
 

 

UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

Predictive Modeling of Stormwater Runoff Quantity and Quality 

for a Large Urban Watershed 

 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Civil Engineering 

 

by 

 

Simon Joonho Ha 

 

 

2006 



The dissertation of Simon Joonho Ha is approved. 

 

 

 ____________________________________ 
 Keith D. Stolzenbach 

 

 

 ____________________________________ 
 Eric M.V. Hoek 

 

 

 ____________________________________ 
 Richard F. Ambrose 

 

 

 ____________________________________ 
 Michael K. Stenstrom, Committee Chair 

 

 

 

 

 

University of California, Los Angeles 

2006 

 ii



 

 

 

 

To my Father 

To my Mother 

To Terry and Tammy 

To Vivianna 

 iii



TABLE OF CONTENTS 

 

LIST OF FIGURES               viii 

LIST OF TABLES                 xi 

VITA                 xiii 

ABSTRACT OF THE DISSERTATION            xiv 

 

1. INTRODUCTION                  1 

2. LITERATURE REVIEW                 4 

2.1 MODELING TECHNIQUES                 4 

2.1.1 Rational Method                  5 

 2.1.2 The U.S. EPA Statistical Method               7 

2.1.3 Regression Method                 9 

2.1.4 Buildup and Washoff Method              10 

2.2 GEOGRAPHIC INOFRMATION SYSTEM                        14 

2.2.1 GIS Data Models                          15 

2.2.2 Visual Basic for Application                         17 

 2.2.3 Stormwater Runoff Modeling using GIS                       17 

2.3 ARTIFICIAL NEURAL NETWORK                        21 

2.3.1 ANN Popularity                           22 

2.3.2 Evaluation of ANN models                         22 

2.4 STORMWATER RUNOFF STUDIES AT UCLA                       26 

 iv



3. METHODOLOGY                           31 

3.1 DATA REQUIREMENTS                          32 

3.2 SOFTWARE AND HARDWARE REQUIREMENTS                      34 

3.3 RATIONAL METHOD                          35 

3.4 STORMWATER RUNOFF QUANTITY ANALYSES           36 

3.4.1 Area                            37 

3.4.2 Runoff Coefficients                          39 

3.4.3 Precipitation                           44 

          3.4.3.1 Data Screening               45 

 3.4.3.2 Interpolation of Precipitation Data            49 

 3.4.4 Implementation of a GIS Model             52 

3.4.4.1 Runoff Volumes of the Eight Landuse Types           52 

3.4.4.2 Runoff Volumes of Highways             54 

3.4.4.3 Runoff Volumes of Local Roads            55 

3.4.5 Stormwater Runoff Quantity Prediction using the Implemented  

GIS Model                           57 

3.5 STORMWATER RUNOFF QUALITY ANALYSES           58 

3.5.1 LADPW Landuse Sampling Sites             59 

3.5.2 Storm Characteristics of Landuse Catchments            61 

3.5.3 Multiple Linear Regression Models of the Monitored Landuse EMCs         66 

3.5.4 Optimization of the Upper Ballona Creek Total Loadings          68 

         3.5.4.1 Data Screening               69 

 v



3.5.4.2 Limited memory Broyden-Fletcher-Goldfarb-Shanno Bound 

constrained (L-BFGS-B) Nonlinear Optimization Technique         71 

3.5.4.3 Zeroth-Order Regularization Method            73 

3.5.4.4 Initial Values and Bound Constraints of Optimization Parameters 

                75 

3.5.4.5 The L-Curve               76 

3.5.5 Stormwater Runoff Quality Prediction using the Optimization Techniques  

                   77 

4. DISCUSSION                                       83 

 4.1 REGRESSION MODELS OF EMCs FOR LANDUSE MONITORING 

CATCHMENTS                84 

 4.2 POLLUTANT LOAD ANALYSIS USING STORMWATER QUALITY 

MODELS                 90 

  4.2.1 Preliminary Correlations of Total Loads and Storm Characteristics         90 

  4.2.2 L-Curves                92 

  4.2.3 Optimized Parameters               95 

  4.2.4 Stormwater Runoff Quality Predictions             97 

  4.2.5 Landuse Contributions to Total Loads           100 

 4.3 BEST MANAGEMENT PRACTICES (BMP)          108 

  4.3.1 Total Maximum Daily Load (TMDL)           109 

  4.3.2 Comparisons of Total Zn Loads and TMDLs          110 

  4.3.3 Structural BMPs              111 

 vi



   4.3.3.1 BMP Construction Costs           114 

   4.3.3.2 Austin Sand Filter            115 

   4.3.3.3 BMPs for Local Roads           118 

   4.3.3.4 Infiltration Trench            121 

5. CONCLUSIONS               127 

APPENDICES                         133 

APPENDIX A. LANDUSE MONITORING SITES             134 

APPENDIX B. RELATIONSHIP OF LADPW AND SCAG LANDUSE  
 CATEGOREIS                        138 
 

APPENDIX C. RUNOFF COEFFICIENTS (BROWNE, 1990)                      140 
 
APPENDIX D. CUMULATIVE EMCs OF LANDUSE TYPES FOR 1994-2000 

STORM SEASONS (LADPW)           141 
 
APPENDIX E. VBA PROCEDURE FOR STORM CHARACTERISTICS 

             CALCULATION             142 
 
REFERENCES                          148 

 vii



LIST OF FIGURES 

 

Figure 2.1 Delta-Lognormal Distributions                 7 

Figure 2.2 Modified Adapted Delta-Lognormal Distribution              8 

Figure 2.3 A Triangular Irregular Network              16 

Figure 3.4.1 SCAG Landuse Types for Upper Ballona Creek           38 

Figure 3.4.2 Reclassified Landuse Types              38 

Figure 3.4.3 Hydrologic Soil Group around the Upper Ballona Creek Watershed         40 

Figure 3.4.4 A DEM downloaded from the USGS Seamless Data Distribution System 41 

Figure 3.4.5 Percent Slope calculated from the DEM 42 

Figure 3.4.6 Reclassified Percent Slope 42 

Figure 3.4.7 Runoff Coefficients Distributions in the Upper Ballona Creek          43 

Figure 3.4.8 Rain Gauge Station Locations              45 

Figure 3.4.9 Histogram of Civic Center Rainfall Records            49 

Figure 3.4.10 Isohyets and Variances for a Storm Event            51 

Figure 3.4.11 Spatial Reference of Isohyets              53 

Figure 3.4.12 Schematic Diagram of Typical Urban Road            56 

Figure 3.4.13 Calculated versus Measured Stormwater Runoff Quantities          57 

Figure 3.5.1 Vacant Landuse Monitoring Site at Monrovia Creek, Monrovia         59 

Figure 3.5.2 Effect of Minimum Rainfall Parameter to Total Rainfall Calculations         63 

Figure 3.5.3 Effect of Minimum Rainfall Parameter to ADD Calculations          63 

Figure 3.5.4 Cook’s Distance versus Leverage             70 

 viii



Figure 3.5.5 Regression Standardized Residual Frequency Distribution          71 

Figure 3.5.6 The L-Curve withλ  Values as Data Labels            77 

Figure 3.5.7 Comparisons of Predicted and Measured Loads of Total Zn for the Upper 

 Ballona Creek Watershed using Regularization and 18 Optimization 

 Parameters                81 

Figure 3.5.8 Comparisons of Predicted and Measured Loads of Total Zn for the Upper 

 Ballona Creek Watershed using 10 Optimization Parameters          81 

Figure 3.5.9 Comparisons of Predicted and Measured EMCs of Total Zn for 

 Retail/Commercial Landuse using Regularization and 18 Optimization 

 Parameters                82 

Figure 3.5.10 Comparisons of Predicted and Measured EMCs of Total Zn for    

 Retail/Commercial Landuse using 10 Optimization Parameters         82 

Figure 4.2.1 L-Curve for Total Zn              93 

Figure 4.2.2 L-Curve for TKN              94 

Figure 4.2.3 L-Curve for TSS              94 

Figure 4.2.4 Comparisons of Predicted and Measured Loads of TKN for the Upper 

 Ballona  Creek Watershed using Regularization and 22 Optimization 

 Parameters               98 

Figure 4.2.5 Comparisons of Predicted and Measured Loads of TSS for the Upper 

 Ballona Creek Watershed using Regularization and 47 Optimization 

 Parameters               99 

 ix



Figure 4.2.6 Box Plots of Storm Characteristics for Optimization and Validation Datasets 

                 100 

Figure 4.2.7 Percent Contributions of Landuses to Total Zn Load of Upper Ballona Creek 

            101 

Figure 4.2.8 Total Zn Leverage for Eight Landuse Types          102 

Figure 4.2.9 Distribution of High Leverage Landuses          103 

Figure 4.2.10 Caltrans Sampling Sites            105 

Figure 4.2.11 Percent Contributions of Total Zn for Subwatersheds, Highways, and Local 

 Roads               107 

Figure 4.2.12 Total Zn Leverage for Subwatersheds, Highways, and Local Roads       107 

Figure 4.3.1 Comparisons of Total Zn Loads and TMDLs for Upper Ballona Creek 

 Watershed              110 

Figure 4.3.2 Stormwater Curb Extension on Siskiyou Street, Portland        119 

Figure 4.3.3 Modified Infiltration Trench            122 

 x



LIST OF TABLES 

 

Table 2.1 Required Temporal Variations for Receiving Water Analysis            6 

Table 2.2 SWMM Runoff Control Parameters             12 

Table 2.3 Factors Influencing Control Parameter Values            13 

Table 2.4 Properties of Error Evaluation Methods             24 

Table 2.5 Models for Storm Water Runoff Quantities and Qualities           28 

Table 3.1.1 Metadata of the GIS Layers Used             34 

Table 3.4.1 Distribution of Landuse Types              39 

Table 3.4.2 Rain Gauge Stations               44 

Table 3.4.3 Measured Rainfall for Seven Gauges and Total Runoff Volumes         46 

Table 3.5.1 Percent Landuse Distributions of Monitored Catchments          60 

Table 3.5.2 Ranges of Storm Characteristics of the Sampled Storm Events for Landuse 

 Type Monitoring Catchments              65 

Table 3.5.3 Multiple Linear Regression Models of Total Zn EMCs [ ] for LADPW 

 Landuse Monitoring Catchments               67 

g / Lµ

Table 3.5.4 Example of Total Zn Regression Analysis for the Retail/Commercial Landuse 

                   76 

Table 3.5.5 Test Results of L-BFGS-B for 18 Parameters            78 

Table 3.5.6 Optimized Parameters and Regression Coefficients           79 

Table 4.1.1 Multiple Linear Regression Models of TKN EMCs [ ] for LADPW 

 Landuse Monitoring Catchments               85 

mg / L

 xi



Table 4.1.2 Standard Error of TKN Regression Coefficients            86 

Table 4.1.3 Multiple Linear Regression Models of TSS EMCs [ ] for LADPW 

 Landuse Monitoring Catchments              87 

mg / L

Table 4.1.4 Standard Error of TSS Regression Coefficients            88 

Table 4.2.1 Multiple Linear Regression Models of Total Pollutant Loads for Upper 

 Ballona Creek Watershed              92 

Table 4.2.2 Optimized Parameters and Regression Coefficients for TKN EMCs         96 

Table 4.2.3 Optimized Parameters for TSS EMCs             97 

Table 4.2.4 Area of Landuse Types and its Runoff for Dec. 2, 2001 Storm Event       104 

Table 4.2.5 Average EMCs of Six Caltrans Highway Sites around the Upper Ballona 

 Creek Watershed              105 

Table 4.2.6 Calculated Results of Subwatersheds, Highways, and Local Roads       106 

Table 4.3.1 Comparison of Issues for BMP Selection          112 

Table 4.3.2 Comparison of Mean Unit Costs and Runoff Volumes         115 

Table 4.3.3 Simulation Results of Austin Sand Filters for Industry and Downtown 

 Subwatersheds              117 

Table 4.3.4 Hydrologic Soil Properties            120 

Table 4.3.5 Simulation Results of Infiltration Trench Installations for Local Roads       125 

 xii



VITA 

June 13, 1959 Born, Gwangju, Republic of Korea 
 
1983 B.A., Chemical Engineering 
 Chonnam National University 
 Gwangju, Republic of Korea 
 
1985 M.S., Chemical Engineering 
 Chonnam National University 
 Gwangju, Republic of Korea 
 

2001 M.S., Computer Science 
 California State University, Northridge 
 Los Angeles, California 
 
2002 M.S., Civil Engineering 
 University of California, Los Angeles 
 Los Angeles, California 
 
2002-06 Graduate Student Researcher 
 Department of Civil Engineering 
 University of California, Los Angeles 
 
2001 Teaching Assistant 
 Department of Physics and Astronomy 
 University of California, Los Angeles 
 

 
PUBLICATIONS AND PRESENTATIONS 

 
M. Kayhanian, S. Ha, M. K. Stenstrom (2005), Constituents’ Annual Load Estimation 
from Highways, International Conference on Urban Drainage, August, 
Copenhagen/Denmark. 
 
J. Ma, S. Khan, Y. Li, L. Kim, S. Ha, S. Lau, M. Kayhanian and M. K. Stenstrom (2002), 
First Flush Phenomena for Highways: How it can be meaningfully defined, Proceedings 
of 9thInternational Conference on Urban Drainage, Portland, Oregon. 
 
R. J. Lorentz and S. Ha (1999), Data Structures for 2×N Go, Game Programming 
Workshop in Japan, October, Hakone, Kanagawa, Japan 

 xiii



ABSTRACT OF THE DISSERTATION 

 

Predictive Modeling of Stormwater Runoff Quantity and Quality 

for a Large Urban Watershed 

 

By 

 

Simon Joonho Ha 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2006 

Professor Michael K. Stenstrom, Chair 

 

Urban and agricultural areas have been recognized by the US EPA as major national 

problems due to their highly polluted stormwater runoff. Remediation of this runoff has 

not occurred in part because assessment of nonpoint source pollution is inherently 

complex and expensive. One approach to deal with this complex nonpoint source 

pollution problem is to improve understanding through modeling and information 

management using Geographic Information Systems (GIS). 

 

In this research a predictive model for stormwater runoff volume was implemented in an 

ArcGIS platform based on the Rational Method and Browne’s empirical relation for soil 

 xiv



characteristics. The heterogeneity of the watershed was quantified by dividing the 

watershed into many small sub-areas and applying lumped parameters for each of them. 

Characterization of pollutant load contributions of landuse types to total loads of the 

upper Ballona Creek watershed was achieved through zeroth-order regularization and L-

BFGS-B optimization techniques. Relative form was used in the objective function to 

compensate for strong contributions of high magnitude variables. Model predictions 

showed reasonable agreement with total Zn, TKN, and TSS loadings measured at the 

mass emission site for the upper Ballona Creek watershed. Two additional categories, 

highways and local roads, which have not been routinely used as landuse categories, were 

separately studied.  

 

Best Management Practices (BMP) strategies were evaluated a typical storm event, which 

exceeded total zinc TMDL by over 70%. The model was used to compare optimized 

BMP applications to the simplest application, which would treat all areas equally. 

Approximately 44 % removal efficiency with treatment of the entire runoff would be 

needed to meet the TMDL. 

 

To show how the model can be used to improve BMP application, two subwatersheds 

with high leverages (4.3) were identified and Austin sand filters were simulated. By 

assuming typical total Zn removal efficiency of 45 %, total Zn removal at the mouth of 

the watershed was 12.4 % with the treatment of 5 % of the upper Ballona Creek 

watershed area. If the same leverage and runoff per area are assumed for additional areas 

 xv



in the upper Ballona Creek watershed, about 20 % of the watershed area would need to 

be treated to meet the TMDL. This would require about $240 million if one assumes 

Caltrans’ predicted construction cost per unit volume of runoff.  

 

Modified infiltration trenches were simulated for local roads and the TMDL could be met 

with treatment of 68 % of local roads area, which is equivalent to 7 % of the upper 

Ballona Creek watershed area. The construction cost was about $58 million, which is less 

than one-fourth of the cost needed for the subwatershed approach. 

 xvi



1. INTRODUCTION 
 

Over the past ten years, stormwater management has become the major priority for water 

pollution control. This has occurred in part because of the completion of wastewater 

treatment plants and in part because of the recognition of the pollutant contributions from 

stormwater.  Stormwater management is intrinsically more challenging than wastewater 

treatment because of the distributed nature of stormwater and because of the “ownership” 

of stormwater problems is not clear.  Various approaches are being taken to mitigate 

stormwater impacts and these include individual actions, such as the industrial 

stormwater management permits as well as agency or city-wide actions, such as Los 

Angeles’ recent passage of Proposition O, which will provide $500,000,000 for 

stormwater management. 

 

In 1987, Congress amended Clean Water Act (CWA) to require implementation of a 

comprehensive national program for addressing stormwater discharge. The program 

required National Pollutant Discharge Elimination System (NPDES) permits for 

stormwater discharge. More recently, Total Maximum Daily Loads (TMDLs) are being 

developed. The concept of the TMDL is to obtain the maximum allowable or permissible 

discharge rate by optimally minimizing all sources. In this way, a more economical 

design can be obtained by reducing the easily controlled sources and minimizing controls 

for small sources or sources that cannot be effectively treated. One approach to deal with 

this complex Non-Point Source (NPS) pollution problem is through modeling.  
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Among the many urban stormwater pollution modeling program, the United States 

Environmental Protection Agency (US EPA) Storm Water Management Model (SWMM) 

continues to be widely used throughout the world since its first development in 1971. 

This model tries to simulate NPS pollutions problem as detailed as possible. However, 

this approach requires that many parameters be measured. These parameters are 

influenced by many temporal and aerial factors that are related to the heterogeneous 

characteristics of the subcatchments. The measurements required by this type of model 

are costly and time consuming, especially for a large watershed. If there is insufficient 

measured data available, inaccurate predictions can be expected (Donigian and Huber, 

1991).  

 

The other approach to this inherently complex problem is to adopt a Rational Method, 

where all runoff is assumed to have a constant concentration for a given pollutant. The 

changes in pollutant concentration during a storm event have small impact on most 

receiving waters due to their relative insensitivity to rapid changes. The insensitivity may 

be due in part to the large dilution that can occur in a receiving water or to the dispersed 

load that stormwater runoff creates. This insensitivity makes the assumption of time 

invariant concentrations a viable option for receiving water quality analysis. This method 

has been used to estimate loads from the Santa Monica watershed (Wong et al. 1997), 

larger areas in Southern California (Ackerman and Schiff, 2003; McPherson et al., 2005), 

and many other areas (Wu et al., 1998; Shinya et al., 2000; Choe et al., 2002). 
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In order to better understand stormwater management and to create a tool for TMDL 

development, a Geographic Information System (GIS)-based model was developed. A 

GIS was used extensively to incorporate inherent heterogeneity of urban watershed 

surfaces and climatic conditions. The model contains several layers which characterize 

landuse, rainfall, slope and elevation, and hydrologic soil group. An empirical runoff 

model, based largely on the rational method, is used to estimate pollutant loads. The 

model will be used to estimate pollutant loads and compare contributions from different 

landuse types. In this way, costly and time consuming field surveys can be avoided. 

 

The model was optimized with existing monitoring data using regression analysis and 

optimization techniques. After optimization, the model was used to evaluate the 

effectiveness of potential Best Management Practices (BMP), as well as explore the 

feasibility of proposed TMDLs.  

 

The objectives of this research are (1) to develop a model to predict stormwater runoff 

quantities taking into account the spatial variability of watersheds, (2) to develop a 

methodology for predicting stormwater runoff qualities, and (3) to show that there exist 

Best Management Practices (BMP) strategies using the developed models. 
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2. LITERATURE REVIEW 
 

2.1 MODELING TECHNIQUES 
 

In the 1970's, point source pollution was considered the most significant problem 

resulting in water quality degradation in receiving water bodies. The 1972 CWA 

established extensive programs to address point source pollution, and the majority of 

federal investments went to control point source pollution. By the late 1980s, programs 

focusing on treatment facilities resulted in better controls of point source pollution. 

However, water quality was still impacted because of the growing impacts of nonpoint 

source pollution.  

 

Urban and agricultural areas have been recognized by the US EPA as major national 

problems due to their highly polluted runoff (Browne, 1990), which results in impaired 

receiving waters. The inventory of the 1996 Report to Congress indicated that 

approximately 40 percent of the Nation's assessed rivers, lakes, and estuaries were 

impaired (US EPA, 1998). Urban runoff or storm sewers were found to be a source of 

pollution in 13 percent of impaired rivers, 21 percent of impaired lakes, ponds, and 

reservoirs, and 45 percent of impaired estuaries. In 1987, Congress amended the CWA to 

require implementation of a comprehensive national program for addressing storm water 

discharges. Phase I of the program required NPDES permits for stormwater discharge 

from large municipal separate storm sewer systems generally serving populations of 

100,000 or more. The Phase II Final Rule covered all small municipal separate storm 
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sewer systems located within an urbanized area (US EPA, 2000b). An urbanized area is 

land area that has a residential population of at least 50,000 and an overall population 

density of at least 1,000 people per square mile.  

 

The large number of NPDES permits required by the CWA amendments creates 

challenges for regulators. Assessment of nonpoint source pollution is inherently complex 

and expensive and the existence of many permittees makes the problem even more 

difficult. One approach to deal with this complex nonpoint source pollution problem is 

through modeling and information management using Geographic Information Systems 

(GIS). 

 

 

2.1.1 Rational Method 
 

The Ration Method is perhaps the oldest method for estimating rainfall runoff. All runoff 

is assumed to have a constant concentration for a given pollutant when using the Rational 

Method, which is also known as a unit load. The changes in pollutant concentration 

during a storm event have small impact on most receiving waters due to their relative 

insensitivity to rapid changes, as illustrated in Table 2.1. The insensitivity may be due in 

part to the large dilution that can occur in a receiving water or to the dispersed load that 

stormwater runoff provides.  This insensitivity makes the assumption of time invariant 

concentrations a viable option for receiving water quality analysis.  
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Table 2.1 Required Temporal Variations for Receiving Water Analysis  
    (Donigian and Huber, 1991) 

Type of  Receiving Water Key Pollutants Response Time 

Lakes, Bays  Nutrients  Weeks - Years  
Estuaries  Nutrients, OD , Bacteria  * Days - Weeks  
Large Rivers  OD, Nitrogen  Days  
Streams  OD, Nitrogen  Hours - Days  
 Bacteria  Hours  
Ponds  OD, Nutrients  Hours - Weeks  
Beaches  Bacteria  Hours  
* OD = Oxygen demand, e.g., BOD, that affects dissolved oxygen. 

