covered by the pixel. The Thematic Mapper gathers data 

in 8 bits. Hence, the DN ranges from 0 (black pixel, very low reflectance) to 255 (white 

pixel, very high reflectance).  Any DN in between will show different levels of gray. 
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Resolution or spatial resolution is the relationship between the pixel size and the size of 

the ground the pixel captured. An 80-meter resolution, for instance, means that one side 

of the pixel correlates to 80 m on the earth’s surface. 

 
 

104 102 106 104 105 105 106 119 112 114 

99 109 112 105 108 104 103 116 111 109 

111 118 105 105 99 102 111 106 101 101 

118 118 112 121 106 112 109 96 101 103 

117 116 112 116 108 116 106 102 113 105 

111 108 114 105 108 107 104 116 109 120 

105 106 103 104 118 109 105 116 106 108 

 
Figure 2.1: A subset of a satellite image 

 

Color images actually consist of three images, for example, blue, green, and red 

bands. These bands can be assigned to the blue, green, and red color guns of the display 

device (e.g., computer monitor) respectively. These images are superimposed on each 

other to produce a color image or a composite. Table 2.5 gives examples of pixel colors 

that will appear in the computer monitor if the above scheme is applied. The resulting 

image is called a normal color image. If we use the green, red, and near infrared bands 

instead, and assign them respectively to the blue, green, and red guns of the color 

monitor, the result is Table 2.6. This image is referred to as an infrared color image. All 

other color assignments are simply called false color images or composites. Tables 2.7 
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and 2.8 list the appearances of selected earth surface features in satellite images using the 

two different color assignments. The infrared color image, however, is more helpful for 

visual interpretation. 

 
Table 2.5: Pixel colors on normal color image 

 
 DN DN DN DN DN DN 
Blue Band 255 0 0 0 255 128 
Green Band 0 255 0 0 255 128 
Red Band 0 0 255 0 255 0 
Resulting 
Color Blue Green Red Black White Light 

Cyan 
  
          (Blue band assigned to blue gun, Green band to green gun, Red band to red gun) 

 
 
 

Table 2.6: Pixel colors on infrared color image  
 

 DN DN DN DN DN DN 
Green Band 255 0 0 0 255 128 
Red Band 0 255 0 0 255 128 
Near Infrared 
Band 0 0 255 0 255 0 

Resulting 
Color Blue Green Red Black White Light 

Cyan 
 
          ( Green band to blue gun, Red band to green gun, Near infrared band to red gun) 
 
 

 
Table 2.7: Terrain signatures on infrared color image 

 
Surface Feature Infrared Color Image 

Green vegetation Red 
Deep, clear water Dark blue 
Turbid water Bright blue 
Red soil Green 
Bright urban areas Pale blue 

                                
                               (from Harrison and Jupp, 1989) 
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Table 2.8: Terrain signatures on normal color and infrared color images 
 

Surface Feature Normal Color Image Infrared Color Image 
Healthy vegetation: 
    Broadleaf type 
    Needle-leaf type 

 
Green 
Green 

 
Red to magenta 
Reddish brown to purple 

Stressed vegetation: 
    Previsual stage 
    Visual stage 

 
Green 
Yellowish green 

 
Pink to blue 
Cyan 

Autumn leaves Red to yellow Yellow to white 
Clear water Blue-green Dark blue to black 
Silty water Light green Light blue 
Damp ground Slightly darker Distinct dark tones 
Shadows Blue with details 

visible 
Black with few details 
visible 

Water penetration Good Green and red bands: same 
Infrared band: poor 

Contacts between land and 
water 

Poor to fair 
discrimination 

Excellent discrimination 

Red bed outcrops Red Yellow 
 
(from “Introduction to Remote Sensing” Seminar, 1995 ) 

 

Table 2.9 lists possible band combinations for some applications. Since water 

strongly absorbs radiation beyond the visible bands, the blue (1), green (2) and red (3) 

bands should be superimposed to detect patterns in water sediments. For recognizing 

urban features and vegetation types, the NIR band (4) should be included. It is strongly 

suggested to incorporate either of the two middle infrared bands (5 or 7) to discriminate 

between vegetation classes. Choosing any of the visible bands (1 or 2 or 3) plus the NIR 

band (4) plus either of the two middle infrared bands (5 or 7) will also be advantageous. 

However, selecting band combinations actually depends on the interpreter and his 

particular application (NOAA, 1984). 
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Table 2.9: TM band/color combinations 
 

Blue Green Red Composite Possible Application 
1 2 3 Normal  Color Water sediment patterns 
2 3 4 Infrared Color Urban features/Vegetation types 
3 4 5 False Color Urban features/Vegetation types 
3 4 7 False Color Urban features/Vegetation types 
3 5 7 False Color Vegetation enhancement 
4 5 7 False Color  
1 4 7 False Color  

         
        (from NOAA, 1984) 
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Chapter 3  

Digital Image Processing 

 

3.1  Image Rectification and Restoration 

A raw satellite image cannot be processed immediately for classification. This is 

because it lacks the geometric integrity of a map. There are many sources of geometric 

distortions. Examples are the earth’s rotation during image acquisition; the curvature of 

the earth; and differences in the altitude, attitude and velocity of the platform. To correct 

these errors, one technique is to determine the relationship between the geometrically 

distorted image and the reference, normally a map (Richards, 1986). 

To fix this mathematical relationship, ground control points (GCPs) are chosen. 

GCPs are points that can be recognized easily both on the image and on the map. In 

addition, the actual geographic coordinates (Northing and Easting, or latitude and 

longitude) of these GCPs should be obtainable.  Examples are road intersections, bends in 

rivers, and towers. The pixel address of the GCPs (by row and column coordinates, v and 

u respectively) and their actual geographic coordinates (x and y) are determined, and 

these groups of coordinates are related by least squares, a statistical technique (Lillesand 

and Kiefer, 1994). First, second, or third degree mapping polynomials are possible. The 

following, for instance, are two equations associated with a second degree polynomial.  
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     u = a0 + a1x + a2y + a3xy + a4x2 + a5y2                                           (3.1) 

      v = b0 + b1x + b2y + b3xy + b4x2 + b5y2                  (3.2) 

When the coefficients ai and bi are computed using the GCPs, the location of any other 

point on the rectified image can be calculated (Richards, 1986). 

After the locations of points are corrected, the problem of determining the DNs in 

the resulting raster or output matrix must be solved. There are three resampling 

techniques available. Nearest neighbor resampling assigns the DN of the pixel whose 

center is nearest to the raster cell in the rectified image. Bilinear interpolation method 

calculates a distance-weighted average of the DNs of the four nearest pixels. Cubic 

convolution utilizes 16 surrounding pixels using a more complex mathematical scheme 

(Lillesand and Kiefer, 1994). 

 

3.2  Image Enhancement 

Although the human mind is superior at interpreting the spatial characteristics of 

an image, it is poor at discriminating subtle spectral differences (i.e., color differences).  

An analyst, for example, knows that the very dark blue irregularly-shaped area in an 

infrared image is part of the ocean. But it is not immediately clear to him where shallow 

water is, where reflectance is a little bit higher. The purpose of image enhancement is to 

emphasize certain attributes of the image for improved visual interpretability.  

There are three general enhancement techniques: contrast manipulation, spatial 

feature manipulation, and multi-image manipulation (Lillesand and Kiefer, 1994). There 

are innumerable methods under these categories that are available to the analyst. Only 
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one example for each category is presented here. The choice of method generally depends 

upon the purpose and oftentimes a matter of personal preference.  

 

3.2.1  Contrast Manipulation 

In contrast manipulation, the contrast in an image is increased by making the 

bright pixels brighter and the dark pixels darker. An example of a contrast manipulation 

technique is contrast stretching. Normally, the output device (e.g., color monitor) is 

capable of displaying 256 levels. However, the image data may consist of a smaller range 

of DNs. Figure 3.1(a) shows a histogram of a hypothetical gray scale or one-band satellite 

image. A histogram shows the distribution and frequencies of the DNs in an image. In 

this case, pixels only have DNs in the range 32 to 96. If we display this image as it is, 

only the gray levels from 32 to 96 will be used. We are not taking advantage of the full 

capability of the display device (Figure 3.1(a)).  

We will have more contrast among the pixels if we avail of the full color range of 

our computer monitor (256 gray levels) by doing a linear stretch. Here, the lowest DN of 

the raw image, 32 here, will be assigned to the lowest DN possible in the display device 

(i.e., zero). The highest DN, 96 here, will be assigned to the highest DN possible (i.e., 

255). The raw DNs in between will be stretched linearly. The result is an image with a 

better contrast than the one without the stretch (Figure 3.1(b)). 

There are other stretches, like in Figure 3.1(c), which aims to emphasize certain 

features of the image. Here, the analyst is interested in the brighter pixels (48 to 96). In 

this case, pixels with DNs from 32 to 47 are virtually “washed away” from the image. 
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There are myriad of other special stretches designed for specific applications (ERDAS 

Field Guide, 1997). Examples are the histogram-equalized, Gaussian, standard deviation, 

and gamma stretches. 
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Figure 3.1: Principle of contrast stretch enhancement 

 

3.2.2  Spatial Feature Manipulation 

We apply spatial feature manipulation methods if we need to emphasize or 

deemphasize certain spatial features in our image. One technique is convolution. Unlike 

contrast stretching, the new DN in the enhanced image is affected by the DNs of the 

surrounding pixels. A moving window that holds an array of coefficients or weighting 
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factors is designated. Such arrays are called kernels. They are usually an odd number of 

pixels (e.g., 3 x 3, 5 x 5). This kernel is moved throughout the original image. Then, each 

coefficient in the kernel is multiplied by the corresponding DN in the original image. The 

sum of these products is the new DN at the center of the kernel in the enhanced 

(convoluted) image. The window is moved until all the pixels are considered, except at 

the edges where the original DNs are retained. 

The convolution process in Figure 3.2 stresses the “smooth” areas in an image. 

Examples of these are extensive agricultural fields or deep water bodies where the gray 

levels gradually change over numerous pixels. Consequently, this process also 

deemphasizes the “rough” areas, for example, across roads, where gray levels vary 

abruptly over a few pixels. The effect of convolution is dependent upon the size of the 

kernel and the coefficients. In Figure 3.2, more smoothing will occur if the kernel is 5 x 

5, rather than 3 x 3. The effect of applying the kernel in Figure 3.3 is to detect line 

features like roads and rivers (Richards, 1986). 
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Figure 3.2: Concept of convolution 
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Figure 3.3: Kernel that detects vertical line features 

 

3.2.3  Multi-image Manipulation 

Multi-image manipulation considers pixels in other bands to compute for the new 

DNs in the enhanced image. For example, the tasseled cap transformation (Crist and 

Cicone, 1984) results in six components that are just linear combinations of the DNs in 

the raw bands of the raw TM image. Table 3.1 shows the transformation used in ERDAS 

Imagine 8.7 (ERDAS Field Guide, 1997). The “brightness” component displays the 

variation in the reflectance of soil. Orthogonal to the “brightness” component, the 

“greenness” component is highly related to the quantity of green vegetation. Moisture in 

the canopy and soil is accentuated by the “wetness” component. Less studied is the 

“haze” component which is named as such because of its large coefficient in the blue 

band. The “fifth” and the “sixth” components are created to complete the transformation.  

 

3.3  Image Classification 

 The aim of image classification is to group all pixels in an image into categories, 

for example, land use or land cover classes. This is possible because each pixel exhibits a 

pattern of digital numbers (DNs) for the group of bands included in the classification. Let 

us use, for example, Landsat TM bands blue, green, red, and near infrared for 
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classification. A pixel may have a DN of 5 in the blue band, 11 in the green band, 7 in the 

red band, and 0 in the near infrared band. These DNs together (5, 11, 7, 0) compose the 

spectral pattern of that pixel. Each pixel has a pattern. All the pixels in one land cover 

category have similar patterns. Therefore, if we know the pattern of each land cover 

class, then we can allocate all the pixels in their respective land cover classes. This can be 

done automatically using standard statistical algorithms (Lillesand and Kiefer, 1994). 

There are two general approaches to image classification. When the analyst has 

previous knowledge about the study area, he utilizes the supervised classification method. 

Otherwise, the unsupervised classification scheme is more appropriate (Richards, 1986).  

 

Table 3.1: Tasseled cap transformation   

Component Transformed Digital Number 

Brightness 
0.3037 (Blue band) + 0.2793 (Green band) + 0.4743 (Red band) + 

0.5585 (NIR band) + 0.5082 (MIR band 5) + 0.1863 (MIR band 7) 

Greenness 
- 0.2848 (Blue band) - 0.2435 (Green band) - 0.5436 (Red band) + 

0.7243 (NIR band) + 0.0840 (MIR band 5) - 0.1800 (MIR band 7) 

Wetness 
0.1509 (Blue band) + 0.1973 (Green band) + 0.3279 (Red band) + 

0.3406 (NIR band) - 0.7112 (MIR band 5) - 0.4572 (MIR band 7) 

Haze 
0.8832 (Blue band) - 0.0819 (Green band) - 0.4580 (Red band) -  

0.0032 (NIR band) - 0.0563 (MIR band 5) + 0.0130 (MIR band 7) 

Fifth 
0.0573 (Blue band) - 0.0260 (Green band) + 0.0335 (Red band) -  

0.1943 (NIR band) + 0.4766 (MIR band 5) - 0.8545 (MIR band 7) 

Sixth 
0.1238 (Blue band) - 0.9038 (Green band) + 0.4041 (Red band) + 

0.0573 (NIR band) - 0.0261 (MIR band 5) + 0.0240 (MIR band 7) 

 
     (from ERDAS Field Guide, 1997) 
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3.3.1  Supervised Classification 

There are three basic steps in supervised classification. These are the training, 

classification, and output stages. In the training stage, we find the pattern for each class 

and describe it using statistical descriptors. In the classification stage, each unknown 

pixel is classified to its most likely class. This is according to the decision rule 

established by the algorithm based on the statistical descriptors. The result, a land use or 

land cover map, for example, is then presented in the output stage. 

 

3.3.1.1  Training Stage 

In the training stage, we select pixels of known types to “train” our algorithm. 

These training pixels are just a small fraction of the image that we need to classify (e.g., 

10%). A collection of pixels belonging to one class is called a training site or a training 

area. The statistical descriptors for each category are computed in different ways 

depending on the algorithm. 

In Figure 3.4, these training pixels are plotted in a scatter diagram or scatter plot. 

They are plotted according to their digital numbers in Band 1 and Band 2. Although the 

pixels in one class do not have the same exact pattern (i.e., exactly the same DN for Band 

1 and Band 2), they exhibit a natural centralizing tendency. This is apparent in the 

clustering of the pixels belonging to one class. Suppose we are using only these two 

bands for classification. Then the pattern for each pixel will consist only of two DNs, that 

for Band 1, and the other for Band 2. The patterns of all the pixels in one class are the 
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basis of the statistical descriptors for that class. Analysts generally employ more than two 

bands for classification, but the principle is the same.  
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Figure 3.4: Pixel observations from training areas 

 

Training pixels can be delineated interactively using a computer monitor and 

mouse. They are usually defined in the form of polygons. Frequently, image 

enhancement techniques are employed so that the analyst can distinguish clearly among 

the classes. Care must be taken so as not to get sample pixels from edges as this may not 

constitute one class. At this point, it is necessary to make a distinction between spectral 

class and information class. A group of pixels with very similar spectral response (i.e., 

similar patterns of DNs) belong to the same spectral class. An information class is what 

interests the analyst. This is a more meaningful class that is relevant to the analyst’s 

particular application. For example, deep, clear water will appear dark blue in an infrared 

image, while turbid water will appear bright blue. This means that they have different sets 
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of DNs and therefore they are not in the same spectral class. The analyst, however, may 

not need to distinguish among water types. Instead, he just needs to delineate the water 

bodies in his study area. Therefore, he should use a training area in the turbid water class, 

and also in the deep, clear water class. Then he will just combine these two spectral 

classes into one information class (i.e., water) later. In short, he must take into account 

the spectral variability of the information class (Lillesand and Kiefer, 1994). 

The following sections will discuss the three main statistical classifiers for 

supervised classification approach. These are the parallelepiped, minimum distance to 

means, and maximum likelihood classifiers.  

 

3.3.1.2  Parallelepiped Classification 

In the parallelepiped classification strategy (Figure 3.5), the classes are 

“enclosed” by a box or a parallelepiped in multidimensional space. The statistical 

descriptors are the two sets of digital numbers defining the classes (i.e., two DNs in Band 

1, two DNs in Band 2). During classification, an unknown pixel will be associated with 

the parallelepiped where it falls. 

This classifier is the simplest to apply, and requires less computing time. Hence, it 

is often utilized for a first pass, broad classification. It works for a non-normal 

distribution and takes into account the spread of the data. However, there may be 

overlaps and unclassified pixels since some pixels may not fall inside any of the 

parallelepipeds. The result may also be difficult to interpret (ERDAS Field Guide, 1997) 
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Figure 3.5: Parallelepiped classification scheme 

   

3.3.1.3  Minimum Distance to Means Classification 

The pattern that an individual pixel exhibits is associated with a pixel vector x in 

multi-spectral space. If K pixel vectors are plotted in space, the average location of these 

pixels is called the mean pixel vector m defined as   

�
=

=
K

j
jxKm

1

1
                                                                                                            (3.3) 

In the minimum distance to means classifier, the statistical descriptor for each 

class is its mean pixel vector. This is specified by the diamond mark in the center of 

every class (Figure 3.6). The Euclidean distance between the value of the unknown pixel 

and a class mean vector is computed.  The unknown pixel is assigned to that class nearest 

to that pixel.   
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There are advantages to using this classifier. Except for parallelepiped, this has 

the fastest decision equations to compute. In this method, variability is not taken into 

account, which can present both advantages and drawbacks. Because of this 

characteristic, there are no unclassified pixels. However, an unknown pixel can be 

incorrectly assigned to a “nearer” class, but it may actually belong to a “farther” class that 

has a greater variability (ERDAS Field Guide, 1997). This is especially a problem with 

urban areas.   
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Figure 3.6: Minimum distance to means classification scheme 

  

3.3.1.4  Maximum Likelihood Classification  

This classifier not only considers the mean vector of the pixels in one class, but 

also takes into account the spread or variability of these pixels in multispectral space. 

This parameter is quantified by the covariance matrix Cx, defined as 
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In the maximum likelihood classification, the mean vector and the covariance 

matrix are computed for each class. With these two parameters, we can calculate the 

statistical probability of a pixel x being a member of a specific land cover class �i.  

Simply, 

x∈ωi      if gi(x) > gj(x)      for all j≠i 

which means that the pixel at vector location x belongs to class �i if the value of the 

discriminant function associated with class �i is greater than those of other classes. This 

function is defined as 

)()()( 1ln mxCmxCg ii
t

iii
x −−−−= −

                                                  (3.5)         

If the pixels follow a normal or Gaussian distribution in multispectral space, then 

the maximum likelihood classifier is the most accurate because it considers the most 

variables in computation. It takes into account the variability of classes by utilizing the 

covariance matrix. However, if the pixels are characterized by non-normality, then this 

classifier will not work well. As the equation is extensive, the calculations will require 

more computing resources. Computation time is proportional to the number of input 

bands. This classifier also has a tendency to overclassify signatures with high values in 

the covariance matrix. This is true if there is a large dispersion of the pixels in the 

training set (ERDAS Field Guide, 1997). 
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3.3.1.5  The Jeffries-Matusita (J-M) Distance 

There are separability measures that quantify how well we can separate spectral 

classes from each other. A spectral class is associated with a probability density function. 

