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ABSTRACT OF THE DISSERTATION 

BMP DECISION USING GENETIC ALGORITHMS 

FOR COST-EFFECTIVE POLLUTION CONTROL 

AT THE WATERSHED-LEVEL 

by 

Min-mo Chung 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2010 

Professor Michael K. Stenstrom, Chair 

The main goal of this research was to demonstrate the use of an advanced 

optimization technique that is suitable for watershed-level best management practice 

(BMP) optimization. This kind of simulation requires finding the optimal solution from 

many numbers of feasible alternatives. In this study genetic algorithms (GAs) were selected 

for optimization in part because they are known to search the solution space globally. Most 

previous work in developing an optimization tool for this problem has used GAs for 

optimization by individually considering two objectives: minimizing cost and pollutant 

reduction. The disadvantage of this approach is that some good solutions might be lost 
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because the two objectives are considered separately. 

In this study a BMP placement tool was developed that searched the best solutions 

from two objective functions simultaneously. For each GA population, the BMP placement 

tool calculated pollution reduction by combinations of five BMPs for the seventeen 

watersheds. At the same time, BMPs total cost (Construction and Operation, Maintenance 

and Repair cost) was computed. Final results were selected from the best combination of 

both objectives. 

The input data including watershed area and pollutant loading for the optimization 

tool were adapted from the City of Los Angeles' Proposition O bond results. First 

generation of GA population was set with 100 chromosomes. Every chromosome was 

initialized by properties of seventeen watersheds. Each watershed DNA randomly 

contained properties of BMP type including pollutant removal rates, and total cost functions 

among five available set of BMPs. 

A sensitivity analysis of GAs parameters was performed by comparing fitness 

values to determine better parameters for the best solution result. The tested GA operators 

were the population size, the number of generations, the crossover rates, the mutation rates 

and the overlapping rates. In this study, population size of 100, crossover rate of 60%, 

mutation rate of 5%, overlapping rate of 60% and a number of generations of 300 gave the 

best results in terms of fitness values. 

Overall, the BMP placement optimization model performed well in reducing the each 

pollutant load and minimizing BMP total cost from the watershed. 
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Chapter 1: Research Problem 

1.1 Introduction 

Non-point source (NPS) pollution from watersheds is a significant contributor to 

receiving water quality degradation. In the last few decades there has been increasing 

concern over water and storm water run-off pollutants that influence human or aquatic 

health. 

Government regulations, such as the Clean Water Act and Phase II storm water 

regulations, are placing growing emphasis on NPS pollution control. One method of 

control is through implementation of best management practices (BMPs); BMPs are 

structural or non-structural methods by which NPS pollution is eliminated or reduced 

sufficiently to meet water quality criteria. Various approaches are being taken to mitigate 

storm-water impacts and these include individual actions, such as the industrial storm-

water management permits as well as agency or city-wide actions, such as Los Angeles' 

recent passage of Proposition O, which provided $500 million for storm-water 

management. Proposition O was intended to fund projects to help achieve water quality 

requirements under the Federal Clean Water Act. 

The problem of locating BMPs throughout a watershed for cost-effective 

pollution control can be stated as a combinatorial optimization problem (Lawler, 1976; 

Grotschel, 1982). A combinatorial optimization problem optimizes a set of categorical 

variables (a watershed-level BMP decision) based on an objective function that assigns an 

ordered value (cost-effectiveness of pollutant reduction) to that set. Two methods can be 
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used to determine pollution reduction for each scenario: monitoring or modeling. 

However, modeling is frequently more beneficial in assessing long-term, watershed-level 

BMP effects. 

Although mathematical models may be less accurate than field studies in 

quantifying pollutant levels, a model is useful in evaluating long-term relative changes in 

pollution levels due to implemented BMPs or other management practice changes. A 

computer model can complete a long-term simulation in a matter of minutes or seconds, 

allowing long-term stability and usefulness of BMPs to be analyzed. Also, computer 

models allow more control over parameters, enabling the researcher to vary model 

components as necessary. This manipulation aids discovery and understanding of 

parameter relationships. 

The number of ways to allocate BMPs throughout a watershed exponentially 

increases with regard to the number of watersheds. For example, for 20 watersheds and 4 

non-mutually exclusive (meaning that they can occur at the same time) BMPs could have 

(24)20 = 1.2xl024 possible decision scenarios. Evaluation of all possible BMP scenarios 

becomes an intractable problem, one that is computationally difficult or impossible to 

solve for an exact solution in a finite time. The BMP placement problem has only been 

addressed through a limited number of procedures. An ideal procedure should choose 

cost-effective BMP scenarios based on each BMPs location-specific contribution to 

pollution reduction, as opposed to rule-based targeting criteria, such as a ranking system. 