 

Unit loading rates are represented by mass per area per time. For example, the Universal 

Soil Loss Equation (Wischmeier and Smith, 1978) was developed to estimate sediment 

loss in tons per acre per year from land surfaces. More recently, this method has been 

used to estimate loads from the Santa Monica watershed (Stenstrom et al., 1998), larger 

areas in Southern California (Ackerman and Schiff, 2003; McPherson et al., 2005), and 

many other areas (Wu et al., 1998; Shinya et al., 2000; Choe et al., 2002).  

 

Unit loading rates are extremely variable and difficult to apply over shorter periods of 

time, and the approach is best suited to estimation of long term loads, such as seasonal or 

annual loads. Simple prediction methods generally perform better over a long averaging 

time and poorly at the level of a single storm event. 

 

 6



2.1.2 US EPA Statistical Method 
 

The US EPA Statistical Method assumes that event mean concentrations (EMCs) are not 

constant but tend to exhibit a lognormal frequency distribution at a site and across a 

selection of sites. The concentrations are characterized by their median value and 

coefficient of variation (CV). CV is defined as a standard deviation divided by a mean 

value. This method is useful only if the measured dataset follows a lognormal distribution. 

For example, the US EPA introduced the delta-lognormal distribution to incorporate non-

detected measurements since the lognormal distribution is not defined at zero. As shown 

in Figure 2.1, non-detected measurements are represented separately at zero. The delta in 

the name refers to the percentage of non-detects.  

 

Detects

Non-detects

 

Figure 2.1 Delta-Lognormal Distributions. 
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Instead of using zero value for the non-detected measurements, the detection limit value 

is used in the adapted delta-lognormal distribution. Later, the US EPA introduced the 

modified adapted delta-lognormal distribution as shown in Figure 2.2 to account for non-

detected measurements of the iron and steel industry. This distribution modeled the non-

detected measurements as a discrete distribution made up of multiple concentrations (US 

EPA, 2000a). The pollutant EMC frequency distribution is useful for the analysis of the 

exceedence frequency of water quality standards. 

 

Non-detects

Detects

 

Figure 2.2 Modified Adapted Delta-Lognormal Distribution. 

 

The US EPA statistical method based on lognormal distribution was used as the primary 

screening tool in the National Urban Runoff Program (NURP) studies (US EPA, 1983). 

EMCs were measured from 81 sites in 28 urban areas in the United States. They 
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concluded that EMCs are essentially not correlated with stormwater runoff volumes and 

mass loadings are strongly influenced by the runoff volumes, which imply that constant 

concentration assumption is adequate for urban stormwater runoff studies. They 

recommended that the most reliable basis for characterizing seasonal and annual mass 

loads is on the basis of the EMC and site specific rainfall and runoff characteristics. 

 

 

2.1.3 Regression Method 
 

Regression, also called a rating curve approach, has often been used to relate total 

pollutant load and runoff volume of a storm event. The United States Geological Survey 

(USGS) assembled rainfall, runoff, water quality, and landuse characteristics databases 

for 98 urban stations in 30 metropolitan areas for multiple regression analysis (Driver and 

Tasker, 1988). Thirty four linear regression models for stormwater runoff volumes and 

loads, thirty one models for stormwater runoff mean concentrations, and ten models for 

mean seasonal or annual loads were developed by analyzing long term rainfall records. 

They concluded that total rainfall and total contributing drainage area were the most 

significant explanatory variables. Other significant variables in the models were 

impervious area, landuse, and mean annual climatic characteristics. Runoff volume 

models were more accurate than the load models. The average variance of prediction for 

estimating mean seasonal or annual loads ranged from -63 to 171 percent. Although these 

models incorporated vast amounts of data, the authors recommended that model 

limitations be considered when applying them.  
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Recently, Brezonik and Stadelmann (2002) assembled a database for 68 watersheds in the 

Twin Cities metropolitan area, which encompassed seven counties surrounding 

Minneapolis and Saint Paul, MN. EMCs were obtained for 562 events at 65 sites. Event 

loads were obtained for 360 events at 43 sites. They found only weak correlations 

between explanatory variables and stormwater loads and EMCs. The most important 

variables in their regression models to predict event loads were rainfall amount, intensity, 

and drainage area but uncertainty was high for both EMC and load models. Many 

researchers are critical of regression models and quotes such as “Regression approaches 

are notoriously difficult to apply beyond the original data set from which the 

relationships were derived” (Donigian and Huber, 1991) are common.  

 

 

2.1.4 Buildup and Washoff Method 
 

The buildup mechanism refers to the complex phenomenon that accumulates pollutants 

on land surfaces between storm events. This dry weather process includes deposition, 

suspension, and redeposition of pollutant particles. During a storm event, these 

accumulated pollutants are subject to washoff mechanisms. Models that include buildup 

and washoff mechanisms have to incorporate conceptual representations of these 

mechanisms because the mechanisms are not well known. Thus, a buildup and washoff 

model requires calibration with measured pollutographs.  
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For certain investigations, such as first flush phenomenon (Kim et al., 2003; Kim et al., 

2005), a buildup and washoff model is preferable because variations of pollutant 

concentrations or loads during a storm event can be simulated. However, when a tributary 

watershed of receiving waters is large, pollutant concentrations of receiving waters are 

relatively insensitive to the variations of upstream pollutant concentrations during a storm 

event (Lee and Bang, 2000). In this case, the rational method is adequate and preferred 

for its simplicity.  

 

This review so far has discussed only how to deal with pollutant concentrations for storm 

events. For the pollutant load calculations, all of the above methods needed to be coupled 

with stormwater runoff volume, which requires analysis of rainfall and contributing 

watershed area. Furthermore, these two variables are the most influential for the 

calculation of pollutant loads as mentioned in Section 2.1.3.  

 

The US EPA SWMM incorporates effects of rainfall and contributing area as parameters. 

It was first developed in 1971 and continues to be widely used throughout the world. 

SWMM is a dynamic, non-linear, and lumped model for a single event or a long-term 

simulation for primarily urban areas. Major control parameters in the Runoff Block of 

SWMM are presented in Table 2.2 (Choi and Ball, 2002). Many temporal and aerial 

factors that are related to the heterogeneous characteristics of the subcatchments 

influence these control parameters. The authors also presented suggestions for 

influencing factors for these control parameters, which are shown in Table 2.3.   
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Table 2.2 SWMM Runoff Control Parameters (Choi and Ball, 2002) 
 

Measured parameters  Inferred parameters  

Subcatchment area  Impervious area factor  

Length of channel/pipe  Subcatchment length/width ratio  

Shape and bed slope of channel/pipe  Subcatchment slope  

Characteristic dimension of conduit  Maximum and minimum infiltration  

Manhole type  Impervious area Manning’s roughness coeff. 

Catchment soil type  Pervious area Manning’s roughness coefficient  

Catchment land-use type  Impervious area detention storage  

Rainfall depth within last record period Pervious area detention storage  

 Percentage of imperviousness of subcatchment  

 Conduit roughness coefficient  

 Decay rate of infiltration curve  
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Table 2.3 Factors Influencing Control Parameter Values (Choi and Ball, 2002) 
 
Control parameters  Influential factor   
Subcatchment width  Subcatchment area 
 Topographic characteristics 

Over land flow length  
Subcatchment impervious 
fraction  

Land use 
Imperviousness 

Depression storage Impervious area Interception 
  Antecedent conditions 
 Pervious area  Soil type  
  Surface vegetation 
  Antecedent conditions  
  Interception  
  Infiltration  
Manning’s roughness Impervious area Roof material type 
coefficient  Road material type  
  Other impervious surface types  
 Pervious area  Vegetation 
  Soil type  
  Ground cover type  
 Drainage system Channel/pipe type 
Infiltration cf : Soil type  
(Horton’s equation)  a

0f : Soil type, initial moisture content  
 k : Initial moisture content (Surface wetness)  
Slope  Elevation difference 

Overland flow length 
Slope model  

a  0f : Maximum initial infiltration rate; cf : Min. infiltration rate; k : Infiltration decay 
rate 

 

Obviously, some type of averaging is needed to obtain the parameters and this averaging 

process requires the model to be calibrated against measured data. If there is insufficient 

measured data available, inaccurate predictions can be expected (Donigian and Huber, 

1991). 
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To simplify the problem, the Rational Method was adopted in our research. As mentioned 

earlier, this approach is preferred when dealing with larger areas and over larger time 

periods. To incorporate inherent heterogeneity of urban watershed surfaces and climatic 

conditions, a Geographic Information System (GIS), which is discussed in the following 

section, was used extensively. 

 

 

2.2 GEOGRAPHIC INFORMATION SYSTEM 
 

A GIS is a database and a map that is made up of layers, which is a collection of 

geographic objects that have similar features. For example, a GIS world map might be 

made up of cities, rivers, countries, and oceans layers. One of the most interesting 

features of geographic information systems is the ability to overlay layers. As long as 

required layers for a problem are constructed, correlations between different features 

from different layers can be examined easily through overlaid layers. Without GIS layers, 

extracting hydrologic parameters from a database involves complex empirical or physics-

based relation analysis (DeVantier and Feldman, 1993). However, compiling features 

into a layer can be labor intensive even with digitizing hardware and software. 

Geographic features can be represented in a GIS layer using vector, raster, or Triangular 

Irregular Network (TIN).  
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2.2.1 GIS Data Models 
 

In a vector data model, each feature is represented as a set of points, lines, and polygons. 

Feature shapes are defined by (x, y) coordinates in space. Features can be discrete events 

at a location, lines, areas, or others. For example, EMCs of storm events at a sampling 

site are event features located at a location feature. A vector layer typically has an 

attribute table for topology, which contains attribute information of the features. It stores 

information as point, polyline, or polygon features with associated attribute tables. A 

vector data model is useful for representing and storing discrete features such as 

buildings, pipes or parcel boundaries. Statistical and relational database operators are 

typically well developed in vector systems, and attribute query is a common means of 

accomplishing analysis and report generation. 

 

A raster model, also known as a raster dataset, is a storage intensive data system in which 

the topography of the data is represented as a matrix of cells in a continuous space. The 

raster is based on grid structure and each cell has a value, which represents the 

topography of a raster dataset, such as elevation. Digital Elevation Models (DEMs) are 

commonly represented with raster. Raster DEMs have been widely used to analyze 

hydrologic problems, such as delineation of subwatersheds and flow networks. However, 

there is an inherent problem working with a raster DEM when the dataset has sinks 

resulting from noisy data sources. A sink is defined as a cell that has lowest value 

compared to those of surrounding cells. If a raster DEM contains a sink, the resulting 

stream flow terminates at the sink. This erroneous termination can be remedied by 
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creating a depressionless DEM. The most widely adopted DEMs in the United States are 

the 30×30 m Level 1 DEMs produced by the U.S. Geological Survey (USGS), which 

uses photogrammetric techniques. More accurate USGS Level 2 DEMs are available for 

selected geographic areas. Recently, Hodgson et al. (2003) demonstrated that a Light 

Detecting and Ranging (LIDAR) DEM model, which uses laser measurements, showed 

highest overall absolute elevation accuracy.  

 

Topography is represented in a different way in a Triangular irregular network (TIN) 

model. Features are represented as a collection of irregularly spaced points and 

connecting lines that create triangles as shown in Figure 2.3. Surfaces can be modeled 

more accurately with less computer memory. Stream paths are identified through the 

slopes of triangles or edges between two triangles. Thus, more continuous stream paths 

can be identified and erroneously terminated stream flows at depression points in a raster 

DEM can be avoided with a TIN model. 

 

 

Figure 2.3 A Triangular Irregular Network. 
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2.2.2 Visual Basic for Application 
 

Visual Basic for Application (VBA) is one of many object oriented programming 

languages, which is included with ArcGIS Desktop (Redlands, CA). The main difference 

between VBA and other object oriented programming languages is that VBA was 

designed to be embedded within applications facilitating the use of ArcObjects. 

ArcObjects are a set of program objects designed for programming with ArcGIS 

applications. ArcObjects include layers, tables, points, polylines, polygons, and other 

objects.  The ArcObjects library, which consists of over 1,000 classes and 2,000 

interfaces, is designed to provide researchers with the functionality to extend ArcGIS for 

their specific applications. The extent of the library is overwhelming and difficult to 

know for beginners. Fortunately, Exploring ArcObjects, published by Environmental 

Systems Research Institute (Zeiler, 2001), is a helpful reference for beginners as well as 

advanced users. 

 

 

2.2.3 Stormwater Runoff Modeling using GIS 
 

Stormwater runoff modeling uses many types of spatially distributed data, such as 

heterogeneity of watershed surfaces and climatic conditions, and recent researchers have 

used GIS to incorporate these data. Some researchers have used GIS for hydrologic 

analysis. Barco et al. (2006) coupled GIS and SWMM for a large urban watershed. They 

concluded that the time required for data management is dramatically reduced by 
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incorporating GIS procedures. Djokic and Maidment (1993) constructed GIS network 

routines for steady state flow computations. This network describes channels and 

artificial links that have been added to represent overland flow paths. They concluded 

that the GIS network routines are useful for steady-state flow computations. Shea et al. 

(1993) implemented a Surface Water Management Plan in a GIS because of its ability to 

implement hydrologic and hydraulic modeling, manipulate spatial data, perform spatial 

operations, and support a relational database. They were successful in reviewing drainage 

plans for new developments, revising floodplains, supporting a county’s landuse plan, 

and performing hydrologic analysis for bridge and road construction. Brun and Band 

(2000) coupled the Hydrological Simulation Program – FORTRAN (HSPF) and a GIS to 

assess the effects of landuse change on watershed behavior. They used the relationships 

among baseflow, percent impervious cover, and percent soil saturation. They found that 

the increase in impervious cover in the upper Gwynns Falls watershed in Baltimore, MA 

over the 17-year period did not significantly affect the runoff ratio. 

 

For water quality analysis, a GIS has been proven to be very efficient for data preparation, 

model parameter extraction, and model results visualization (Reinelt et al., 1991; Seiker 

and Klein, 1998; Wang, 2005; Martin et al., 2005). A GIS is most commonly used to 

generate input data needed for a model, such as SWMM, HSPF, Better Assessment 

Science Integrating point and Nonpoint Sources (BASINS), and other models. As 

described in Section 2.1.4, these models require many parameters that represent 

heterogeneous watershed surfaces and climate conditions. Meyer et al. (1993) attempted 
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to link a GIS and the Runoff block of SWMM. They concluded that GIS provided an 

improved assessment of the reliability of estimated parameters compared to traditional 

methods. Wong et al. (1997) developed landuse runoff model using a GIS coupled with 

an empirical runoff model. They stated that the integration of a nonpoint source model 

and a GIS offered a powerful tool to assist watershed managers in developing control 

strategies to improve water quality within local drainage systems. 

 

HSPF is a comprehensive model of watershed hydrology and water quality that allows 

the integrated simulation of land and soil contaminant runoff processes. It is a lumped 

parameter model, but the spatial variability of a watershed is considered by dividing the 

watershed into subwatersheds and applying the lumped model to them. This lumped 

model is based on the Stanford watershed model. Rahman and Salbe (1995) applied 

HSPF to model Hawkesbury River catchments in Sydney and water quality in the 

associated stream reaches because it incorporates the wide range of significant processes 

involved. HSPF model was successfully calibrated and performed frequency duration 

analysis for output time series to determine the proportion of time that output values 

exceed any specified level.  

 

BASINS (US EPA, 2001) was developed to facilitate examination of environmental 

information in a GIS framework. It is a multipurpose environmental analysis system that 

includes an interface to HSPF. A new interface to the HSPF is called WinHSPF (US EPA, 

2001) in BASINS Version 3.0. This interface allows users to partition a watershed into 
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land segments and river reaches, parameterize hydrologic model, and display results. 

Tong and Chen (2002) adopted BASINS to model the plausible effects of landuse on 

water quality in a local watershed in the East Fork Little Miami River Basin in 

southwestern Ohio. They concluded that the impacts of landuse on water quality could be 

modeled effectively using BASINS in smaller watersheds. 

 

Shen et al. (2004) adopted a relational database to handle a large number of input data 

sets representing the environmental condition of a watershed and parameters to quantify 

underlying physical and biogeochemical processes. This relational database was used to 

link both GIS tools and a Loading Simulation Program in C++ (LSPC). LSPC is a 

modified version of the Mining Data Analysis System (MDAS) originally developed by 

the US EPA Region 3 and has been applied to mining applications and TMDL studies. 

The relational database allowed users to access and customize the system, which includes 

modifying the data set, extracting model parameters, dealing with relationships among 

data sets, and analyzing model results. The relational database approach facilitated data 

management and model simulations. 

 

A stormwater runoff model needs to incorporate a lumped approach at some detailed 

subwatershed level. It cannot be modeled with distributed approach alone because of the 

heterogeneity of a watershed and the stochastic nature of nonpoint source problems. Most 

water quality models described incorporated heterogeneity of a watershed by dividing it 

into subwatersheds and applying lumped models to each subwatershed. However, this 
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approach has limitations with regard to handling large scale watersheds with numerous 

subwatersheds because a large number of model parameters are required for these 

subwatersheds. Our approach to this problem is to model stormwater runoff of a large 

watershed within a GIS platform using VBA, thus, eliminating a large number of 

parameter generation problems. 

 

 

2.3 ARTIFICIAL NEURAL NETWORK 
 

An ANN is a mathematical model that simulates the operation of the human brain. ANNs 

consist of many simple arithmetic computing elements corresponding to neurons, and the 

network as a whole corresponds to a collection of interconnected neurons. The 

connections have associated numeric weights. Weights are the primary means of long 

term storage in neural networks, and learning usually takes place by updating the weights. 

Function approximation by neural networks begins in a random state and learns using 

repeated processing of a training set. The training set is a set of inputs and target outputs. 

Learning occurs because the error between an ANN output and a target output is 

calculated and used to adjust the weights. This continues until errors are sufficiently 

small or until no more improvement is possible. The trained ANN can be used with new 

inputs for estimation and prediction.  
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2.3.1 ANN Popularity 
 

ANNs have recently gained significant popularity because it has been proven that an 

ANN can create non-linear mappings between input and output variables under certain 

conditions. More specifically, Scarselli and Tsoi (1998) proved that continuous functions 

can be approximated up to any degree of precision with a finite number of hidden nodes 

in a three-layered feedforward neural network. They also mentioned that four or more 

layer feed forward neural networks are rarely used in practice but they are universal 

approximators. Reich and Barai (2000) overviewed recent studies and stated that 

continuous functions on a bounded range can be modeled arbitrarily closely using a 

three-layered ANN and arbitrary functions can be modeled with four-layered ANN. 

However, theoretical results do not provide guidelines about ANN configuration or the 

number of data required to achieve a desired approximation (Scarselli and Tsoi, 1998). 

Consequently, choosing an appropriate evaluation method is critical in the success of an 

ANN modeling. 

 

 

2.3.2 Evaluation of ANN models 
 

Tools for fitting parametric models to data such as non-linear regression require a 

selection of a parametric model prior to function approximation. This selection can 

introduce bias that might have significant impact on the success of the function 

approximation. An ANN, which is a non-parametric model, avoids this problem at the 
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potential cost of additional computational resources and increased variance. However, 

varying the number of hidden units effectively creates models that vary from parametric 

to nonparametric for feed-forward neural networks (Reich and Barai, 2000). Smoothing 

can be performed using a lesser number of hidden units, while overfitting can result from 

using too many hidden units. Overfitting is characterized by a continuous decrease in a 

training error while a testing error increases when both data sets are representative of a 

data set to be modeled. There is no direct way to estimate confidence intervals for real 

data analysis. However, sensitivity analysis can address the variability of model results.  

 

Error estimation methods influence tradeoffs between bias and variance. Brief 

descriptions about these methods are as follows: 

 

a. Resubstitution test: A single data set is used for training and testing. 

b. Holdout test: A data set is randomly divided into disjoint training and testing sets.  

It is common to select 2/3 of the set for training and the remaining 1/3 for testing. 

c. -fold cross validation: A data set is divided into subsets of roughly equal size. 

A network is trained times, each time leaving out one of the subsets from 

training and using it for testing.  

k k

k

d. Leave-one-out cross validation: Similar to -fold cross validation, except that k  

is equal to the number of elements in the data set. Therefore, the training data set 

contains k -1 elements and the testing data set contains only one element. 

Training and testing is repeated  times. 

k

k
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The detailed explanations of these methods are described by Reich and Barai (1999). 

Tradeoffs between bias and variability of these methods are summarized in Table 2.4. 

The number of internal iterations in the table denotes the number of executions 

performed over the entire data set. Resubstitution estimate is very optimistic, meaning it 

is biased very high. Holdout test estimate is pessimistic, which means low-biased. 

 

Table 2.4 Properties of Error Evaluation Methods (Reich and Barai, 1999) 
 

Estimation 
method  

Size of 
training set  

Size of 
testing set  

Number 
of internal 
iterations  

Method 
variability  

Method 
bias  

Resubstitution n  n  1  Very high  Very 
optimistic  

Holdout test (0.6–0.8) · n  (0.2–0.4) · n 1  High  Pessimistic 

k-fold cross-
validation n(k - 1)/k  n/k  k Moderate-

high  
Nearly 
unbiased 

Leave-one-out n - 1  1  n  Moderate-
high  

Nearly 
unbiased  

 

 

Generally, 10-fold cross validation is used for sample size greater than a hundred and 

leave-one-out cross validation is used for smaller data sets. Some error evaluation 

methods are better than the others for specific problems, but no method is always 

superior (Reich and Barai, 1999). The authors also suggested the following procedure for 

choosing the best ANN for a data set and its operational parameters: 
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1. Divide the data set into training and testing subsets. 

2. Select the best ANN and its operational parameters using the following method: 

a. Test each combination of ANN and/or operational parameters with a k-

fold cross validation test. 

b. Select the combination that leads to the best cross validation performance. 

3. Assessment of the best ANN: 

a. Create a model from all training data using the best ANN and its 

operational parameters. 

b. Test the model on the testing data set. 

 

It has been common to compare developed ANN models with another ANN or regression 

model. Cannon and Whitfield (2002) developed empirical downscaling models for stream 

flow at 21 stations in British Columbia. They showed that ensemble neural network 

models either outperformed or yielded the same performance as stepwise linear 

regression models at 19 out of 21 stations. Raid et al. (2004) used a multilayer perceptron 

neural network with a backpropagation algorithm to predict the drainage basin runoff. 