The Jeffries-Matusita distance (Richards, 1986) between a pair (classes i and j) of 

probability density functions (associated with one band or several bands) for normally 

distributed classes is 

)1(2 α−−= eJ ij                                                                                                              (3.6) 
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The Jeffries-Matusita distance, also called the Bhattacharrya distance, is usually 

utilized to determine which band or combination of bands will give maximum 

separability. For example, we want to know which subset of bands from the six reflective 

bands of Landsat ETM+ will provide the highest separation between classes. Also, a 

project normally requires the separation of more than two spectral classes. In this case, all 

the pairwise J-M distances are calculated, and an average J-M distance can be 

determined. That subset of bands with the highest average J-M distance is usually chosen 

for classification. The selection may also be based on the best minimum J-M distance.  
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3.3.2  Unsupervised Classification 

In unsupervised classification, there is no attempt to train the algorithm or to 

supervise the classification process. The algorithm will find the natural spectral groupings 

of pixels. As we have seen, these are called spectral classes or clusters. The number of 

clusters is specified by the analyst. After the clusters have been identified, the analyst will 

group these spectral classes into information classes. He may go to the field and 

determine the actual types of the spectral classes. He can also interpret aerial photographs 

or use other ancillary or reference data (Richards, 1986).  

There are many clustering methods available. Here, we discuss only one example, 

the ISODATA (Iterative Self-Organizing Data Analysis Technique) (Richards, 1986). 

This clustering strategy categorizes pixels the same way the minimum distance to means 

classifier does. In Figure 3.7, nine pixels are plotted in a two-band scatter diagram. The 

analyst initially specifies two arbitrary clusters with centers at m1 and m2. Then, the 

distance between a pixel and m1 and m2 will be computed. If it is nearer to m1, then the 

pixel is assigned to cluster 1.Otherwise, it is assigned to cluster 2. This will be done for 

all the other eight pixels. To determine the quality of the clustering procedure, the 

distances of the pixels to their respective mean vectors are squared and then added 

together. This summation is called the sum of squared error (SSE). If it is small, then the 

distances of pixels to mean vectors are small, and the clustering is judged favorably. 
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Figure 3.7: Clustering by the ISODATA method 



 44 

Next, the mean vectors of cluster 1 and cluster 2 will be computed. So that now, 

the positions of m1 and m2 have migrated within these pixels. A new assignment will then 

occur based on these new mean vectors m1 and m2.  Again, the nine pixels will be 

assigned to the nearest candidate cluster. This procedure will be repeated until the 

predefined analyst-specified SSE has been reached.  

This unsupervised classification strategy has advantages and drawbacks. Since it 

is iterative, clustering is not biased to the upper or lower pixels in the image. If the 

number of iterations is sufficient, then this procedure works well no matter where the 

initial cluster centers are located. The main drawback is the long computing time. Also, 

since it considers only the spectral characteristics of the pixels, spatial homogeneity is not 

considered (ERDAS Field Guide, 1997). 

 

3.3.3  Accuracy Assessment 

A prospective user of a map produced from satellite imagery usually needs to 

know about the quality of information shown by the map. Hence, a digital map generated 

from image processing techniques is evaluated for its accuracy. Accuracy assessment 

begins with acquiring or making a reference image. Compilation from various sources is 

not unusual for creating the reference image. Examples are aerial photographs or field 

work. The reference data are called ground truth. This reference image is then compared 

to the automatically classified image. Ideally, all the pixels in the image should be 

assessed (Janssen and Van der Wel, 1994). Most of the time, however, this is not possible 

because of cost or physical restraint.  
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The confusion matrix (also called error matrix or contingency table) (Lillesand 

and Kiefer, 1994) is the most widely used technique to assess the accuracy of a classified 

image. Although Foody (2002) identified some flaws in using the confusion matrix, such 

as problems with mixed pixels and image registration, the confusion matrix is still an 

acceptable measure to assess accuracy.  

Figure 3.8 is a schematic representation of a confusion matrix (Foody, 2002). 

There are n randomly selected pixels involved. The known types (columns) are compared 

to the results of the classification (rows). The pixels that are correctly classified are 

located along the major diagonal of the matrix.    

All non-diagonal elements of the matrix denote either errors of omission or 

commission. Nondiagonal column elements represent errors of omission. This means that 

a pixel has been omitted from its correct class. Conversely, an error of commission is 

done when a pixel is included in a class when it should not have been. These are 

represented by the nondiagonal row elements of the matrix.  

Other metrics can be calculated from the confusion matrix. The overall accuracy 

is computed by dividing the total number of correctly classified pixels (i.e., the sum of 

the elements along the diagonal) by the total number of test pixels n. If we divide the 

number of correctly classified pixels in each class by the number of test pixels utilized in 

that class (the column total), the result is called the producer’s accuracy. This parameter 

indicates how well test pixels of that particular category are classified. User’s accuracies 

are similarly computed but using the number of pixels classified as belonging to that class 

(the row total). This value represents commission error. It is associated with the 
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probability that a pixel classified into a given class represents that class on the ground in 

reality (Story and Congalton, 1986). The kappa coefficient includes the effect of chance 

in the accuracy of the classification (Lillesand and Kiefer, 1994). 
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Figure 3.8: Confusion matrix (from Foody, 2002) 
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Chapter 4 

Geographic Information Systems 

 

4.1  Definitions 

A geographic information system (GIS) can be regarded as a set of tools to 

analyze spatial data. By spatial, we mean the space around us, where we live and function 

(Clarke, 2001). Specifically, a GIS is an automated system that can capture, store, 

retrieve, analyze, and display spatial data (Clarke, 1995) from actual surroundings for a 

particular objective (Burrough, 1989). 

A data layer portrays one theme (Figure 4.1). Entities such as points, lines, 

polygons, and surfaces are encoded on a data layer (Star and Estes, 1990). A stormwater 

runoff sampling station illustrates the concept of a point entity. A road is an example of a 

line entity. A land use category qualifies as a polygon entity. While elevation data can be 

regarded as a surface entity. These entities are associated with spatial data which are their 

location in a two-dimensional space. The spatial data of a point entity are its x and y 

coordinates. Entities also possess non-spatial features called attributes. For instance, for a 

point entity depicting a stormwater runoff sampling station, its attribute data can include 

its name, the sampling frequency, its associated land use type, and so on.  
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Figure 4.1: Examples of data layers in a GIS (from Abellera, 1997) 

 

4.2  Data Structures  

We can organize spatial and non-spatial information about these entities by means 

of a raster or a vector data structure (Star and Estes, 1990). In a raster structure, data are 

placed in a square or rectangular array which contains pixels or cells. A satellite image, 

for instance, has a raster structure. The resolution describes the quantitative relationship 

of the individual pixel, usually a square, to the ground surface it represents.  Row and 

column coordinates mark the position of entities in the array. There is a way to relate 

these arbitrary locations to actual geographic coordinates like latitude and longitude, or 

Northing and Easting. 

In a vector data structure, the location of entities is demarcated by x and y 

coordinates. These values can be true geographic positions or arbitrarily chosen (Figure 

4.2). A pair of x and y coordinates is associated with a point. Several pairs of x and y 
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coordinates describe a line. A polygon is characterized by separate pairs of x and y 

coordinates, where the first pair is exactly the same as the last pair. 
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x1, y1

 
Figure 4.2: Vector data structure 

 

 Selection of data structure is contingent upon project objectives and application. 

Spatial analysis that requires overlay tasks can be easily handled with a raster structure 

because of its simple data organization. Raster structure is usually preferred, for example, 

for investigations involving remotely sensed images, but a great deal of storage space is 

sometimes necessary. Also, the resulting hard copy maps do not produce high quality 

graphics. Where precise locations are required, the vector structure is the more reasonable 

and suitable choice. Examples are in network analysis like utility mapping or transport 

connection. There is no requirement for large storage space due to the complex structure 

of vector-based systems. With this structure, accurate and attractive maps can be made 

(Burrough, 1989). 
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4.3  Data Conversion 

Data conversion or preprocessing includes procedures to change data into a 

format that is suitable for a particular GIS project (Star and Estes, 1990). For instance, in 

a study involving a satellite image that requires overlaying with ancillary vector data, the 

vector data must be converted to its raster equivalent. This is demonstrated in Figure 4.3 

where a vector line entity is merely overlain on the raster array. Pixels crossed by the line 

are assigned the attribute of that line.  

(a) Vector superimposed on raster       (b) Resulting raster
 

               (a) Vector superimposed on raster                                (b) Resulting raster 
 
 

Figure 4.3: Vector to raster conversion of line entity 

 

Format conversion procedures aim to transform material into a form that can be 

processed automatically. Digitizing is one way to convert analogue data to digital format 

by means of a digitizer (Figure 4.4). The graphic data is put on a surface that can be as 

small as one square foot or as large as 20 square feet. The analyst traces the features 

(point, line, polygon) using a cursor. When he clicks on it, the electronics in the digitizing 

tablet system changes the position of the cursor to a signal readable by the computer. The 

resulting data are in vector form. 
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Figure 4.4: Digitizer (illustrated by Robustiano L. Abellera) 

 

Figure 4.5 displays a scanner. Here, a map is passed through a system with units 

called charged coupled devices that detect reflected light emitted by the drawings. The 

reflected light in analog form is then converted to its digital counterpart. The output is a 

raster image that shows pixel values proportional to the reflectance of the map features.  

 

 
 

Figure 4.5: Scanner (illustrated by Robustiano L. Abellera) 
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4.4  Spatial Manipulation and Analysis 

The real strength of GIS is its ability to perform spatial manipulation and analysis. 

The geographic properties of size, shape, scale, distribution, pattern contiguity, 

neighborhood, and orientation can be used to find the relationships among geographic 

features (Clarke, 2001). The following sections describe some of GIS’s capabilities (Star 

and Estes, 1990). 

 

4.4.1  Reclassification 

Oftentimes, the original data are not relevant to the GIS analyst. It may be 

necessary to reclassify data so that information is suitable for a particular application. For 

example, land use data from public records may be too specific to be used for stormwater 

management applications. Hence, some classes have to be aggregated into categories 

relevant for stormwater modeling.  

When dealing with many data layers, the overlay procedure is generally utilized. 

Addition, subtraction, multiplication, division, and other mathematical or statistical 

relationships can be applied to pixels in corresponding positions or globally in order to 

obtain the required conditions. In this case, we have reclassified and combined layers into 

a single layer that is relevant to our objectives. It is more direct to do this in raster than in 

vector data layer due to the one-to-one pixel correspondence in raster format. 
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4.4.2  Interpolation 

Geographic data are usually measured only at some locations. Physical restraints 

or cost oftentimes make observations at many positions difficult or even impossible. 

When represented in a GIS layer, these values present an irregular pattern. Rainfall and 

elevation are some examples. It may be necessary to know the values at points where 

observations are not taken. The surface describing the geographic data can even be 

utilized for spatial modeling. Several techniques for interpolating, like kriging, have been 

well-studied. The fundamental concept is that the effect of neighboring data points on an 

unknown point is more than the effect of points that are farther away.  

 

4.4.3  Connectivity Operations 

In proximity or buffer procedures, areas adjacent to specific conditions or 

activities are delineated. These areas of interest are called buffer zones. This concept is 

also applicable to locations that should be avoided. These GIS operations are particularly 

applicable in site selection projects. For instance, planning for the construction of a 

landfill involves the identification of locations near major roads, but relatively far from 

residential areas. In this case, the roads are represented by one data layer, and residential 

areas are depicted by another data layer. After the buffer zones have been mapped, the 

two layers are overlain to show locations satisfying the two criteria.    
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4.4.4  Neighborhood Operations 

Convolution, discussed in Chapter 3, is a technique based on the original values 

of neighboring pixels. The first kernel discussed in that chapter is also called a low pass 

filter. In GIS, it is generally applied to remove or reduce noise in the data layer. In 

processing satellite images, classified data usually show a salt and pepper appearance. 

The low pass filter can be used to remove these speckles. A tool that can also perform a 

similar task is the majority filter (Figure 4.6). Here, a kernel is superimposed on each 

pixel in the original image. The kernel can be of different sizes (e.g., 3 x 3, 5 x 5). The 

majority value in that window is determined. This majority value replaces the value in the 

original image. Figure 4.7 is an example of applying a 3 x 3 majority filter. 

 

4.4.5  Measurement 

Computation of distances, areas, volumes, direction and other quantities is a 

straightforward procedure in GIS. For example, calculation of areas of polygons in a 

raster layer is a direct operation if the pixel resolution is given. Open land, for example, is 

composed of 1,000 pixels in an image. These pixels represent 90 hectares on the earth’s 

surface if the pixel resolution is 30 meters. We can also count specific objects in a 

particular region. For example, we can count the number of vegetation pixels in a training 

area designated as single-family residential area.  
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Figure 4.6: Creating a majority image 

 
 

(a) (b)
 

Figure 4.7: Original image (a), and image (b) resulting  
from the application of a 3 x 3 majority filter 
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4.4.6  Statistical Analysis 

Basic and sometimes sophisticated statistical procedures are available in GIS. 

Descriptive statistics like the mean, median, and variance of the values in a class or data 

layer can be calculated. In addition, histograms can be displayed on a table or 

graphically. The histogram of a dataset shows how the values are divided into classes. 

We can determine, for example, how many pixels have been classified into the single-

family residential category. We can also compare pixels in their corresponding locations. 

In correlation, we try to see if the value of pixels in one image will predict the values of 

corresponding pixels in another image. If they do, the two images have high correlation. 

In cross-tabulations, attribute values are compared one by one. Assembling the error 

matrix involves a cross-tabulation procedure. 
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Chapter 5 

Knowledge-Based Classification 

 

5.1  Definitions 

A knowledge-based system performs a task by applying rules of thumb, called 

heuristics, to a symbolic representation of knowledge, instead of using mostly statistical 

(e.g., maximum likelihood) or algorithmic (e.g., artificial neural network) methods. A 

knowledge-based system is sometimes regarded to be synonymous to an expert system, 

but the former, strictly speaking, is more general (Jackson, 1999). Also using heuristics 

and symbolic logic, an expert system is a computer program that applies human 

knowledge in a particular area of expertise to solve problems or give advice (Awad, 

1996; Jackson, 1999). Both are fields in artificial intelligence.  

In remote sensing, knowledge-based classification specifically refers to 

techniques where thematic or geometric data are included in the classification process. 

This is done when it is difficult or insufficient to recognize classes only on the basis of 

spectral characteristics. It is knowledge-based because this approach must acquire 

knowledge about the relationships between classes and the various ancillary sources 

(Skidmore, 1989). If there is no definite association between classes and ancillary data, 

then a knowledge-based approach will not work (Middelkoop and Janssen, 1991). An 
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artificial neural network, for example, is not knowledge-based because it is a black box 

and cannot explain the correlation between classes and ancillary data. 

In a knowledge-based system, representation of knowledge is explicit. This 

provides benefits because artificial expertise is stable, consistent, and inexpensive.  It can 

also be transferred and documented without difficulty. In contrast, human expertise is 

changeable and costly. It is likely to be lost. It is also hard to transfer and document. 

(Waterman, 1986). Goodenough (1986) lists further advantages of explicit knowledge. It 

can be utilized to record generalizations permanently. It can be easily changed to rectify 

mistakes or to adopt another point of view. It can be used in myriad of situations even if 

it is not complete or absolutely correct. However, knowledge-based systems require 

specific instructions and do not have the inspiration of human experts (Awad, 1996). 

 

5.2  Components of a Knowledge-Based System 

A knowledge-based system has four components: knowledge base, inference 

engine, justifier/scheduler, and user interface (Awad, 1996). The knowledge base is the 

heart of a knowledge-based system. It is a collection of facts, rules, and procedures 

arranged into models. Knowledge can be acquired from GIS layers (e.g., digital elevation 

model, geology, hydrology), analogue or paper maps, or socioeconomic data in tabular or 

digital form. There is also the written literature. Experts can be interviewed. Field work 

can be carried out. The knowledge engineer translates the knowledge into a format that 

can be understood and manipulated in the computer. As the knowledge acquisition is a 

difficult and time-consuming stage, there is a tendency to automate the knowledge-



 61 

acquisition process (Huang and Jensen, 1997) especially with the accessibility of GIS 

layers in the internet. 

The inference engine is the brain of a knowledge-based system. Here, rules are 

examined and combined with new facts in the knowledge base to generate inferences and 

produce solutions. The justifier explains the line of reasoning of the system to the user. 

The scheduler (also called rule interpreter) is that element of the inference engine which 

coordinates and controls the sequencing of the rules. The user interface facilitates 

communication between the system and its user. Everything that a user sees and interacts 

with on the computer screen is associated with the user interface.  

A knowledge-based system can be constructed using any standard programming 

language. However, there are special commercial software packages called shells which 

can be immediately used without programming (Awad, 1996). A shell is a complete 

knowledge-based system that lacks knowledge. The user provides the knowledge, and the 

system instantly becomes operational.  

Once an assembly of knowledge has been acquired, the next step is to find ways 

to represent it. Knowledge representation is a collection of facts, rules, or procedures 

portrayed in a knowledge base (Awad, 1996). Common strategies for representing 

knowledge include rules, semantic nets, frames, and decision trees. A rule (also called 

production rule) is a provisional statement that instigates an action if a particular 

condition is true. This is expressed as an “IF (premise)…. THEN (conclusion)” 

statement. One example is “If the digital number in the near infrared band is less than 32, 
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then assign the pixel to the water category.” A knowledge-based system based on 

production rules is called a rule-based system.  

A semantic network or net provides a graphical method to portray descriptive or 

declarative knowledge.  The net describes the associations that relate objects, called 

nodes. Each node represents a fact or idea. Arcs are lines that connect the nodes to show 

their relationship. Nodes and arcs together form a semantic net. In short, a semantic 

network is just a network of concepts and relationships. Figure 5.1 is an example of a 

semantic network.  

is an

is a is a

is an

Extractive 
Industry

Industrial 
Category

Land Use 
Category

Residential 
Category

Light 
Industry

 

Figure 5.1: An example of a semantic net 

 

A frame organizes knowledge through past experience. It combines declarative 

and operational knowledge. The two elements of a frame are the slot and the facet. A slot 

is a certain object being described or a property of an entity (light industrial in Table 5.1). 

A facet (e.g., 107 hectares) is a value of a slot (e.g., area). When all slots are occupied 

with values, an instance of a frame is generated or instantiated.  
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Table 5.1: An example of a frame 
 
Object: Light Industrial  
Slot Facet 
Area 107 hectares 
Impervious Surface Area 91% 
Runoff Coefficient 0.74 

 

A decision tree is a hierarchically organized semantic network. It consists of 

nodes depicting goals and links that designate decisions or outcomes. In Figure 5.2, a 

pixel is subjected to the first condition. If condition 1 is satisfied, then the pixel is 

assigned to class 1. Otherwise, the pixel is examined for condition 2. If that condition is 

true, then the pixel is tested for another condition. This procedure continues until the 

pixel has been assigned a class.   