However, due to increases of computer CPU speed and decreases in 

computational costs, mathematical programming heuristics for solving intractable 
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problems are becoming more widely used. Heuristics for large number problems have 

been tested in a variety of disciplines, including farm planning, molecular physics and 

chemistry, production and personnel scheduling, and factory design (Buick et al., 1992; 

Eglese, 1990; Swisher et al., 2000). Given search space and established criteria and 

relationships, these heuristics identify an optimal or near optimal solution set of one or 

more scenarios. Additionally, linear and nonlinear mathematical programming for 

environmental policy and resource management has been used since the 1960s. 

Greenberg (1995) provided an extensive survey of the use of optimization for controlling 

land, air, and water quality. Cooper et al. (1996) extended this review with regard to both 

deterministic and stochastic modeling of air pollution. 

The success of locating the optimal BMP plan for a specific watershed depends 

on the ability to consider the complete range of possible scenarios within a watershed as 

well as the various BMP interactions throughout the watershed. Individual applications of 

targeted BMPs or ranking (manually selected BMPs) do not consider all possible 

watershed scenarios and may not provide the most cost-effective solution. 

Theoretically, a comprehensive approach should find the optimal or a set of near-

optimal solutions from among all possible scenarios. The relative benefits of the targeted 

plan should be evaluated and compared to those solutions. Computer technology enables 

the use of optimization techniques to evaluate a large number of scenarios. Srivastava 

(1999) has provided one of the few examples of an optimization heuristic that is 

beneficial in reducing pollution and BMP construction costs as compared to multiple 

random scenarios. 
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1.2 Objectives 

The overall goal of this study is to increase the cost-effectiveness of BMPs within a 

watershed. Two specific objectives were necessary to realize this research goal: 

1. To optimize BMP placement within watersheds based on cost and NPS pollution 

(In this study: Total Suspended Solids, Total Nitrogen and Total Phosphorous) 

reduction for the watersheds; and 

2. To determine the cost effectiveness of BMPs using the optimization procedure as 

compared to a targeting strategy. 

The research hypothesis was that each watershed has characteristics of area (acre) 

and annual load of each pollutant (kg). For this research a BMP was defined as a 

management practice or set of practices that result in reduced pollutant loading by 

removal of a fraction of the pollutants at the watershed outlet. In the cost-benefit function, 

the operational costs of each BMPs method were considered in addition to BMPs 

construction costs. 
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Chapter 2: Literature Review 

2.1 Introduction 

A number of researchers have addressed the problem of BMP cost-effectiveness 

using NPS and/or economic models in conjunction with algorithms, heuristics, or 

decision criteria. Near-optimal placement of BMPs within a watershed can potentially be 

determined through heuristics that solve combinatorial optimization problems. Six such 

heuristics are described and compared in this chapter. 

2.2 Optimization 

Whereas watershed simulation models are numerous, optimization models are 

mostly limited to locating and sizing storage and detention facilities to meet water 

quantity or sediment removal objectives at least cost. Yeh and Labadie (1997) applied a 

successive reaching dynamic programming (SRDP) algorithm and a multiobjective 

genetic algorithm (MOGA) to watershed-level planning of storm water detention systems. 

The SRDP was used to locate and size the detention systems based on a single objective 

of water quantity. MOGA, a multiobjective evaluation, was used to develop trade-offs 

between system cost and detention effectiveness on water quality. 

Predeep et al. (1999) used dynamic programming (DP) to identify least cost pond 

designs for both single catchment and multiple catchment systems. The DP was based 

on different levels of control at individual catchments while satisfying the specified levels 

of pollution and runoff control at the outfall. The DP was based on the integration of 
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water quality and quantity through the use of isoquants (a contour line drawn through the 

set of points at which the same quantity of output is produced while changing the 

quantities of two or more inputs). The isoquants were developed for pollution control 

performance and runoff control based on two decision variables: the release rate from the 

pond and the active storage volume of the pond. These isoquants were then combined to 

identify the optimal release rate and used for the optimization with the objective of 

minimizing cost based on pond depth. Dorn et al (1995) used a genetic algorithm based 

optimization to develop a trade off curve between cost and sediment removal of detention 

pond systems. The trade off curve represented the level of sediment removal or 

maximum allowable cost specified by the decision maker. 
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2.3 Optimization for intractable problems 