They demonstrated that the ANN is more suitable to predict runoff than a classical 

regression model even in arid and semiarid regions with a very irregular rainfall and 

runoff characteristics. The ability of ANNs to account for non-linear patterns and 

irregular seasonal variation in a data set makes them well suited for use in hydrological 

modeling applications (Maier and Dandy, 2000). 
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2.4 STORMWATER RUNOFF STUDIES AT UCLA 
 

Several previous Ph.D. students have worked on non-point source pollution problem. A 

brief summary is provided in order to show the different approaches and goals adopted in 

their projects.  

 

Wong (1999) developed an integrated GIS and empirical urban runoff model. This 

empirical model is a modified version of the SWMM model. The integrated model uses 

the Runoff and Transport Blocks of SWMM model and incorporates GIS as a 

preprocessor and a postprocessor. EMCs are used for the stormwater runoff quality 

analysis. Lee (2002) investigated relationships between stormwater quality and landuse 

types using Neural Networks. The developed neural model effectively classified landuse 

types with water quality data. Park (2004) studied empirical methods to estimate 

stormwater pollution from estimated landuse using Bayesian networks. The results, 

which include runoff coefficients, EMCs, and pollutant loadings, were visualized in a 

GIS. Lourdes (2005) developed an expert system that classifies landuse categories from 

satellite imagery. 

 

In this research, landuse contributions to the total pollutant loadings in upper Ballona 

Creek watershed are discussed based on predictive stormwater runoff quantity and 

quality models. Predictive model for stormwater runoff quantity was developed in an 

ArcGIS platform. Unlike other models shown in Table 2.5, input data requirements for 

this model are simplified. More distributed approach was adopted to incorporate 
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heterogeneity of a watershed and stochastic nature of nonpoint source problems. 

Predictive model for stormwater runoff quality was developed using multiple linear 

regressions and optimization techniques for estimation and prediction. Using these 

models for stormwater runoff quantities and qualities, effective BMP strategies are 

discussed.



Table 2.5 Models for Storm Water Runoff Quantities and Qualities 

Model Developer Main characteristics Advantages Disadvantages Applications 

HEC-1  US Army
Corps. of 
Engineers 
(1968-1990) 

 Rainfall-runoff 
simulations 

 DOS-based 
 Unit hydrograph 
technique 

 

 Variety of rainfall-runoff methods 
 Several common channel and storage 

routing techniques 
 Dam safety options 
 Flood damage analysis 
 Hydrologic features 

 Limited hydraulic 
capabilities 

 No water quality features 
 No Tail-water effects  
 Simulates only a limited 
number of urban 
hydraulic structures 

 Not user-friendly 
 Editing and graphical 
capabilities are limited 

 Accepted by FEMA 
 Flood insurance studies 
 Watershed master planning 
 Multiplan-Multiflood 
analysis 

TR-55   NRCS
(1975-1986) 

 Runoff hydrographs 
and peak discharges 

 DOS-based 
 Used in small urban 
catchments 

 Unit hydrograph 
technique 

 Storage effects analysis  
 Calculations of area weighted, time of 

concentration, and travel time 
 Detention pond analysis 
 Preliminary pond sizing  
 Easy-to-use 

 SCS unit hydrograph only
 Editing and graphical 
capabilities are not 
available 

 No hydraulic features 
 No water quality features 

 Peak rate and the total 
volume studies in small 
watersheds 

  

HEC-RAS US Army 
Corps. of 
Engineers 
(1995) 

 One-dimensional 
hydraulic calculations

 Windows-based 

 User-friendly 
 Floodplain elevations and floodway 

encroachments 
 Graphical interface, tabular, and report 

formats 
 Subcritical, critical, and supercritical 

flow regimes 
 Effects of in-stream structures 

 Not GIS-based data 
processing 

 No hydrologic features 
 No water quality features 

 

 Flood insurance studies 
 Watershed master planning  
 Multiplan-Multiflood 
analysis 

 

MOUSE  Danish
Hydraulic 
Institute 
(1995) 
 

 Analysis of storm 
water quantity and 
quality  

 Windows- based 
 Developed in 1985 

 User-friendly 
 Graphical interface, tabular, and report 
formats 

 Single-events and continuous events 
 Manholes surcharging and pressure 

 Input data requirements 
for the model are 
extensive 

 Return periods of 
overloading sewer system 

 Determine causes of  
overloading 

 Impacts of replacing sewer 
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and subsequently 
improved with 
several additional 
capabilities 

flow 
 Open channel simulations 
 Modules for transport of pollutants and 
sediments 

 Off-line and on-line modeling of real 
time control  

 Environmental impact of 
changing operation strategy 

 Water quality protection 
studies 

 Sedimentation deposition 
 Pollutant concentration after 
storms 

Hydro 
Works 

HR 
Wallingford 
Ltd (1997) 

 Analysis of storm 
water quantity and 
quality  

 Wastewater network 
simulation  

 User-friendly 
 Graphical interface 

 Input data requirements 
for the model are 
extensive 

 Design of sewer system 
 Impacts of replacing sewer 
 Water quality protection 
studies 

WSPRO  USGS
(1988) 

 One-dimensional, 
gradually varied, 
steady flow 

 DOS-based 

 Easy-to-use 
 Analysis and design of bridge opening, 
embankment, open channels, and 
culverts 

 Profiles in sub-critical, critical, and 
supercritical flow regimes 

 Flow through bridges and culverts and 
pressure flow under bridges can be 
simulated 

 No hydrologic features 
 Editing and graphical 
capabilities are not 
available 

 Flood insurance studies 
 Water surfaces profiles 
analysis for highway design 

 Establishing stage-discharge 
relationships 

 
 
 

US EPA 
SWMM 

US EPA  
(1969-1971) 

 Analysis of storm 
water quantity and 
quality  

 DOS and Windows-
based 

 

 Public domain 
 Open source code 
 Storm water, sanitary, and combined 

sewer system  
 Single-events and continuous events  
 Manholes surcharging and pressure 

flow 
 Open channel simulations 
 Buildup, washoff, and pollutants 

routing  
 Propriety extension with graphical 

interfaces, such PCSWMM, 
XPSWMM, and MIKE-SWMM 

 The graphical capabilities 
of original version are 
limited 

 Input data requirements 
for the model are 
extensive 

 FEMA-approved model for 
NFPI studies 

 Flood control studies 
 Water quality protection 
studies 

 Impact of inflow and 
infiltration on sanitary sewer 
overflows 

 Effectiveness of BMPs  
 Designing control strategies 
for minimizing combined 
sewer overflows 
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Culvert 
Master 

Haestad 
Methods 
(1999) 

 Culvert simulation 
and design program 
 Calculate flow peak 
using the rational 
method 

 Windows-based 

 Easy-to-use 
 Pressure or free surface flow condition 

in sub-critical, critical, and 
supercritical flow conditions 

 A Variety of culvert shapes and 
sections types are available 

 Tail-water effects are considered 

 The user must enter all 
rainfall and runoff 
information 

 No hydrologic features 
 No water quality features 

 

 Culvert analyzer studies 
 Culvert designer 

Flow 
Master 

Haestad 
Methods 
(2000) 

 Hydraulic pipe and 
channel design 
program 
 Windows-based 

 Calculates hydraulics of weirs, orifices, 
gutter, and ditch flow  

 No hydrologic features 
 No water quality 
features 

 Design and analysis of 
pipes, ditches, open 
channels, weirs, orifices, 
and inlets 

QUAL2E US EPA 
(1991-1996) 

 Steady state or 
dynamic conditions 

 DOS-based 
 
 
 
 
 

 Public domain 
 Uncertainly analysis  
 Impact analysis of waste loads on 

water quality 
 Up to 15 water quality constituents can 

be modeled 
 Analysis of diurnal variation in water 

quality 

 Complex model and data 
requirements for a 
simulation 

 Editing and graphical 
capabilities are not 
available 

 No hydrologic features 

 Water quality planning 
 

 Software such as PCSWMM, XP-SWMM, MIKE-SWMM, MIKE-URBAN, and WMS are propriety extensions with graphical interfaces for US EPA 
SWMM, EPA SWMM5, HEC-1, TR-55, HEC-RAS, and WSPRO. 

 
 

 Most of the models presented in the table were improved. For example, US EPA developed the new version SWMM5, which is user-friendly and can 
be integrated with GIS. 
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 FEMA: Federal Emergency Management Agency. 

 NRCS: Natural Resources Conservation Service. 

 



3. METHODOLOGY 
 

Nonpoint source pollution problems are inherently complex. One approach is to model its 

complexity as closely as possible; however, complex models require many quantity and 

quality prediction parameters, such as soil characteristics, chemical and biological 

properties, partition coefficients, reaction rates, and buildup and washoff parameters. The 

propagated or accumulated error from these parameters may result in poor predictions, 

especially when compared to simple models that might have fewer and more easily 

measured empirical parameters. In this study, a simple methodology for modeling 

pollutant loadings of storm events that accounts for the heterogeneity of a watershed is 

developed. For the simulation of the model, Los Angeles County Department of Public 

Works (LADPW) and California Department of Transportation (Caltrans) data were used. 

 

Each county in the United States including Los Angeles County is required by the 

NPDES program to monitor pollutant loadings to its receiving water body. The current 

monitoring program of Los Angeles County consists of the Santa Monica Bay receiving 

water impacts study, mass emission monitoring, landuse runoff monitoring, and critical 

industry monitoring. For example, the LADPW monitored four drainage areas near their 

ocean discharges to comply with their 1990 and 1996 NPDES Permits. These four sites, 

called mass emission sites are the Los Angeles River, San Gabriel River, Ballona Creek, 

and Malibu Creek. The Ballona Creek site drains a highly urbanized watershed, which is 

the ideal subject for this research project. It has been the subject of previous studies 
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conducted by University of California, Los Angeles (UCLA) investigators (Wong et al., 

1997; Lau and Stenstrom, 1999; Stenstrom and Lee, 2005), and was chosen for this study. 

Most of the previously collected data and the County’s monitoring program used a mass 

emission monitoring station located on Ballona Creek between Sawtelle and Sepulveda 

Boulevards in the City of Los Angeles. This station was chosen to avoid tidal influences 

and has a United States Geological Survey (USGS) gauge. The upstream tributaries of 

Ballona Creek, which is called upper Ballona Creek watershed, drain 23,211 hectare 

(89.6 squire miles). This research project will utilize these accumulated data to estimate 

total pollutant loadings in a new, automated fashion. 

 

 

3.1 DATA REQUIREMENTS 
 

To estimate total loads of a storm event, accumulated monitoring data need to be 

incorporated into an ArcGIS layer, which is a tool to store and access large data sets that 

have geographical references or standalone databases. The following data were 

incorporated into the model as ArcGIS layers: 

 

1. Digital Elevation Model (DEM) 

2. Event Mean Concentration (EMC) data for each landuse categories 

3. Hydrologic soil group 

4. Dams locations 

5. Mass emission monitoring station location 
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6. Rain gauge data for each rainfall event 

7. Rain gauge locations 

8. Southern California Association of Government (SCAG) Landuse 

9. Watershed area boundaries 

 

Available GIS layers were downloaded through the web. The sources are as follows: 

 

1. USGS (http://seamless.usgs.gov/) – DEM was downloaded from the Seamless 

Data Distribution System. This system is operated by USGS and EROS Data 

Center. 

2. UCLA (http://www.ats.ucla.edu/) – SCAG 6 County landuse 2000, watershed 20, 

and watershed 22 were downloaded from UCLA ArcSDE/Oracle database. This 

database is supported by the UCLA Academic Technology Services (ATS). 

3. California Spatial Information Library (CaSIL, http://gis.ca.gov) – The local roads 

layer has been made available through the CaSIL. It is derived from the US 

Census Bureau Tiger 2K (June 7, 2002 Version) information. 

4. NCDC (http://www.ncdc.noaa.gov/) – Rain gauge locations and its hourly rainfall 

records were downloaded from National Climatic Data Center (NCDC). 

5. LADPW (http://ladpw.org/) – Locations of rain gauge stations operated by 

LADPW along with rainfall data and EMCs for mass emission and landuse 

monitoring stations. 
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The spatial metadata of the GIS layers used in this study are shown in Table 3.1.1.  Users 

will not ordinarily need to know the metadata, but they are included for users or 

reviewers who have advanced knowledge of GIS or users who might wish to modify the 

program.  

 

  Table 3.1.1 Metadata of the GIS Layers Used 

Datum NAD 27 

Projection Albers 

Units Meters 

1st Std. Parallel     34 00 00 (34.0 degrees N) 

2nd Std. Parallel     40 30 00 (40.5 degrees N) 

Longitude of Origin - 120 00 00 (120.0 degrees W) 

Latitude of Origin      00 00 00 (0.0 degrees) 

False Easting (X shift) 0 

False Northing (Y shift) - 4,000,000 

Source USGS digital line graph (DLG) digital series 

Source Media Mylar maps 

Source Projection Universal Transverse Mercator Zones 10 & 11 

Data Structure Vector or Raster 

 
 

 

3.2 SOFTWARE AND HARDWARE REQUIREMENTS 
 

The model was implemented in VBA, which is included with ArcGIS Desktop Version 

9.0 (Redlands, CA). The program should run with later versions of ArcGIS Desktop, 
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although this has not been verified. The developer recommends installing ArcGIS 

Desktop Developer Kit, which provides essential tools for developers. The most useful 

tools are Object Browser and Library Locator. It is also necessary to have Microsoft 

Access 2002 or later.  For satisfactory execution, the computer should be a Pentium with 

2GHz or higher, 1GB memory, 2GB swap space, and about 4GB free disk space (850MB 

for the ArcGIS Desktop installation, 350MB for Developer Kit installation, and 3GB for 

the model). Since most ArcGIS operations are memory intensive, dual memory access 

architecture is also recommended. 

 

 

3.3 RATIONAL METHOD 
 

This study is based on conventional rational method and EMCs for each landuse 

categories. However, to account for the heterogeneity of a watershed, a distributed 

approach was taken. A watershed is divided into many small sub-areas to account for the 

heterogeneity of a watershed and lumped parameters were applied on each of them. Thus, 

the conventional rational method can be rewritten as follows: 

 

      (3.1) j i i
j i j

L EMC A P RC⎛= × × ×⎜
⎝ ⎠

∑ ∑ i
⎞
⎟

 where  L = Pollutant loading 

   = Landuse type j

   = EMC of landuse type  jEMC j
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   = Homogeneous sub area iA

   = Precipitation in the sub areaiP iA  

   = Runoff coefficient of the sub area iRC iA  

 

The division of a watershed depends on the availability of data that can be applied to each 

of the divided sub area. Each sub area  is homogeneous in terms of the available data if 

the watershed information is sufficiently detailed so that each sub area has unique 

parameters. In this way, heterogeneity of a watershed is accounted for up to available 

datasets. Available datasets and its division into smaller sub area will be discussed in the 

following sections. 

iA

 

 

3.4 STORMWATER RUNOFF QUANTITY ANALYSES 
 

The developed GIS model is used to calculate runoff quantities from each landuse type. 

Total runoff quantity is then calculated by adding these quantities for a storm event. In 

the following section, procedures of calculating watershed area, rainfall, and runoff 

coefficients are described. Data needed for these calculations are DEM, hydrologic soil 

groups, landuse types, rainfall data of rain gauge stations around the watershed, and 

locations of the gauge stations. The calculated stormwater runoff volumes were compared 

to the measured volumes at the emission site of the upper Ballona Creek watershed. 
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3.4.1 Area 
 

The top eight landuse types based on total area were selected by LADPW through the 

field survey conducted in 1996 (Woodward, 1996): 

 

1. Educational Facilities 

2. High Density Single Family Residential 

3. Light Industrial 

4. Multifamily Residential 

5. Mixed Residential 

6. Retail/Commercial 

7. Transportation 

8. Vacant 

 

To apply EMCs monitored by LADPW (see Equation 3.1), the Southern California 

Association of Governments (SCAG) landuse types were reclassified to the eight landuse 

types. SCAG completed the 2000 landuse data update using 2000 digital aerial imagery, 

which is shown in Figure 3.4.1 for the study area. The reclassified landuse types are 

shown in Figure 3.4.2. The relationship between LADPW and SCAG landuse types are 

listed in the Appendix B. The distribution of landuse types calculated from the 

reclassified landuse types layer is shown in Table 3.4.1.  
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Figure 3.4.1 SCAG Landuse Types for Upper Ballona Creek. 

 

 

Figure 3.4.2 Reclassified Landuse Types. 
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    Table 3.4.1 Distribution of Landuse Types 

Landuse Area [Hectare] % Area 

Vacant 3,094 13.3 

Educational Facilities 667 2.9 

High Density Residential 7,838 33.8 

Light Industrial 1,217 5.2 

Multi-Family Residential 2,898 12.5 

Mixed Residential 3,868 16.7 

Retail/Commercial 3,215 13.8 

Transportation 415 1.8 

Total 23,211 100.0 

 
 

 

3.4.2 Runoff Coefficients 
 

Spatial variability of runoff coefficients in a watershed is incorporated using Browne’s 

relation (1990) shown in Appendix C, which relates runoff coefficient with hydrologic 

soil group, slope, and landuse type: 

 

 Runoff Coefficient = f (Hydrologic soil group, Percent slope, Landuse) 

 

Soils are classified by the Natural Resource Conservation Service into four hydrologic 

soil groups based on the soil's runoff potential, which are A, B, C and D. Group A has 

generally the smallest runoff potential and group D has the greatest. As shown in Figure 

 39



3.4.3, the upper Ballona Creek is made up of entirely Group D soils, which have very low 

infiltration rates and consist chiefly of clay soils.  

 

 

Figure 3.4.3 Hydrologic Soil Group around the Upper Ballona Creek Watershed. 

 

Browne relation uses three categories of percent slopes, which are 0-2%, 2-6%, and 6+%. 

The ArcGIS Spatial Analyst Toolbox provides a tool to calculate percent slopes, which 

are defined as in Eq. (3.2).  

 

 

h
     hPercent Slope 100

d
= ×   (3.2) 

d  
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A DEM downloaded from USGS seamless data distribution system 

(http://seamless.usgs.gov/) is shown in Figure 3.4.4. This DEM raster was used to 

calculate a percent slope raster with the slope tool. The slope tool calculates average 

percent slope from each cell to its neighbors.  

 

 

Figure 3.4.4 A DEM downloaded from the USGS Seamless Data Distribution System. 

 

The percent slope raster was then reclassified into three categories defined in the Browne 

relation using reclassify tool in the Spatial Analyst Toolbox. Both the percent slope raster 

and the reclassified percent slope raster are shown in the Figure 3.4.5 and Figure 3.4.6, 

respectively. 
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Figure 3.4.5 Percent Slope calculated from the DEM. 

 
 

 

Figure 3.4.6 Reclassified Percent Slope. 
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The landuse category polygons shown in Figure 3.4.2 were overlaid with a hydrologic 

soil group layer and a percent slope layer created from the DEM, which are shown in 

Figure 3.4.5 and Figure 3.4.6, respectively. This overlay created approximately 33,000 

polygons for the upper Ballona Creek watershed as shown in Figure 3.4.7.  

 

 

Figure 3.4.7 Runoff Coefficients Distributions in the Upper Ballona Creek. 

 

The resulting polygons are internally homogeneous in terms of runoff coefficients and 

EMCs. However, the layer does not yet contain runoff coefficient values. To create a 

runoff coefficient field in the overlaid layer, runoff coefficient calculation module was 

implemented in the VBA. This module identifies three fields in the overlaid layer, which 
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are reclassified landuse type, hydrologic soil group, and reclassified percent slope fields. 

The module then creates a new runoff coefficient field using the Browne relation. 

 

 

3.4.3 Precipitation 
 

Hourly precipitation data from the seven rain gauge stations, which are shown in Table 

3.4.2, located around the upper Ballona Creek are used. Gauge station locations are 

shown in Figure 3.4.8 along with the extent of the upper Ballona Creek watershed. The 

precipitation data were gathered from NCDC and LADPW. 

 

Table 3.4.2 Rain Gauge Stations 

Station Name Latitude Longitude Elevation [m]

Burbank Valley Pumping Plant1  34 11 ' 11 "  ° 118 20 ' 54 "  ° 199.6

Los Angeles Airport 1  33 56 ' 25 "  ° 118 23 ' 44 "  ° 30.5

Los Angeles Civic Center 1  34 03 ' 09 "  ° 118 14 ' 13 "  ° 82.3

Sepulveda Dam1  34 10 ' 06 "  ° 118 28 ' 11 "  ° 204.2

Ballona Creek Mass Emission Site  2 34 00 '  -- "  ° 118 24 '  -- "  ° -

Malibu Creek Mass Emission Site  2 34 05 '  -- "  ° 118 43 '  -- "  ° -

Santa Monica Pier  2 34 00 ' 43 "  ° 118 29 ' 27 "  ° 28.7

1 : NCDC gauge station; : LADPW gauge stations 2
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Figure 3.4.8 Rain Gauge Station Locations 

 

 

3.4.3.1 Data Screening 

 

LADPW measured total runoff volumes and their EMCs for mass emission sites starting 

from 1998, which are available from their web site 

(http://ladpw.org/WMD/npdes/report_directory.cfm). The measured total runoff volume 

and its corresponding precipitation data gathered from the seven rain gauge stations are 

shown in Table 3.4.3. Among the available 49 storm events from 1998 to 2003 storm 

seasons, four storm events without flow measurement data was excluded. 
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Table 3.4.3 Measured Rainfall for Seven Gauges and Total Runoff Volumes (1998-2003) 

Event [mm] Malibu 
Creek 

Sepulveda 
Dam       

Burbank 
Valley 
Pump     

LA 
Civic 
Center   

LA 
/INT. 
CA.     