Class 1

Class 4

Condition 1

Condition 3

Condition 2

Class 3  Class 2  

Satisfied

Satisfied

Satisfied

Not satisfied

Not satisfied

Not satisfied

 
Figure 5.2: An example of a decision tree 
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5.3  Knowledge Acquisition 

One of the issues in building a knowledge-based system is in knowledge 

acquisition. The common method of obtaining knowledge to build a knowledge base 

involves human experts and knowledge engineers. Bratko et al. (1989) identifies reasons 

why this is an arduous task. First, it takes a long period of time to engage the expert and 

the knowledge engineer. Second, experts find it hard to phrase precisely their knowledge 

in a form compatible to a computer application. For knowledge to be useful, it must be 

correct, unambiguous, and complete. Several remote sensing practitioners have expressed 

dismay because of the difficulties encountered in building knowledge bases (Argialas and 

Harlow, 1990; Kontoes et al., 1993).  

Because of this, there is a tendency in the artificial intelligence community to 

automate the knowledge-acquisition process. This is a field called machine learning. 

However, the application is not usually in remote sensing image analysis combined with 

GIS data. Two of the few who tried machine learning are Huang and Jensen (1997). They 

attempted to automate the knowledge acquisition process by using the GIS layers of soil, 

slope, digital elevation model, and texture. They used the inductive learning algorithm 

called C4.5. They found that the automatically generated production rules are of good 

quality but not significantly better than those acquired by conventional methods.    

 

5.4  Knowledge Representation 

After knowledge is obtained, the knowledge engineer decides how to represent 

them. Production rules are widely employed for knowledge representation. Investigations 
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made by Nazif and Levine (1984), Wharton (1987), and Ton et al. (1991) are just some 

of them. This is because rules are easy to understand. It is also easy to document an 

expert’s experience and wisdom. Adding, removing, or changing a module does not 

affect other modules in the system. This characteristic is called modularity. Rule-based 

systems are also flexible. However, rules are expressed at a fine level of detail, and 

therefore may be difficult to form. Also, only limited knowledge per rule can be made 

(Awad, 1996). Rules are usually transformed into a decision tree. 

Some researchers like Niemann et al. (1990), Liedtke et al. (1997) and Tonjes et 

al. (1999) preferred to use semantic nets for their application. This method has many 

advantages. It is characterized by deductive reasoning. This is associated with the concept 

of inheritance, where instances in one category are assumed to have all the characteristics 

of the more general categories of which they are members. The semantic net shows 

meaningful associations definitely and evidently. The hierarchy of relationships is 

followed without difficulty. It is flexible because new nodes can be added to a definition 

when necessary. There are drawbacks, however. First, it is an incomplete knowledge 

representation. It does not support operational knowledge. The net may be manipulated to 

produce invalid inferences. The definition of a node may be misleading. There are no 

standards that exist about the definition of nodes. Lastly, procedural knowledge may be 

difficult to represent as sequence and time are not obviously depicted (Awad, 1996). 

Frames have been used by McKeown (1987) and Wu et al. (1988). This strategy 

has been employed because it provides invariable representation schemes and combines 

declarative and operational knowledge. It is concerned with hierarchical knowledge and 
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is characterized by modularity. It explicates inferences and identifies missing values. 

However, because of its higher level of complexity, it is slower than the other methods. 

Furthermore, it makes inference and explanation difficult (Awad, 1996). 

There are efforts to implement uncertain knowledge by using certainty factors 

(Desachy et al., 1988), the Dempster-Shafer theory (Shrinivasan and Richards, 1990), 

and even a neural network (Hepner et al., 1990). Alternative representations are also 

suggested for a specific application. Middelkoop and Janssen (1991), for example, found 

that Markov chains and probabilistic transition matrices were the most appropriate 

representation schemes for their study involving temporal relationships.  

Others devise representation methods that address the issues of data format, data 

accuracy, and system communication in a knowledge-based system integrating remote 

sensing data and GIS (Wang, 1991). Since remote sensing data are raster-based, and GIS 

data may be vector-based, format conversion may be necessary. Conversion between 

these two structures can produce positional errors and may take a long time. Also, 

accuracy assessment is performed by means of the confusion matrix for remote sensing 

data, while GIS operators utilize error models to assess their quality. These methods are 

incompatible. Finally, there is a semantic mismatch in communication between an expert 

system and a GIS database. To alleviate some of these problems, Wang (1991) has 

proposed three new techniques: relational-linear quadtree, fuzzy representation method, 

and communication subschema.  
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5.5  Approaches to Knowledge-Based Classification 

There are two general approaches in implementing knowledge-based 

classification systems. These are evidential and hierarchical approaches. In evidential 

methods, measures of the relative mass of evidence are acquired to support opposing 

hypotheses (Goldberg et al., 1985; Lee et al., 1987). The hypothesis (e.g., land-cover 

class assignment) with the highest evidence mass is chosen. Hierarchical techniques, on 

the other hand (e.g., decision tree) eliminate alternative hypotheses during inference until 

only one hypothesis is left. Conceptually, categories are represented as leaves of bi- or 

multinary trees, with decision rules applied at each node to stop or continue on a decision 

course (Swain and Hauska, 1977; Ferrante et al., 1984). Usually, a study will take one 

approach and not the other. However, Bolstad and Lillesand (1992) were able to combine 

both evidential and hierarchical strategies in their study involving a Landsat TM image, 

and GIS layers of soil texture, and topographic position.    

Knowledge-based systems especially work well with the incorporation of 

ancillary data, particularly when they are in GIS format. McKeown (1987) developed an 

entirely integrated knowledge-based/GIS system (called MAPS) that merge remote 

sensing imagery, GIS data (e.g., terrain), and other non-map information (e.g., three-

dimensional features like bridges and buildings). It was a big, complex system that tried 

to solve deficiencies in user interfaces, data representation, and its utilization. 

Goodenough et al. (1987) developed a similar system called the Analyst Advisor and the 

Map Image Congruency Evaluation (MICE) advisor. Others use ancillary/GIS data for 

specific purposes. For example, Middelkoop and Janssen (1991) constructed their 
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knowledge base from temporal relationships between classes and ancillary data. They 

gained knowledge about crop rotations. While Swain (1978), and Strahler (1980) worked 

on multi-season images. 

Rules have been developed based on the spatial characteristics of an image. 

Researchers have segmented an image and calculated spatial attributes on the segments. 

Common attributes are area, perimeter, compactness (area/perimeter2), degree of texture 

(roughness or smoothness), and minimum bounding rectangle (Gonzalez and Wintz, 

1987; Patterson, 1990).  Many studies have incorporated spatial information this way 

(Nagao and Matsuyama, 1980; Goodenough et al., 1987; Civco, 1989; Mehldau and 

Schowengerdt, 1990; Johnsson, 1994). A few researchers try to get more information just 

from the spectral characteristics of the image. Wharton (1987), for example, built 

knowledge based on color and contrast of a high–resolution (5 meter) image. The rules 

were assembled from visual interpretation of the Thematic Mapper Simulator data. 

However, his method did not work well for a 30-meter resolution Landsat TM data. He 

concluded that the method was sensitive to the purity or homogeneity of the pixel. 

Another group of scientists, Ferrante et al. (1984) developed the multispectral image 

analysis system (MSIAS). This system incorporated rules on the basis of the appearance 

of surface features as viewed by a specific sensor under certain imaging conditions. The 

system did not work well because the rule-based configuration cannot recover from 

decision errors. Also, the spectral characteristics of neighboring pixels were not taken 

into account. This implies that knowledge-based systems are not especially applicable 

where only spectral information is considered. 
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Chapter 6 

Application of Satellite Data  
for Stormwater Modeling 
 
 
 
6.1  Introduction  

Stormwater models are used to quantify and hopefully solve environmental 

problems associated with runoff. A stormwater model simulates the motion of stormwater 

and transported materials through a drainage basin (Nix, 1994). Stormwater runoff is an 

environmental system that is not well-understood. Numerous factors influence runoff. 

Examples are topography, precipitation characteristics, and human activities. Because of 

this, data input and parameter acquisition is a tedious and time-consuming process in 

stormwater modeling. 

Hydrologic variables for stormwater modeling are usually obtained through 

traditional methodologies such as stream gauging, field surveys, and aerial photo-

interpretation. With the advent of space technologies, satellite data have become a more 

convenient alternative to these customary procedures. The most common hydrologic 

variables derived from satellite data are land use/land cover, imperviousness, and 

elevation. Other parameters include rainfall, snow cover, and soil types. There are many 

advantages to using satellite data. They are generally less costly and quicker to acquire 

and interpret than aerial photographs. They also cover extensive areas. Because satellite 
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imagery is captured regularly, the same area can be observed over time. Almost all parts 

of the world are covered by satellites in many resolutions (e.g., 20 meters for SPOT, 30 

meters for Landsat) and in several operating modes (e.g., Synthetic Aperture Radar, 

Thematic Mapper). Furthermore, the satellite imagery’s digital format can be directly 

studied with innumerable image processing programs. The processed image can also be 

incorporated in a geographic database. Moreover, the raster-based format satellite data 

are compatible with GIS-based hydrologic modeling software packages.  

There are three watershed scales in stormwater modeling according to Schultz 

(1994). Micro-scale ranges from 1 sq cm to 1 sq km of watershed area. Meso-scale 

ranges from 1 sq km to 100,000 sq km, while macro-scale varies from 100,000 sq km up 

to global scale.  Because of their spatial resolution, satellite data and Geographic 

Information Systems (GIS) techniques are specifically appropriate for meso-scale 

modeling. In general, rivers drain catchments that are of meso-scale type. Most 

stormwater models were associated with the lumped system until the mid-1960s. The 

distributed system models appeared when satellite data, digital elevation model (DEM), 

and GIS tools became available. These technologies are able to incorporate the spatial 

aspect of hydrologic processes. Lumped models cannot predict the hydrologic 

consequences of land use changes, but distributed models have this capability because 

they use distributed elements in space. 
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6.2  Land Use/Land Cover 

A critical input parameter to any stormwater model is land use and/or land cover. 

Individual land use classes determine the rate of pollutant generation in a piece of land. 

For example, Stenstrom et al. (1984) found that oil and grease have high concentrations 

in commercial properties and parking areas. Indeed, stormwater models are applied to 

identify problem land uses and help designate appropriate mitigation measures. Land uses 

are commonly delineated from aerial photographs and/or field surveys. These procedures 

are long, tedious, and expensive. When the first Landsat satellite was launched in 1972, 

scientists immediately realized that satellite images had the potential to rapidly map land 

uses. They can also cover extensive areas. The first sensor to be launched was the 

Multispectral Scanner (MSS) that produced an image format with a coarse resolution of 

80 meters.  

With the low resolution of Landsat MSS covering the Upper Anacostia River 

basin in the suburbs of Washington, D.C., Ragan and Jackson (1980) recognized that they 

would not be able to represent all the land use categories required by the stormwater 

model SCS (Soil Conservation Service). This model accepted land use and soil type as 

major input parameters. To be able to run this model with satellite data, they developed 

an alternative set of land use classes identifiable in the Landsat MSS image. Computer 

aided study of the MSS was backed up by limited manual practices. With these land uses, 

they calculated runoff curve numbers that were still adequate to the overall operation of 

the SCS model. They found that values of runoff discharge predicted from aerial 
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photograph-derived land uses were nearly identical to those computed from MSS-

extracted land uses.   

Cermak et al. (1979) also developed their own classification technique and tested 

it using the Crow Creek watershed near Davenport, Iowa, and in Walnut Creek watershed 

near Austin, Texas. Again, they modified the land use categories to reflect the level of 

detail recognizable in the Landsat MSS. The classification was evaluated by means of an 

error matrix before the land uses were applied to the stormwater model HEC (Hydrologic 

Engineering Center). Discharge frequency curves (discharge vs. recurrence interval) 

based on Landsat MSS resembled those based on conventional land uses. These curves 

were critical information in flood monitoring and estimation of damage.  

Although earlier researchers were successful in producing satisfactory model 

results even with the coarse resolution of Landsat MSS, scientists tend to use higher 

resolution images as they become available. The Thematic Mapper (TM) imagery 

immediately became popular when the TM sensor was added to the Landsat program. 

The 30-meter resolution imagery significantly increased the number of objects that can be 

identified in the satellite image. France also launched its own satellite producing SPOT 

multispectral imagery with 20-meter resolution. The satellite also has a panchromatic 

mode producing 10-meter resolution imagery. In some cases, these images are replacing 

aerial photographs for stormwater applications.  

A Landsat TM image, a SPOT panchromatic image, and two types of scanned 

aerial photographs were compared by Ventura and Harris (1994) to determine if more 

land use categories would produce more accurate values of pollutant loadings. They 
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extracted land uses in the city of Beaver Dam, in Dodge County, Wisconsin, using 

unsupervised and supervised classification strategies and manual air photo interpretation. 

Error matrices were calculated before the land uses were applied in the stormwater model 

SLAMM (Source Loading and Management Model). As expected, more land use 

categories were resolved in the higher resolution images. Yet, the input of more specific 

land uses did not produce higher accuracy in the estimates of pollutant loadings of lead, 

copper, zinc, cadmium, phosphorus, and suspended sediment. 

Harris and Ventura (1995) made analogous conclusions for the same study area 

when they tried to increase the land use class specificity of the Landsat TM by adding 

ancillary data. First they classified the Landsat TM image with the maximum likelihood 

approach. Thereafter, they manipulated zoning and housing density information to correct 

regions of confusion. They had four classifications: TM only; TM and zoning; TM, 

zoning, and housing; and zoning only. The four classifications had different class 

specificities. The classification with the TM image produced the fewest categories. 

Classifications were also analyzed using error matrices. However, again using SLAMM, 

they found that more classes did not produce significant differences in model results of 

pollutant loadings.  

Later studies considered satellite imagery as their main source of land cover/land 

use data. This is probably because their study areas were more extensive. In this case, 

obtaining land uses from aerial photographs and/or field surveys can be impractical. It is 

also possible that image processing software has become more reliable and easier to use. 

Computer hardware and satellite data may have also become more accessible. 
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Mattikalli et al. (1996) worked on historical land use data that covered the River 

Glen catchment in eastern England. Aside from satellite images that included Landsat 

TM, they also added maps and aerial photos for several dates from the 1931 to 1989 

period. Because these formats were different from each other, they developed a new 

methodology that combined land use data in raster and vector formats. With land use as 

the main input component, they utilized the SCS model to compute for river discharge 

and the export coefficient model to predict nitrogen loading. The simulated values were 

comparable to their measured counterparts. Because of the large amount of data involved, 

the model was run in a GIS environment. 

Efforts in enhancing the efficiency and accuracy of the land use classification 

process continued. Ning et al. (2002) developed a novel and rapid way for land-use 

identification from SPOT imagery using 3S technologies in the ERDAS Imagine and Arc 

View environments. They investigated the Kao-Ping River basin in southern Taiwan. 

With GIS, GPS (Global Positioning System), and the GWLF (Generalized Watershed 

Loading Functions) model, they calculated the pollutant loadings of total phosphorus 

(TP) and total nitrogen (TN). They found that there was a relationship between the TP 

and TN loadings with the rainfall amount over the seasons. 

Not only Landsat and SPOT images are used in stormwater modeling, but other 

images as well. Dayawansa (1997) evaluated IRS LISS II imagery covering the Nilambe 

sub-catchment in the central portion of Sri Lanka. Land use was acquired from a 

supervised classification of this imagery. With GIS tools and the AGNPS (Agricultural 

Non-Point Sources) model, amounts of soil erosion, sediment yield, and pollutant 
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loadings of nitrogen, phosphorus, and chemical oxygen demand (COD) were computed. 

A best management practice called SALT (Sloping Agricultural Land Technology) was 

also tested. In SALT, crops were cultivated along the contours of sloping agricultural 

grounds, and sediments were trapped by hedgerows. This practice controlled erosion. 

Model simulation indicated that SALT could minimize erosion and limit the production 

of sediment, nutrient, and COD.  

In a related inquiry, Tripathi et al. (2003) also acquired land use/land cover from 

the supervised classification of IRS-1B (LISS II) imagery. GIS was likewise employed to 

generate the other watershed characteristics such as soil and slope. Based on statistical 

analyses of simulated and measured values, they concluded that SWAT (Soil and Water 

Assessment Tool) could precisely simulate runoff, sediment yield, and nutrient losses 

(organic nitrogen, phosphorus, nitrate nitrogen, and soluble phosphorus). Model results 

enabled them to prioritize erosion-prone sub-watersheds in the Nagwan basin in Bihar, 

India.  

Although many researchers have applied the standard statistical practices for land 

cover classification, other scientists have considered more sophisticated schemes. 

Artificial intelligence techniques were tried by Ha et al. (2003) to classify land use/land 

cover in an area around Chongju city, situated in the middle of Korea. They applied both 

the RBF-NN (radial-basis-function neural network) and the ANN (artificial neural 

network) on fused Landsat TM and KOMPSAT panchromatic imageries. Classification 

was evaluated by means of an error matrix. With SWMM (Storm Water Management 

Model), they predicted the values of stormwater runoff quantity and biochemical oxygen 
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demand (BOD). The predicted runoff, peak time, and pollutant emissions changed 

significantly with respect to the classification accuracy and percentile unit load used.  

 

6.3  Impervious Surface 

Another important model parameter for stormwater modeling is imperviousness. 

An impervious surface, such as pavement and rooftops, prevents water from infiltrating 

the soil. Imperviousness determines the amount of rainfall that becomes runoff in a parcel 

of land. Therefore, the total amount of impervious surface in a watershed directly relates 

to the runoff rates and volumes. This information is important, for example, to calculate 

the size of storage necessary for flood control.  

In the early days of the Landsat program, where the satellite image was captured 

by the Multispectral Scanner (MSS) with a low resolution of 80 meters, imperviousness 

was obtained by delineating the land uses in the study area, and then assigning an average 

imperviousness for each land use class. For example, commercial land use may be 

assigned 92% imperviousness. There were significant savings in labor, time, and money 

when satellite data were tried instead of aerial photographs and/or field surveys. Ragan 

and Jackson (1975) found that about 94 man-days were necessary to finish the land use 

classification using 1:4,800 aerial photographs. But it took fewer than 4 man-days to 

reach the same goal using Landsat MSS. They discovered that overall imperviousness 

from the aerial photos and Landsat MSS were in close agreement. The dollar value of 

Landsat MSS was even quantified by Jackson and Ragan (1977) using Bayesian Decision 

Theory. For flood control, they needed imperviousness to compute for optimal depth of 
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detention storage. They concluded that Landsat MSS was a cost-effective source for 

calculating impervious cover based on land use.  

Jackson et al. (1977) also analyzed Landsat MSS to indirectly calculate 

impervious surface from land uses. They needed this variable to run STORM (Storage 

Treatment Overflow Runoff Model) to enable them to know the most cost-effective 

option for flood control in the Fourmile Run watershed in the suburbs of Washington, 

D.C. They were considering channelization work or storage. Discharge, hydrographs, and 

flood frequency curves were simulated. These model outputs resembled their observed 

equivalents. Individual figures varied slightly, but versions of STORM showed the same 

decision about flood control management whether they used aerial photographs or 

Landsat MSS. Since the satellite image was less expensive than aerial photos, they 

concluded that it was the more reasonable source to delineate impervious cover. 