The intractable problems that can be solved but not fast enough for the solution 

to be useful are called intractable. Existing optimization heuristics for solving intractable 

problems include gradient and non-gradient search methods, which were developed from 

studies of natural systems. Many problems are addressed by creating a customized 

technique that incorporates multiple variations on basic heuristics. Such customization 

often improves solution efficiency and is suitable for a specific problem. Six basic 

heuristics were chosen and evaluated. The objective was to determine a basic heuristic 

well suited to the BMP placement problem. This section briefly describes the heuristics 

that were considered, with a more detailed discussion of the genetic algorithm (GA), 

which was selected after comparing the six heuristics. 

2.3.1 Response surface methodology 

As a line search heuristic, the response surface methodology (RSM) (Ibrahim 

and Liong, 1992; Jacobson and Schruben, 1989; Myers, 1971) generally uses regression 

to fit a first or second order polynomial to a part of the feasible region. The improving 

direction is then determined from the gradient of the polynomial. A line search is made 

along the improving direction until the polynomial no longer provides sufficient fit. The 

procedure is continued from each new point until the gradient of the fit polynomial is 

essentially zero. Response surface methodology uses statistical models, and therefore 

practitioners need to be aware that even the best statistical model is an approximation to 
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reality. 

2.3.2 Shuffled complex evolution 

Duan et al. (1993) developed the shuffled complex evolution (SCE) method to 

address major characteristics of hydrologic model calibration problems. The SCE 

globally searches for the optimum by combining basic GA evolutionary concepts with a 

population grouping strategy. At each generation the SCE divides the search space into 

subsections, or complexes. Nelder and Mead's version of the simplex method (Bazaraa et 

al., 1990) is used within each subsection to generate offspring that drive the optimum in 

an improving direction. The SCE method then recombines the subsections by pooling all 

offspring into a single population, ranks the results, and starts over. Members of the 

population that rank higher than others in terms of fitness values have a larger probability 

of contributing to the next generation than do those members with lower fitness values. 

The SCE method continues in this manner until new searches do not improve on the 

optimum from the previous step. 

The SCE method combines benefits of the GA and neighborhood search 

algorithms. As a result, the SCE method searches both globally and locally. When used 

with continuous data for calibration problems, it was shown to be more efficient than use 

of a basic GA (Cooper et al, 1997). 

2.3.3 Simulated annealing 

The simulated annealing heuristic (SA) (Eglese, 1990; Swisher et al., 2000) 
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generalizes the annealing process used for crystalline solids. In this process the solid is 

heated to a high temperature and then cooled very slowly in an attempt to reach the 

lowest energy state possible. While at a high temperature, the crystalline structure of the 

solid is unstable and the solid is malleable. However, as the solid cools down, the 

crystalline structure becomes fixed. By cooling the solid very slowly, the annealing 

process attempts to reach the lowest energy state possible, thus, achieve the most 

structurally sound crystalline formation for the solid. 

The current state of the thermodynamic systems is analogous to the current 

solution to the combinatorial problem. The energy equation for the thermodynamic 

system is analogous to the objective function, and ground state is analogous to the global 

minimum. The major difficulty in implementing the algorithm is that there is no obvious 

analogy for the temperature T with respect to a free parameter in the combinatorial 

problem. Furthermore, avoidance of entrainment in local minima (quenching) is 

dependent on the "annealing schedule", the choice of initial temperature, how many 

iterations are performed at each temperature, and how much the temperature is 

decremented at each step as cooling proceeds. 

In simulated annealing, the process begins at a high 'temperature,' in order to 

allow the search to range widely over the response surface. As the 'temperature' drops, 

the search range narrows until the S A heuristic is focused on a single region of the search 

space that appears to contain the optimum, i.e., the minimum of the objective function. 

The region is then explored to determine a near optimal solution for the problem. Coding 

for the SA heuristic is minimal. 
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2.3.4 Tabu search 

A memory-based heuristic, the tabu searches (TS) (Bettinger et al., 1998; Glover 

et al., 1993; Swisher et al., 2000) were invented from artificial intelligence concepts. The 

essential idea is to 'forbid' search moves to points already visited in the (usually discrete) 

search space. Starting with a single scenario, the basic form of the heuristic uses gradient 

or neighborhood search techniques to evaluate and compare scenarios. The process 

narrows the search space by maintaining a dynamic tabu list of unsuccessful, or forbidden, 

scenarios. The tabu list helps prevent moves in non-improving directions so that 

successive scenarios become increasingly optimal. However, in creating an efficient TS 

heuristic for a particular problem type, the structure of the tabu list must be designed 

carefully to prevent premature elimination of potential solutions. Ideally, the memory 

process used by the search should not only remember recent moves (short-term memory) 

but also have some way of looking back into longer-term memory and determining which 

patterns are working and which are not. 