Santa 
Monica 

Ballona 
Creek 

Measured 
[ ] 3 310 m

12/1/1998 11 3 5 7 4 1 4 378 

12/6/1998 6 5 5 5 10 12 11 528 

1/20/1999 2 5 3 3 6 28 4 144 

1/25/1999 22 10 20 9 10 6 25 2526 

1/31/1999 13 17 15 14 5 10 15 1306 

2/4/1999 12 0 0 2 5 1 5 280 

2/9/1999 23 6 8 9 4 8 5 606 

3/9/1999 1 0 0 1 4 2 2 50 

3/15/1999 21 19 20 11 17 1 18 1479 

3/20/1999 12 9 15 6 8 6 8 615 

4/6/1999 15 15 15 19 11 2 36 2577 

4/8/1999 2 0 0 2 2 2 2 99 

4/11/1999 13 29 25 32 34 30 35 1888 

1/25/2000 23 23 0 11 15 15 12 1771 

1/30/2000 5 3 0 3 5 7 7 925 

2/10/2000 25 9 20 12 8 12 14 1983 

2/12/2000 31 23 23 16 13 17 15 3678 

2/16/2000 11 11 23 17 14 17 16 2488 

2/20/2000 39 56 33 22 17 28 20 1749 

2/23/2000 59 42 46 28 19 26 23 4046 

3/5/2000 34 37 48 44 29 25 34 5775 

3/8/2000 23 18 15 18 22 15 10 2139 
1 10/12/2000 0 0 0 0 0 0 2 798 

10/29/2000 23 0 15 13 15 11 10 433 

1/8/2001 5 4 5 7 6 5 4 556 

1/10/2001 143 104 66 55 53 84 99 8907 

 

 46



Table 3.4.3  – Continued – 

Event [mm] Malibu 
Creek 

Sepulveda 
Dam       

Burbank 
Valley 
Pump     

LA 
Civic 
Center   

LA 
/INT. 
CA.     

Santa 
Monica 

Ballona 
Creek 

Measured 
[ ] 3 310 m

    
1/24/2001 13 6 13 8 7 8 7 839 

1/26/2001 2 12 8 18 17 19 1 1477 
2 2/10/2001 119 13 10 9 8 16 105 990 

2/19/2001 20 9 3 14 6 21 10 1413 
2 2/24/2001 67 12 8 5 7 8 58 8069 

2 3/4/2001 122 11 8 1 2 7 33 3412 

11/12/2001 14 11 0 9 9 0 7 761 

11/24/2001 55 30 0 20 15 0 19 2950 

11/29/2001 16 6 0 6 8 0 8 443 

12/2/2001 7 2 0 3 3 0 8 495 

12/20/2001 15 10 0 10 2 12 18 1544 
2 1/27/2002 39 0 23 0 0 21 12 2231 

11/8/2002 58 29 20 46 24 0 30 5218 
1 12/16/2002 70 36 33 50 26 35 27 133 

2 2/11/2003 130 26 18 22 15 0 7 11600 
3 3/15/2003 128 60 66 104 38 81 84 13065 

10/31/2003 13 8 14 8 0 20 14 469 
1 12/25/2003 36 21 24 32 0 26 51 13815 

1/1/2004 0 12 11 5 0 9 16 1146 
1  Unexpectedly high or low total runoff volume compared to rainfall records. 
2 Rainfall patterns are extremely irregular across the rain gauge stations. 
3  Large storm event compared to the other events. 

 

For the rest 45 storm events, nine storm events were filtered, which were indicated with 

superscripts in the table, according to the following filtering criteria: 

 47



1. Unexpectedly high or low total runoff volume compared to rainfall records, 

suggesting an error in the data. 

2. Rainfall patterns are extremely irregular across the rain gauge stations. 

3. Large, atypical storm event compared to the other events. 

 

The main reason behind these filtering criteria is to exclude the possibility of perturbation 

errors, such as measurement errors, approximation errors, or equipment malfunction 

errors. For example, the approximation error occurs when measuring total runoff volume 

of a storm event. LADPW uses previously established rating table to calculate flow rate 

by measuring water elevation in a storm drain or calculated with an equation such as 

Manning’s. But their stormwater flow measurement efforts indicated that all stations 

required multiple storm events to gather the data necessary for calibration of the 

measurement devices. Thus, filtering relatively large storm events is reasonable, since 

those cases are rare. Simple correlation tests were conducted with the rainfall records of 

the seven gauge stations shown in Table 3.4.3. LA Civic Center rainfall records showed 

best correlation to the total runoff volume of upper Ballona Creek watershed. A 

histogram of the Civic Center rainfall records is shown in Figure 3.4.9. The filtered large 

event is the one event around 100 mm of rainfall. If the rainfall patterns are extremely 

irregular across the rain gauge stations, calculations based on these rainfall records may 

cause large approximation error. 
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Figure 3.4.9 Histogram of Civic Center Rainfall Records (Unit: mm) 

 

 

3.4.3.2 Interpolation of Precipitation Data 
 

Interpolation of the precipitation data gathered from the gauge stations is important 

because precipitation is one of the most influential parameters in the calculation of total 

pollutant loads. Among many interpolation techniques, Kriging was chosen for the first 

attempt. Unlike the other interpolation techniques, Kriging assumes that the spatial 

variation is statistically homogeneous throughout the surface. For example, Inverse 

Distance Weighted (IDW) interpolation is based on the weighted distance of each data 
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points from a point being estimated. The disadvantage of the IDW interpolation is that it 

treats all points the same way regardless of their geographic orientations. Kriging uses 

different weighting function depending on the distance to each data point and spatial 

relationships among these points. This is done by creating empirical semivariogram 

which is computed from an input dataset. 

 

Semivariance for a separation distance of  is the average squared difference in  value 

between pairs of input points separated by . Semivariances are calculated from input 

data with the following equation (McCoy et al., 2004):  

h Z

h

{n 2
i ii 1

1(h) Z(x ) Z(x h)
2n =

γ = − +∑ }      (3.3) 

where  n is the number of pairs of data points separated by a distance h . An empirical 

semivariogram is constructed by fitting the semivariances with a model, which is similar 

to regression analysis. This fitting with a model is also known as structural analysis or 

variography. The empirical semivariogram is used to calculate weights for the Kriging 

interpolation. Since Kriging is based on a statistical model, it can provide some measure 

of the certainty of the predictions, which is the variance raster created by Kriging. This 

raster contains Kriging variances at each output raster cells.  

 

Zimmerman et al. (1999) conducted an investigation to compare the spatial interpolation 

accuracy of Kriging and IDW. Their result showed that Kriging interpolation consistently 

and substantially outperformed the IDW interpolation. The relative superiority was 

greatest when the surface was most regular, noise was low, and spatial correlation was 
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high. However, since Kriging is based on the assumption that the spatial variation in the 

phenomenon is statistically homogeneous throughout the surface, data sets that have 

rapidly changing values are not appropriate for Kriging interpolation. In this case, IDW 

interpolation, which does not correlate spatial arrangement among the data points, was 

used. 

 

Isohyets and corresponding variances generated with Kriging interpolation for a storm 

event occurred in Dec. 1, 1998 is shown in Figure 3.4.10. The maximum variance for the 

upper Ballona Creek watershed was about 0.01 mm of rainfall at most. 

 

 

Figure 3.4.10 Isohyets and Variances for a Storm Event (12/1/1998; Unit: in). 
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3.4.4 Implementation of a GIS Model 
 

A GIS model to predict the total stormwater runoff volume of storm events is 

implemented in the VBA. The VBA is one of the object oriented programming languages. 

Although the ArcObjects library consists of over 1,000 classes and 2,000 interfaces to 

provide developers with the ability to extend ArcGIS functionality, the extent of the 

library is overwhelming and difficult to know where to begin. Fortunately, there are tools 

available. The most useful tools are Object Browser and Library Locator as mentioned in 

Section 3.2 along with Exploring ArcObjects (Zeiler, 2001). The main objective of this 

model is to account for the heterogeneity of a watershed up to available datasets. This 

approach also avoids time consuming and costly field surveys. Besides the LADPW 

landuse types, two additional categories, which are highways and local roads, were 

separately studied. Thus, results from these two categories can be used as comparison 

purposes. Methodology adopted in the analyses of three different categories will be 

discussed in the following sections. 

 

 

3.4.4.1 Runoff Volumes of the Eight Landuse Types 
 

Reclassified landuse layer (Figure 3.4.2) and the runoff coefficient layer (Figure 3.4.7) 

were overlaid again to get internally homogeneous polygons in terms of landuse type, 

runoff coefficient, and EMCs. The isohyets layer (Figure 3.4.10) was then spatially 

referenced from each polygons of the overlaid layer. Figure 3.4.11 illustrates how the 
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isohyets are referenced in the program. The figure is for illustration purpose only. Actual 

isohyets layer used in the program have more dense isohyets to reduce errors.  

 

 

Figure 3.4.11 Spatial Reference of Isohyets 

 

Each polygon in the overlaid layer is scanned to see if any isohyets cross the polygon. If 

more than one crosses the polygon, the average of the crossed isohyets is used as a 

rainfall. If no isohyets cross the polygon, the polygon buffer is increased as shown in 

Figure 3.4.11 until at least one isohyets cross the buffered polygon. If more than one 

cross the buffered polygon, average value is used again. Since each polygon is one of the 

eight landuse types, runoff volumes from each landuse type can be calculated.  
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The better way to get the isohyets is to convert isohyets raster to polygon features using 

Raster to Polygon tool in the Spatial Analyst Toolbox and then overlay the isohyets 

polygons with the overlaid polygons mentioned above. However, the Raster to Polygon 

tool currently has a limit on the number of grids in a raster that can be converted to 

polygon features and the number of grids in the isohyets raster exceeds the limit. The 

limit is not documented anywhere and the GIS function usually do not issue reasonable 

error message when this type of limits are violated.  This is one of the frustrating aspects 

when programming in the VBA. 

 

 

3.4.4.2 Runoff Volumes for Highways 
 

Caltrans performed a statewide stormwater runoff characterization study from 1997 to 

2003 for 171 highway sites throughout California. To analyze contributions from the 

highway areas to total loading rates, a module that calculates highway runoff volume was 

implemented. The program was developed for any given watershed or combination of 

watersheds in California. Total highway area in a watershed including shoulders was 

calculated from the Caltrans state postmile layer that contains numbers of lanes 

information for each segment of highways. For the width of highway areas, the following 

assumptions were made: 
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1. Typical width of lane = 3.66 m (12 ft) 

2. Typical width of shoulder (One shoulder in each side of highways)  

= 2.44 m ×  2 (8 ft ×  2) 

3. Highway runoff coefficient = 0.9 

 

An isohyets layer was spatially referenced from each segment of highways as shown in 

the Figure 3.4.11. 

 

 

3.4.4.3 Runoff Volumes of Local Roads 
 

Schematic diagram of typical urban road is shown in Figure 3.4.12. Although there are 

other runoffs besides runoffs from local road surface and side walk, those contributions 

are minimal in urban area. If runoffs from other sources, such as lawn or hillside, are 

negligible, we can calculate runoffs from local roads separately with the following 

assumptions: 

 

1.  Local road width = 9.14 m (30 ft) 

 2.  Local road runoff coefficient = 0.9 
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Figure 3.4.12 Schematic Diagram of Typical Urban Road 

 

The local roads layer used in this study has been made available through the California 

Spatial Information library (http://gis.ca.gov). It is derived from the US Census Bureau 

Tiger 2K (June 7, 2002 Version) information.  

 

The local roads layer was clipped using Clip Tool in the Analysis Toolbox 

programmatically. For each segment of the local roads, isohyets were identified as in 

highway runoff calculation and multiplied by the assumed road width, length of the 

segment, and the assumed runoff coefficient to get a runoff from the segment. Finally, all 

the runoffs from each segment were added to obtain the total runoff from the clipped 

local roads. 
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3.4.5 Stormwater Runoff Quantity Prediction using the Implemented GIS Model 
 

Total storm events available from the LADPW after the data screening were 36 as shown 

in Table 3.4.3 from 1998 to 2003 storm seasons. The GIS model, which does not require 

costly and time consuming field surveys, mentioned in Section 3.4.4.1 was used to 

predict stormwater runoff quantities for the 36 storm events. The results were compared 

with the measured runoff quantities at the upper Ballona Creek emission site, which is 

shown in Figure 3.4.13. For the heterogeneity of such a large watershed (23,211 hectare) 

and the variability of rainfall, the predicted runoff volumes were in good agreement with 

the measured data and had R2 of 0.86, and generally were within +184/-54 percent of the 

measured runoff. 
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Figure 3.4.13 Calculated versus Measured Stormwater Runoff Quantities (1998-2004). 
The Diagonal shows the One-to-One Correspondence.  
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The implemented model showed improved runoff prediction (- 8 % of the measured 

runoff) than the model defined by landuse definitions (+ 54 %; Wong et. al, 1997) for an 

example analysis of Dec. 2, 2001 storm event. The model over predicted runoff from 

small storms and under predicted runoff from large storms, which is a well-known 

characteristic of the Rational Method. The model has the advantage of reduced data needs, 

when compared to a runoff model such as SWMM. For example, Barco et al. (2006) 

required approximately 30,000 input data points for the characteristics of drain network 

and about 2,500 subcatchments to model the upper Ballona Creek Watershed. The new 

model required only four GIS layers, which are DEM, hydrologic soil group, landuse 

type, and isohyets layers. More importantly, only the fourth layer needed to be developed 

for the modeling activity. 

 

 

3.5 STORMWATER RUNOFF QUALITY ANALYSES 
 

LADPW was required under the 1990 NPDES Permit to sample representative areas that 

were predominantly of a single landuse type. The landuse sites chosen by the LADPW 

are scattered around LA County. Locations of the sampling sites are shown in Appendix 

Figure A.8 for reference. In the following sections, sampling results of the landuse sites 

and the calculated runoff quantities of the GIS model are used to predict the total 

pollutant loads at the mass emission site of the upper Ballona Creek Watershed. 
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Eight landuse sampling sites were selected for each landuse type describe in Section 3.4.1 

by LADPW through the field survey conducted in 1996 (Woodward, 1996). The largest 

area of landuse monitoring site was 1341.6 hectare, which is shown in Figure 3.5.1. 

Seven other sites were selected and they are shown in the Appendix A.  

3.5.1 LADPW Landuse Sampling Sites 
 

The percent landuse distributions of the monitoring catchments were shown in Table 

3.5.1. The percent of each representative landuse types for the monitoring catchments 

ranged from 54% (Retail/Commercial) to 100% (High Density Single Family 

Residential). 

 

Figure 3.5.1 Vacant Landuse Monitoring Site at Monrovia Creek, Monrovia (LADPW) 
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Table 3.5.1 Percent Landuse Distributions of Monitored Catchments (LADPW) 

Station Name Station
No. 

Drainage 
Area 

(Hectare) 
V LI MR T RC EF HDR MFR Other

Santa Monica Pier S08 33.7    4 54     5 37

Sawpit Creek S11 1341.6 98        2 

Project 620        S18 67.3 100   

Dominguez Channel S23    349.7 18 73      1 1 7

Project 1202 S24 277.1 3 74        3 1 19

Project 474       S25 106.2 90 8   2

Project 404         S26 88.1 1 2 17 6 74  

Project 156 S27 51.8   77       5 5 4 4 5

Underlined numbers indicate landuse types for each station. 
Empty cells are land use percentages less than 0.5% 
V = Vacant 
HDR = High Density single-family Residential 
MFR = Multi-Family Residential 
MR = Mixed Residential 
EF = Educational Facilities 
T = Transportation 
RC = Retail/Commercial 
LI = Light Industrial 

 



One site for each of the land uses was retained for continued sampling. The sampling 

protocol required that EMCs be measured, which are obtained from flow-weighted 

composite samples. Automatic samplers with flow meters were used over the duration of 

each storm event. The permit required continued sampling until one of two provisions 

were met: achieving an EMC at an error rate of 25% or less or detecting a constituent less 

than 25% of the time for 10 consecutive samples. Sampling can be discontinued for 

constituents that meet either criterion. Otherwise, 200 station samples are required. 

Cumulative EMCs for each landuse type over 1994-2000 storm seasons are shown in 

Appendix D.  

 

 

3.5.2 Storm Characteristics of Landuse Catchments 
 

As mentioned earlier, sampling sites for eight landuse types are scattered around the LA 

County. To apply analysis results of landuse types to the upper Ballona Creek watershed 

as a function of site specific conditions, four types of storm characteristics were used as 

independent variables: Antecedent Dry Days (ADD), total rainfall, rainfall duration, and 

maximum hourly rainfall intensity. Site specific characteristics that may influence 

pollutant loads such as subcatchment impervious fraction, depression storage, infiltration, 

and roughness coefficient were not used in the analyses to simplify input to the model 

and to avoid expensive and time consuming field surveys. The storm characteristics are 

calculated from hourly rainfall records downloaded from NCDC. For the storm 
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characteristics calculation, a procedure was written in VBA and it is shown in Appendix 

E. Two parameters affect the storm characteristic calculations, which are: 

1. Minimum rainfall that can be considered as a storm event. 

2. Minimum dry period between two consecutive rainfall events to make these two 

events as separate storm events. 

 

Effects of minimum rainfall parameter on total rainfall and ADD calculations are shown 

in Figure 3.5.2 and 3.5.3, respectively. For some events, total rainfall and ADD change a 

lot when the parameter becomes more than 1 mm. Also, runoff usually starts with 1 mm 

of rainfall from our field experience. Thus, 1 mm (0.04 in) of rainfall was chosen for the 

first parameter. For the second parameter, 6 hours was chosen. This parameter does not 

significantly affect the calculated results. 
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Figure 3.5.2 Effect of Minimum Rainfall Parameter to Total Rainfall Calculations 
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Figure 3.5.3 Effect of Minimum Rainfall Parameter to ADD Calculations 
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Table 3.5.2 summarizes storm characteristics of the sampled storm events from 1998 to 

2001 for eight landuse type monitoring catchments, which are available from the 

LADPW web site. LADPW reported average storm intensities and NCDC rain gauge is 

not available around the Retail/Commercial monitoring catchments. Thus, maximum 

intensity data for this landuse type is not available. For the other sites, nearby NCDC 

rainfall data was used to calculate storm characteristics including hourly maximum 

intensities.  
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Table 3.5.2 Ranges of Storm Characteristics of the Sampled Storm Events for Landuse 
Type Monitoring Catchments 

Landuse Types ADD [days] Rainfall [mm] Duration [hrs] Intensity 
[mm/hr]  (1) N  (2)

Vacant 0.3 – 158.1 2.5 –   74.7 1 - 35 0.5 – 12.2 22 

Light Industrial 0.3 – 122.8 1.5 –   50.3 2 - 26 1.0 – 18.3 31 

Mixed 
Residential 0.4 – 157.8 2.5 –   66.0 1 - 37 2.5 – 17.8 25 

Transportation 0.3 – 175.8 2.0 –   46.7 3 - 33 1.0 – 17.3 33 

Retail/ 
Commercial 1.2 – 179.0 5.1 –   35.6 1 – 45 (3)  14 

Educational 
Facilities 0.3 – 157.0 3.3 – 132.3 1 - 77 1.0 – 12.2 21 

High Density 
Single Family 
Residential 

0.4 – 157.8 2.5 –   66.0 1 - 37 2.5 – 12.7 13 

Multi-Family 
Residential 0.3 – 158.1 1.3 –   74.7 2 - 35 0.5 – 11.7 25 

(1) Peak one-hour intensity of a storm event in inches/hour calculated from the NCDC hourly 
rainfall data. 

(2) Number of storm events used (LADPW stormwater runoff monitoring data from1998 to 2001). 

(3) Data not available. 

 

Although ANNs are more suitable than regression models for non-linear patterns and 

irregular seasonal variation in a data set as mentioned in Section 2.3.2, the number of data 

needed for proper evaluation of an ANN should be over 50 (Reich et al., 1999). The 

numbers of monitored storm events for each landuse types that are available for water 

quality analysis are limited as shown in Table 3.5.2. Therefore, regression analyses were 
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g / L

Multiple linear regression analyses were performed to derive correlations between Total 

Zn landuse EMCs and the storm characteristics discussed in the previous section. The 

results are shown in Table 3.5.3. The EMC unit calculated with the regression models 

isµ .  

3.5.3 Multiple Linear Regression Models of the Monitored Landuse EMCs 
 

 

 

performed to characterize landuse contributions to total loads of upper Ballona Creek 

watershed in the following section. 
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Table 3.5.3 Multiple Linear Regression Models of Total Zn EMCs [ g / Lµ ] for LADPW Landuse Monitoring Catchments 
 

Coefficients 
Landuse Types 

Intercept P (1) ADD 
[days] P Rainfall 

[cm] P Duration 
[hrs] P Intensity 

[cm/hr] (2)  
P 

2R  
N
(3)  Models  (4)

Vacant  (5) 25.00            22 Constant

Light Industrial              202.66 0.08 24.60 0.00 -1.44 0.99 -1.25 0.89 -0.39 0.99 0.84 31 Linear

Mixed 
Residential 123.29             0.00 3.51 0.00 -5.75 0.78 1.30 0.69 -36.73 0.48 0.85 25 Linear

Transportation              241.51 0.00 7.34 0.00 -77.95 0.26 -3.61 0.53 189.25 0.22 0.88 33 Linear

Retail/ 
Commercial 

(6) 218.45 0.00   16.84 0.10 -309.64 0.07    0.27 14 Inverse

Educational 
Facilities 64.81 0.00   2.22 0.17      0.10 21 Inverse

High Density 
Single Family 
Residential 

24.53 0.05   -1.98 0.03   2.10 0.05    0.39 13 Inverse

Multi-Family 
Residential 56.96 0.00       0.79 0.00    0.37 25 Inverse

(2) Peak one-hour intensity of a storm event in centimeter per hour calculated from the NCDC hourly rainfall data. 

(2) Number of storm events used (LADPW stormwater runoff monitoring data from1998 to 2000 storm seasons). 

(5) Underlined coefficients were used as optimization parameters. 

(4) 21 out of 22 events were below detection limit, 50 g / Lµ . 

(3) Best fit regression models for each landuse types. 

(1) Significance. 

 



Total Zn EMCs of the Light Industrial, Mixed Residential, and Transportation landuse 

types showed high correlations with storm characteristics ( > 0.8), while 

Retail/Commercial, Educational Facilities, High Density Single Family Residential, and 

Multi-Family Residential landuse types showed low correlations ( < 0.4). Regression 

coefficients of the landuse types that showed low correlations were used as part of 

optimization parameters since EMCs calculated with these coefficients may not represent 

the EMCs of the corresponding landuse types. Total Zn EMCs for the Vacant landuse 

were mostly below detection limit. Thus, half of the detection limit (25 ) was used as 

a constant for the total load prediction of a storm event for the upper Ballona Creek 

watershed. 