With the advent of high resolution imagery, scientists are already able to map 

imperviousness directly from satellite imagery. Morgan et al. (1993) performed 

supervised and unsupervised classification on a SPOT, 10-meter panchromatic imagery 

to quantify overall impervious cover in an urban watershed in Dallas, Texas. For the 

manual mode, they worked on aerial photographs.  Runoff volumes from USGS stream 

gauge station were compared to the runoff volumes computed using imperviousness from 

satellite data. The results were remarkably similar.  

Investigators have attempted to use even higher resolution images. Thomas et al. 

(2003) worked on a one-meter resolution image captured by the ADAR 5500 digital 

multispectral scanner. They applied three different ways to map impervious cover in the 
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city of Scottsdale, Arizona for runoff estimation. In the first approach, supervised and 

unsupervised statistical classification schemes were combined. In the second procedure, 

the misclassifications in the first methodology were corrected by means of ancillary data. 

The last system made use of a classification tree that was based on image segmentation. 

They produced error matrices, both the regular and fuzzy types. They concluded that 

high-resolution imagery interpretation required the combination of spectral response with 

ancillary information such as shape, texture, and context.  

 

6.4  Other Hydrologic Parameters 

Land use and/or land cover and imperviousness are the most common hydrologic 

parameters derived from satellite data. But there are additional variables of recent 

interest. Elevation is one of these. A depiction of the earth’s surface by a grid of elevation 

values is called a digital elevation model (DEM). A DEM is routinely manipulated for 

delineating the drainage system in a watershed. DEMs are frequently produced from 

aerial photographs and field surveys. However, DEMs can also come from SPOT 

stereoscopic image pairs (Wharton, 1994). Muller et al. (2000) digitized a JERS-1 radar 

imagery to produce an outline of the whole drainage network of the Amazon basin.  

Other drainage variables that can be estimated reasonably from satellite images 

are descriptors of the watershed such as channel length, channel junctions, and basin 

areas. Wharton (1994) suggested the use of satellite data to calculate drainage network 

indices. These indices are important because they describe the relationship of the basin 

characteristics with the runoff generated. An example of a drainage network index is 
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drainage density. This is defined as the total stream length divided by the basin area. 

Manual procedures for calculating indices like this are difficult, time-consuming, and 

laborious. Wharton (1994) reasoned that these indices could be computed easily and 

rapidly with high resolution images (e.g., 5-meter resolution). In low resolution images, 

smaller streams that equally contribute to drainage characteristics cannot be detected.  

Snow cover can be delineated from satellite images, too. Sensoy et al. (2003) 

analyzed NOAA AVHRR images to determine the percentages of snow-covered area for 

the three elevation zones in the Upper Karasu Basin in Turkey. Using HEC-1 that 

interfaced with WMS (Watershed Modeling System), NOAA AVHRR and ground-truth 

data were incorporated to determine the snow water equivalent of the snow-covered 

areas. After the potential meltwater was converted to its real volume, they produced 

runoff simulation from both snowmelt and rainfall. They noted that calculated and 

observed hydrographs were similar.   

Rainfall is a required variable in any stormwater model. It is routinely collected 

from rain gauge measurements. However, in developing nations, rainfall is measured in 

only a few watersheds. Hence, Tripathi et al. (2004) used the stormwater model SWAT 

to generate rainfall in Nagwan watershed in India. As usual, land use/land cover was 

needed, and it was produced from the supervised classification of IRS-1B (LISS II) 

satellite data. The classification was assessed using an error matrix and the kappa 

coefficient. A GIS was used to manage the large amounts of data stored and manipulated. 

With the model-generated rainfall, surface runoff and sediment yield were computed. The 

simulated monthly rainfall, runoff, and sediment yield estimates were comparable to their 
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corresponding observed values. Hence, they concluded that SWAT could be applied to 

develop a management strategy for lands susceptible to erosion. 

In the investigation of Sharma and Singh (1995), not only the land use/land cover 

was mapped from Landsat TM image, but also landform, drainage, and soil in the three 

watersheds within the Bandi river basin in India. The raw image was enhanced by 

principal components analysis and a high pass filter. Both raw and digitally enhanced 

images were visually interpreted because different landforms specifically did not have 

individual, distinctive spectral signatures. The computer processing was also supported 

by limited ground truth. The model ANSWERS (Areal Non-point Source Watershed 

Environment Response Simulation) predicted the hydrographs and sediment graphs. 

When compared to their actual equivalents, the model results were within acceptable 

limits. However, the model underpredicted the total soil loss, the important variable 

needed for erosion control. Sharma and Singh (1995) asserted that the manual approaches 

were necessary because of limited human expertise in digital image processing in Third 

World countries like India.  

All of the inquiries previously discussed indirectly estimated final model outputs 

such as runoff volumes, hydrographs, and pollutant loadings. However, Park and 

Stenstrom (2004) were able to directly map the qualitative descriptions of pollutant 

loadings using Bayesian Networks in the Santa Monica Bay area in Los Angeles, 

California. Using the spectral response of earth surface features and positional ancillary 

data, they learned the specific pollutants that had high, medium, and low concentrations 

on particular land uses. For example, open land use had low emissions of COD (chemical 
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oxygen demand), BOD5 (biochemical oxygen demand), TKN (total Kjeldahl nitrogen), 

NO2&3 (nitrite and nitrate), TP (total phosphorus), and SP (soluble phosphorus). On the 

other hand, the transportation category had high emissions of COD, BOD5, TKN, and TP.   

 

6.5  Discussion 

The choice of ground resolution of satellite data is probably the most important 

concern of the stormwater modeler. The resolution is associated with the amount of detail 

that can be resolved in an image. The advent of space technologies initially prompted 

scientists to identify land uses from satellite imagery. In the past, scientists had little 

selection of images. The Landsat MSS with an 80-meter resolution was the most 

commonly analyzed. Scientists created various ways to get the level of detail required by 

their modeling objectives. Because a coarse resolution image cannot describe all the land 

use classes specified by the conventional practice, they developed alternative sets of 

categories identifiable in the satellite data. They concluded that low resolution images 

(e.g., Landsat MSS) could be used with their stormwater models with acceptable 

accuracy. Simulated runoff volumes, hydrographs, and pollutant loadings, for example, 

were in close agreement to their actual counterparts. Recently, however, there has been 

an increase in the capture of higher resolution satellite imagery (e.g., Landsat TM). Yet, 

having an enhanced specificity of land use classes does not necessarily increase the 

accuracy of the model results. Even broad categories of land cover can be utilized 

without significantly deteriorating the operation of stormwater models.  



 85 

Generally, for urbanized areas, higher resolution images may be more appropriate 

as the land cover structure is complex. For rural and agricultural areas, lower resolution 

images may be sufficient because of their homogeneous composition. Lower resolution 

satellite data may be less expensive because they can cover larger areas. However, even a 

homogeneous area may require many land cover classes, depending on the application. If 

more land cover classes are needed, then a higher resolution image may be more useful. 

A system should be developed that will quantify the trade-off between accuracy and cost.   

Higher resolution imagery is probably applicable in detecting impervious areas. 

Impervious surfaces, like roads and rooftops, are usually narrower than the ground 

resolution of most satellite data. Therefore, ground resolution that approaches the size of 

impervious surfaces will be the most beneficial. However, the cost of acquisition, storage, 

and processing of a high resolution image is much more than that of a low resolution 

image. Hence, high resolution images should not be evaluated for one-time application 

but should also be considered for other purposes. In this case, using the high resolution 

image can be cost-effective.  

Objectives of the modeling effort vary. In agricultural areas, land parcels 

susceptible to erosion are identified and prioritized. While in urban areas, flooding and 

pollution of the receiving water body are the important concerns. Because rural and 

agricultural areas have a homogeneous land cover structure, there is a tendency to use the 

established statistical classifiers to depict land cover. On the other hand, in urban areas, it 

is usual to have more than one land cover in a particular pixel. Land covers here are 

mixed, and that pixel is usually called a “mixel”. More sophisticated strategies such as 
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artificial neural networks can be successful in delineating urban land uses. Yet, many 

studies merely utilized the standard classifiers for land use classification. The most 

popular scheme is the maximum likelihood, a supervised classification method. It should 

be noted that land use/land cover is just one input variable to stormwater models. If more 

sophisticated means are attempted just for the land use classification stage alone, then the 

entire stormwater modeling process will probably become more tedious.  

Some researchers assess the accuracy of the land use classification first before 

applying it to the model, while others do not. Earlier researchers did not assess land use 

classification procedure by means of the error matrix or confusion matrix, which is the 

standard tool of the remote sensing community. In the past, the tendency was to validate 

the overall results of the model by means of runoff volumes, hydrographs, or pollutant 

loadings. Now, researchers are inclined to do both. But overall, they are successful 

whether they assess the accuracy of the satellite data first, or validate only the final model 

outputs, or do both. However, it should be remembered that satellite data are just one 

input element in the model. Each of the other parameters like stream length and slope, for 

example, has its measure of accuracy. This aspect of the modeling activity is not 

discussed in the studies. 

Stormwater modelers follow the progress in the computing technologies. In the 

early investigations, scientists made their own in-house programs and techniques that 

were simple and easy to use and implement. Remote sensing or pattern recognition 

knowledge was not required. Most of them worked only on raw satellite images. Some 

still had a manual component in their procedures. But now, with the availability of image 
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processing software, modelers just use the proven methods of these programs. Images are 

routinely enhanced first before being classified. For example, principal components 

analysis or high pass filtering are employed as preliminary steps to maximize the amount 

of relevant information that can be extracted from an image. 

At first, only the established stormwater models are analyzed (e.g., SCS, HEC-1). 

With the advent of GIS technology, these stormwater models are immediately linked with 

GIS. There is hardly any stormwater modeling activity which does not use GIS at present. 

GIS is either completely or partly integrated with the stormwater model. Computer 

systems have become more sophisticated, more powerful, and faster. They are able to 

process large amounts of data in less time. Vector to raster conversion and vice-versa are 

easy to do. Storage of large dataset is no longer an impediment. However, retrieval of 

useful information from myriad of dataset is still hard to do. This becomes a more 

difficult issue when using high resolution images. 

 Personnel expertise is not an issue now because training in remote sensing and 

GIS is highly accessible in the United States. Knowledge of GIS and remote sensing is 

required in most modeling efforts, especially in large areas. There are lots of programs 

offering short courses in GIS and remote sensing. Some companies, like ESRI for 

example, are even offering online courses. 

 

6.6  Summary and Conclusions 

The use of satellite data provides a cost-effective alternative to standard ways of 

hydrologic parameter acquisition. Still, there are issues to consider in this endeavor such 
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as ground resolution of satellite data, methods of stormwater model validation, 

classification accuracy assessment, personnel expertise, and cost. 

Satellite data are reasonable sources of input parameters in stormwater modeling. 

As space and computing technologies advance, there will be more opportunities for 

stormwater modelers to find more effective and efficient ways to estimate hydrologic 

components. Having an ungauged watershed, or having few rain gauges, for example, 

should not be an impediment in operating a stormwater model with acceptable accuracy, 

if equivalent data can be acquired from the processing of satellite images. 
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Chapter 7 

Land Use Classification Using  
Satellite Data: New Approaches 
 
 
 
7.1  Introduction 

 Land use is a necessary input parameter for stormwater models. It is used to 

estimate the imperviousness of surface areas. Each type of land parcel is impervious to 

rainfall to some extent. Commercial business districts, for instance, are highly impervious 

because most of the land surface is paved or has structures on it. Open land, on the other 

hand, has very little impervious surface, and water will directly infiltrate the ground. 

Therefore, more runoff will be generated in a land parcel that has more impervious 

surface. The category of land use also determines the nature and quantity of pollutants 

produced by a parcel of land. For example, oil and grease concentrations are higher in 

runoff from commercial properties and parking areas than in residential areas (Stenstrom 

et al., 1984). Generally, land use categories are manually delineated from aerial 

photographs and field work data. However, land use classifications can be obtained more 

efficiently by digital processing of satellite imagery.  

Remote sensing scientists often interchange the terms “land use” and “land 

cover”. Their denotations, however, are distinct (Donnay et al., 2001). Land cover is the 

physical material present on the surface of a land parcel (e.g., grass, water). Land use, on 
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the other hand, refers to the human activity associated with that land parcel (e.g., 

residential, industrial). Both land cover (physical component of the land parcel) and land 

use (economic component) data are important for stormwater modeling. The results of 

modeling aid in the selection of best management practices.  

The traditional or conventional classifiers (parallelepiped, minimum distance to 

means, maximum likelihood, clustering) have limitations that reduce the correctness of 

land use/land cover classification. This inspires researchers to devise new strategies to 

improve the efficiency and accuracy of the classification process. To determine the 

performance of their proposed approach, investigators compare their methods with these 

standard classifiers. In particular, the maximum likelihood classifier is the most widely 

used because of its well-developed theoretical base, facility of automation, and reliable 

track record (Swain and Davis, 1978; Richards, 1986; Lillesand and Kiefer, 1994). Many 

have utilized the confusion matrix for accuracy assessment and the common measures 

derived from it (e.g., overall accuracy). But other metrics are also available. For example, 

Cohen’s kappa coefficient is often employed to accommodate for the effects of chance 

that a pixel has been classified into its correct land cover category (Foody, 2002). In the 

literature, there are many ways that researchers try to refine the accuracy of the 

classification process. Only a small fraction of these are explored here.  

 

7.2  Incorporation of Ancillary Data 

Ancillary data, usually in GIS format, can be incorporated before, during, and 

after classification (Hutchinson, 1982). They are called stratification, classifier 
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operations, and post-classification sorting respectively. In stratification, the most 

common technique, the image is divided into smaller regions to enhance the homogeneity 

of the data to be classified. Then, relevant properties of the land use categories are 

derived. For instance, the image may be segmented based on the density of the built-up 

areas (Michalak, 1993).   

In classifier operations, the decision rules of the statistical classifiers are adjusted 

to reflect the areal combination of the known land use classes by specifying prior 

probabilities (Gorte and Stein, 1998; McIver and Friedl, 2002). Another technique is to 

treat the ancillary data as another band in the classification. Elumnoh and Shrestha (2000) 

combined a digital elevation model with the spectral bands using ISODATA. In post-

classification sorting, similar land use classes with different spectral responses are 

merged based on the additional data. Harris and Ventura (1995), for example, took 

advantage of available zoning and housing density data to correct regions of confusion.  

 

7.3  Contextual Classifiers 

The standard classification strategies are point or pixel specific classifiers. Here, 

the pixels are classified independently of the classifications of the neighboring pixels. It 

has long been acknowledged that adjacent pixels may have similar land cover classes. 

Contextual classification is employed when neighboring pixels are taken into account 

during the classification process (Richards, 1986). For example, Barnsley and Barr 

(1996) developed a two-stage classification system, the first of which involved the 

standard per-pixel classification of the image into broad land cover classes. In the second 
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stage, they passed a kernel across the image which took into account both the frequency 

and the spatial arrangement of the pixels. Wharton (1982) recognized that urban land use 

classes have different amounts of the same land cover components. For example, there 

are more pavement and roof components in a commercial district than in a single-family 

residential area. This observation was his basis for his two-stage cluster analysis 

procedure. Other contextual classifiers were developed by Gurney (1983), Mohn et al. 

(1987), Carlotto (1998), and Sharma and Sarkar (1998). 

 

7.4  Neural Networks 

A neural network is an information system of interconnected elements called 

neurons (Awad, 1996). In Figure 7.1, neurons measure the inputs, calculate their weights, 

total the weighted inputs, and compare this value to a threshold. If this value is larger 

than the threshold, the neurons fire (output). Otherwise, it produces no signal. When the 

network alters the weights and changes its activity based on the inputs, learning has taken 

place. Back propagation involves adjusting the weights by backing up from the output. 

Inputs Outputs

 

Figure 7.1: An example of a neural network 
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Neural network classifiers have many advantages over statistical techniques (Ji, 

2000). First, there is no assumption about the distribution of the data (e.g., Gaussian). 

Second, it can form generalizations even in noisy environments. And third, it is capable 

of learning complex patterns. However, there are disadvantages (Awad, 1996). They may 

not be able to provide accurate answers. Learning is difficult and processing is time-

consuming. They are a black box; they do not have explanatory abilities like a 

knowledge-based system. A big network is also required for complex problems. Despite 

these apparent drawbacks, it is found that accuracy increased when neural networks are 

applied.  

In a neural network, the inputs are the individual digital numbers. Ancillary data 

can also be added to the pattern of the pixels. The outputs are the land use/land cover 

categories of the pixels. Lee (2003) utilized not only the spectral characteristics of the 

image, but also included the pixel locations as inputs to his neural networks. Sometimes, 

the number of nodes can be huge. Kanellopoulos et al. (1992) trained a 98-node network 

to identify 20 land cover classes. There are many other studies that have used neural 

networks and obtained improved classification results (Chen et al., 1995; Foody et al., 

1995; Gong et al., 1996; Paola and Schowengerdt, 1997; Ji, 2000). 

 

7.5  Fuzzy Classifiers 

So far, we have discussed only per-pixel classification, in which a pixel can only 

have one and only one category. These are called hard classifiers. In urban regions, a 

pixel in reality may have more than one category because of the heterogeneity of the land 



 97 

cover composing that pixel. We call this a mixed pixel. Presence of these pixels in an 

urban setting prompted the development of soft or fuzzy classifiers. This term stems from 

the fact that a pixel does not belong fully to one class but it has different degrees of 

membership in several classes. The mixed pixel problem is more pronounced in lower 

resolution data. In fuzzy classification, or pixel unmixing, the proportion of the land 

cover classes from a mixed pixel is calculated (Eastman and Laney, 2002). Fuzzy 

classifiers are especially applicable if areas of individual categories are needed, for 

example, the total area of impervious surface in a watershed. Wang (1990) devised an 

algorithm similar to maximum likelihood except that he replaced the mean vectors and 

the covariance matrix with their fuzzy equivalents. Foody and Cox (1994), Warner and 

Shank (1997), and Eastman and Laney (2002) proved that classification accuracy 

improved with this method. 

 

7.6  Knowledge-Based Systems 

In a knowledge-based system, tasks are completed by the application of rules to a 

symbolic depiction of knowledge (Jackson, 1999). Here, thematic or geometric data are 

incorporated in the classification. This method is applied when spectral characteristics 

alone cannot provide sufficient information to identify classes of interest. One group 

called hierarchical strategies excludes optional classes during classification until only one 

category is left (Figure 7.2). Land use/cover types are portrayed as leaves of bi- or 

multinary trees. The decision course is halted or resumed depending on the rules applied 

at every node (Swain and Hauska, 1977; Ferrante et al., 1984). Johnsson and Kanonier 
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(1991) segmented a classified image based on their spectral properties. Then, they 

calculated the size, perimeter, and shape of the segments. In effect, their rules were based 

both on spectral and spatial properties of the image.  