2.3.5 Genetic algorithm 

Genetic algorithms (GAs) are widely used stochastic search methods originally 

developed by Holland (1975) and later refined by many others (Goldberg, 1989; 

Chambers, 1995; Srivastava et al., 1999). The genetic algorithms (GAs) use computer-

based iterative procedures that employ the mechanics of natural selection and natural 

genetics to select the optimum solution for a given problem. Chromosomes that are 

judged to be the better fit are the most likely to survive into the next generation, and all 
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chromosomes, regardless of fitness values are subjected to random mutations. As a 

random search algorithm, GA does not require continuity in the input variables. GAs 

search the optimum solution from a set of possible solutions at a time, rather than one 

solution at a time. 

Nearly all GAs includes three basic components: a population of individuals, a 

function to score the fitness of an individual, and crossover, overlapping and mutation 

strategies for creating each successive population (Mitchell, 1999). A flow chart of the 

basic GA process is shown in Figure 2.1. The GA begins by creating an initial population 

of individuals. The probability of an individual's surviving to the next generation 

increases with increasing fitness. Individuals are introduced into the population in three 

ways: by direct reproduction with probability pr, by mutation with probability pm, or by 

crossover with probability pc. 
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Mutation changes one or more genes within an individual without regard to past 

or current fitness. Mutation is a purely random mechanism used to avoid local fitness 

maxima. Crossover combines two existing individuals to create two new individuals, 

each having values from both of the parents. Crossover helps redirect the search into new 

areas of the search space. Whether or not the parent individuals survive to the next 

generation depends on their fitness levels and on the replacement scheme of the GA. 

The simple genetic algorithm uses non-overlapping populations. In each generation, the 

entire population is replaced with new individuals. Typically the best individual is carried 

over from one generation to the next (this is referred to as elitism) so that the algorithm 

does not inadvertently forget the best that it found. Maintaining the best individual also 

causes the algorithm to converge more quickly; in many selection algorithms, the best 

individual is more likely to be selected for mating. If the crossover accurately conveys 

good genetic material from parents to offspring, the population will improve. If the 

crossover operator does not maintain genetic material, the population will not improve 

and the genetic algorithm will perform no better than a random search. A crossover 

operator that generates children that are more often unlike their parents than like them 

leads the algorithm to do more exploration than exploitation of the search space. In 

search spaces with many infeasible solutions, such scattering will more often generate 

infeasible rather than feasible solutions. 

The steady-state genetic algorithm uses overlapping populations. In each 

generation, a portion of the population is replaced by the newly generated individuals. At 
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one extreme, only one or two individuals may be replaced during each generation (close 

to 100% overlap). At the other extreme, the steady-state algorithm becomes a simple 

genetic algorithm when the entire population is replaced (0% overlap). Since the 

algorithm only replaces a portion of the population of each generation, the best 

individuals are more likely to be selected and the population quickly converges to a 

solution. As a result, the steady-state algorithm often converges prematurely to a local 

optimum. Once again, the crossover and mutation operators are keys to the algorithm 

performance; a crossover operator that generates children unlike their parents and/or a 

high mutation rate can delay the convergence. In this study, the steady-state method is 

applied. 

A GA ends upon reaching some termination criterion, which can be defined in a 

number of ways. For example, termination can be set to occur after a predetermined 

number of iterations of the optimization process. The termination criterion can also be 

defined as a minimal improvement in the maximum fitness score; that is, termination 

occurs either when the change in fitness score is less than a predetermined tolerance or 

when the score increase has remained below a tolerance for a predetermined number of 

generations. 

2.3.6 Artificial neural network. 

An ANN (Artificial Neural Network) is a mathematical model that simulates the 

operation of the human brain. ANNs consist of many simple arithmetic computing 

elements corresponding to neurons, and the network as a whole corresponds to a 
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collection of interconnected neurons. The connections have associated numeric weights. 

Weights are the primary means of long term storage in neural networks, and learning 

usually takes place by updating the weights. Function approximation by neural networks 

begins in a random state and learns using repeated processing of a training set. The 

training set is a set of inputs and target output is calculated and used to adjust the weights. 