2R

2R

g / Lµ

 

 

3.5.4 Optimization of the Upper Ballona Creek Total Loadings 
 

As mentioned in Section 3.5.1, the percent of each representative landuse types for the 

monitoring catchments ranged from 54% (Retail/Commercial) to 100% (High Density 

Single Family Residential). As a result, the regression models developed from these eight 

landuse types does not represent single landuse type. In contrast, total runoff volumes 

calculated for each landuse type by the GIS model discussed in Section 3.4 represents 

runoff volumes from single landuse types. Thus, to apply the regression models to the 

total loading calculations of the upper Ballona Creek watershed, optimization techniques 

are needed. Optimization techniques used for this purpose are described in the following 

sections. 
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3.5.4.1 Data Screening 
 

Outlier detection is important for effective modeling. If all the available data are included 

in the model fitting, the fitted model may be poor. Outliers can be attributable to 

equipment errors and human errors. For example, rain gauge, automatic sampler, or stage 

monitoring equipment, may malfunction and this can be especially important for 

stormwater monitoring, since stormwater may contain debris and other material that can 

foul or plug sensors. Also, a measurement might be correct but represents a rare event. 

There may also be unusual human or animal activities which cause abnormal quality 

peaks. For example, wildfires in Southern California may cause episodic high loads. To 

determine the potential impacts of outliers caused by possible error sources, Cook’s 

distance versus leverage plot was used (Cook, 1977; 1982).  

 

Cook’s distance is a measure of the influence of a case. It measures the effect of deleting 

a given observation. Cook’s distance for the i-th observation is based on the differences 

between the predicted responses from the model constructed from all of the data and the 

predicted responses from the model constructed by deleting the i-th observation. 

Leverage values are the measures of the influence of a point on the fit of regression. 

High leverage gives an extra weight in the computation of regression line. High Cook’s 

distance indicates that the case affects the slope of the regression line. Thus, cases with 

high leverage and high Cook’s distance were identified as outliers in a preliminary test. 

Figure 3.5.4 shows an example plot of Cook’s distance versus leverage for TSS. The 

identified outlier in this example is a storm event that occurred on 1/10/2001. Figure 
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3.5.5 shows the residual frequency distribution constructed from the dataset without the 

identified outlier. If the residual frequency distribution does not follow normal curve, 

Cook’s distance versus leverage plot needs to be reconstructed from the dataset without 

identified outliers. In this case, the frequency distribution is a little skewed to the right. 

Thus, Cook’s distance versus leverage plot is needed again with the remaining dataset to 

check existence of outliers. The procedure should continue until all outliers are removed.  

 

 

Figure 3.5.4 Cook’s Distance versus Leverage. 
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Figure 3.5.5 Regression Standardized Residual Frequency Distribution. 

 

 

3.5.4.2 Limited memory Broyden-Fletcher-Goldfarb-Shanno Bound constrained  
(L-BFGS-B) Nonlinear Optimization Technique 
 

L-BFGS-B was developed at the Optimization Technology Center, a joint venture of 

Argonne National Laboratory and Northwestern University (Zhu et. al., 1994). This 

algorithm is a quasi-Newton algorithm good for a limited memory large scale bound 

constrained optimization problem. The user is required to calculate the objective function 

value and its gradient.  
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Outline of the algorithm: 

1. A quadratic function is defined using the objective and the gradient functions. 

2. Gradient projection method is used to identify a set of active variables. 

3. Quadratic model is approximately minimized with respect to the free variables. 

4. Search direction is defined to be the vector leading from the current iterate to 

this approximate minimizer. 

5. Line search is performed along the search direction. 

 

Advantages of L-BFGS-B: 

1. The structure of the objective function is not needed. 

2. The storage requirements are modest and can be controlled by the user. 

3. The cost of the iteration is low. 

 

Disadvantages of L-BFGS-B: 

1. A large number of function evaluations may be required for problems that 

converge slowly. 

2. On highly ill-conditioned problems, it may fail to converge. 

3. It cannot use knowledge about the structure of the problem to accelerate 

convergence. 

 

Detailed algorithm is described by Byrd (1994). The ending criteria is based on the 

change of the objective function F or projected gradient, which is the projection of the 
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gradient vector onto the space tangent to the active bounds. The program terminates when 

changes of objective function F or the norm of the projected gradient becomes 

sufficiently small. The projected gradient is zero at a local minimum of the bound 

constrained problem. 

 

 

3.5.4.3 Zeroth-Order Regularization Method 
 

Solutions of ill-posed inverse problems inevitably end up with active bounds. This active 

bounds problem can be avoided with the zeroth-order regularization method (Press et. al., 

1986). The objective function shown in Eq. 3.4 is to minimize both the residual norm 

(first term) and the solution norm (second term). The regularization parameter λ  in the 

equation acts as a weight between these two norms and is often acquired empirically. 

Increasing λ  pulls the solution away from minimizing residual norm in favor of 

minimizing solution norm, which means initial values of optimization parameters are 

weighted high. Also, relative least square form is used in the objective function to 

compensate strong contributions of high magnitude state variables (Saez et. al., 1992). 

 

Objective Function: 

2 2*
i i n n

*
i ni n

P M x xF
P x

⎛ ⎞ ⎛− −
= + λ×⎜ ⎟ ⎜

⎝ ⎠ ⎝
∑ ∑

⎞
⎟
⎠

j )×

k

     (3.4) 

i j j
j

P x (EMC Q=∑        (3.5) 

k k k
j 1, j 2, j 3, j 4, j 5, jEMC C C ADD C R C D C I= + × + × + × + ×   (3.6) 
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where, I = Subscript, which denotes storm events 

P i  = Predicted total loadings using regression equations for landuse types 
[Kg] 

        M i  = Measured total loadings [Kg] 

        = Regularization parameter λ

n = Subscript, which denotes optimization parameters 

nx , = Optimization parameters jx

*
nx = Initial values of optimization parameters 

j = Subscript, which denotes landuse types 

EMC j = Event mean concentration for each landuse types 

Q = Total runoff volume from each landuse types j

C  = Constants from regression equations. These constants also serve as 

optimization parameters for the Retail/Commercial, Educational 

Facilities, High Density Single Family Residential, Multi-Family 

Residential landuse types. These constants become initial values 

when used as optimization parameters. 

1..5, j

K = Superscript, which denotes 

 0 for Vacant landuse type, 

       1 for Light Industrial, Mixed Residential,  

          and Transportation landuse types, 

      -1 for the other landuse types 

ADD = Antecedent dry days [day] 

R = Rainfall [in] 

D = Storm duration [hours] 

I = Maximum intensity [in/hr] 
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The optimization parameters  in Eq. (3.5) behave as weighting factors. Contributions of 

each landuse types to the total loadings of upper Ballona Creek watershed will be 

adjusted by these weighting factors . This is to account for the variability of the percent 

of each representative landuse types for the monitoring catchments, which were ranged 

from 54% to 100%, as mentioned in the beginning of Section 3.5.4. 

jx

jx

 

 

3.5.4.4 Initial Values and Bound Constraints of Optimization Parameters 
 

Initial values of the optimization parameters  were given with the underlined 

coefficients of the regression equations shown in Table 3.5.3. Standard deviations of 

regressions were used as bound constraints for these parameters. Example of these 

standard deviations for the Retail/Commercial landuse is shown in Table 3.5.4. Also, the 

initial values of the optimization parameters  were given all ones. The upper and lower 

bounds were 1.7 and 0.3, respectively. 

nx

jx
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Table 3.5.4 Example of Total Zn Regression Analysis for the Retail/Commercial Landuse 

Unstandardized Coefficients Standardized 
Coefficients Model 

B Std. Error Beta 

Sig. 

Constant 218.45 56.92   .00 

Rainfall 108.66 60.72 .92 .10 

Duration -309.64 155.22 -1.02 .07 

 

 

3.5.4.5 The L-Curve 
 

A graphical tool for the analysis of ill-posed problems is called L-curve, which is shown 

in Figure 3.5.6. This figure was constructed by trying many different λ  values in the L-

BFGS-B optimization program and plotting calculated solution and residual norms in 

terms of  values.  λ

 

Solutions of real world problems are always contaminated by various types of 

perturbation errors, such as measurement errors and approximation errors. The L-curve 

shows the compromise between minimization of perturbation error and the error caused 

by regularization. For the horizontal part of the curve, solution changes a little with the 

regularization parameter, which means that the error caused by regularization dominates. 

In contrast, the vertical part of the curve corresponds to solutions that are dominated by 

the perturbation error, where the solution norm changes much with the regularization 

parameter and residual norm changes little.  
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Hansen (1992) showed that the optimal regularization parameter is not far from the 

regularization parameter that corresponds to the L-curve’s corner. Thus, by selecting 

=0.5, we can compute regularized solution with optimal balance between perturbation 

errors and regularization errors. 

λ
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Figure 3.5.6 The L-Curve withλ  Values as Data Labels. 

 

 

3.5.5 Stormwater Runoff Quality Prediction using the Optimization Techniques 
 

Preliminary regression analysis was performed with the available 36 storm events (See 

Section 3.4.5) and storm characteristics calculated with LA Civic Center rainfall records 
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(See Section 3.4.3.1) for the total Zn measured at the emission site of upper Ballona 

Creek watershed. Two outliers (1/24/2001, 10/31/2003) were dropped by this preliminary 

test (See Section 3.5.4.1). For two storm events (4/6/1999, 2/20/2000), no rainfall records 

were available from the LA Civic Center rainfall gauge station. Among the remaining 32 

storm events, 25 events from 1998 to 2001 were used for optimization and 7 events from 

2001 to 2004 were used for validation. 

 

The regularization parameterλ  used was 0.5, which corresponds to the corner of the L-

curve as mentioned in the previous section. Table 3.5.5 shows optimization program 

parameters after a successful execution. There were no active bounds. The program 

stopped execution because the norm of projected gradient was sufficiently small.  

 

 Table 3.5.5 Test Results of L-BFGS-B for 18 Parameters 

Parameters Iterations Segments 
Explored 

Active 
Bounds 

Norm of 
Projected 
Gradient 

F 

18 209 216 0 6.767  610−× 5.529 

 
 

The optimized 18 parameters are shown in Table 3.5.6. The percent of representative 

landuse for each landuse types, which was shown in Table 3.5.1, are shown again for 

convenience. In general, weighting factors were closer to unity when the representative 

landuses for corresponding landuse types were closer to 100%. 
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Table 3.5.6 Optimized Parameters and Regression Coefficients 

Coefficients 

Landuse Types 
Intercept ADD 

[days] 
Rainfall 

[cm] 
Duration 

[hrs] 
Intensity 
[cm/hr] 

jx  
Percent of 
Representative 
Landuse 

Vacant 25.00 0.96 98 

Light 
Industrial 202.66 24.60 -1.44 -1.25 -0.39 0.63 74 

Mixed 
Residential 123.29 3.51 -5.75 1.30 -36.73 0.68 77 

Transportation 241.51 7.34 -77.95 -3.61 189.25 0.94 73 

Retail/ 
Commercial 167.42 16.24 -309.40 0.32 54 

Educational 
Facilities 62.13 2.22 0.96 90 

High Density 
Single Family 
Residential 

22.21 -2.01 2.10 0.92 100 

Multi-Family 
Residential 52.13 0.79 0.92 74 

* Underlined numbers indicate optimized parameters. 

 

Total Zn loadings of the upper Ballona Creek watershed for the 32 storm events 

calculated using the optimized regression coefficients and weighting factors along with 

the storm characteristics calculated from the LA Civic Center rainfall records were 

plotted against the measured loadings in Figure 3.5.7. The diamonds indicate 25 storm 

events used in optimization and the triangles indicate 7 storm events used to validate the 

optimized quality prediction model. Predicted and measured loadings showed a 

reasonably good agreement without any site specific information. Furthermore, this 

 79



model can be applied to LA County since the landuse monitoring sites are scattered over 

the LA County.  

 

To illustrate effectiveness of the regularization method, 10 regression coefficients of the 

landuse types for R-square values less than 0.4 were used in optimization without 

regularization. In this analysis, all of the 32 storm events were used in the optimization 

process. Nevertheless, the predictions of total Zn loadings generally over estimate the 

corresponding measured ones, which are shown in Figure 3.5.8.  The RMS error of the 

optimized model without regularization for total Zn was 24 Kgs and only 9 Kgs with 

regularization, which is low compared to the mean discharge of 77 Kgs per storm event. 

 

To check the validity of the optimized regression coefficients, EMCs of 

Retail/Commercial landuse monitoring catchments were calculated using the coefficients 

optimized with regularization and the results are shown in Figure 3.5.9. For the same 

landuse type, EMCs were calculated using the coefficients optimized without 

regularization and the results are shown in Figure 3.5.10. Again, calculated EMCs using 

optimization with regularization show better predictions overall than the calculated 

EMCs using optimization alone. 
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Figure 3.5.7 Comparisons of Predicted and Measured Loads of Total Zn for the Upper 

Ballona Creek Watershed using Regularization and 18 Optimization 
Parameters. 

     : 25 storm events used for optimization (1998 – 2000 storm seasons). 
  : 7 storm events used for validation (2001 – 2003 storm seasons). 
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Figure 3.5.8 Comparisons of Predicted and Measured Loads of Total Zn for the Upper 

Ballona Creek Watershed using 10 Optimization Parameters. 
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Figure 3.5.9 Comparisons of Predicted and Measured EMCs of Total Zn for 

Retail/Commercial Landuse using Regularization and 18 Optimization 
Parameters. 
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Figure 3.5.10 Comparisons of Predicted and Measured EMCs of Total Zn for 

Retail/Commercial Landuse using 10 Optimization Parameters. 
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4. DISCUSSION 
 

The approach used in this dissertation can be used for a wide range of pollutants. In order 

to produce a manageable problem, a subset of the common pollutants was chosen.  

Among the conventional pollutants, metals and nutrients, Total Zn, Total Kjeldahl 

Nitrogen (TKN), and Total Suspended Solids (TSS) were chosen for study.  

 

Trace metals have toxic effects on aquatic plants and animals. They accumulate in the 

sediments of rivers, lakes, and seabed as well as in fish tissue. Zinc is a byproduct of 

vehicle tire wear and motor oils. It is also produced by the corrosion of galvanized iron. 

A TMDL was set for total zinc for the Ballona Creek watershed by Los Angeles Regional 

Water Quality Control Board and US EPA Region 9 in 2005.  Metals are usually more 

toxic to aquatic organisms in their dissolved form.  Total zinc was used for the TDML as 

a compromise since it is less costly to measure the total form than measuring both forms.  

Recent study showed that there is a strong relationship between dissolved and total zinc. 

Often the fraction of the total concentration that is dissolved is a predictable fraction and 

Han et al. (2006a) showed that this was true for zinc in highway runoff. The Los Angeles 

Regional Water Quality Control Board, by regressing LADPW’s composite stormwater 

samples from December 1994 to January 2002, showed that the dissolved zinc averaged 

79% of the total zinc.   

 

TKN is contained in animal and human waste, decaying organic matter, and living 

organic material like algae cells. Nitrogen promotes algae blooms, which harm aquatic 
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life by depleting oxygen in the water and decreasing light penetration for desirable 

photosynthetic organisms. TSS are solids in water that can be trapped by a 0.45 µ filter. 

High concentrations of TSS decrease light penetration and increase water temperature 

because the suspended particles absorb heat from sunlight. Also, high TSS in a water 

bodies is often associated with higher concentrations of bacteria, nutrients, and metals. 

Model results for these three pollutants are discussed in this section. 

 

 

4.1 REGRESSION MODELS OF EMCs FOR LANDUSE MONITORING 
CATCHMENTS 

 

To characterize pollutant contributions of landuse types to total loads of the upper 

Ballona Creek, multiple linear regression analyses were performed using EMCs obtained 

from the landuse monitoring catchments. Four types of storm characteristics, which are 

antecedent dry days, total rainfall, rainfall duration, and maximum hourly rainfall 

intensity, were used as independent variables. Site specific characteristics were not used 

in the analyses to avoid expensive and time consuming field surveys. Developed 

regression models for TKN and TSS EMCs are shown in Tables 4.1.1 to 4.1.4 along with 

standard errors and significances of regression coefficients. Regression models for Total 

Zn EMCs are shown in Table 3.5.3 (See Section 3.5.3). 



Table 4.1.1 Multiple Linear Regression Models of TKN EMCs [ ] for LADPW Landuse Monitoring Catchments mg / L
 

Coefficients 
Landuse Types 

Intercept P (1) ADD 
[days] P Rainfall 

[cm] P Duration 
[hrs] P Intensity 

[cm/hr] (2)  
P 

2R
(3)  

N
(4)  

Models
(5)  

Vacant         1.00 0.00 0.075 0.52 0.093 0.06 -3.32 0.09 -0.03 0.11 0.25 22  Inverse

Light Industrial              2.45 0.00 0.062 0.00 -0.869 0.12 0.01 0.81 1.31 0.42 0.62 32 Linear

Mixed 
Residential 3.19             0.00 0.033 0.00 0.419 0.26 -0.07 0.22 -2.30 0.02 0.71 24 Linear

Transportation              2.01 0.00 0.035 0.00 -1.091 0.05 0.05 0.29 1.19 0.33 0.75 35 Linear

Retail/ 
Commercial 8.65        0.00 0.003 0.91 -2.120 0.08 0.01 0.92 (6)   0.42 14  Linear

Educational 
Facilities 1.49             0.00 0.052 0.00 0.117 0.55 -0.02 0.32 -0.19 0.79 0.85 21 Linear

High Density 
Single Family 
Residential 

3.59             0.02 0.064 0.00 0.140 0.89 -0.04 0.79 -2.46 0.38 0.80 13 Linear

Multi-Family 
Residential 1.89          0.00 -0.306 0.20 0.128 0.04 -2.79 0.41 -0.03 0.18 0.48 22  Inverse

(1) Significance of independent variables. 

(2) Peak one-hour intensity of a storm event in centimeter per hour calculated from the NCDC hourly rainfall data. 

(3) Regression coefficients of underlined R-square values ( .6 ) were used as optimization parameters. 2R 0<

(4) Number of storm events used (LADPW stormwater runoff monitoring data from1998 to 2001). 

(5) Best fit regression models for each landuse types. 

(6) Data not available (LADPW does not measure maximum intensity and NCDC rain gauge station is not available near this site). 
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Table 4.1.2 Standard Error of TKN Regression Coefficients 
 

Landuse Types Station No. Intercept ADD Rainfall Duration Intensity 

Vacant       S11 0.24 0.115 0.30 1.85 0.11

Light Industrial       S24 0.56 0.011 3.53 0.05 10.35

Mixed Residential       S27 0.45 0.006 2.33 0.06 5.85

Transportation       S23 0.37 0.004 3.41 0.04 7.73

Retail/Commercial       S08 1.56 0.023 6.88 0.10 n/a

Educational Facilities       S25 0.42 0.006 1.24 0.02 4.54

High Density Single 
Family Residential S18      1.22 0.013 6.59 0.15 17.12

Multi-Family 
Residential S26      0.45 0.230 0.37 3.31 0.13

 
* n/a: Data not available 
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Table 4.1.3 Multiple Linear Regression Models of TSS EMCs [ ] for LADPW Landuse Monitoring Catchments mg / L
 

Coefficients 
Landuse Types 

Intercept P (1) ADD 
[days] P Rainfall 

[cm] P Duration 
[hrs] P Intensity 

[cm/hr] (2)  
P 

2R
(3)  

N
(4)  

Models
(5)  

Vacant              232.70 0.03 23.33 0.63 32.19 0.12 -1299.81 0.07 -8.23 0.25 0.26 24 Inverse

Light Industrial              156.18 0.00 5.68 0.00 -50.14 0.17 -1.34 0.65 100.78 0.34 0.50 30 Linear

Mixed 
Residential 73.05             0.03 2.22 0.01 3.17 0.90 -2.23 0.61 -15.57 0.79 0.44 22 Linear

Transportation              59.87 0.08 1.57 0.00 -18.60 0.69 1.51 0.70 28.28 0.79 0.38 35 Linear

Retail/ 
Commercial 90.71            0.01 -150.35 0.27 7.48 0.05 -153.81 0.03 (6)  0.44 13 Inverse

Educational 
Facilities 127.60             0.00 -0.35 0.47 38.14 0.20 -4.33 0.19 -34.13 0.61 0.19 20 Linear

High Density 
Single Family 
Residential 

76.36             0.17 -10.55 0.59 -67.64 0.03 1684.44 0.02 2.58 0.51 0.58 12 Inverse

Multi-Family 
Residential -20.18             0.60 12.43 0.41 3.26 0.34 514.02 0.10 -1.05 0.39 0.45 21 Inverse

(1) Significance of independent variables. 

(2) Peak one-hour intensity of a storm event in centimeter per hour calculated from the NCDC hourly rainfall data. 

(3) All regression coefficients were used as optimization parameters since R-square values are low for all landuse types ( 6 ). 2R 0.<

(4) Number of storm events used (LADPW stormwater runoff monitoring data from1998 to 2001). 

(5) Best fit regression models for each landuse types. 

(6) Data not available (LADPW does not measure maximum intensity and NCDC rain gauge station is not available near this site). 
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Table 4.1.4 Standard Error of TSS Regression Coefficients 
 

Landuse Types Station No. Intercept ADD Rainfall Duration Intensity 

Vacant       S11 101.56 48.08 128.22 668.04 45.09

Light Industrial       S24 37.53 1.33 226.66 2.94 665.43

Mixed Residential       S27 30.46 0.74 161.71 4.27 377.68

Transportation       S23 32.82 0.38 300.07 3.87 680.40

Retail/Commercial       S08 29.61 126.89 20.84 57.46 n/a

Educational Facilities       S25 35.19 0.47 184.85 3.16 419.21

High Density Single 
Family Residential S18      49.68 18.59 153.90 574.27 24.18

Multi-Family 
Residential S26      37.95 14.74 21.29 291.78 7.55

 
* n/a: Data not available. 
 

 



The strength of the relationship between regression model and dependent variables are 

explained with R-square values. R-square is called the multiple correlation or coefficient 

of multiple determinations and is the percent of the variance in the dependent variable 

explained by the independent variables. Table 3.5.3 shows that the regression explained 

more than 80% of the variability in total Zn EMCs for Light Industrial, Mixed 

Residential, and Transportation landuses. The TKN EMC correlations better explained 

(R2> 0.8) the variability in other landuse types: Educational Facilities and High Density 

Single Family Residential landuses. R-square values for the Retail/Commercial and 

Multi-Family Residential landuses were below 0.5 for both total Zn and TKN. For TSS 

EMC correlations, all R-square values were low ( < 0.6). 2R

 

Another measure of the regression model strength is the F test, which is used to test the 

significance of independent variables. If a significance, which is the probability of F, is 

less than 0.05, the variable is considered significantly better explanatory than would be 

expected by chance. In general, ADD was the most significant explanatory variable for 

the three pollutant EMCs analyzed. Total rainfall was the next significant variable and the 

maximum hourly rainfall intensity was the least significant for all three pollutant EMCs. 