Yes No

Yes No

NoYes

Water

NDVI < 36

NDVI < 64

NDVI < 85

VegetationSoil

Impervious 
Surface  

 

Figure 7.2: An example of a decision tree 

 

7.7  Discussion 

Numerous scientists in different disciplines (e.g., geography, computer science, 

electrical engineering) have exerted much effort to improve the land use classification 

process. However, the ultimate goal of many of these investigations is the classification 

procedure itself. There are some studies that analyzed satellite data specifically to provide 

inputs to their stormwater models. Examples that extracted mainly land use classes are 
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investigations by Cermak et al. (1979), Ragan and Jackson (1980), and Harris and 

Ventura (1995).  

More engineers and planners should consider utilizing satellite data for their 

stormwater modeling efforts. However, there are issues to be addressed. First, the level of 

detail must be appropriate for a specific study area. For example, some land use 

classification studies can identify up to Anderson level III. However, in stormwater 

modeling, Anderson level II is often sufficient even for a highly urbanized city like Los 

Angeles. The level of detail is also associated with the ground resolution of the satellite 

data. For instance, a high resolution IKONOS image will definitely resolve more objects. 

A decision should be made if the accuracy achievable is indeed necessary because using 

this image has disadvantages such as expense and large storage space. Second, the 

categories of land use must be relevant to the study area. For example, “transportation” 

may be a relevant land use category in Los Angeles where wide freeways are prevalent, 

but it may not be a useful land use class in a small city in Kansas. Lastly, the performance 

of the classification procedure should be assessed. One way is to apply the accuracy 

assessment tool (i.e., error/confusion matrix) of the remote sensing community. But we 

can also evaluate the results of the stormwater modeling itself. The modeling outputs can 

be runoff volumes, hydrographs, or pollutant loadings. We can compare the outputs that 

used satellite data to those that utilized traditional methods (e.g., stream gauging). By 

addressing these issues, satellite data can be applied in stormwater management in the 

best possible way. 
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Chapter 8 

Impervious Surface Detection  
from Satellite Data  
 
 
 
8.1  Introduction  

Stormwater management is concerned with regulating runoff. Increased amounts 

of runoff can cause flooding, erosion, and habitat destruction. A stormwater model is the 

tool that helps planners and engineers estimate runoff rates and volumes. An important 

stormwater model parameter directly related to runoff is imperviousness. Impervious 

areas prevent water from infiltrating the soil. Hence, a watershed that has much 

impervious surface generates a large amount of runoff which can cause a great deal of 

damage especially when discharged in a short period of time. The conventional ways of 

delineating imperviousness is through the use of aerial photographs, field surveys, and 

existing analogue maps. These techniques are tedious and time-consuming. A faster way 

to map imperviousness is by satellite image processing. Satellite data are easily obtained, 

able to cover large areas, and compatible with most hydrologic modeling software 

packages.  

 The objective of this study is to distinguish pervious and impervious areas in a 

satellite image of a highly urbanized part of Los Angeles, the Marina del Rey area 

(Figure 8.1). It is a part of the Santa Monica Bay watershed, and has an area of 24.7 sq 
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km. The study area covers the Ballona Wetlands a large portion of which is currently 

being developed, which will increase the impervious surfaces in the area.    

We propose the use of knowledge-based systems in classifying land cover. A 

knowledge-based system applies rules to a symbolic depiction of knowledge to complete 

a task (Jackson, 1999). This is in contrast with statistical (e.g., maximum likelihood) or 

algorithmic (e.g., neural network) techniques. Knowledge is in the form of spectral data 

but usually ancillary data are also added, such as elevation, housing density, or zoning 

information. As such, knowledge-based classification commonly employs a geographic 

information system (GIS), which is a powerful tool that can obtain, store, recover, 

analyze, and display spatial data (Clarke, 1995). Many studies have shown that 

classification based on knowledge can help increase the accuracy of the land cover 

classification process (Johnsson and Kanonier, 1991; Middelkoop and Janssen, 1991). 

 

8.2  Data, Materials, and Software 

The study area is a subset from a Landsat ETM+ scene (path 41, row 36) acquired 

on August 11, 2002 (Figure 8.2). The exact limits are from 33°56'40" to 33°59'42" North 

latitude and from 118°24'42" to 118°27'32" West longitude. There are six reflective 

bands of data including the blue, green, red, near infrared (NIR), and the two mid-

infrared bands (MIR5 and MIR7). Their characteristics are shown in Table 8.1 The image 

was rectified to UTM, Zone 11 (North) with the WGS 84 spheroid. Each square pixel’s 

side is equivalent to 28.5 meters on the ground. The image was downloaded from the 

University of California, Los Angeles (UCLA) GIS Database. 
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Los Angeles

Marina del Rey area

 
Figure 8.1: Vicinity map of the study area 
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Figure 8.2: Black and white reproduction of infrared color image of the study area 
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Table 8.1: Raw image characteristics 
 

Band Wavelength 
(µµµµm) 

Spectral 
Location Maximum Minimum Mean SD 

1 0.450- 0.515 Blue 255 74 111 17 
2 0.525- 0.605 Green 255 50 93 20 
3 0.63-0.69 Red 255 34 99 28 
4 0.75-0.90 NIR 155 13 58 18 
5 1.55-1.75 MIR 255 3 93 37 
7 2.09-2.35 MIR 255 0 73 30 

    
NIR = Near-infrared 
MIR = Mid-infrared 
SD = Standard deviation 

 

To check the accuracy of the classification process, the study area was visited on 

October 12, 2003. During the field visit, the following materials were referred to: Thomas 

Guide (2004), a topographic map with a scale of 1:24,000, and an earlier version (1993) 

of the SCAG (Southern California Association of Governments) land use map printed in 

hard-copy. Photographs of the selected sites visited were taken. Aerial photos acquired in 

year 2000 with a resolution of one meter were later consulted to identify the classes of the 

test pixels that were used for accuracy assessment.  

To calculate the overall imperviousness in the study area, a land use digital map 

published by SCAG was downloaded from the UCLA GIS Database. It was in vector 

format and then converted to its raster equivalent using ArcGIS 9.0. It is georeferenced to 

the same projection as the satellite image, UTM, Zone 11 (North). However, it is 

referenced to another spheroid, GRS 1980, but this was not an issue, as we were dealing 

with a small study area. The SCAG land use map was compiled using digital aerial 
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imagery acquired in year 2000. Percentages of imperviousness for specific types of land 

uses are available from the Los Angeles County Department of Public Works 

(LACDPW). 

The image processing and GIS software used was ERDAS Imagine 8.7. This 

application package has a knowledge-based classification system, and lets the knowledge 

engineer assemble the knowledge base to fill the empty shell. There is a feature called 

spatial modeler where the knowledge engineer can make models the outputs of which can 

be incorporated in the knowledge base. 

 

8.3  Methodology  

8.3.1  Calculation of the Jeffries-Matusita Distances 

To determine if classes of interest can be distinguished in a satellite image, there 

are separability measures available to know how unique the spectral signatures are. One 

of these is the Jeffries-Matusita (J-M) distance (Richards, 1986), although there are 

others. We selected training areas on classes of interest on an NDVI image (defined in the 

next page). This transformed image is shown in Figure 8.3. Each training area was 

associated with the signature of a particular class. From that group of pixels, means and 

covariances were calculated. With these two parameters, the J-M distances were 

computed. In ERDAS Imagine, a J-M distance of zero means that the classes cannot be 

separated in that particular image or combination of images, and a J-M distance of 1414 

signifies that the two classes are completely separable.  The land cover classes we 
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designated were water, impervious surface, soil, vegetation, and beach. Soil could mean 

bare soil or soil with sparse vegetation. 

We calculated the J-M distances for the six raw bands and also for the following 

transformed images. The following equations define each pixel value in the transformed 

images. In these equations, the name of the band corresponds to the DN value in that 

band. 

Normalized Difference Vegetation Index (NDVI) = 
   (NIR band – red band) / (NIR band + red band)                        (8.1) 

 
IR/R = NIR band / red band                                                                   (8.2) 

 
SQRT (IR/R) = (NIR band / red band)1/2                                                                       (8.3) 

 
Vegetation Index = NIR band – red band                                              (8.4) 

 
Transformed NDVI (TNDVI) =  

   ((NIR band – red band / NIR band + red band) + 0.5)1/2                 (8.5) 
 

At first, only the five initial classes were considered for the calculation of J-M 

distances. However, during the initial classifications, we found that the impervious 

surfaces among the residential areas were misclassified. We concluded that this class had 

a distinct spectral signature, and hence was designated as another class. The training 

areas are shown in Figure 8.4. 
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Figure 8.3: Normalized Difference Vegetation Index (NDVI) image 
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Figure 8.4: Training areas on NDVI image 
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Table 8.2 shows the J-M distances for the six classes using the NDVI image. 

Similar tables were made for the other transformed images. However, for the raw image, 

the J-M distances were calculated using different combinations of bands. The number of 

bands could also be selected. Using only one band showed lower J-M distances, and 

using all the six bands showed higher J-M distances. This meant that the more bands 

were selected, the more separable classes became. Table 8.3 shows the J-M distances 

when all six raw bands were considered. 

 

Table 8.2: Jeffries-Matusita distances for the NDVI image 

 Water Imper-
vious Soil Vege-

tation Beach IAR 

Water 0 1382 1414 1414 1413 1414 
Impervious 1382 0 1401 1414 433 1393 
Soil 1414 1401 0 1412 1414 170 
Vegetation 1414 1414 1412 0 1414 1412 
Beach 1413 433 1414 1414 0 1414 
IAR 1414 1393 170 1412 1414 0 

 
IAR = Impervious Surface at Residential 

 
 

 
Table 8.3: Jeffries-Matusita distances for the raw image (6 bands) 

 

 Water Imper-
vious Soil Vege-

tation Beach IAR 

Water 0 1414 1414 1414 1414 1414 
Impervious 1414 0 1414 1414 1411 1412 
Soil 1414 1414 0 1414 1414 1414 
Vegetation 1414 1414 1414 0 1414 1414 
Beach 1414 1411 1414 1414 0 1414 
IAR 1414 1412 1414 1414 1414 0 

 
IAR = Impervious Surface at Residential 
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8.3.2  Knowledge-Based Classification 

Among the transformed images, the NDVI image generally showed the best 

separability values. Therefore, we chose this image to make rules for classification. The 

J-M distances using the NDVI image indicated that most classes should be highly 

separable except for the impervious-beach pair and the soil-impervious at residential pair. 

From training areas and from observations of random pixels, it was found that the range 

of the NDVI values could be generally divided among the four classes. Water’s NDVI 

values ranged from 0 to less than 36, impervious surface’s values were from 36 to less 

than 64, soil, from 64 to less than 85, and vegetation, from 85 to 255. As indicated by the 

J-M distance of 433, impervious surface and beach cannot be separated because their 

NDVI values overlap. Indeed, the NDVI values for beach ranged from 45 to 51. They had 

similar values except that beach had a narrower range. An initial classification using only 

the NDVI values above totally excluded beach. This also misclassified the impervious 

surfaces among the residential areas to soil, as predicted by the low J-M distance of 170. 

To solve these initial misclassifications, we considered the raw image, and noted 

that the J-M distance between impervious surface and beach is 1411 (Table 8.3), which 

meant they were highly separable but not totally using the six raw bands. From the 

statistics of the training areas, we noted the range of DNs covering beach in each raw 

band and incorporated them in the knowledge base. We also noted that the J-M distance 

between soil and impervious surface among residential in the raw image is 1414. So a 

similar task was performed to recover the misclassified impervious surfaces among the 

residential areas.  
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The result of this first classification (Figure 8.5) had several impervious surface 

pixels misclassified to beach. We knew that beach could be found only near the ocean, 

and not inland. Therefore, for the second classification, we separated the ocean using 

standard GIS tools such as clumping and recoding. At first, we made a buffer zone of just 

five pixels (142.5 m) from the ocean, and made a rule stating that if a pixel was classified 

as beach but outside the buffer zone, then the classifier should reassign the pixel to 

impervious surface. However, this rule reassigned correctly classified beach pixels to 

impervious surface. Therefore, we increased the buffer distance to 30 pixels (855 m), and 

this solved the problem. Figure 8.6 shows the classification procedure.  

The second classification was then refined by using another ancillary data, in this 

case the location of pixels relative to each other. First, we created a majority image using 

standard GIS neighborhood tools. A 3 x 3 filter was superimposed at each pixel. 

Whatever the majority value was for that group of nine pixels, would replace the value in 

the center pixel. Next, we looked at the second classification image. We considered each 

pixel, and observed its neighbors in the north, east, west, and south directions (Figure 

8.7). If the pixel’s class, for example, soil, was the same as its neighbor’s class in the 

north, there was a high probability that the pixel under consideration also belonged to the 

soil class. Indeed, we designated that if at least three of its neighbors were of the same 

class, then we retained the class of that pixel. If not, it would be replaced by the class in 

the majority image. Figure 8.8 shows the third classification described above. 
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Figure 8.5: Knowledge base with spectral data 
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Figure 8.6: Knowledge base with spectral data and buffer zone 
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Figure 8.7: Neighborhood analysis 
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Figure 8.8: Knowledge base with spectral data, buffer zone, and neighborhood 

information 
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In knowledge-based classification, a pixel is subjected to a series of rules, and is 

assigned a class when a set of criteria have been met. Sequencing of the rules is important 

because only one rule can be fired at one time. Once a pixel is assigned to a class, it can 

no longer be considered for other classes. However, confidences can be changed such 

that rules with higher confidences are fired first before rules with lower confidences. In 

our classifications, there were many refinements applied to the rules. For example, using 

only the NDVI image, we saw that the water was not continuous in the Ballona Creek 

and in the inner waters. But using only the NIR band left some of the pixels unclassified 

in the area where the beach met the ocean. Therefore, we decided to use both NDVI and 

NIR rules to avoid unclassified pixels and at the same time, made the water body as 

continuous as possible. Also, although the beach looked homogeneous, we actually 

selected a training area which was not representative of the spectral variability of the 

entire beach area. Therefore, we took note of the raw DN values in the initial 

misclassifications (to impervious surface), and modified the rules in the two mid-infrared 

bands.  

 

8.3.3  Maximum Likelihood Classification 

We also performed a maximum likelihood (MXL) classification (Richards, 1986) 

using the same training areas used to compute the J-M distances. We applied MXL on the 

raw and NDVI images. The MXL classification is a standard statistical classifier usually 

employed to compare with new, proposed classification techniques. It is the most 

common method to classify land use and land cover. All standard image processing 
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software packages usually have this tool. In maximum likelihood classification, the mean 

and the covariance matrix of the group of pixels in the selected training areas are 

computed. Based on these values, the probability of a pixel being classified to a specific 

category is calculated, and it is assigned to the class where the likelihood is highest. The 

success of the MXL procedure depends on the correct selection of training areas.  

 

8.3.4  Calculation of Overall Imperviousness 

The original SCAG land use digital map was in vector format, and was rasterized 

using ArcGIS 9.0. The map initially had 48 classes, which were regrouped to seven 

classes (Table 8.4) that were relevant in the calculation of the imperviousness of the 

study area. Table 8.5 shows the seven classes and their associated imperviousness. Figure 

8.9 shows the modified SCAG land use map. To compute for the imperviousness, we 

multiplied the percent imperviousness by the area, and then added the entire impervious 

surface. The overall imperviousness in the study area is 10.2 sq km. For the classified 

images, overall imperviousness was estimated by multiplying the total number of 

impervious pixels by 28.5 m twice. 
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Table 8.4: Aggregation of original SCAG classes to categories relevant to stormwater 
modeling 

 
Original SCAG Class New Class 

High Density Single Family Residential Single-Family 
Duplexes Triplexes and 2 or 3 Unit Condos 
and Town 
Low-Rise Apartments Condominiums and 
Townhouses 
Medium-Rise Apartments and Condominiums 
High-Rise Apartments and Condominiums 
Mixed Residential 

Multi-Family 

Low- and Medium-Rise Major Office Use 
High-Rise Major Office Use 
Regional Shopping Mall 
Retail Centers Non-Strip Contiguous 
Interconnected 
Modern Strip Development 
Older Strip Development 
Commercial Storage 
Commercial Recreation 
Hotels and Motels 
Attended Pay Public Parking Facilities 

Commercial 

Government Offices 
Police and Sheriff Stations 
Fire Stations 
Major Medical Health Care Facilities 
Religious Facilities 
Other Public Facilities 
Non-Attended Public Parking Facilities 
Other Special Use Facilities 
Elementary Schools 
Junior or Intermediate High Schools 
Senior High Schools 
Colleges and Universities 

Public 

Manufacturing Assembly and Industrial 
Services 
Research and Development 
Wholesaling and Warehousing 
Mixed Commercial and Industrial 

Light 
Industrial 
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Table 8.4 (Cont.): Aggregation of original SCAG classes to categories relevant to 
stormwater modeling 

 
Original SCAG Class New Class 

Airports 
Freeways and Major Roads 
Communication Facilities 
Electrical Power Facilities 
Natural Gas and Petroleum Facilities 
Improved Flood Waterways and Structures 
Maintenance Yards 
Under Construction 

Other Urban 

Golf Courses 
Local Park Developed 
Wildlife Preserves and Sanctuaries 
Beach Parks 
Other Open Space and Recreation 
Vacant Undifferentiated 
Marina Water Facilities 

Open 

 
 

 
Table 8.5: Overall imperviousness determined from SCAG and LACDPW 

 
Land Use 

Class 
Number of 

Pixels 
Area  

(sq km) 
Percent 

Imperviousness 
Impervious 

Area (sq km) 
Single-Family 6,306 5.1 0.42 2.2 
Multiple-
Family 3,746 3.0 0.68 2.1 

Commercial 2,186 1.8 0.92 1.6 
Public 1,566 1.3 0.80 1.0 
Light 
Industrial 1,096 0.9 0.91 0.8 

Other Urban 3,888 3.2 0.80 2.5 
Open 11,612 9.4 0 0 
Total 30,400 24.7  10.2 
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Figure 8.9: SCAG land use map (48 classes aggregated to 7 classes) 
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8.3.5  Accuracy Assessment 

To test the initial rules, a few pixels were chosen for accuracy assessment. The 

program has a random number generator. At least 50 pixels were needed for each class 

(Congalton, 1991), and 250 pixels were initially selected (5 classes x 50 pixels). We 

found that beach was poorly represented so we added 30 more pixels. However, not 

exactly 50 pixels were assigned to each class. The random number generator worked on 

an image which was classified by ISODATA (Iterative Self-Organizing Data Analysis 

Technique) with 14 clusters. In essence, the ISODATA tool groups pixels according to 

the similarity of their DNs in all the bands (Richards, 1986). We believed there were 14 

spectral classes present in the image which could be merged to define the five major 

classes we have designated. Next, we added more points to reflect the areal distribution 

of the five classes. In this case, biases could be avoided because the number of test pixels 

in a class was proportional to their corresponding area in a preliminary classification. The 

total number of test pixels was 1,040, which represented 3.4% of the entire study area. 

Table 8.6 shows how the test pixels were distributed among the land cover classes. 

Finally, we generated the error matrices for all classifications (Table 8.7-8.11). 