This continues until errors are sufficiently small or until no more improvement is possible. 

The trained ANN can be used with new inputs for estimation and prediction. ANNs have 

recently gained significant popularity because it has been proven that an ANN can create 

non-linear mappings between input and output variables under certain conditions, More 

specifically, Scarselli and Tsoi (1998) proved that continuous functions can be 

approximated up to any degree of precision with a finite number of hidden nodes in a 

three-layered feedforward neural network. They also mentioned that four or more layer 

feed forward neural networks are rarely used in practice but they are universal 

approximations. Kralisch et. al.(2003) presented a new approach for the optimization of a 

given land use scenario of a catchment in order to obtain a specific nitrogen output from 

that catchment using neural network. 

Evaluation of ANN models 

Tools for fitting parametric models to data such as non-linear regression require a 

selection of a parametric model prior to function approximation. This selection can 

introduce bias that might have significant impact on the success of the function 

approximation. An ANN, which is a non-parametric model, avoids this problem at the 
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potential cost of additional computational resources and increased variance. However, 

varying the number of hidden units effectively creates models that vary from parametric 

to nonparametric for feed-forward neural networks (Reich and Barai, 2000). Smoothing 

can be performed using a lesser number of hidden units, while overfitting can result from 

using too many hidden units. Overfitting is characterized by a continuous decrease in a 

training error while a testing error increases when both data sets are representative of a 

data set to be modeled. There is no direct way to estimate confidence intervals for real 

data analysis. However, sensitivity analysis can address the variability of model results. 

Error estimation methods influence tradeoffs between bias and variance. Brief 

descriptions about these methods are as follows: 

a. Resubstitution test: A single data set is used for training and testing 

b. Holdout test: A data set is randomly divided into disjoint training and testing 

sets. It is common to select 2/3 of the set for training and the remaining 1/3 

for testing. 

c. k-fo\d cross validation: A data set is divided into k subsets of roughly equal 

size. A network is trained k times, each time leaving out one of the subsets 

from training and using it for testing. 

d. Leave-one-out cross validation: Similar to A:-fold cross validation, except that 

k is equal to the number of elements in the data set. Therefore, the training 

data set contains k-\ elements and the testing data set contains only one 

element. Training and testing is repeated k times. 

The detailed explanations of these methods are described by Reich and Barai (1999). 
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Tradeoffs between bias and variability of these methods are summarized in table 2-1. The 

number of internal iterations in the table denotes the number of executions performed 

over the entire data set. The resubstitution estimate is very optimistic, meaning that it is 

biased very high. Holdout test estimate is pessimistic, which means it is biased low. 

Table 2-1 Properties of Error Evaluation Methods (Reich and Barai, 1999) 

Estimation 
method 

Resubstitution 

Holdout test 

k-fold cross-
validation 

Leave-one-
out 

Size of 
training set 

n 

(0.6-0.8>n 

n(k-l)/k 

n-1 

Size of 
testing set 

n 

(0.2-0.4)-n 

n/k 

1 

Number of 
internal 

iterations 

1 

1 

k 

n 

Method 
variability 

Very high 

High 

Moderate-
high 

Moderate-
high 

Method bias 

Very 
optimistic 

Pessimistic 

Nearly 
unbiased 

Nearly 
unbiased 

Generally, 10-fold cross validation is used for sample size greater than a hundred 

and leave-one-out cross validation is used for smaller data sets. Some error evaluation 

methods are better than the others for specific problems, but no method is always 

superior (Reich and Barai, 1999). The authors also suggested the following procedure for 

choosing the best ANN for a data set and its operational parameters: 

1. Divide the data set into training and testing subsets. 

2. Select the best ANN and its operational parameters using the following method: 

a. Test each combination of ANN and/or operational parameters with a k-fold 

cross validations test. 
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b. Select the combination that leads to the best cross validation performance. 

3. Assessment of the best ANN: 

a. Create a model from all training data using the best ANN and its operational 

parameters, 

b. Test the model on the testing data set. 

It is common to compare developed ANN models with another ANN or 

regression models. Cannon and Whitfeild (2002) developed empirical downscaling 

models for stream flow at 21 stations in British Columbia. They showed that ensemble 

neural network models either outperformed or yielded the same performance as stepwise 

linear regression models at 19 out of 21 stations. Raid et al. (2004) used a multilayer 

perceptron neural network with a back-propagation algorithm to predict the basin's 

rainfall runoff. They demonstrated that the ANN is more suitable to predict runoff than a 

classical regression model even in arid and semiarid regions with a very irregular rainfall 

and runoff characteristics. The ability of ANNs to account for non-linear patterns and 

irregular seasonal variation in a data set makes them well suited for use in hydrological 

modeling applications (Marier and Dandy, 2000). 