 

The number of storm events used in these correlations ranged from 12 to 35, which were 

measured for the storm season 1998 to 2001 by the LADPW. For most of the landuse 

types, the ranges of storm characteristics for the sampled storm events are limited as 

shown in Table 3.5.2 (See Section 3.5.2). For example, total rainfall for the 
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Retail/Commercial landuse ranged from 5.1 mm to 35.6 mm. Therefore, the developed 

regression models are applicable to storm events whose storm characteristics do not 

deviate too much from the ranges shown in Table 3.5.2. For example, the storm event 

occurred on 3/15/2003, whose total rainfall is 104 mm as shown in Table 3.4.3, does not fit 

with the developed regression models. 

 

 

4.2 POLLUTANT LOAD ANALYSIS USING STORMWATER RUNOFF 
QUALITY MODELS 

 

Characterization of pollutant load contributions of landuse types to total loads of the 

upper Ballona Creek was achieved through optimization techniques described in Section 

3.5.4. Preliminary correlation analysis, L-curves, optimization parameters, and total load 

predictions for the three pollutants are described in this section. 

 

 

4.2.1 Preliminary Correlations of Total Loads and Storm Characteristics 
 

Multiple linear regression analyses were performed to determine if the total pollutant 

loadings can be described with storm characteristics. If total loadings of upper Ballona 

Creek watershed can be described with storm characteristics calculated from the LA 

Civic Center rainfall records, landuse contributions to the total loadings might be 

characterized. Also, data screening can be performed with these analyses, as mentioned 

in Section 3.5.4.1. 
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Results of regression analyses are shown in Table 4.2.1. The R-square value of total Zn 

loading was the highest (0.75) among the three pollutants but less than one-half of the 

variance in loadings was explained for TSS by the storm characteristics. Total rainfall 

was a significant variable for total Zn and TKN loadings, while maximum hourly rainfall 

intensity was significant for TSS loadings.
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Table 4.2.1 Multiple Linear Regression Models of Total Pollutant Loads for Upper Ballona Creek Watershed 
 

Coefficients 
Pollutant 

Loads 
Intercept P (1) ADD 

[days] P Rainfall 
[cm] P Duration 

[hrs] P 
Intensity 
[cm/hr]

(2)  
P 

2R  N
(3)  

Total Zn 
[Kg] 25.61   0.22 0.35 0.60 45.21 0.00 -0.76 0.46 -9.58 0.83 0.75 32

TKN 
[Ton] 

-0.17   0.91 -0.02 0.40 1.71 0.03 -0.07 0.39 6.18 0.09 0.63 34

TSS 
[Ton] 

-92.26   0.26 0.99 0.67 18.94 0.75 7.71 0.08 448.61 0.05 0.44 30

(3) Number of storm events used (LADPW stormwater runoff monitoring data from1998 to 2003 storm seasons). 

(2) Peak one-hour intensity of a storm event calculated from the NCDC hourly rainfall data. 

TSS: 1/10/2001, 11/24/2001, 11/8/2002, and 10/31/2003. 

(1) Significance of independent variables. 

Total Zn: 1/24/2001 and 10/31/2003 

(4) Identified outliers: 

 



4.2.2 L-Curves 
 

The behavior of the L-curve is more easily observed using a log-log scale and the 

criterion for choosing the regularization parameter is to choose a point on this curve that 

is at the corner of the vertical piece as shown in Figure 4.2.1 to Figure 4.2.3 (Hansen and 

O’Leary, 1993). The figures show steep horizontal part, which is due to noisy data 

according to Hansen. For noiseless data, the L-curve on a log-log scale is flat. The λ  

values for total Zn, TKN, and TSS were 0.5, 7.6, and 9.7, respectively. 
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Figure 4.2.1 L-Curve for Total Zn 

 

 93



1.E-05

1.E-03

1.E-01

1.E+01

1.E+03

1.E+00 1.E+01 1.E+02

Residual Norm

So
lu

tio
n 

N
or

m
λ = 7.6

λ = 7.05E-17

λ = 146.9

 
Figure 4.2.2 L-Curve for TKN 
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Figure 4.2.3 L-Curve for TSS 
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4.2.3 Optimized Parameters 
 

Using the λ  values obtained in the previous section, optimization parameters were 

calculated for TKN and TSS, and are shown in Table 4.2.2 and 4.2.3. Optimized 

parameters for total Zn are shown in Table 3.5.6. Regression coefficients of landuses with 

R-square values lower than 0.6 were used as optimization parameters for both TKN and 

TSS. That is, regression coefficients of Vacant, Retail/Commercial, Multi-Family 

Residential landuses for TKN and all regression coefficients for TSS were used as 

optimization parameters. The calculated residual norms for total Zn, TKN, and TSS were 

5.1, 6.5, and 13.6, respectively. Thus, TSS correlation is expected to be worse than for 

the other pollutants. Landuse-type weighting factors for TKN showed the same tendency 

as total Zn. The weighting factor of the Retail/Commercial landuse, which has the lowest 

percent representative landuse, had the greatest deviation. However, weighting factors for 

TSS did not show any tendency. 
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Table 4.2.2 Optimized Parameters and Regression Coefficients for TKN EMCs 

Coefficients 

Landuse Types 
Intercept ADD 

[days] 
Rainfall 

[cm] 
Duration 

[hrs] 
Intensity 
[cm/hr] 

jx  
Percent of 
Representative 
Landuse 

Vacant 1.01 0.075 0.09 -3.33 -0.03 0.997 98 

Light 
Industrial 2.45 0.062 -2.21 0.01 3.31 1.012 74 

Mixed 
Residential 3.19 0.033 1.06 -0.07 -5.85 0.994 77 

Transportation 2.01 0.035 -2.77 0.05 3.03 1.005 73 

Retail/ 
Commercial 

10.21 0.003 -1.74 0.01 n/a 1.135 54 

Educational 
Facilities 1.49 0.052 0.30 -0.02 -0.48 1.004 90 

High Density 
Single Family 
Residential 

3.59 0.064 0.36 -0.04 -6.25 1.005 100 

Multi-Family 
Residential 1.93 -0.306 0.13 -2.81 -0.03 1.002 74 

 Underlined numbers indicate optimized parameters. 
 n/a: Data not available. 
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Table 4.2.3 Optimized Parameters for TSS EMCs 

Coefficients 

Landuse Types 
Intercept ADD 

[days] 
Rainfall 

[cm] 
Duration 

[hrs] 
Intensity 
[cm/hr] 

jx  
Percent of 
Representative 
Landuse 

Vacant 285.91  23.63  34.86 -1205.52 -6.28 1.121 98 

Light Industrial 176.91 5.77 -46.65 -1.31 103.82 1.099 74 

Mixed 
Residential 87.50 2.26 3.21 -1.96 -15.34 1.133 77 

Transportation 61.07 1.57 -18.41 1.53 28.38 1.025 73 

Retail/ 
Commercial 

111.68 -118.51 7.66 -150.96 n/a 1.115 54 

Educational 
Facilities 135.54 -0.35   39.31 -4.15 -33.92  1.048 90 

High Density 
Single Family 
Residential 

97.13 -10.34 -44.83 2152.11 3.27  1.524 100 

Multi-Family 
Residential -19.80  12.51 3.27 526.07 -1.01 0.989 74 

 n/a: Data not available. 

 

 

4.2.4 Stormwater Runoff Quality Predictions 

 

TKN and TSS loadings calculated for the upper Ballona Creek watershed using the 

optimized regression coefficients and weighting factors along with the storm 

characteristics calculated from the LA Civic Center rainfall records were plotted against 

the measured loadings in Figure 4.2.4 and 4.2.5, respectively. The diamonds indicate 

storm events used in optimization and the triangles indicate storm events used to validate 
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the optimized prediction model. Corresponding total Zn loading comparisons were shown 

in Figure 3.5.7. Predicted and measured loadings for TKN showed reasonable agreement 

without using site specific information. The RMS error for TKN was 0.5 Kgs, which is 

low compared to the mean discharge of 2.9 Kgs per storm event. 
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Figure 4.2.4 Comparisons of Predicted and Measured Loads of TKN for the Upper 
Ballona Creek Watershed using Regularization and 22 Optimization 
Parameters. 

     : 24 storm events used for optimization (1998 – 2000 storm seasons). 
  : 5 storm events used for validation (2001 – 2003 storm seasons). 
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Figure 4.2.5 Comparisons of Predicted and Measured Loads of TSS for the Upper 
Ballona Creek Watershed using Regularization and 47 Optimization 
Parameters. 

     : 24 storm events used for optimization (1998 – 2000 storm seasons). 
  : 4 storm events used for validation (2001 – 2003 storm seasons). 

 

The RMS error for TSS was 25 Kgs for the mean discharge of 220 Kgs. However, 

measured TSS loads for the validation dataset, which are shown with triangles in Figure 

4.2.5, were much lower than the predicted loads. To investigate possible causes to this 

discrepancy, box plots of the storm characteristics are shown in Figure 4.2.6 for 

optimization and validation datasets within the circle in the figure. If we look at the 

maximum hourly rainfall intensity, which is the most significant explanatory variable for 

TSS loads, median of validation dataset is higher than the median of optimization dataset. 

This means that the measured loads for the validation dataset should be higher than the 
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measured loads for the optimization dataset. This discrepancy might be caused by 

measurement errors. Also, it might be an indication of other activities in the watershed, 

which would require further investigation to understand. 

 

 

          (a) Optimization Dataset   (b) Validation Dataset 

Figure 4.2.6 Box Plots of Storm Characteristics for Optimization and Validation Datasets. 
 Lower and upper box boundaries: 25 and 75 percentiles, respectively; Top 

and bottom horizontal lines: Maximum and minimum of the observed values, 
respectively; Heavy black line: Median. 

 

 

4.2.5 Landuse Contributions to Total Loads  

 

Runoff volumes from eight LADPW landuse types were calculated using the model 

implemented in ArcGIS platform for Dec. 2, 2001 storm event as an example. These 

runoff volumes and the optimized model for total Zn described in previous section were 

used to calculate loadings of each landuse types. Percent contributions from eight 
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LADPW landuse types to the upper Ballona Creek watershed are shown in Figure 4.2.7. 

Light Industrial, Retail/Commercial, Mixed Residential, and High Density Single Family 

Residential landuses were the major pollutant contributors. 
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Figure 4.2.7 Percent Contributions of Landuses to Total Zn Load of Upper Ballona Creek 

 

To better compare the pollution contributions as a function of landuse and area, the 

concept of “leverage” is used. Leverage is defined as the percent load divided by percent 

area and is shown in Figure 4.2.8 for various landuse types. The leverage is a good 

indicator of pollution level. If the watershed is uniformly polluted, leverage for all 

landuse types is equal to one. If the cost of applying BMPs is proportional to area, 
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landuses with higher leverages, such as Transportation and Light Industrial landuses in 

Figure 4.2.8 are better candidates for further BMP considerations. 
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Figure 4.2.8 Total Zn Leverage for Eight Landuse Types 

 

If landuses with higher leverages are clustered together, those areas would be the first 

target of BMP application. To identify whether there are clustered areas of higher 

leverage landuses, three landuse types with higher leverages, which are Transportation, 

Light Industrial, and Retail/Commercial landuses were chosen and the distributions of the 

three landuses in the watershed are shown in Figure 4.2.9. Among the three landuse types 

shown in Figure 4.2.9, Light Industrial landuse shows some clusters. Two candidate 

subwatersheds were identified for BMP considerations and showed in the figure with its 
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drain locations. The subwatersheds in the figure were named as Industrial and Downtown, 

which are labeled in the figure. These subwatershed names will be used in the subsequent 

discussions. 

 

 

 

Figure 4.2.9 Distribution of High Leverage Landuses (Light Indust
Retail/Commercial, and Transportation Landuses) 

 

The two subwatershed areas for each landuse type and their runoff volumes a

Table 4.2.4, for the Dec. 2, 2001 storm event, as an example analysis. Load c

from the two subwatersheds were calculated from the runoff volumes and co

load contributions from highways and local roads in the subsequent discussio
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Table 4.2.4 Area of Landuse Types and its Runoff for Dec. 2, 2001 Storm Event 

Downtown Industry 
Landuse Types 

Area [Hectare] Runoff [ ]3m Area [Hectare] Runoff [ ]3m

Vacant 2.0 10 134.5 2,130

Educational 
Facilities 30.5 770 5.1 240

High Density 
Single Family 
Residential 

1.4 10 88.3 1,730

Light Industrial 274.9 6,500 183.3 8,410

Multi-Family 
Residential 9.1 100 36.2 710

Mixed Residential 205.3 4,970 1.2 20

Retail/Commercial 183.3 4,720 4.2 190

Transportation 75.6 1,990 0 0

Total 782.1 19,070 452.8 13,430

 
 

Besides the LADPW landuse types, two additional categories, which are highways and 

local roads, were separately studied as mentioned in Section 3.4.4. The EMCs in Table 

4.2.5 are averages of six Caltrans sampling sites around the upper Ballona Creek 

watershed. The six sampling sites used are shown in Figure 4.2.10. These EMCs were 

used for load calculations for highway runoffs within the watershed. For the load 

calculation for local roads, EMCs of LADPW Transportation landuse are used. 
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Table 4.2.5 Average EMCs of Six Caltrans Highway Sites around the Upper Ballona 
Creek Watershed 

Dissolved 
P 

Total 
P 

Nitrate-
N TKN TSS Dissolved 

Cu 
Total 
Cu 

Total 
Pb 

Dissolved 
Zn 

Total 
Zn 

0.14 0.51 1.06 3.81 120.73 29.04 54.77 46.26 185.46 282.02 

 Metal EMC units are g / Lµ . All other units are . mg / L

 

 

 

Figure 4.2.10 Caltrans Sampling Sites 
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Calculated results for the subwatersheds, highways, local roads, and upper Ballona Creek 

watershed are shown in Table 4.2.6. For comparison purpose, percent contributions and 

leverages for the three categories are shown in Figure 4.2.11 and 4.2.12, respectively. 

 

Table 4.2.6 Calculated Results of Subwatersheds, Highways, and Local Roads 

 Downtown Industry Highways Local Roads Upper Ballona 
Creek 

EMC [ ] g / Lµ – –              282.0            212.1 – 

Length [Km] – –                47         2,754 – 

Area [Hectare]          782         453              152         2,518          23,212 

Runoff [ ] 3m     19,100    13,400           6,077       98,000        454,400 

Event Load 
[Kg]              2.5             1.7                  1.7              24.7                39.7 
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Figure 4.2.11 Percent Contributions of Total Zn for Subwatersheds, Highways,  

         and Local Roads 
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Figure 4.2.12 Total Zn Leverage for Subwatersheds, Highways, and Local Roads 
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Leverages of Downtown and Industry subwatersheds are both about two, which means 

doubled load reduction could be achieved by treating these two subwatersheds as 

compared to the average. However, percent load contributions of Downtown and Industry 

subwatersheds are only 6.3 % and 4.3 %, respectively. Thus, reduction in total load 

would be small. For the Highway category, leverage is greater (6.6) than the others (the 

next highest was 4.1 for Transportation among LADPW landuse types) but percent 

contribution to the total watershed load is also small, which is only 4.3 %. This is 

attributable to the runoff contribution of highways, which is only 1.3 % of the total 

watershed runoff. Local road area is only 10.9 % and its runoff volume is 21.6 % of the 

total and the load contribution from local roads to the total watershed load is surprisingly 

high. Local roads contributed 52.4 % of the total load as shown in Figure 4.2.11. This 

makes local roads the best candidate for further BMP considerations. 

 

 

4.3 BEST MANAGEMENT PRACTICES (BMP) 
 

The purpose of this section is to show that there exist better and worse BMP strategies. 

To approach the problem of BMP evaluation, currently defined TMDLs and load trends 

of upper Ballona Creek watershed were studied first. 
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4.3.1 Total Maximum Daily Load (TMDL) 
 

For certain toxic pollutants, the US EPA has established numeric criteria that serve as 

water quality standards for California’s inland surface waters. The US EPA established 

the numeric criteria in the California Toxics Rule (CTR) to protect aquatic life in all of 

California’s inland surface waters. If a pollutant is present in surface water at a level 

higher than a CTR criterion, then the surface water is toxic. Acute freshwater quality 

objective established in the CTR for dissolved Zn is 94 g / Lµ  for Ballona Creek 

watershed. Chronic criteria are typically based on exposures, which occur over a four day 

time interval and acute criteria are typically based on a shorter time interval. Numeric 

targets for the TMDL was calculated based on this numeric objective excluding direct 

atmospheric deposition effect (0.6 %). Freshwater wet weather numeric target for total Zn, 

which is equivalent to EMC based on flow weighted composite, is 119 . The total 

Zn TMDL was prepared by Los Angeles Regional Water Quality Control Board and US 

EPA Region 9 (http://www.waterboards.ca.gov/losangeles) and is defined by the 

following equation. 

g / Lµ

 

 Total Zn TMDL [g/day] = (1.18 × 410− ) × Daily storm volume [L]  (4.1) 
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4.3.2 Comparisons of Total Zn Loads and TMDLs 
 

TMDLs were calculated using Eq. 4.1 and compared with measured total Zn loads for the 

1998 to 2003 storm seasons. The results are shown in Figure 4.3.1. 
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Figure 4.3.1 Comparisons of Total Zn Loads and TMDLs for Ballona Creek Watershed 

 

Since TMDLs are defined in terms of EMCs, they are likely to be violated by small storm 

events. Among the 32 storm events, two events exceeded TMDLs. Total Zn load of the 

Feb. 9, 1999 storm event exceeded the TMDL by 18% and the Jan. 8, 2001 storm event 

exceeded the TMDL by over 70%. Total rainfall for these two storm events were 9.4 and 

6.9 mm, respectively. Therefore, BMP strategies focusing the treatment of small storm 
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events or first flush of large storm events are preferred. Structural BMP applications will 

be discussed for these two storm events in the subsequent sections. 

 

 

4.3.3 Structural BMPs 
 

If the total zinc concentration of the Jan. 8, 2001 storm event is uniform over the upper 

Ballona Creek watershed, and over the duration of the storm event, BMPs with pollutant 

removal efficiencies higher than 44 % will be needed to treat the entire runoff to meet the 

required TMDL. Fortunately, recent studies have identified strong first flush phenomena 

for the highways, which show that the most polluted stormwater runoff occurs during the 

first part of the runoff (Han et. al, 2006b). Also, the leverages shown in Figure 4.2.12 

were higher for highways and local roads. Therefore, among the BMPs shown in Table 

4.3.1, a sand filter was selected and applied to the two subwatersheds mentioned in 

Section 4.2.5. It has high pollutant removal and is widely applicable for small sites. Later 

in this dissertation, a strategy utilizing leverage and first flush phenomena is evaluated. 

 



Table 4.3.1 Comparison of Issues for BMP Selection (Weld et. al., 1997) 

BMP 
Pollutant 
Removal 
Reliability 

Longevity Maintenance 
Requirements 

Applicability to 
Sites 

Environmental 
Concerns 

Comparative 
Cost 

Special 
Considerations 

(Extended) 
Detention 
Basin 

Moderate  20+ years Low 
Widely applicable, 
larger drainage  
areas (10+ acres) 

Possible 
downstream 
warning; low 
bacteria removal 

Low to 
moderate 

Available land 
area, design 
considerations, 
sediment 
forebay 

Wet 
(Retention) 
Pond 

Moderate 
to high 20+ years Low to 

moderate 

Widely applicable, 
larger drainage 
areas (7+ acres) 

Possible 
downstream 
warning; low 
bacteria removal 

Moderate to 
high 

Available land 
area, design 
considerations, 
sediment 
forebay 

Constructed 
Stormwater 
Wetland 

Moderate 
to high 20+ years  Low to 

moderate 

Widely applicable, 
larger drainage 
areas (7+ acres) 

Possible 
downstream 
warning; wildlife 
benefits 

Marginally 
higher than 
wet ponds 

Available land 
area, design 
considerations, 
sediment 
forebay 

Water 
Quality 
Swale 

Moderate  20+ years Low to 
moderate Widely applicable Restricted use for 

hotspots 
Low to 
moderate 

Pretreatment, 
check dams, 
careful design 

Infiltration 
Trench 

Moderate 
to high 

High rates of 
failure within 
first 5 years 

High 

Highly restricted; 
small sites, proper 
soils, depth to 
water table and 
bedrock, slopes 

Potential for 
ground water 
contamination; 
restricted use for 
hotspots 

High; 
rehabilitation 
costs can be 
considerable 

Recommended 
with careful site 
evaluation and 
pretreatment 

Infiltration 
Basin Moderate 

High rates of 
failure within 
first 5 years 

High 

Highly restricted; 
small sites, proper 
soils, depth to 
water table and 
bedrock, slopes 

Potential for 
ground water 
contamination; 
restricted use for 
hotspots 

Moderate, 
rehabilitation 
costs can be 
high 

Not widely 
recommended 
until longevity is 
improved 
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BMP 
Pollutant 
Removal 
Reliability 

Longevity Maintenance 
Requirements 

Applicability to 
Sites 

Environmental 
Concerns 

Comparative 
Cost 

Special 
Considerations 

Organic 
Filters 

Moderate 
to high 20+ years  High Widely applicable 

for small sites Minor 
High; 
frequent 
maintenance 

Recommended 
with careful 
design; 
pretreatment 

Sand Filters Moderate 
to high 20+ years High Widely applicable 

for small sites Minor 
High; 
frequent 
maintenance 

Recommended 
with careful 
design; 
pretreatment 

Water 
Quality 
Inlets 

Low  20+ years Moderate to 
high 

Small, highly 
impervious areas (< 
acres) 

Resuspension of 
PAH loads, 
Disposal of 
residuals 

Moderate to 
high 

Pretreatment 
technology, off-
line 

Sediment 
Trap 
(Forebay) 

Low   20+ years Moderate Widely applicable 
as pretreatment 

Resuspension of 
accumulated 
sediment if not 
maintained 

Low to 
moderate  

Pretreatment 
technology 

Drainage 
Channel Low   20+ years Low to 

moderate 

Low density 
development and 
roads 

Erosion, 
resuspension Low 

Pretreatment 
technology, with 
check dams 

Deep Sump 
(Modified) 
Catch Basin 

Low   20+ years Moderate
Small, highly 
impervious areas 
(<2 acres) 

Resuspension of 
accumulated 
sediment if not 
maintained 

Low to 
moderate 

Pretreatment 
technology, 
design modified 
with sump 
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Table 4.3.1 – Continued – 

 



4.3.3.1 BMP Construction Costs 
 

Average installation costs for BMPs are shown in Table 4.3.2 (Caltrans, 2004). The 

average costs in the table were calculated from one to five examples of each BMP type. 