 
Table 8.6: Distribution of test pixels 

 

Class Number of 
Test Pixels 

Percentage of 
Total 

Water 104 10.0 
Impervious 286 27.5 
Soil 324 31.2 
Vegetation 276 26.5 
Beach 50 4.8 
Total 1,040 100 
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Table 8.7: Error matrix (using raw & NDVI images) 
 

Reference  

Water Imper-
vious Soil Vege-

tation Beach Row 
Total 

Water 106 6 0 1 3 116 
Impervious 2 312 13 9 1 337 
Soil 2 41 174 11 0 228 
Vegetation 0 14 13 251 1 279 
Beach 0 25 1 0 54 80 

C
la

ss
ifi

ca
tio

n 

Column Total 110 398 201 272 59 1040 
 

Producer’s Accuracy User’s Accuracy 
Water = 96.4% Water = 91.4% 
Impervious = 78.4% Impervious = 92.6% 
Soil = 86.6% Soil = 76.3% 
Vegetation = 92.3% Vegetation = 90.0% 
Beach = 91.5% Beach = 67.5% 
 

Overall Accuracy = 86.2% 
 
 
 

Table 8.8: Error matrix (using raw & NDVI images, & buffer zone) 
 

Reference  

Water Imper-
vious Soil Vege-

tation Beach Row 
Total 

Water 106 6 0 1 3 116 
Impervious 2 342 13 9 1 367 
Soil 2 36 174 11 0 223 
Vegetation 0 13 13 251 1 278 
Beach 0 1 1 0 54 56 

C
la

ss
ifi

ca
tio

n 

Column Total 110 398 201 272 59 1,040 
 

Producer’s Accuracy User’s Accuracy 
Water = 96.4% Water = 91.4%  
Impervious = 85.9%  Impervious = 93.2%  
Soil = 86.6%  Soil = 78.0%  
Vegetation = 92.3%  Vegetation = 90.3%  
Beach = 91.5%  Beach = 96.4%  
 

Overall Accuracy = 89.1% 



 126 

Table 8.9: Error matrix (using raw & NDVI images, buffer zone, & neighborhood info.) 
 

Reference  

Water Imper- 
vious Soil Vege- 

tation Beach 
Row 
Total 

Water 104 8 0 1 3 116 
Impervious 3 323 23 11 1 361 
Soil 3 44 161 15 0 223 
Vegetation 0 22 16 245 1 284 
Beach 0 1 1 0 53 55 
Unclassified 0 0 0 0 1 1 C

la
ss

ifi
ca

tio
n 

Column Total 110 398 201 272 59 1040 
 

Producer’s Accuracy User’s Accuracy 
Water = 94.5% Water = 89.6% 
Impervious = 81.2% Impervious = 89.5% 
Soil = 80.1% Soil = 72.2% 
Vegetation = 90.1% Vegetation = 86.3% 
Beach = 89.8% Beach = 96.4% 

 
Overall Accuracy = 85.2%    

 
 
 

Table 8.10: Error matrix (using MXL on raw image) 
 

Reference  

Water Imper-
vious Soil Vege-

tation Beach Row 
Total 

Water 78 0 0 0 0 78 
Impervious 32 391 114 180 4 721 
Soil 0 3 65 6 0 74 
Vegetation 0 1 22 86 1 110 
Beach 0 3 0 0 54 57 

C
la

ss
ifi

ca
tio

n 

Column Total 110 398 201 272 59 1040 
 

Producer’s Accuracy User’s Accuracy 
Water = 70.9% Water = 100.0%      
Impervious = 98.2% Impervious = 54.2% 
Soil = 32.3% Soil = 87.8% 
Vegetation = 31.6% Vegetation = 78.2% 
Beach = 91.5% Beach = 94.7% 
 

Overall Accuracy = 64.8% 
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Table 8.11: Error matrix (using MXL on NDVI image) 
 

Reference  

Water Imper- 
vious Soil Vege- 

tation Beach 
Row 
Total 

Water 90 1 0 0 6 97 
Impervious 19 306 133 54 9 521 
Soil 0 43 65 40 0 148 
Vegetation 0 6 3 178 1 188 
Beach 1 42 0 0 42 85 
Unclassified 0 0 0 0 1 1 C

la
ss

ifi
ca

tio
n 

Column Total 110 398 201 272 59 1040 
 

Producer’s Accuracy User’s Accuracy 
Water = 81.8% Water = 92.8%  
Impervious = 76.9%  Impervious = 58.7%  
Soil = 32.3%  Soil = 43.9%  
Vegetation = 65.4%  Vegetation = 94.7%  
Beach =  71.2%  Beach =  49.4%  

 
Overall Accuracy = 65.5%    

  

 

8.4  Results and Discussion 

Table 8.8 shows the error matrix for the second classification image, which is the 

best classified image. The values in the diagonal are the number of pixels correctly 

identified. For example, there were 106 water pixels in the group of test pixels which 

were correctly classified as water pixels in the classification. Off-diagonal values 

represent erroneous classifications. For example, there were six pixels that were 

classified as water but were impervious surface in reality. The overall accuracy is the sum 

of the correctly classified pixels divided by the total number of test pixels. We see that 

the classification is satisfactory, with a high accuracy of 89.1%. Just by looking at the 
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producer’s and user’s accuracy, we find that all the land cover classes were classified 

well. We consider the impervious surface because this is the class that we must locate. 

The producer’s accuracy is 85.9%, which means that the producer of the classification 

(i.e., the knowledge engineer) classified the image well. 85.9% of the impervious surface 

in the study area has been classified as such. The user who visits the field and goes to a 

specific area classified as impervious surface has a 93.2% (user’s accuracy) chance that 

the area is actually impervious. Even if considering only the impervious class, this is a 

fairly good classification. Generally, an 85% or higher accuracy is considered 

satisfactory. 

Table 8.12 compares the three knowledge-based (KBS) systems and the two MXL 

classifications. The overall accuracy is fairly high for all the three KBS classifications. 

The addition of the buffer distance from the ocean increased the accuracy by 2.9%. 

However, the addition of neighborhood information did not necessarily increase the 

overall accuracy. However, the overall imperviousness increased with the subsequent 

addition of ancillary data. We suspect that not all impervious surfaces in the residential 

areas were detected. This will require a refinement of the rules. The producer’s accuracy 

of just 78.4% in the first classification is due to the fact that large areas of impervious 

surfaces were classified to beach. We see a large improvement to a producer’s accuracy 

of 85.9% when the buffer distance was applied. However, using neighborhood functions, 

the producer’s accuracy dropped to 81.2%. This is probably due to many impervious 

pixels being filtered out by the model. To solve this problem, we can vary the threshold, 
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or even apply the threshold only to some classes. All the user’s accuracies are generally 

good. 

 

Table 8.12: Comparison of classifications 

Parameter 
KBS- 

Raw & 
NDVI 

KBS- 
Raw & 
NDVI, 
Buffer 

KBS- 
Raw & 
NDVI, 
Buffer, 

Neighbor-
hood 

MXL- 
Raw 

MXL-
NDVI 

Overall Accuracy 86.2% 89.1% 85.2% 64.8% 65.5% 
Producer’s 
Accuracy 
(Impervious) 

78.4% 85.9% 81.2% 98.2% 76.9% 

User’s Accuracy 
(Impervious) 92.6% 93.2% 89.5% 54.2% 58.7% 

Overall 
Imperviousness 7.5 sq km 8.4 sq km 8.5 sq km 17.0 sq km 10.6 sq km 

Error Rate on 
Overall 
Imperviousness 

-26.5% -17.6% -16.7% +66.7% +3.9% 

 

 

Regarding the MXL classifications, we see that the overall classification is poor 

(64.8% and 65.5%). Although the J-M distances showed high separability, it is possible 

that the complete variability of classes were not taken into account. In addition, the J-M 

distances were low between the impervious-beach pair and soil-impervious at residential 

pair. So these low accuracies are not a surprise. For the MXL classifications on the raw 

image, although the producer’s accuracy is high (98.2%), only 54.2% of these areas are 

actually impervious surfaces in the ground. The classifier produced more impervious 

areas that was why it overestimated the actual overall imperviousness (66.7% error rate). 
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For the MXL classification on the NDVI image, the overall imperviousness of 10.6 sq km 

is close to the value from public records (10.2 sq km). However, since the producer’s and 

user’s accuracies are low, it is doubtful that the impervious surfaces were classified to 

their correct locations. Using only the raw and NDVI images individually, we see that the 

overall classification is far less satisfactory than those achieved by the knowledge-based 

classifications, which utilized both sets of images. Figures 8.10 to 8.14 display the 

classified images. 

 

8.5  Conclusions 

Because different materials on the earth’s surface reflect radiation in various 

amounts, they can be distinguished from satellite images. Impervious surfaces have 

components distinct from other land cover such as vegetation or soil. Therefore, satellite 

imagery is a good alternative to manual methods for mapping impervious surfaces. If 

spectral signatures overlap, ancillary data can be incorporated to increase the accuracy of 

the classification process. Knowledge-based systems and GIS are tools that can 

accommodate both spectral information and ancillary data. The advantage of these 

methods is that the knowledge engineer can interact with the knowledge base and modify 

it until an acceptable classification has been achieved.  
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Figure 8.10: Knowledge-based classification with spectral data 
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Figure 8.11: Knowledge-based classification with spectral data and buffer zone
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Figure 8.12: Knowledge-based classification with spectral data, buffer zone, and 
neighborhood information 
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Figure 8.13: Maximum likelihood classification on raw image 
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Figure 8.14: Maximum likelihood classification on NDVI image 
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Chapter 9 

Estimation of Pollutant Loadings  
from Satellite Data 
 
 
 
9.1  Introduction 

Stormwater is a significant source of nonpoint pollution because it contains many 

toxic contaminants. Stormwater runoff can carry and distribute sediment, nutrients, 

oxygen-demanding organics, toxic substances, and pathogens to drainage systems and 

watercourses. Being able to identify land parcels with high stormwater pollutant 

emissions allows policy makers to prioritize specific areas in the watershed for the 

implementation of best management practices (BMPs). The amounts and types of 

pollutants generated are closely associated with land use. Hence, pollutant loadings are 

normally estimated from land use maps. These maps are usually assembled from aerial 

photography and field visits, which are tedious and time-consuming methods. In addition, 

land use data from public records, such as tax collection databases, are often poorly 

defined or categorized for environmental purposes. Levels of pollutant loadings can 

actually be estimated from remotely-sensed data because they are closely associated with 

land cover, unlike land use which has an economic component. Different types of land 

cover have distinct spectral signatures which enable them to be identified from satellite 

imagery.  
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9.2  Data, Materials, and Software 

The goal of this investigation is to identify areas that show various pollution 

levels directly from remotely sensed data. The six water quality parameters considered 

were total suspended solids (TSS), biochemical oxygen demand (BOD5), total 

phosphorus (Total P), total Kjeldahl nitrogen (TKN), copper (Cu), and oil and grease (O 

& G). The study area selected was Marina del Rey and its vicinity described in Chapter 8. 

Data, materials, and software have also been discussed in that chapter. Event mean 

concentrations of pollutants were obtained from Stenstrom and Strecker (1993). 

 

9.3  Methodology   

9.3.1  Calculation of Pollutant Loadings 

When it rains, not all water seeps to the ground. Because of impervious surfaces, 

some of the water becomes runoff and reaches a water body. The relationship of rainfall 

to runoff is: 

 RC = runoff/rainfall            (9.1)  

where RC = runoff coefficient 

It has been observed that RC is highly correlated with the amount of impervious surface. 

An example of this relationship is: 

  RC = (0.7)I + 0.1            (9.2)  

where I = fraction of impervious surface of a land parcel  
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Imperviousness I depends on the type of land use. Hence RC can be calculated for 

different kinds of land use. Table 9.1 shows the runoff coefficient, calculated from 

equation (9.2) for the various land use types found in the Santa Monica Bay watershed.  

 

Table 9.1: Land use characteristics 

Land Use Impervious Surface Area (I) Runoff Coefficient (RC) 
Single-Family 0.42 0.39 
Multiple-Family 0.68 0.58 
Commercial 0.92 0.74 
Public 0.80 0.66 
Light Industrial 0.91 0.74 
Other Urban 0.80 0.66 
Open 0 0.10 

 
(from Wong et al., 1997) 

 

For a specific storm, the volume of water produced by rainfall is: 

 TVR = (A)(RF)            (9.3)  

where TVR = total volume of water produced from rainfall in a single storm event 

 A = drainage area 

 RF = rainfall 

However, only a fraction of this water becomes runoff, and its total volume is 

 RV = (RC)(A)(RF)             (9.4) 

where RV = runoff volume/storm event 

Usually, we have several storm events in a year. So the annual volume of runoff is  

 RVA = (RV)(NSTORM)           (9.5) 

where RVA = total volume of runoff/year 
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 NSTORM = total number of storms/year 

Knowing the total volume of runoff and the event mean concentration of a particular 

pollutant gives us the pollutant loadings per year. In equation form, this is: 

 PL = (RVA)(EMC)            (9.6) 

where PL = pollutant loadings/year  

 EMC = event mean concentration of a pollutant (mg/L) 

In (9.6), RVA can be substituted by (9.5)  

 PL = (RV)(NSTORM)(EMC)           (9.7) 

In (9.7), RV can be substituted by (9.4) 

 PL = (RC)(A)(RF)(NSTORM)(EMC)         (9.8) 

We can calculate the pollutant loading for a unit area (a pixel whose size is 28.5 m x 28.5 

m) and a unit rainfall of 10 mm. Wong et al. (1997) reported 16 storms per year in this 

watershed. If we substitute these values in (9.8), we get: 

 PL = (RC)(28.5 m)(28.5 m)(10 mm)(16 storms/year)(EMC)      (9.9) 

which can be simplified to   

 PL = �(RC)(EMC)          (9.10)  

where � = product of the constants and conversion factors. 

The above equation is valid only for a small area where it can be assumed that the 

rainfall is the same for all pixels, the number of storms is the same for all pixels, and all 

the water drains to the same water body. Table 9.2 shows the annual loadings for the six 

pollutants according to land use. Park and Stenstrom (2004) computed polluted loadings 

using a similar equation. 
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Table 9.2:   Pollutant concentrations and annual loadings 
 

TSS BOD5 Total P TKN Cu O & G Land 
Use C L1 C L1 C L2 C L1 C L2 C L1 

SF 290 14.70 17 0.86 0.85 43.08 4.3 0.22 0.095 4.82 3 0.15 
MF 210 15.83 15 1.13 0.62 46.73 2.4 0.18 0.100 7.54 22 1.66 
Co 180 17.31 14 1.35 0.43 41.35 2.0 0.19 0.072 6.92 22 2.12 
P 180 15.44 14 1.20 0.43 36.88 2.0 0.17 0.072 6.18 22 1.89 
LI 180 17.31 14 1.35 0.43 41.35 2.0 0.19 0.072 6.92 22 2.12 
OU 210 18.01 15 1.29 0.62 53.18 2.4 0.20 0.100 8.58 22 1.89 
O 490 6.37 2 0.02 0.52 6.76 2.8 0.04 0.055 0.71 0 0 

 
SF  = Single-Family 
MF  = Multiple-Family 
Co  = Commercial 
P = Public 
LI = Light Industrial 
OU = Other Urban  
O = Open  
C = Event mean concentration (mg/L) (from Stenstrom and Strecker, 1993) 
L1 = Loadings (kg/yr) 
L2 = Loadings (g/yr) 

 

9.3.2  Knowledge-Based Classification 

Our next task was to determine the pollution levels for each contaminant. We 

designated these levels as high, medium, and low loading. For TSS, because open land is 

mostly soil, it has the highest concentration of 490 mg/L. A fairly high concentration of 

TSS is also generated by single-family residential (at 290 mg/L) because of the presence 

of lawns. However, we found that open land has a low loading of only 6.37 kg/yr. For 

single-family, the loading is very similar to those of the other classes, although the 

concentration is higher. This is because the rest of the classes have higher runoff 

coefficients. Therefore, for TSS, we designated two classes: low loading for open areas 

(6.37 kg/yr), and high loading for the non-open areas (14.70 - 18.01 kg/yr). We observed 
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the same for BOD5, Total P, and TKN. For copper, we observed that open land has a low 

loading of 0.71 g/yr, single-family has a medium loading of 4.82 g/yr, and the rest of the 

classes have a high loading (6.18 - 8.58 g/yr). For oil and grease, we grouped open (no 

loading) and single family (0.15 kg/yr) as low loading and the rest as high loading (1.66 

to 2.12 kg/yr). Oil and grease have high concentrations in parking lots which can be 

found mostly in commercial and light industrial areas (Stenstrom et al., 1984). Table 9.3 

shows the individual or range of values for the different pollution levels. Averages, 

whenever applicable, were also computed. 

 

Table 9.3: Range and average loadings for the different pollution levels 

Pollutant 
High 

Loading- 
Range 

High 
Loading- 
Average 

Medium 
Loading- 

Range 

Medium 
Loading- 
Average 

Low 
Loading- 

Range 

Low 
Loading- 
Average 

TSS 14.70-18.01 16.43 - - 6.37 6.37 
BOD5 0.86-1.35 1.20 - - 0.02 0.02 
Total P 36.88-53.18 43.76 - - 6.76 6.76 
TKN 0.17-0.22 0.19 - - 0.04 0.04 
Cu 6.18-8.58 7.23 4.82 4.82 0.71 0.71 
O & G 1.66-2.12 1.94 - - 0-0.15 0.08 

 

 

For TSS, BOD5, Total P, and TKN, we applied the tasseled cap transformation 

(Crist and Cicone, 1984) on the six bands of the Landsat ETM+ image. This 

transformation emphasizes vegetation and soil, both of which are components of open 

land.  We used the greenness (Figure 9.1), wetness (Figure 9.2), and haze (Figure 9.3) 

layers from the resulting six-layer image and applied an ISODATA (Iterative Self-

Organizing Data Analysis Technique) (Richards, 1986). The ISODATA procedure 
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groups the pixels according to the similarity of their digital numbers. The result of this 

procedure showed that open land was separated from all other classes. However, these 

classes also included water. Hence, we examined the bimodal histogram of the NIR band 

and found that the threshold to separate water was a digital number of 32. The procedure 

just described constituted the first classification using only spectral data (Figure 9.4) 

However, because the areas where the ocean meets the beach has a mixed spectral 

signature from both land covers, these pixels were classified to non-open land. Hence a 

buffer distance of 5 pixels (142.5 meters) was used to correct the misclassification 

(Figure 9.5). We then incorporated neighborhood information to the second 

classification. The idea is that neighboring pixels have a tendency to have similar classes. 