The costs per cubic meter of stormwater runoff to be treated are highly variable between 

jurisdictions as shown in the table and are relatively higher for smaller units. Among 

these construction costs, Caltrans costs were used in the BMP cost analyses because they 

were calculated from smaller BMP unit constructions. Smaller BMPs may be better for 

highly urbanized cities, where large areas for sitting BMPs may not exist.  In the 

following sections, strategies using small BMP units are discussed. 
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Table 4.3.2 Comparison of Mean Unit Costs and Runoff Volumes  
        

Caltrans Nationwide 
Survey a MD SHA b, c

BMP 
Cost 

[$/m3] 

Runoff 
Volume 

[m3] 

Cost 
[$/m3] 

Runoff 
Volume 

[m3] 

Cost 
[$/m3] 

Runoff 
Volume 

[m3] 

Austin sand filter  1,447 168 82 12,123   d 33 d 1,140 

Delaware sand filter  1,912 120 200 1,836    

Extended-detention 
basin  590 293 5 99,537  18  32,279 

Infiltration trench  733 199 46 2,485  11  4,304 

Bio-filtration swale  752 748 d 9 d 2,066   

Wet pond  1,731 259 8 44,833  9  20,391 

Notes: 
Table adapted from Caltrans (2004).  Values are in 1999 dollars. 
a Means for all entries in the Third Party Cost nationwide survey where stormwater 

runoff volume is available. 
b Means for all Maryland State Highway Administration (MD SHA) BMPs where 

stormwater runoff volume is available. 
c MD SHA had a retrofit policy that capped retrofit costs at $30,000 per hectare. 
d Based on a single installation. 
 

 

4.3.3.2 Austin Sand Filter 
 

The Austin sand filter was chosen among the BMPs shown in Table 4.3.1 because its 

pollutant removal reliability is moderate to high and widely applicable for small sites, 

which are important criteria in a highly urbanized city. A typical sand filter system 

consists of sedimentation and filtration processes. Runoff is temporarily stored in a 

sedimentation chamber, and then directed to a sand filter, where additional pollutants are 
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filtered through a sand bed. Sand filter systems are preferred over infiltration systems 

where ground waters are nearby. A drawback of this system is that the filter media may 

need to be replaced in 3 to 5 years. In general, sand filters are good options in highly 

urbanized areas because they require small space. Among the currently available sand 

filters, the Austin sand filter was chosen for this study because it is suited to a larger 

range of drainage areas, up to 20 hectares, compared to the other sand filters. 

 

Table 4.3.3 shows the calculated results for Downtown and Industry subwatersheds 

before and after the application of Austin sand filters. Typical total Zn removal efficiency, 

45 %, was used to calculate total Zn removed by the sand filters (US EPA, 1999b). As 

shown in the Case A of the table, total Zn removal at the mouth of the watershed was 

12.4 % with the treatment of 5 % of the upper Ballona Creek watershed area (or 

equivalently 9 % of the runoff volume), which includes Downtown and Industry 

subwatershed areas. Efficiency can be enhanced by avoiding low leverage areas within 

the two subwatersheds (See Figure 4.2.9). For example, 23 Austin sand filter units are 

needed to treat about 453 hectares of Industry subwatershed if we assume one filter 

covers 20 hectares. Leverages of Vacant and High Density Single Family Residential 

landuses in the Industry subwatershed are less than one. Total area of these two landuses 

is about 223 hectares. Thus, if only 12 filters are used for the high leverage areas, 

pollutant reduction rate is decreased to 10.2 % while area treated is reduced to 4 %. 
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Table 4.3.3 Simulation Results of Austin Sand Filters for Industry and Downtown 
Subwatersheds (January 8, 2001 Storm Event) 

Case A Downtown Industry Total* 

Area [Hectare] 782 3 % 453 2 % 23,212 

Runoff [  3m ] 35,500 7 % 9,000 2 % 549,000 

Load without sand filters [Kg] 19.9 17 % 6.8 6 % 117.9 

Load with sand filters [Kg] 10.9 11 % 3.7 4 % 103.3 

Construction Cost [$ Million] 51.4  13.0  64.4 

Treatment Effectiveness [Kg Zn/$ Million] 150  200  160 

Case B Downtown 
Industry 

without Low 
Leverage Areas 

Total* 

Area [Hectare] 782 3 % 230 1 % 23,212 

Runoff [  3m ] 35,500 7 % 6,400 1 % 549,000 

Load without sand filters [Kg] 19.9 17 % 6.6 6 % 117.9 

Load with sand filters [Kg] 10.9 10 % 3.6 3 % 105.9 

Construction Cost [$ Million] 51.4  9.3  60.7 

Treatment Effectiveness [Kg Zn/$ Million] 150  270  170 

*    Totals are based on model predictions and percentages are based on these totals. 
- TMDL = 66 Kg 
- Measured total Zn load = 113 Kg 
- Measured total runoff volume = 556,000 3m  
- LA Civic Center rainfall record = 6.9 mm 

 

To meet the TMDL requirement, more than 30 % load reduction needs to be achieved 

besides the treatment of the two subwatersheds. If the same leverage and runoff per area 

are assumed for additional area in the upper Ballona Creek watershed, this would require 

about four times the construction costs than the costs estimated for the two subwatersheds 
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and about 20 % of the watershed area (or equivalently about 36 % of the runoff volume) 

would need to be treated. 

 

For the treatment effectiveness calculation, average annual rainfall was calculated from 

the LA Civic Center rainfall records for the 1998 – 2003 storm seasons. The calculated 

average annual rainfall (290 mm/year) was then applied to the assumed 20 years of sand 

filter lifetime. Also, the load reduction rate shown in Table 4.3.3 was assumed in the 

calculation of Total Zn removed by the sand filters. 

 

 

4.3.3.3 BMPs for Local Roads 
 

As mentioned in previous sections, if we do not utilize high leverage areas and first flush 

phenomena, all the stormwater runoff of the Jan. 8, 2001 storm event had to be treated 

with BMPs that have 44 % or better pollutant reduction rates. Since over 50 % of total Zn 

comes from local roads for the Dec. 2, 2001 storm event as shown in Figure 4.2.11, BMP 

applications for local roads are considered in this section. 

 

The landscape approach was taken by the City of Portland Bureau of Environmental 

Services (2004) for the impervious area of local roads. Figure 4.3.2 shows one of their 

facilities where vegetated areas were used as BMPs. The figure shows a shallow 

vegetated curb extension installed in the street parking lane. Impervious drainage area for 

the extension was 465 square meters and the curb extension area was 25 square meters. A 
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flow test was performed with 25-year design storm (48 mm rainfall in 6 hours) for the 

curb extension. Pervious areas were not included because their hydrologic modeling 

results for the design storm using XPSWMM showed negligible runoff contribution from 

those areas. Their simulated results with the design storm showed that the extension 

captured 85 % of the runoff volume during the flow test. The vegetated curb extension’s 

high runoff volume reduction was due to high saturated infiltration rate of the soil, which 

was 51 mm/hour. 

 

 

Figure 4.3.2 Stormwater Curb Extension on Siskiyou Street, Portland  
 (Portland Bureau of Environmental Services, 2004) 

 

Saturated infiltration rates for hydrologic soil groups are shown in Table 4.3.4 to check 

whether the curb extension technique can be applied to upper Ballona Creek watershed. 
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The effective water capacity of a soil in the table is the fraction of the void spaces 

available for water storage. The data presented in the table are based on the analysis of 

over 5,000 soil samples by the United States Department of Agriculture (USDA). Since 

the hydrologic soil group of the entire upper Ballona Creek watershed is type D as 

mentioned in Section 3.4.2, the watershed’s saturated infiltration rate is up to 2.3 mm per 

hour as shown in the table. The curb extension technique can not be applied directly to 

the watershed because of the watershed’s low saturated infiltration rate. 

 

Table 4.3.4 Hydrologic Soil Properties (Rawls, 1982) 

Hydrologic Soil 
Group Soil Texture Saturated infiltration 

rate [mm/hr] 
Effective Water 

Capacity [-] 
Sand  210.1 0.35  

Loamy Sand    61.2 0.31  A 

Sandy Loam    25.9 0.25  

Loam    13.2 0.19  
B 

Silt Loam      6.9 0.17  

C Sandy Clay Loam      4.3 0.14  

Clay Loam      2.3 0.14  

Silty Clay Loam      1.5 0.11  

Sandy Clay      1.3 0.09  

Silty Clay      1.0 0.09  

D 

Clay      0.5 0.08  
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4.3.3.4 Infiltration Trench 
 

Infiltration trenches can be generally described as trenches filled with media designed to 

maximize infiltration of runoff to the ground. Infiltration trenches are especially attractive 

because they provide the highest level of surface water quality protection (Caltrans, 

2004). They not only reduce the runoff volume but also restore natural water balance of 

the site. Design criteria for infiltration trenches are as follows (US EPA, 1999a; Clar, 

2004): 

1. Soils should have a low silt and clay content and have infiltration rates greater 

than 13 mm per hour. 

2. A minimum of 1.2 meters to the seasonally high water table to prevent potential 

ground water contamination. 

3. Trenches should be located at least 30.5 meters away from water supply wells. 

4. Trenches should be constructed with pretreatment to prevent site failure due to 

clogging. 

5. Recommended maximum depth for an infiltration trench is 2.5 m (Schueler, 

1987). 

6. If the drainage area exceeds 2 hectares, other BMPs should be carefully 

considered. 

 

Besides the infiltration rates of soils, hotspot landuses are not recommended without 

pretreatment because of possible ground water contamination and failure due to clogging 
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of trenches. Even though traditional infiltration trenches may not appropriate for the 

highly urbanized Ballona Creek watershed, a modified infiltration trench, such as the one 

shown in Figure 4.3.3, may be feasible. 

 

 

Figure 4.3.3 Modified Infiltration Trench (US EPA, 1999a) 

 

The modified infiltration trench uses a layer of peat or loam to the trench subsoil, which 

enhances the removal of metals and nutrients through adsorption. The stone aggregate 

used in the trench normally provides a void space of 40% (Harrington, 1989; Schueler, 

1987). This layer is then covered with a geotextile filter fabric. Pea gravel can be used in 

the top soil to improve sediment filtering. The depth of top layer is about 30 cm. If the 

trench becomes clogged, only the top layer is replaced.  

 

Infiltration trenches are commonly designed to drain prior to the next storm event.  This 

practice is not possible in Ballona Creek watershed because of its low infiltration rate. It 
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is better to design trenches to capture first flush of a storm event, whose partial EMCs at 

30 and 60 minutes into the storm may be 1.9 to 7.4 times higher than the EMCs (Han, 

2006b). For example, the antecedent dry days of the two storm events occurred on Feb. 9, 

1999 and Jan. 8, 2001 mentioned in Section 4.3.2 was about 5 and 69 days, respectively. 

The total zinc loads of the two storm events exceeded TMDLs by 18 % and 70 %, 

respectively. Since the ADD of Jan. 8, 2001 storm event was long enough to drain the 

trenches, the Feb. 9, 1999 storm event is considered here. The LA Civic Center rainfall 

record for this storm event was 9.4 mm. If we assume that the saturated infiltration rate of 

upper Ballona Creek watershed is 1.5 mm/hr, trench water level drops about 18 cm prior 

to the Feb. 9, 1999 storm event. If we further assume that the drainage area is 500 square 

meters, runoff coefficient of local roads is 0.9, and the first flush of a storm event is 

covered with 5 mm of rainfall, infiltration trench area can be calculated as the following: 

 Runoff volume of the first flush 

 = 500 m2 (Drainage area) × 0.005 m (Rainfall) × 0.9 (Runoff coefficient)  

 = Trench Area × 0.18 m (Dropped water level for 5 days) × 0.4 (Void space) 

The calculated infiltration trench area for this example is 31 m2 for the assumed 500 m2 

local road drainage area. Thus, by choosing appropriate trench area, first flush of the 

storm event can be captured. In turn, this will provide enough coverage to avoid the 18 % 

exceedence with an ADD of 5 days. Other design criteria listed above are also assumed to 

be satisfied by other means in the following analysis.  
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Feasibility of infiltration trenches as a BMP for local roads was investigated for the Jan. 8, 

2001 storm event. The EMC was calculated using the optimized parameters and the 

weighting factor for Transportation landuse (See Table 3.5.6): 

 Transportation landuse EMC  

 = Calculated Transportation EMC using optimized parameters×Weighting Factor 

 = 661  g / Lµ

The load contribution of local roads was then calculated by multiplying the EMC and the 

runoff from local roads, which was 77 Kg as shown in Table 4.3.5. The total Zn load that 

needs to be removed by infiltration trenches is 52 Kg (Total Zn load of the watershed – 

TMDL), which is 68 % of the local road contribution ( 52 100
77

× %). Local road runoff and 

area that needs to be treated by trenches are also assumed to be 68 %. The rainfall record 

can not be used in these calculations because the hydrology model described in Section 

3.4 uses local rainfall from isohyets. As shown in the table, the TMDL was met with the 

treatment of 7 % of the upper Ballona Creek watershed area (or equivalently about 14 % 

of the runoff volume).  
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Table 4.3.5 Simulation Results of Infiltration Trench Installations for Local Roads   
        (January 8, 2001 Storm Event) 

 

 
Local Roads Area 

Covered by Infiltration 
Trenches 

Total Local Roads 
Upper Ballona 

Creek 
Watershed 

Area [Hectare] 1,712 7 % 2,518 11 % 23,212 

Runoff [  3m ] 79,356 14 % 116,700 21 % 549,000 

Load without 
Trenches [Kg] 52 44 % 77 65 % 118 

Load with Trenches 
[Kg] 0 0 % 25 38 % (-44 %) 66 

Construction Cost 
[$ Million] 58    58 

Treatment 
Effectiveness 

[Kg Zn/$ Million] 
320    320 

- All calculations are based on model predictions. 
- TMDL = 66 Kg 
- Measured total Zn load = 113 Kg 
- Measured total runoff volume = 556,000 3m  
- LA Civic Center rainfall record = 6.9 mm 

 

Caltrans’ cost per unit runoff volume was used (See Table 4.3.2) for the construction cost 

calculation. For the treatment effectiveness calculation, average annual rainfall frequency 

was calculated from the LA Civic Center rainfall records from 1998 to 2003 storm 

seasons. The calculated average annual rainfall frequency (18 storm events/year) was 

then applied to the assumed 20 years of trench lifetime. If the trench is filled up with 

stormwater runoff, no further load reduction occurs. Thus, Total Zn removed by the 

trench for each storm event was assumed to be equal to the load reduction shown in Table 
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4.3.5, which was 52 Kg per storm event. This assumption is conservative because first 

flush EMCs may be 1.9 to 7.4 times higher than event EMCs (Han et. al, 2006). By the 

application of infiltration trenches for stormwater runoff from local roads, treatment 

effectiveness is reduced to half of the effectiveness resulted in by the subwatershed 

approach, which is discussed in Section 4.3.3.2, while construction cost is reduced to 

one-fourth of the cost shown in the Case A of Table 4.3.3. 

 

As mentioned earlier, infiltration rate of upper Ballona Creek watershed is low. However, 

first flush of storm events can be captured with appropriate design of infiltration trenches. 

According to Han et al. (2006a), total metals, COD, and DOC were generally well 

correlated with mass fist flush for stormwater runoff from highways. Thus, high 

concentration of those pollutants can be removed by capturing early portion of runoff 

from local roads with infiltration trenches.  
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5. CONCLUSIONS 
 

Stormwater quantity and quality models were developed to estimate runoff volumes and 

pollutant loads for large urban watersheds. The models were based on the rational method 

and landuse types but used improvements to account for build up between storm events, 

ground slope, hydrologic soil group, and storm characteristics.  The models were 

integrated with a GIS (ArcGIS) to manage subcatchments (~33,000; Figure 3.4.7) and 

optimization techniques were used for calibration.  The models successfully predicted 

stormwater volumes and pollutant loads for total suspended solids (TSS), total Kjeldahl 

nitrogen (TKN) and total zinc.  The water quality model was calibrated using 24 storm 

events from the 1998 to 2000 storm seasons and validated with 7 additional storm events 

from the 2001 to 2003 storm seasons for the upper Ballona Creek watershed (23,211 ha). 

Calibration and validation were performed by comparing model predictions to 

measurements from the Los Angeles Department of Public Works’ (LADPW) mass 

emission site at intersection of Sawtelle Blvd and Ballona Creek (34 00 ' , 118 24 ' ). The 

following specific conclusions are made: 

° °

 

1. The Rational Method and Browne’s empirical relation for calculating runoff from 

DEM, landuse type, hydrologic soil group, and isohyets layers were integrated into 

the ArcGIS platform using Visual Basic. The implemented model showed improved 

runoff prediction (- 8 % of the measured runoff) than the model defined by landuse 

definitions (+ 54 %; Wong et. al, 1997) for an example analysis of Dec. 2, 2001 storm 

event. 
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2. The predicted runoff volumes using the new model were in good agreement with the 

measured data (Figure 3.4.13) and had R2 of 0.86, and generally were within +184/-

54 percent of the measured runoff. The model over predicted runoff from small 

storms and under predicted runoff from large storms, which is a well-known 

characteristic of the Rational Method. 

 

3. The new model has the advantage of reduced data needs, when compared to a runoff 

model such as SWMM. For example, Barco et al. (2006) required approximately 

30,000 input data points for the characteristics of drain network and about 2,500 

subcatchments to model the upper Ballona Creek Watershed. The new model required 

only four GIS layers, which are DEM, hydrologic soil group, landuse type, and 

isohyets layers. More importantly, only the fourth layer needed to be developed for 

the modeling activity. The first three layers were available from other sources.  

 

4. To calibrate pollutant mass emissions as a function of site specific conditions, four 

types of storm characteristics were used as independent variables: antecedent dry 

days, total rainfall, rainfall duration, and maximum hourly rainfall intensity. Site 

specific characteristics such as subcatchment impervious fraction, depression storage, 

infiltration, and roughness coefficient were not used in the analyses to simplify input 

to the model and to avoid expensive and time consuming field surveys. Multiple 

linear regression analyses were performed to derive correlations between the 

pollutants’ landuse EMCs and the storm characteristics. The number of storm events 
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used in these correlations ranged from 12 to 35, which were measured at eight 

landuse monitoring sites for the storm season 1998 to 2001 by the LADPW. 

 

The regression explained more than 80% of the variability in total Zn EMCs for Light 

Industrial, Mixed Residential, and Transportation landuses.  The regressions poorly 

explained (R2 < 0.4) the variability in total Zn for Retail/Commercial, Educational 

Facilities, High Density Single Family Residential, and Multi-Family Residential 

landuses. Whereas, the TKN EMC correlations fit Educational Facilities and High 

Density Single Family Residential landuses well (R2> 0.8), but R-square values for 

the Vacant, Retail/Commercial and Multi-Family Residential landuses were below 

0.5. For TSS EMC correlations, all R-square values were low ( < 0.6). 2R

 

5. In general, Antecedent Dry Days (ADD) were the most significant explanatory 

variable for the three pollutant EMCs analyzed. Total rainfall was the next significant 

variable and the maximum hourly rainfall intensity was the least significant for all 

three pollutant EMCs. 

 

6. To improve the model predictions of pollutant load contributions from various 

landuse types to total loads of the upper Ballona Creek watershed, zeroth-order 

regularization and L-BFGS-B optimization techniques used. Relative form was used 

in the objective function to compensate strong contributions of high magnitude 

variables.  
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To account for the variability of the percent of each representative landuse types for 

the landuse monitoring catchments, which were ranged from 54% to 100%, weighting 

factors were introduced and optimized. Contributions of each landuse types to the 

total loadings of upper Ballona Creek watershed were adjusted by these weighting 

factors. For total Zn and TKN total load calculations, optimized weighting factors 

were closer to unity when the representative landuses for corresponding landuse types 

were closer to 100%. For example, the weighting factor of the Retail/Commercial 

landuse, which has the lowest percent representative landuse, had the greatest 

deviation from one. However, weighting factors for TSS did not show any tendency. 

Also, weighting factors did not show any relationships to the size of landuse 

monitoring catchments for the three pollutants. 

 

7. Model predictions showed reasonable agreement with measured loadings for total Zn, 

TKN, and TSS without using site specific information. The RMS error of the 

optimized model without regularization for total Zn was 24 Kgs and only 9 Kgs with 

regularization, which is low compared to the mean discharge of 77 Kgs per storm 

event. The RMS error for TKN was 0.5 Kgs for the mean discharge of 2.9 Kgs. The 

RMS error for TSS was 25 Kgs for the mean discharge of 220 Kgs. However, 

measured TSS loads for the validation dataset were much lower than model 

predictions. This discrepancy might be caused by measurement errors or it might be 

an indication of other activities in the watershed, which would require further 

investigation to understand. 
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8. Highways and local roads were added as land types to the LADPW landuse types. In 

this way, the contributions of these two landuses can be separately quantified. Total 

Zn load for Dec. 2, 2001 storm event was analyzed as an example. For this storm 

event, the leverage (percent mass emitted per percent area) of highways was 6.6, 

which was greater than all the other landuses (the next highest was 4.1 for 

Transportation among LADPW landuse types). However, highways contributed only 

4.3% of the total watershed load because of its small runoff (1.3%). The load 

contribution from local roads to the total watershed load was 52.4 %, even though 

local road area was only 10.8 % of the watershed area, and its runoff volume was 

only 21.6 % of the total runoff. The leverage for local roads was 4.8, which makes it 

the best candidate for BMP applications. 

 

9. Among the monitored storm events from 1998 to 2003 storm seasons, total Zn load of 

the Feb. 9, 1999 storm event exceeded the TMDL by 18% and the Jan. 8, 2001 storm 

event exceeded the TMDL by over 70%. If the total zinc concentration of the Jan. 8, 

2001 storm event is uniform over the upper Ballona Creek watershed, and over the 

duration of the storm event, BMPs with pollutant removal efficiencies higher than 

44 % will be needed to treat the entire runoff to meet the required TMDL.  

 

Two subwatersheds with high leverages were identified and Austin sand filters were 

simulated for the storm event. By assuming typical total Zn removal efficiency of 

45%, total Zn removal at the mouth of the watershed was 12.4 % with the treatment 
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of 5 % of the upper Ballona Creek watershed area. If the same leverage and runoff 

per unit area are assumed for additional locations in the upper Ballona Creek 

watershed, about 20% of the watershed area (or equivalently 36 % of the runoff 

volume) would need to be treated to meet the TMDL. This would require about $240 

million if one assumes Caltrans’ predicted construction cost per unit volume of runoff.  

 

The TMDL was met with the treatment of 68% of the local road area, which is 

equivalent to 7 % of the upper Ballona Creek watershed area. The construction cost 

for the infiltration trenches will be approximately $58 million, using Caltrans’ 

construction costs, which is about one-fourth of the cost needed for the subwatershed 

approach. 

  

10. Even though the saturated infiltration rate of upper Ballona Creek watershed is low 

(0.5 – 2.3 mm/hr), first flush of the Feb. 9, 1999 storm event can be captured by 

choosing appropriate modified infiltration trench area (for example, 31 m2 per 500 m2 

local road drainage area). In turn, this will provide enough coverage to avoid the 

18 % exceedence of the storm event. According to Han et al. (2006a), total metals, 

COD, and DOC are generally well correlated with mass fist flush for stormwater 

runoff from highways. Thus, high concentration of those pollutants can also be 

removed by capturing early portion of runoff from local roads with modified 

infiltration trenches. 
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APPENDIX A. LANDUSE MONITORING SITES 

 

Figure A.1 Retail/Commercial landuse monitoring site at Appian Way, Santa Monica 
 

 

Figure A.2 High density single family residential landuse monitoring site  
                   at Glenwood Rd, Glendale 
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Figure A.3 Transportation landuse monitoring site at 116th St., Torrance 
 
 

 

Figure A.4 Light industrial landuse monitoring site at Willmington Av.., Carson 
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Figure A.5 Education landuse monitoring site at Nordhoff St.., Northridge 
 
 

 

Figure A.6 Multi-family residential landuse monitoring site at La Cadena Ave.., Arcadia 
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Figure A.7 Mixed residential landuse monitoring site at Concord St.., Glendale 
 

 
 

Figure A.8 Mass Emission and Landuse Sampling Sites (LADPW) 
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APPENDIX B. RELATIONSHIP OF LADPW AND SCAG LANDUSE 
    CATEGOREIS 

LADPW  
Landuse Types SCAG Landuse Types 

Educational Facilities Special Care Facilities 
 Pre-Schools/Day Care Centers 
 Elementary Schools 
 Junior or Intermediate High Schools 
 Senior High Schools 
 Colleges and Universities 
 Trade Schools and Professional Training Facilities 
High Density Single  High-Density Single Family Residential 
Family Residential Trailer Parks and Mobile Home Courts, High-Density 
 Rural Residential, High-Density 
Light Industrial Manufacturing, Assembly, and Industrial Services 
 Motion Picture and Television Studio Lots 
 Research and Development 
 Open Storage 
 Mineral Extraction - Other Than Oil and Gas 
 Mineral Extraction - Oil and Gas 
 Wholesaling and Warehousing 
 Electrical Power Facilities 
 Water Storage Facilities 
 Natural Gas and Petroleum Facilities 
 Water Transfer Facilities 
 Mixed Commercial and Industrial 
 Mixed Urban 
 Under Construction 
 Marina Water Facilities 
Mixed Residential Low-Density Single Family Residential 
 Mixed Multi-Family Residential 
 Mixed Residential 
 Rural Residential, Low-Density 

Multifamily Residential 
Duplexes, Triplexes and 2-or 3-Unit Condominiums and 
Townhouses 

 Low-Rise Apartments, Condominiums, and Townhouses 
 Medium-Rise Apartments and  Condominiums 
 High-Rise Apartments and Condominiums 
Retail/Commercial Low- and Medium-Rise Major Office Use 
 High-Rise Major Office Use 
 Skyscrapers 
 Regional Shopping Center 

 
Retail Centers (Non-Strip With Contiguous Interconnected Off-
Street) 

 Modern Strip Development 
 Older Strip Development 
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 Commercial Storage 
 Commercial Recreation 
 Hotels and Motels 
 Attended Pay Public Parking Facilities 
 Government Offices 
 Fire Stations 
 Major Medical Health Care Facilities 
 Religious Facilities 
 Other Public Facilities 
 Other Special Use Facilities 
 Communication Facilities 
Transportation Police and Sheriff Stations 
 Non-Attended Public Parking Facilities 
 Airports 
 Railroads 
 Freeways and Major Roads 
 Park-and-Ride Lots 
 Bus Terminals and Yards 
 Truck Terminals 
 Maintenance Yards 
Vacant Base (Built-up Area) 
 Improved Flood Waterways and Structures 
 Golf Courses 
 Developed Local Parks and Recreation 
 Developed Regional Parks and Recreation 
 Undeveloped Regional Parks and Recreation 
 Cemeteries 
 Specimen Gardens and Arboreta 
 Beach Parks 
 Other Open Space and Recreation 
 Irrigated Cropland and Improved Pasture Land 
 Orchards and Vineyards 
 Nurseries 
 Horse Ranches 
 Vacant Undifferentiated 
 Water, Undifferentiated 
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APPENDIX C. RUNOFF COEFFICIENTS (BROWNE, 1990) 
 

A B C D Landuse 
0-2% 2-6% 6%+ 0-2% 2-6% 6%+ 0-2% 2-6% 6%+ 0-2% 2-6% 6%+ 

Cultivated  0.08 0.13 0.16 0.11 0.15 0.21 0.14 0.19 0.26 0.18 0.23 0.31 
land 0.14 0.18 0.22 0.16 0.21 0.28 0.2 0.25 0.34 0.24 0.29 0.41 

Pasture 0.12 0.2 0.3 0.18 0.28 0.37 0.24 0.34 0.44 0.3 0.4 0.5 
 0.15 0.25 0.37 0.23 0.34 0.45 0.3 0.42 0.52 0.37 0.5 0.62 

Meadow 0.1 0.16 0.25 0.14 0.22 0.3 0.2 0.28 0.36 0.24 0.3 0.4 
 0.14 0.22 0.3 0.2 0.28 0.37 0.26 0.35 0.44 0.3 0.4 0.5 

Forest 0.05 0.08 0.11 0.08 0.11 0.14 0.1 0.13 0.16 0.12 0.16 0.2 
 0.08 0.11 0.14 0.1 0.14 0.18 0.12 0.16 0.2 0.15 0.2 0.25 
Residential                   
Lot size  0.25 0.28 0.31 0.27 0.3 0.35 0.3 0.33 0.38 0.33 0.36 0.42 
1/8 acre 0.33 0.37 0.4 0.35 0.39 0.44 0.38 0.42 0.49 0.41 0.45 0.54 

Lot size  0.22 0.26 0.29 0.24 0.29 0.33 0.27 0.31 0.36 0.3 0.34 0.4 
1/4 acre 0.3 0.34 0.37 0.33 0.37 0.42 0.36 0.4 0.47 0.38 0.42 0.52 

Lot size  0.19 0.23 0.26 0.22 0.26 0.3 0.25 0.29 0.34 0.28 0.32 0.39 
1/3 acre 0.28 0.32 0.35 0.3 0.35 0.39 0.33 0.38 0.45 0.36 0.4 0.5 

Lot size  0.16 0.2 0.24 0.19 0.23 0.28 0.22 0.27 0.32 0.26 0.3 0.37 
1/2 acre 0.25 0.29 0.32 0.28 0.32 0.36 0.31 0.35 0.42 0.34 0.38 0.48 

Lot size  0.14 0.19 0.22 0.17 0.21 0.26 0.2 0.25 0.31 0.24 0.29 0.35 
1 acre 0.22 0.26 0.29 0.24 0.28 0.34 0.28 0.32 0.4 0.31 0.35 0.46 

Industrial 0.67 0.68 0.68 0.68 0.68 0.69 0.68 0.69 0.69 0.69 0.69 0.7 
 0.85 0.85 0.86 0.85 0.86 0.86 0.86 0.86 0.87 0.86 0.86 0.88 

Commercial  0.71 0.71 0.72 0.71 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 
 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.9 0.89 0.89 0.9 

Streets 0.7 0.71 0.72 0.71 0.72 0.74 0.72 0.73 0.76 0.73 0.75 0.78 
 0.76 0.77 0.79 0.8 0.82 0.84 0.84 0.85 0.89 0.89 0.91 0.95 

Open space 0.05 0.1 0.14 0.08 0.13 0.19 0.12 0.17 0.24 0.16 0.21 0.28 
 0.11 0.16 0.2 0.14 0.19 0.26 0.18 0.23 0.32 0.22 0.27 0.39 

Parking 0.85 0.86 0.87 0.85 0.86 0.87 0.85 0.86 0.87 0.85 0.86 0.87 
 0.95 0.96 0.97 0.95 0.96 0.97 0.95 0.96 0.97 0.95 0.96 0.97 

 First row of each entry gives runoff coefficients for storm recurrence intervals less 
than 25 years; second row gives runoff coefficients for storm recurrence intervals of 
25 years or more.
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APPENDIX D. Cumulative EMCs of Landuse Types for 1994-2000 Storm Seasons (LADPW) 

 

Pollutants Unit HDR Light 
Industrial Vacant Retail/ 

Commercial
Multi-family
Residential Transportation Education Mixed 

Residential

Total Cu g / Lµ  15.30 31.04 9.12 34.77 12.23 51.86 21.49 17.33

Dissolved Cu g / Lµ  8.44 20.22 n/m 14.60 6.75 32.68 12.80 11.52

Total Pb g / Lµ  9.59 14.87 n/m 11.53 5.13 9.08 4.53 8.70

Total Zn g / Lµ  80.35 565.60 38.81 238.53 134.88 279.45 123.69 184.85

Dissolved Zn g / Lµ  39.11 460.19 n/m 164.12 75.36 203.89 65.97 125.83

TSS mg / L  104.65 229.37 164.68 67.40 46.35 75.35 103.02 69.06

Total P mg / L  0.39 0.44 0.11 0.41 0.19 0.44 0.31 0.26

Dissolved P mg / L  0.29 0.28 0.06 0.30 0.16 0.36 0.27 0.20

TKN mg / L  2.80 3.07 0.81 3.37 1.86 1.81 1.62 2.70

NO3-N mg / L  1.04 0.86 1.11 0.58 1.73 0.75 0.63 0.71

Oil & Grease mg / L  1.36 1.87 n/m 3.65 3.19 n/m

 HDR: High Density Single Family Residential  
 Blank cells: No data available. 
 n/m: Not meaningful, not enough data above detection limit. 

 



APPENDIX E. VBA PROCEDURE FOR STORM CHARACTERISTICS 
                          CALCULATION 
 
Option Explicit 
 
' 1. First record of calculated ADD is not correct because it doesn't have prior rainfall records. 
' 2. This program is ONLY applicable to the National Climate Data Center (NCDC) hourly rainfall data. 
'     It is assumed that the NCDC hourly rainfall data is imported to a table in a Access database. 
' 3. Results are arranged by storm event start dates. 
 
'LIMIT_RAINFALL: An event with below LIMIT_RAINFALL will be neglected when calculating ADD.  
'                                   [in] 
'LIMIT_DRY:            Under LIMIT_DRY hours of no rainfall records during a storm event will be 
considered 
'                                   as a continuous event. ( [hours] < 1 day) 
'FILENAME:              An Access database name. 
'TABLE:                     A rainfall data table name in the FILENAME database. 
'OUTTABLE:            A table name where calculated ADDs are to be written. 
'LOCATION:             Location of the database 
'OVERWRITE:          Controls whether the OUTTABLE will be overwritten  
'                                   or new results will be added to the table. 
Private Const LIMIT_RAINFALL = 0.04 
Private Const LIMIT_DRY = 6 
Private Const FILENAME = "48092" 
Private Const TABLE = "48092" 
Private Const OUTTABLE = TABLE & "_ADD" 
Private Const LOCATION = ".\" 
Private Const OVERWRITE = True 
 
 
Private Sub calculate_Characteristics() 
'This procedure calculates storm characteristics from the TABLE. 
   
  'Open the featureclass 
  Dim pWorkspace As IWorkspace 
  Dim pTable As ITable 
  Call getDatabase(pWorkspace) 
  Call getTable(pWorkspace, TABLE, pTable) 
   
  If pTable Is Nothing Then 
    MsgBox "Please provide a '" & TABLE & "' table in the '" & LOCATION & "' !" 
    End 
  End If 
   
  'Get a field of the "Year" column 
  Dim X As Integer 
  X = pTable.FindField("YEAR") 
   
  'Get the first row of the rainfall table 
  Dim j As Long                                  'Index of pTable row 
  Dim pRow As IRow                         'Row of rainfall table 
  Dim pRowBuffer As IRowBuffer     'Row of output table 
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  Dim dStartDate As String                 'ADD start date 
  Dim dStopDate As String                 'ADD stop date 
  j = 1 
   
  'To store the calculated ADDs 
  Dim pOutTable As ITable 
  Dim pCursor As ICursor 
  If OVERWRITE Then 
    Call createTable(pWorkspace, pOutTable) 
  Else 
    Call getTable(pWorkspace, OUTTABLE, pOutTable) 
  End If 
  Set pCursor = pOutTable.Update(Nothing, False) 
  Set pCursor = pOutTable.Insert(True) 
   
  'For all rows in the rainfall table, calculate ADD. 
  Dim dRows As Long 
  Dim EventStarted As Boolean 
  Dim dDate 
  Dim dTmp As Double 
  Dim dEventRain As Double 
  Dim dDuration As Double 
  Dim dIntensity As Double 
  Dim dADD As Double 
  Dim dTmpADD As Double 
  Dim dDry As Double 
  Dim dMin As Long 
  Dim i As Long 
  dRows = pTable.RowCount(Nothing) 
  EventStarted = False 
  Set pRow = pTable.GetRow(j) 
  dStartDate = pRow.Value(X + 1) & "/" & pRow.Value(X + 2) & "/" & pRow.Value(X) 
  dMin = LIMIT_RAINFALL * 100 
   
  Do While j < dRows 
     
    'For 24 hour rainfall records, search a rainfall event greater than the LIMIT_RAINFALL. 
    i = 1 
    Do While i < 25 
      dTmp = pRow.Value(X + 4 * i) 
       
      'For a greater than zero rainfall record. 
      If 0 < dTmp And dTmp < 99999 Then 
        dEventRain = dEventRain + dTmp 
        dDuration = dDuration + dDry + 1 
        dDry = 0                                  'To reset for dry periods less than or equal to LIMIT_DRY  

             'after adding it to the current rainfall duration. 
        If dIntensity < dTmp Then      'Hourly maximum rainfall intensity. 
          dIntensity = dTmp 
        End If 
         
        If Not EventStarted Then 
          EventStarted = True 
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          dStopDate = pRow.Value(X + 1) & "/" & pRow.Value(X + 2) & "/" & pRow.Value(X) 
          dTmpADD = (i - 1) / 24 
        End If 
       
      'For zero rainfall record after a storm event started. 
      ElseIf EventStarted Then 
        dDry = dDry + 1                                                            'Count the dry hours after a rainfall event. 
         
        'End of a storm event. It is confirmed since LIMIT_DRY hours are passed without a rainfall record. 
        If dDry > LIMIT_DRY Then 
           
          'Under LIMIT_RAINFALL events are ignored. 
          If dEventRain > dMin Then 
           
            'Add a calculated ADD and rainfall data to the pOutTable. 
            Set pRowBuffer = pOutTable.CreateRowBuffer 
            pRowBuffer.Value(1) = dStopDate                              'Start date of the current rainfall event,  

            'which is also ADD stop date. 
            dDate = DateDiff("d", dStartDate, dStopDate)             'dDate contains ADD except hours. 
            dADD = dADD + dTmpADD                                       'dTmpADD is added only  

             'when the event is actually ended. 
            If dStartDate = dStopDate Then 
              pRowBuffer.Value(2) = Format(Abs(1 - dADD), "###0.00")                    '[days] 
            Else 
              pRowBuffer.Value(2) = Format(dADD + CDbl(dDate) - 1, "###0.00")    '[days] 
            End If 
            pRowBuffer.Value(3) = dEventRain / 100                   '[in] 
            pRowBuffer.Value(4) = dDuration                               '[hours] 
            pRowBuffer.Value(5) = dIntensity / 100                      '[in/hours] 
            pRowBuffer.Value(6) = LIMIT_RAINFALL              '[in] 
            pRowBuffer.Value(7) = LIMIT_DRY                         '[hours] 
            pRowBuffer.Value(8) = pRow.Value(1)                      'Station ID 
            pCursor.InsertRow pRowBuffer 
             
            'Reset ADD parameters only when above LIMIT_RAINFALL event occured. 
            'Assume here that the rest of the hours in a day as part of next storm event ADD. 
            dADD = (24 - (i - 1 - LIMIT_DRY)) / 24 
            dStartDate = pRow.Value(X + 1) & "/" & pRow.Value(X + 2) & "/" & pRow.Value(X) 
             
          End If    '(If dEventRain > dMin Then) 
           
          'Reset for the next storm event. 
          dEventRain = 0 
          dDuration = 0 
          dDry = 0 
          dIntensity = 0 
          EventStarted = False 
         
        End If    '(If dDry > LIMIT_DRY Then) 
         
      End If    '(ElseIf EventStarted Then) 
       
      i = i + 1 
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    Loop 
     
    j = j + 1 
    Set pRow = pTable.GetRow(j) 
  Loop 
 
  Set pWorkspace = Nothing 
  Set pTable = Nothing 
  Set pRow = Nothing 
  Set pRowBuffer = Nothing 
  Set pOutTable = Nothing 
  Set pCursor = Nothing 
   
End Sub 
 
 
 
Private Sub getDatabase(pWorkspace As IWorkspace) 
                        
  Dim FullFileName As String 
  FullFileName = Dir(LOCATION + FILENAME + ".mdb") 
   
  Dim pWorkspaceFactory As IWorkspaceFactory 
  Set pWorkspaceFactory = New AccessWorkspaceFactory 
   
  'Open the specified database 
  If FullFileName <> "" Then 
    Set pWorkspace = pWorkspaceFactory.OpenFromFile(FullFileName, 0) 
  Else 
    MsgBox "Rainfall data file is not found." 
    End 
  End If 
   
  Set pWorkspaceFactory = Nothing 
 
End Sub 
 
 
 
Private Sub getTable(pWorkspace As IWorkspace, TableName As String, pTable As ITable) 
'Gets a pointer to the TableName table. 
 
  Dim pEnumDataset As IEnumDataset 
  Dim pDataset As IDataset 
  Set pEnumDataset = pWorkspace.Datasets(esriDTTable) 
   
  'Check whether the named table already exists 
  Do 
    Set pDataset = pEnumDataset.Next 
    If Not pDataset Is Nothing Then 
      If pDataset.Name = TableName Then 
        Exit Do 
      End If 
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    End If 
  Loop While Not pDataset Is Nothing 
   
  If pDataset Is Nothing Then 
    Call createTable(pWorkspace, pTable) 
  Else 
    Dim pFeatureWorkspace As IFeatureWorkspace 
    Set pFeatureWorkspace = pWorkspace 
    Set pTable = pFeatureWorkspace.OpenTable(pDataset.Name) 
  End If 
   
  Set pEnumDataset = Nothing 
  Set pDataset = Nothing 
  Set pFeatureWorkspace = Nothing 
 
End Sub 
 
 
 
Private Sub createTable(pWorkspace As IWorkspace, pTable As ITable) 
'Creates storm characteristics table with TABLE name and '_ADD' extension. 
 
  'Create new Fields collection 
  Dim pFields As IFields 
  Dim pFieldsEdit As IFieldsEdit 
  Set pFields = New Fields 
  Set pFieldsEdit = pFields 
  pFieldsEdit.FieldCount = 9 
   
  'Create an ID field 
  Dim pField As IField 
  Dim pFieldEdit As IFieldEdit 
  Set pField = New Field 
  Set pFieldEdit = pField 
  With pFieldEdit 
    .Name = "ID" 
    .AliasName = "" 
    .Type = esriFieldTypeOID 
  End With 
  Set pFieldsEdit.Field(0) = pField 
 
  'Copy field names: 
  Dim FieldNames(9) As String 
  FieldNames(1) = "Date" 
  FieldNames(2) = "ADD" 
  FieldNames(3) = "Rainfall" 
  FieldNames(4) = "Duration" 
  FieldNames(5) = "Intensity" 
  FieldNames(6) = "LimitRainfall" 
  FieldNames(7) = "LimitDry" 
  FieldNames(8) = "COOPID" 
 
  'Create data Fields 
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  Dim i As Long 
  i = 1 
  Do While i < 9 
    Set pField = New Field 
    Set pFieldEdit = pField 
    pFieldEdit.Name = FieldNames(i) 
    If i = 1 Then 
      pFieldEdit.Type = esriFieldTypeString 
    Else 
      pFieldEdit.Type = esriFieldTypeDouble 
    End If 
    Set pFieldsEdit.Field(i) = pField 
    i = i + 1 
  Loop 
   
  'If the named table already exists, delete the table first 
  Dim pEnumDataset As IEnumDataset 
  Dim pDataset As IDataset 
  Set pEnumDataset = pWorkspace.Datasets(esriDTTable) 
   
  Do 
    Set pDataset = pEnumDataset.Next 
    If Not pDataset Is Nothing Then 
      If pDataset.Name = OUTTABLE Then 
        Exit Do 
      End If 
    End If 
  Loop While Not pDataset Is Nothing 
   
  If Not pDataset Is Nothing Then   'Delete the existing table 
      pDataset.Delete 
  End If 
   
  Dim pFeatureWorkspace As IFeatureWorkspace 
  Set pFeatureWorkspace = pWorkspace 
  Set pTable = pFeatureWorkspace.createTable(OUTTABLE, pFields, Nothing, Nothing, "") 
   
  Set pFields = Nothing 
  Set pFieldsEdit = Nothing 
  Set pField = Nothing 
  Set pFieldEdit = Nothing 
  Set pEnumDataset = Nothing 
  Set pFeatureWorkspace = Nothing 
 
End Sub 
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