If a pixel A, for example, has been classified as TSS, high loading, and at least three of its 

immediate neighbors in the north, east, west, and south directions have also been 

classified as such, then pixel A retains that category. If not, the class is replaced by the 

majority value in a 3 by 3 filter. Figure 9.6 demonstrates a part of the neighborhood 

analysis just described. The graphic model essentially makes an image (called Threshold 

in Figure 9.6) with pixels showing the number of neighbors that has a similar class as the 

pixel of interest. Figure 9.7 shows the third classification incorporating neighborhood 

information just described. 
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Figure 9.1: “Greenness” component of the tasseled cap transformation 
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Figure 9.2: “Wetness” component of the tasseled cap transformation 
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Figure 9.3: “Haze” component of the tasseled cap transformation 
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Figure 9.4: TSS loadings classification using spectral data (similar flowcharts for BOD5, 
Total P, and TKN) 
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Figure 9.5: TSS loadings classification using spectral data and buffer zone (similar 

flowcharts for BOD5, Total P, and TKN) 
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Figure 9.6: Neighborhood analysis 
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Figure 9.7: TSS loadings classification using spectral data, buffer zone, and 
neighborhood information (similar flowcharts for BOD5, Total P, and TKN) 
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For copper, similar tasks were performed except that there was a need to separate 

single-family from the non-open areas. The spectral signature of single-family is very 

distinct. We drew a training area on the raw image, generated the statistics, and used 

these parameters to make the rules. For oil and grease, the same steps were done. In this 

case, however, the single-family areas were merged to open land. Figures 9.8 to 9.13 

display the flowcharts of the knowledge-based classification with spectral and ancillary 

data. Standard GIS operations were regularly used for spatial analysis.  

 

9.3.3  Accuracy Assessment 

We used 1,040 randomly generated tests pixels (3.4% of the study area) to 

evaluate the quality of our classifications. The identities of several of these test pixels 

were derived from the SCAG land use map, but because the SCAG classification is not 

optimized for environmental purposes, the identities of some test pixels were incorrect 

for our study. In this case, the identities were manually recognized using the raw image 

and the aerial photographs. For example, airport, considered as other urban area, is 

actually composed of impervious surfaces and soil. Hence, test pixels falling on the soil 

were identified as open land. We observed the same for public because it is actually 

composed of different types of land cover. This class is particularly problematic because 

it has no distinct spectral signature. 

 

 

 



 152 

Tassel Cap = Cluster 1

Water

Cu, High

Cu, Low

Yes

Yes

Yes

No

No

NIR < 32

Tassel Cap = Cluster 2

Unclassified

No

62 � NIR � 76 

Cu, Medium

78 � Green � 106 

97 � Blue � 123 

75 � Red � 117 

51  �MIR7 � 87 

73  �MIR5 � 111 

Yes

No

No

Yes

Yes

Yes

Yes

Yes
No

No

No

No

 
Figure 9.8: Copper loadings classification using spectral data 
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 Figure 9.9: Copper loadings classification using spectral data and buffer zone 



 154 

Threshold � 3

Water

Cu, High

Cu, Low

Yes

Yes

Yes

Yes

Yes No

No

2nd Classn = Water

2nd Classn = Cu, High

2nd Classn = Cu, Low

Unclassified

No

Threshold � 3

Threshold � 3

Majority = Water

Majority = Cu, High

Majority = Cu, Low

Yes

Yes

No

No

No

Yes

Yes

Threshold � 3

Majority = Cu, Medium

2nd Classn=Cu,Medium

Cu, Medium

Yes

Yes
Yes

No

No

No

No

No

No

 
 

Figure 9.10: Copper loadings classification using spectral data, buffer zone, and 
neighborhood information 
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Figure 9.11: O & G loadings classification using spectral data 
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Figure 9.12: O & G loadings classification using spectral data and buffer zone 
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Figure 9.13: O & G loadings classification using spectral data, buffer zone, and 
neighborhood information 
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9.4  Results and Discussion 

Figures 9.14 to 9.22 show the classified images. Error matrices are presented in 

Tables 9.4 to 9.12. Table 9.13 is a summary of the nine classifications. Overall accuracy 

is defined as the sum of the correctly identified pixels divided by the total number of test 

pixels. For individual classes, however, producer’s and user’s accuracies (both called 

locational accuracies) are more meaningful parameters. For example, for TSS, BOD5, 

Total P, and TKN, in the classification using spectral information only, 92.5% 

(producer’s accuracy) of the pixels in the study area were classified correctly by the 

producer of the map as high loading areas. A user of the map who goes to the field and 

finds an area classified as high loading, has a 94.6% (user’s accuracy) chance that indeed 

the area has a high loading of TSS, BOD5, Total P, and TKN. Also, since water is not an 

area of interest to us, it is omitted from the table. All locational accuracies for water are 

high (from 93.9% to 100%) which means it is highly separable. Unlike other studies, the 

water area is not masked because as another land cover having a spectral signature of its 

own, it can be separated by an appropriate rule, in this case, using only the NIR band. We 

must also remember that water contributes to the overall accuracy.  

We inspect the classifications using only spectral data. For TSS, BOD5, Total P, 

and TKN, we simply needed to separate the open areas (low loading) from the non-open 

areas (high loading). We found that the tasseled cap transformation coupled with 

ISODATA was a satisfactory way to separate open land from non-open land (92.3%. 

overall accuracy). Surprisingly, with this transformation, beach was also correctly 

classified to open land. This is difficult to do using the raw bands and even 
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transformations like the normalized difference vegetation index ((NIR band – red band) / 

(NIR band + red band)). Beach is normally confused with impervious surface, although 

their material components are different. Identifying the pollutant levels for copper and oil 

and grease involved the recognition of single-family residential. The lower accuracies 

observed (85.5% for copper, 87.1% for oil and grease) may be due to the confusion of 

impervious surfaces in the single-family residential with the impervious surfaces in all 

other classes. Also, there are areas designated as single-family residential in the SCAG 

land use map, but their spectral signature is different from the usual signature. 

We expected that with the addition of ancillary data, the classifications would 

improve. There was evident misclassification in the area where the ocean meets the beach 

because of the mixing of the two land cover types. The buffer zone solved this problem. 

Indeed, all the classifications improved with the addition of the buffer zone. At this point, 

we call these as second classifications. 

In the third classifications, the general effect of the neighborhood analysis was 

less clear. For TSS, BOD5, Total P, and TKN, the overall accuracy and the PA/LL were 

the same as in the second classification. PA/HL and UA/LL increased, but UA/HL 

actually decreased. For copper, the addition of the neighborhood information increased 

the overall accuracy, PA/HL, UA/ML, and UA/LL. However, UA/HL and PA/LL 

decreased. PA/ML remained the same. For oil and grease, most of the accuracy measures 

actually dropped. Visually, however, the classifications involving the neighborhood 

functions looked better. Because of its filtering procedure, small clumps of 

misclassifications were actually removed.  
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Figure 9.14: TSS, BOD5, Total P, and TKN loadings using spectral data 



 161 

N

0 1 km

High Loading

Low Loading

 
 

Figure 9.15: TSS, BOD5, Total P, and TKN loadings using spectral data and buffer zone 
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Figure 9.16: TSS, BOD5, Total P, and TKN loadings using spectral data, buffer zone, and 
neighborhood information 
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Figure 9.17: Copper loadings using spectral data 
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Figure 9.18: Copper loadings using spectral data and buffer zone 
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Figure 9.19: Copper loadings using spectral data, buffer zone, and neighborhood 
information 
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Figure 9.20: O & G loadings using spectral data 
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Figure 9.21: O & G loadings using spectral data and buffer zone 
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Figure 9.22: O & G loadings using spectral data, buffer zone, and neighborhood 
information 
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Table 9.4: Error matrix for TSS, BOD5, Total P, and TKN, using spectral data 
 

Reference  
Water Low High Row Total 

Water 111 0 0 111 
Low 0 272 47 319 
High 4 29 577 610 

Classi- 
fication 

Column Total 115 301 624 1040 
 

Producer’s Accuracy User’s Accuracy 
Water = 96.5% Water = 100% 
Low = 90.4% Low = 85.3% 
High = 92.5% High = 94.6% 

 
Overall Accuracy = 92.3% 

 
 
 
 
 
 

Table 9.5: Error matrix for TSS, BOD5, Total P, and TKN, using spectral data and buffer 
zone 

 
Reference  

Water Low High Row Total 
Water 111 0 0 111 
Low 0 277 47 324 
High 4 24 577 605 

Classi- 
fication 

Column Total 115 301 624 1040 
 

Producer’s Accuracy User’s Accuracy 
Water = 96.5% Water = 100% 
Low = 92.0% Low = 85.5% 
High = 92.5% High = 95.4% 

 
Overall Accuracy = 92.8% 
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Table 9.6: Error matrix for TSS, BOD5, Total P, and TKN, using spectral data, buffer 
zone, and neighborhood information 

 
Reference  

Water Low High Row Total 
Water 108 0 2 110 
Low 0 277 42 319 
High 7 24 580 611 

Classi- 
fication 

Column Total 115 301 624 1040 
 

Producer’s Accuracy User’s Accuracy 
Water = 93.9% Water = 98.2% 
Low = 92.0% Low = 86.8% 
High = 92.9% High = 94.9% 

 
Overall Accuracy = 92.8% 

 
 
 
 
 
 

Table 9.7: Error matrix for copper, using spectral data 
 

Reference  
Water Cu, Low Cu, Medium Cu, High Row Total 

Water 111 0 0 0 111 
Cu, Low 0 275 14 50 339 
Cu, Medium 0 1 151 17 169 
Cu, High 4 25 40 352 421 

Clas- 
sifi- 

cation 
Column Total 115 301 205 419 1040 

 
Producer’s Accuracy User’s Accuracy 

Water = 96.5% Water = 100.0% 
Cu, Low = 91.4% Cu, Low = 81.1% 
Cu, Medium = 73.6% Cu, Medium = 89.3% 
Cu, High = 84.0% Cu, High = 83.6% 

 
Overall Accuracy = 85.5%  
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Table 9.8: Error matrix for copper, using spectral data and buffer zone 
 

Reference  
Water Cu, Low Cu, Medium Cu, High Row Total 

Water 111 0 0 0 111 
Cu, Low 0 280 14 50 344 
Cu, Medium 0 1 151 17 169 
Cu, High 4 20 40 352 416 

Clas- 
sifi- 

cation 
Column Total 115 301 205 419 1040 

 
Producer’s Accuracy User’s Accuracy 

Water = 96.5% Water = 100.0% 
Cu, Low = 93.0% Cu, Low = 81.4% 
Cu, Medium = 73.6% Cu, Medium = 89.3% 
Cu, High = 84.0% Cu, High = 84.6% 

 
Overall Accuracy = 86.0%   

 
 
 
 
 
 

Table 9.9: Error matrix for copper, using spectral data, buffer zone, and neighborhood 
information 

 
Reference  

Water Cu, Low Cu, Medium Cu, High Row Total 
Water 108 0 0 2 110 
Cu, Low 0 278 11 46 335 
Cu, Medium 0 0 151 13 164 
Cu, High 7 23 43 358 431 

Clas- 
sifi- 

cation 
Column Total 115 301 205 419 1040 

 
Producer’s Accuracy User’s Accuracy 

Water = 93.9% Water = 98.2% 
Cu, Low = 92.4% Cu, Low = 83.0% 
Cu, Medium = 73.6% Cu, Medium = 92.1% 
Cu, High = 85.4% Cu, High = 83.1% 

 
Overall Accuracy = 86.1%  
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Table 9.10: Error matrix for O & G, using spectral data 
 

Reference  
Water O & G, Low O & G, High Row Total 

Water 111 0 0 111 
O & G, Low 0 444 68 512 
O & G, High 4 62 351 417 

Classi- 
fication 

Column Total 115 506 419 1040 
 

Producer’s Accuracy User’s Accuracy 
Water = 96.5% Water = 100.0% 
O & G, Low = 87.7% O & G, Low = 86.7% 
O & G, High = 83.8% O & G, High = 84. 2% 

 
Overall Accuracy = 87.1% 

 
 
 
 
 
 

Table 9.11: Error matrix for O & G, using spectral data and buffer zone 
 

Reference  
Water O & G, Low O & G, High Row Total 

Water 111 0 0 111 
O & G, Low 0 449 68 517 
O & G, High 4 57 351 412 

Classi- 
fication 

Column Total 115 506 419 1040 
 

Producer’s Accuracy User’s Accuracy 
Water = 96.5% Water = 100% 
O & G, Low = 88.7% O & G, Low = 86.8% 
O & G, High = 83.8% O & G, High = 85.2% 

 
Overall Accuracy = 87.6% 
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Table 9.12: Error matrix for O & G, using spectral data, buffer zone, and neighborhood 
information 

 
Reference  

Water O & G, Low O & G, High Row Total 
Water 108 0 2 110 
O & G, Low 0 448 68 516 
O & G, High 7 58 349 414 

Classi- 
fication 

Column Total 115 506 419 1040 
 

Producer’s Accuracy User’s Accuracy 
Water = 93.9% Water = 98.2% 
O & G, Low = 88.5% O & G, Low = 86.8% 
O & G, High = 83.3% O & G, High = 84.3% 

 
Overall Accuracy = 87.0% 

 
 
 

Table 9.13: Comparison of classifications 
 

TSS, BOD5, 
Total P, TKN Cu O & G Accuracy 

Parameter S S, B S, B, 
N 

S S, B S, B, 
N 

S S, B S, B, 
N 

OA 92.3 92.8 92.8 85.5 86.0 86.1 87.1 87.6 87.0 
PA/HL 92.5 92.5 93.0 84.0 84.0 85.4 83.8 83.8 83.3 
UA/HL 94.6 95.4 94.9 83.6 84.6 83.1 84.2 85.2 84.3 
PA/ML - - - 73.7 73.7 73.7 - - - 
UA/ML - - - 89.4 89.4 92.1 - - - 
PA/LL 90.4 92.0 92.0 91.4 93.0 92.4 87.8 88.7 88.5 
UA/LL 85.3 85.5 86.8 81.1 81.4 83.0 86.7 86.8 86.8 

 
All values are in per cent. 
S  = Spectral data 
B   = Buffer zone 
N   = Neighborhood information 
OA   = Overall Accuracy 
PA/HL  = Producer’s Accuracy (High Loading) 
UA/HL  = User’s Accuracy (High Loading) 
PA/ML  = Producer’s Accuracy (Medium Loading) 
UA/ML  = User’s Accuracy (Medium Loading) 
PA/LL  = Producer’s Accuracy (Low Loading) 
UA/LL  = User’s Accuracy (Low Loading) 
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9.5  Conclusions 

We can determine pollution levels from satellite images directly because pollutant 

loadings are associated with specific land cover whose spectral signatures are unique. As 

a first step, it is necessary to identify open land because it generates little amounts of 

pollutants. The tasseled cap transformation coupled with ISODATA is a satisfactory way 

to do this. Single-family, which can be separated using the raw image, is another land use 

that is distinct from others because it is composed of both impervious surface and lawns. 

Multiple-family, commercial, and industrial areas are composed mainly of impervious 

surfaces, like roofs and parking lots, hence they have high runoff coefficients. This may 

be one of the reasons why they have high pollutant loadings. Misclassifications can be 

solved by ancillary data, such as distance from a specific object. The effect of 

neighborhood information, however, is less clear. But visually, the neighborhood 

functions seem to improve the classification because it removes the salt and pepper 

appearance of the images. This performs the same task as post-classification smoothing. 
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Chapter 10 

Assessing the Accuracy of Classifications 
for Pollutant Loadings Estimation 
 
 
 
10.1  Introduction 

In Chapter 9, we identified different levels of pollution for TSS, BOD5, Total P, 

TKN, Cu, and O & G. To evaluate the quality of the classifications, error matrices were 

assembled, and overall accuracy values were computed. However, this measure assumes 

that all misclassification errors are equally serious. We propose a method that weighs the 

errors, and suggest measures that reflect the accuracy of the classifications with more 

specificity.  

 

10.2  Methodology 

Annual pollutant loadings previously calculated are shown in Table 10.1. We 

designated the pollution levels as high, medium, and low. Table 10.2 displays the range 

of values for each pollution level. We also computed the average if applicable. With 

ERDAS Imagine 8.7, we segregated the imagery to areas that had high, medium, and low 

loading for each pollutant using knowledge-based classification techniques coupled with 

standard GIS operations. We applied the ISODATA procedure on a tasselled cap 

transformation using the greenness, wetness, and haze components computed from the 
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six raw bands of blue, green, red, near infrared, and the two mid-infrared bands. This 

resulted in the separation of open land from non-open land. Single-family residential was 

likewise distinguished using the six raw bands. Only the near infrared band was utilized 

to segregate water. Using only spectral data (first classification), the area where the beach 

met the ocean showed open land misclassified to non-open land. In the second 

classification, a buffer distance of five pixels (142.5 m) corrected this error. 

Neighborhood analysis was employed in the third classification. To keep its value in the 

second classification, a pixel should have at least three of its neighbors (in the north, east, 

west, and south directions) in the same category. Otherwise, it was replaced by the value 

in the majority image that was processed from a 3 x 3 filter. 

 

Table 10.1: Annual pollutant loadings 

Land Use Pollutant 
SF MF Co P LI OU O 

TSS 14.70 15.83 17.31 15.44 17.31 18.01 6.37 
BOD5 0.86 1.13 1.35 1.20 1.35 1.29 0.02 
Total P 43.08 46.73 41.35 36.88 41.35 53.18 6.76 
TKN 0.22 0.18 0.19 0.17 0.19 0.20 0.04 
Cu 4.82 7.54 6.92 6.18 6.92 8.58 0.71 
O & G 0.15 1.66 2.12 1.89 2.12 1.89 0 

 
SF = Single-Family  
MF = Multiple-Family  
Co  = Commercial 
P  = Public  
LI  = Light Industrial  
OU  = Other Urban  
O  = Open 
Loadings are in kg/year except for Total P and Cu which are in g/year. 
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Table 10.2: Range and average loadings for the different pollution levels 
 

Pollutant 
High 

Loading- 
Range 

High 
Loading- 
Average 

Medium 
Loading- 

Range 

Medium 
Loading- 
Average 

Low 
Loading- 

Range 

Low 
Loading- 
Average 

TSS 14.70-18.01 16.43 - - 6.37 6.37 
BOD5 0.86-1.35 1.20 - - 0.02 0.02 
Total P 36.88-53.18 43.76 - - 6.76 6.76 
TKN 0.17-0.22 0.19 - - 0.04 0.04 
Cu 6.18-8.58 7.23 4.82 4.82 0.71 0.71 
O & G 1.66-2.12 1.94 - - 0-0.15 0.08 

 

 

The next task was to quantify the quality of the classifications. This was done first 

by assembling error matrices. We tested 1,040 randomly generated pixels which were 

3.4% of the study area. These points were mainly checked from aerial photos and field 

visit. The land use digital map published by the Southern California Association of 

Governments (SCAG) was not used fully because there was no one-to-one 

correspondence between its categories and the classes we have designated. For example, 

“other urban” areas in the SCAG data have both open land and built-up areas. This 

illustrates that land use data from public records are often incompatible with 

environmental objectives. 

Overall accuracy is the most common measure of evaluating the quality of 

classifications, although it does not take location into account. The kappa coefficient 

factors in the effect of chance in the classification (Lillesand and Kiefer, 1994). For 

example, a kappa value of 78% indicates that the classification is 78% better than a 

classification that resulted from random assignment. Therefore, kappa is lower than the 

overall accuracy. Both measures were computed using ERDAS Imagine 8.7. We believe 
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that the weighted equivalents of overall accuracy and kappa will provide more specific 

measures of accuracy. 

The arrangement shown in Table 10.3 is used to assess the weighted overall 

accuracy and weighted kappa coefficient (Naesset, 1996). This is similar to an error 

matrix except that the cell values are not absolute observations and computed values but 

proportions.  

 

Table 10.3: Proportion of pixels distributed into k classes 

Reference   
1 2 ..... k - 1 k Total 

1 p11 p12 ..... p1 k-1 p1k p1+ 
2 p21 p22 ..... p2 k-1 p2k p2+ 
. . . ..... . . . 
. . . ….. . . . 
. . . ..... . . . 

k - 1 pk-1 1 pk-1 2 ..... pk-1 k-1 pk-1 k pk-1+ 

 
C

la
ss

ifi
ca

tio
n 

k pk1 pk2 ..... pk k-1 pkk pk+ 
 Total p+1 p+2 ..... p+k-1 p+k 1 

 
(from Naesset, 1996) 

 

To make this table, we divide all the original values in the error matrix by the 

total number of test points. Let 

�
=

+
=

k

j
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                                                       (10.1) 

be the proportion of pixels classified into class i in the classified image, and 
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be the proportion of pixels confirmed as class j in the reference image. Let wij be the 

weight associated with the i,jth cell in the error matrix. If 
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is the weighted agreement or weighted overall accuracy, and 
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is the weighted chance agreement, Cohen (1968) defines weighted kappa as 
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To calculate for the weighted overall accuracy and weighted kappa, we need to 

assign a weight for each cell in the error matrix to reflect the severity of the 

misclassification error. Fleiss et al. (1969) state that weights are limited to the interval 0 

� wij � 1 for i � j, and that the weight for perfect agreement is 1 (i.e., wii = 1). Naesset 

(1996) suggested that weights may reflect the loss of utility because of misclassification. 

If Uc,j is the utility when a pixel is correctly classified into class j and UE,ij  is the utility 

when a pixel belonging to class j is wrongly classified into class i, then the weight is 

                                  wij = UE,ij/Uc,j                                                    (10.6) 
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The benefit of creating a pollutant loading map is to be able to identify areas generating 

high levels of pollution. Therefore, initially, we thought of quantifying the value of best 

management practices (BMPs). However, BMPs can vary depending on the type of 

pollutants. In addition, it may be difficult to determine the dollar value of the benefit 

arising from a BMP. Next, we looked at the average or representative values associated 

with high, medium, and low loadings. If we put the absolute values of pollutant loadings 

in the equation above, we may have a value of zero in the denominator. Amounts over- or 

underestimated from the misclassification errors can also produce zeroes in the 

denominator.  

Cicchetti and Allison (1971) proposed a way of assigning weights specifically for 

ordinal data. Perfect agreement is assigned a weight of 1, and the worst disagreement is 

assigned a weight of zero. Weights of other cases of misclassifications are determined 

linearly. Because our classification is in ordinal scale, this procedure is applicable. 

However, we have modified it so that the weights were linearly related to the amount of 

pollutant loadings.  The difference between TSS low loading and TSS medium loading, 

for example, is not the same as the difference between BOD5 low loading and BOD5 

medium loading.   

To demonstrate how weights are calculated, we take copper as an example. 

Similar procedures were applied to the other pollutants. Complete agreement is assigned 

a weight of 1, and the worst disagreement is assigned a weight of zero (Table 10.4) When 

we misclassify an actual water pixel to high loading, we are “putting” high amounts of 

loading to an area where there is none generated. Misclassifying medium to high loading 
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or vice-versa has a less serious effect because the over- or underestimated amount is 

smaller than in the worst misclassification case. In Table 10.4, we need to compute for 

the weights a, b, c, d, and e. Note that the severity of error associated with misclassifying 

low to high loading, for example, is as severe as misclassifying high to low loading, 

hence they have the same weight. 

 

Table 10.4: Agreement weight matrix for copper with variable weights to be computed 

 Water Cu, Low Cu, Medium Cu, High 
Water 1 a b 0 
Cu, Low a 1 e c 
Cu, Medium b e 1 d 
Cu, High 0 c d 1 

 

 

In Table 10.5, the weights are related to the pollutant loadings. In the second and 

third columns, when the loading is zero, the weight is one, and when the loading is 7.23, 

the weight is zero. For the last column, when the loading is 0, the weight is also zero. 

When the loading is 7.23, the weight is one. By simple ratio and proportion, we 

computed for the values of a, b, c, and d. Using these values, the weight e was calculated 

by averaging the weights of its neighbors in the north, east, west, and south directions. 

Table 10.6 shows the completed agreement weight matrix for copper. Similar tables were 

made for TSS, BOD5, Total P, TKN, and O & G (Tables 10.7-10.11). After the weight 

matrices were computed, weighted overall accuracy and weighted kappa coefficients 

were calculated using STATA 8.2. 
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Table 10.5: Relationship of copper loadings to weights 
 

 Loading Weights Weights 
Water 0 1 0 
Cu, Low 0.71 a c 
Cu, Medium 4.82 b d 
Cu, High 7.23 0 1 

 
 
 

Table 10.6: Agreement weight matrix for copper 
 

 Water Cu, Low Cu, Medium Cu, High 
Water 1.00 0.90 0.33 0 
Cu, Low 0.90 1.00 0.61 0.10 
Cu, Medium 0.33 0.61 1.00 0.67 
Cu, High 0 0.10 0.67 1.00 

 
 
 

Table 10.7: Agreement weight matrix for TSS 
 

 Water TSS, Low TSS, High 
Water 1 0.61 0 
TSS, Low 0.61 1 0.39 
TSS, High 0 0.39 1 

 
 
 

Table 10.8: Agreement weight matrix for BOD5 
 

 Water BOD5, Low BOD5, High 
Water 1 0.98 0 
BOD5, Low 0.98 1 0.02 
BOD5, High 0 0.02 1 

 
 
 

Table 10.9: Agreement weight matrix for Total P 
 

 Water Total P, Low Total P, High 
Water 1 0.85 0 
Total P, Low 0.85 1 0.15 
Total P, High 0 0.15 1 
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Table 10.10: Agreement weight matrix for TKN 
 

 Water TKN, Low TKN, High 
Water 1 0.79 0 
TKN, Low 0.79 1 0.21 
TKN, High 0 0.21 1 

 
 
 

Table 10.11:  Agreement weight matrix for O & G 
 

 Water O & G, Low O & G, High 
Water 1 0.96 0 
O & G, Low 0.96 1 0.04 
O & G, High 0 0.04 1 

 

 

10.3  Results and Discussion 

Tables 10.12-10.14 summarize the results of all the calculations. The addition of 

the buffer zone improved the classification. However, the effect of the neighborhood 

analysis is hard to tell. In some cases the accuracy increased, but in other cases, the 

accuracy decreased, or remained the same.  

Overall accuracy values and kappa coefficients were the same for TSS, BOD5, 

Total P, and TKN for each group of classifications. This was because there were only two 

states for these pollutants, low loading and high loading, which basically meant 

separating open land from non-open land. This qualitative assignment of pollution levels 

did not take into account the difference in magnitudes between pollution levels. With the 

weighted equivalents of the overall accuracy and kappa coefficient, we observed that 

these pollutants showed different values, indicating the fact, for example, that among 

TSS, BOD5, Total P, and TKN, TSS loading classification was the best classified. We 
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also observed that weighted overall accuracy was always higher than overall accuracy. 

But weighted kappa coefficient could be smaller or larger than kappa coefficient. Naesset 

(1996) states that these values depend on the dataset and the weights applied.  

 

Table 10.12: Accuracy measures for classification with spectral data (in per cent) 

Pollutant Overall 
Accuracy 

Weighted 
Overall 

Accuracy 
Kappa Weighted 

Kappa 

TSS 92.3 95.2 86.0 86.9 
BOD5 92.3 92.4 86.0 84.2 
Total P 92.3 93.4 86.0 85.0 
TKN 92.3 93.8 86.0 85.4 
Cu 85.5 90.8 79.2 78.8 
O & G 87.1 87.6 78.0 73.6 

 
 
 

Table 10.13: Accuracy measures for classification with spectral data and buffer zone (in 
per cent) 

 

Pollutant Overall 
Accuracy 

Weighted 
Overall 

Accuracy 
Kappa Weighted 

Kappa 

TSS 92.8 95.4 86.9 87.7 
BOD5 92.8 92.9 86.9 85.2 
Total P 92.8 93.8 86.9 85.9 
TKN 92.8 94.2 86.9 86.3 
Cu 86.0 91.2 79.9 79.8 
O & G 87.6 88.1 78.9 74.5 
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Table 10.14: Accuracy measures for classification with spectral data, buffer zone, and 
neighborhood information (in per cent) 

 

Pollutant Overall 
Accuracy 

Weighted 
Overall 

Accuracy 
Kappa Weighted 

Kappa 

TSS 92.8 95.3 86.8 87.2 
BOD5 92.8 92.9 86.8 85.1 
Total P 92.8 93.7 86.8 85.7 
TKN 92.8 94.1 86.8 86.1 
Cu 86.1 91.0 80.0 79.3 
O & G 87.0 87.5 77.9 73.3 

 
 
 

10.4  Conclusions 

The weighted equivalents of the overall accuracy and the kappa coefficient 

provide a new way to look at accuracy measures for assessing the quality of maps made 

from automated classification of remotely sensed data. This becomes more important 

especially when classifying ordinal data. Since levels of pollution are only designated as 

high, medium, and low, these more specific accuracy measures will give better 

information to users and serve as a guide in designing best management practices.  
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Chapter 11 

Conclusions and Future Work 

 

 The automated classification of satellite imagery can provide an efficient 

alternative to traditional methods in obtaining important information for stormwater 

management.  Many studies in the literature proved that the results of the stormwater 

modeling effort in terms of pollutant loadings or hydrographs, for example, remain 

satisfactory even with input parameters processed from satellite data. One of these critical 

parameters is land use and/or land cover because it is associated with impervious areas 

which determine runoff rates and volumes. Land use/land cover is also related to the 

types and quantities of pollutants generated in a parcel of land. Emerging technologies, 

such as neural networks and knowledge-based systems, can improve the accuracy of 

automated land use/land cover classification. 

We have demonstrated that the combined technologies of satellite remote sensing, 

knowledge-based systems, and geographic information systems (GIS) can be used to map 

impervious surfaces and distinguish areas with different levels of pollution. Spectral data 

from the raw image and transformations can provide rules for the knowledge base. Many 

transformations have been attempted, but the normalized difference vegetation index 

(NDVI) and the tasseled cap transformation proved to be the most appropriate for this 

particular study. The use of ancillary data, such as the distance from a specific object, 
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refined the classification. However, the addition of more ancillary data, such as 

neighborhood information, did not necessarily enhance the classification. Validation 

using aerial photographs, SCAG data, and field visit verified that the classifications were 

satisfactory. The addition of ancillary data is often necessary in automated classification 

because spectral signatures sometimes overlap, especially in urban areas which exhibit 

much structural complexity and heterogeneity. Incorporation of ancillary data is best 

done through a knowledge-based system coupled with GIS. We have substantiated that 

this method is superior to statistical methods alone using only spectral data. We also 

proposed more specific methods to report the accuracy of classifications. These measures 

are the weighted overall accuracy and the weighted kappa coefficient. We suggested 

ways to compute weights associated with the severity of misclassification errors. This led 

to more specificity in evaluating the quality of classifications of different pollutant levels. 

There are various ways that the techniques utilized here can be applied to other 

endeavors. The most useful is probably to apply the same exact knowledge base to 

another study area. We will see if the knowledge base is applicable in an area with a 

different climate and culture. When vegetation, soil, or level of activity, for example, are 

different, how robust is our knowledge base? Are modifications required? For impervious 

surface detection, it is probably better to use a higher resolution image because most 

impervious surface, for example, roads and highways, are narrower than the pixel 

resolution. We may also encounter other types of land cover, other than the ones 

considered in this investigation. An example is a desert area. 
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We can estimate different levels of pollution in other areas as well. In a smaller 

city, or a rural area, where activity is less, pollutants may have lower concentrations, and 

impervious surface area may be less. These factors should be considered in the 

classifications. We can also add other contaminants like chemical oxygen demand, nitrite 

and nitrate, soluble phosphorus, lead, and zinc. Needless to say, the choice of pollutants 

is dependent on the availability of their concentrations for validation purposes. Some 

contaminants may be more important than others, too. Oil and grease, for example, is 

probably significant in urban areas, but not in rural areas were parking lots are fewer. 

We can also maximize the amount of spectral information available. For example, 

in this study, we used the six reflective bands of the Landsat ETM+ which has a 30 m 

resolution. The panchromatic (15 m resolution) and the thermal (60 m resolution) bands 

were not utilized. Hence, they can be included in the knowledge base. However, issues in 

resampling should be considered because of the differences in resolution. The reflective 

bands also have their equivalents in other images like SPOT or IKONOS.  These other 

types of images can be tried as well. 

The raw images are always useful, but most of them are actually highly 

correlated. This means there is a repetition of information between some bands. 

Transformations have been developed to accentuate features of interest to the analyst. We 

have worked on the NDVI image, the most popular vegetation index image, but we can 

also look at other vegetation index images. The mere development of the other vegetation 

index images warrants their study. We may also try other transformations, such as 

indices, in which particular soil components are emphasized (e.g., iron oxide). Indices are 



 191 

especially valuable in areas with high variations in topography because it can remove 

effects due to shadows. The principal components transformation should also be tried. 

However, we must be careful in using this procedure because it is a statistical 

transformation, unlike others which are related to the physical properties of the earth 

surface features. 

The addition of other ancillary data is highly recommended. Adding elevation and 

their associated parameters like slope and aspect were not useful for this site, because it is  

relatively flat. We proved that elevation was not an important ancillary data from our 

observations during the field visit. Multi-family residential areas, for example, can be 

found both in the valleys and in the hills. For another study area where differences in 

elevation are significant, then elevation can be added in the knowledge base. This 

parameter can be easily processed from a digital elevation model (DEM). These are 

available in various resolutions, too. An analyst must choose the resolution most 

compatible to the satellite image he is working on. Other ancillary data that may be 

helpful are zoning information and housing density. Neighborhood information is another 

type of ancillary data. We have concluded that it may not necessarily increase the 

accuracy of the classification. In the future, we can vary the kernel size and observe the 

effect on the classification. Moreover, we can assign a different threshold in the rules 

and/or conditions. We can also consider other neighbors, such as the northeast, northwest, 

southeast, and southwest neighbors. 

After selecting the images, we evaluate the utility of their spectral content by 

using separability measures. We used Jeffries-Matusita distances here, but there are 
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others such as divergence and transformed divergence. However, we must be aware of 

their properties, and we should not blindly use these measures without examining them 

first. If we do this, we can interpret these separability measures in a more meaningful 

way. Also, in delineating training areas, we should take into account the variability of a 

particular class. More homogeneous classes like vegetation, for example, need a few or 

even one large training area, while urban areas, which has greater variability, should have 

more training areas. 

After the classification procedure, we must report the quality of the 

classifications. The overall accuracy and the kappa coefficient are the standard measures 

but their weighted equivalent should be tried. Perhaps, the difficulty in this procedure lies 

in the calculation of weights. In the literature, there are no fast rules in making the 

weights, but it generally depends on the application, and the data that are available.  

An extension of this study that can be more involved is to actually include the 

parameters acquired from satellite imagery to stormwater models. We can compare 

results of these models with those whose input parameters were obtained manually. This 

process will take time as stormwater modeling requires a great deal of input parameters. 

The model results can be in terms of hydrographs or runoff volumes. Validation 

procedures may also be an issue because data may not always be available, especially for 

smaller watersheds. 

We have demonstrated the utility of satellite data for stormwater management 

applications. The availability of more image types and the development of more 

advanced computing technologies make the use of satellite data an attractive alternative 
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to traditional, manual methods which are slow, difficult, and expensive. It is hoped that 

more planners and engineers consider the use of satellite data in acquiring information 

relevant for stormwater management.  
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Appendix: Abbreviations and Acronyms 

A  drainage area 

AGNPS Agricultural Non-Point Sources 

ANN  artificial neural network 

ANSWERS Areal Non-point Source Watershed Environment Response Simulation 

B  Buffer zone 

BMP  best management practice 

BOD  biochemical oxygen demand 

BOD5, BOD5 biochemical oxygen demand 

C  event mean concentration 

cm  centimeter 

Co  Commercial 

COD  chemical oxygen demand 

Cu  copper 

DEM  digital elevation model 

DN  digital number 

EMC  event mean concentration  

ETM  Enhanced Thematic Mapper 

GCP  ground control point 

GIS  Geographic Information System  

GPS  Global Positioning System 



 195 

GWLF  Generalized Watershed Loading Functions 

HEC  Hydrologic Engineering Center 

I  fraction of impervious surface of a land parcel  

IAR  Impervious Surface at Residential 

IFOV  instantaneous field of view 

ISODATA Iterative Self-Organizing Data Analysis Technique 

J-M  Jeffries-Matusita  

KBS  knowledge-based system 

km  kilometer 

L1  Loadings (kg/yr) 

L2  Loadings (g/yr) 

LACDPW Los Angeles County Department of Public Works 

lbs  pounds 

LI  Light Industrial 

m  meter 

MF  Multiple-Family 

MICE  Map Image Congruency Evaluation 

MIR  mid-infrared 

MIR5  mid-infrared band 5 

MIR7  mid-infrared band 7  

MSIAS multispectral image analysis system 

MSS  Multi-spectral Scanner 
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MXL  maximum likelihood 

N  neighborhood information 

NDVI  Normalized Difference Vegetation Index 

NIR  near-infrared 

NO2&3  nitrite and nitrate 

NSTORM total number of storms per year 

O  Open 

OA  Overall Accuracy 

OU  Other Urban 

O & G  oil and grease 

P  Public 

PA/HL  Producer’s Accuracy (High Loading) 

PA/LL  Producer’s Accuracy (Low Loading) 

PA/ML Producer’s Accuracy (Medium Loading) 

PL  pollutant loadings per year 

RBV  Return Beam Vidicon  

RBF-NN radial-basis-function neural network 

RC  runoff coefficient 

RF  rainfall 

RV  runoff volume per storm event 

RVA  total volume of runoff per year 

S  spectral data 
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SALT  Sloping Agricultural Land Technology 

SCAG  Southern California Association of Governments 

SCS  Soil Conservation Service 

SD  standard deviation 

SF  Single-Family 

SLAMM Source Loading and Management Model 

SP  soluble phosphorus  

sq cm  square centimeter 

sq km  square kilometer 

sq m  square meter  

SSE  sum of squared error 

STORM Storage Treatment Overflow Runoff Model 

SWAT  Soil and Water Assessment Tool 

SWMM Storm Water Management Model 

TIR  thermal infrared 

TKN  total Kjeldahl nitrogen 

TM  Thematic Mapper  

TN  total nitrogen 

TP  total phosphorus 

TSS  total suspended solids 

TVR  total volume of water produced from rainfall per storm event 

UA/HL User’s Accuracy (High Loading) 
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UA/LL  User’s Accuracy (Low Loading) 

UA/ML User’s Accuracy (Medium Loading) 

UCLA  University of California, Los Angeles 

USGS  United States Geological Survey 

UTM  Universal Transverse Mercator 

WGS  World Geodetic System 

WMS  Watershed Modeling System 

 

 