2.3.7 Previous use of heuristics with NPS models 

These six optimization techniques have been used previously to calibrate NPS 

models. Calibration by an optimization technique requires observed data relating to the 

model input and output parameters. Additionally, model parameters to be calibrated must 
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be identified. By multiple runs through the NPS model, the optimization technique 

determines values for model parameters such that model output values for observed input 

values match, as nearly as possible, the related observed output values. 

For example, the RSM was used to calibrate the Soil and Water Management 

Model (SWMM) to better estimate peak flow rates for an urban watershed in Singapore 

(Ibrahim and Liong, 1992). Results from the calibrated model were found to compare 

well with measured results. The urban watershed in Singapore was later used to analyze 

the calibration of SWMM by a GA, again with good results (Liong et al, 1995). A GA 

was used to calibrate a water quality model for predicting dissolved oxygen in streams 

(Mulligan and Brown, 1998). For comparison, a practitioner also calibrated the model 

using field measurements, empirical relationships, and engineering judgment to 

sequentially determine the model parameters. Parameter estimates produced by the GA 

calibration were comparable with the practitioner's estimates along a 64-km river stretch. 

Sumner et al. (1997) used SA in combination with the Simplex algorithm to calibrate a 

conceptual rainfall-runoff model for 25 watersheds in Australia and found that the 

computer-calibrated model fit the measured data more closely than did the user-calibrated 

model. Bajwa et al. (2009) studied a spatially distributed ANN model for modeling 

watershed - scale rainfall-runoff process. Kralisch et al. (2003) applied ANN to 

optimization of watershed management and found that a suitably designed neural 

network learning procedure will find near-optimal solutions to the problem if the starting 

land use scenario is reasonable 
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Optimization techniques for intractable problems (can be solved but not fast 

enough for the solution to be useful) have not been widely used to assist in NPS pollution 

control. Bettinger et al. (1998) used the TS heuristic to help determine the optimal 

solution to a complex model for improving aquatic habitat conditions in a timber 

harvesting area. 

A GA was used to optimize the placement of BMPs within a watershed with the 

goal of minimizing pollutant loadings at the outlet while maximizing total net returns 

(Srivastava, 1999; Srivastava et al., 1999). Srivastava et al. (1999) combined the Annual 

AGricultural Non-point Source pollution model (AnnAGNPS) with a GA. They 

demonstrated their method on a 725-ha agricultural watershed, comparing conventional, 

conservation, and no- tillage on rotated crops. All other land uses (forest, pasture, and 

urban) were unchanged. Because of the problem representation used and a feature of the 

GA that required fitness scores to remain non-negative, the baseline scenario was chosen 

as the maximum possible pollution-loading scenario for the watershed. Net returns were 

based on a simple economic model using The Pennsylvania State University extension 

crop budget guidelines for farmers. 

The GA used by Srivastava et al. (1999) found the optimal scheme for either 

pollution reduction while holding net returns constant, or for net returns while holding 

pollutant loading constant. After about 3800 evaluations, the algorithm identified a 

solution better than those solutions resulting from 3000 random combinations of BMPs. 

When set to optimize pollution reduction, sediment was reduced 44% from the baseline. 

Additionally, the GA converged to an optimal fitness after about 100 generations. Thus, 
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any solution scenario after the first 100 generations met or nearly met the optimization 

conditions. 

These heuristics use different methods for formulating and solving the BMP placement 

problem. Use of these heuristics in the area of NPS pollution control has focused 

primarily on calibration of NPS models. The genetic algorithm (GA) is the only 

mathematical heuristic cited in the literature as having been used for determining optimal 

scenarios with regard to cost-effective NPS pollution control (Srivastava et al., 1999). 

The research by Srivastava et al. (1999) provides a strong argument for the 

effectiveness of a GA in optimizing cost-effective BMP scenarios. Their work invites 

further exploration into use of optimization heuristics in solving BMP placement 

problems. In particular, Srivastava (1999) suggested a need to evaluate alternative GA 

formulations as well as to explore the use of other heuristics. 

2.4 Characteristics of urban runoff 

Early work was limited mostly to planning for non-point source management and 

identified agricultural runoff as being different and requiring alternative management 

strategies than point sources such as municipal and industrial wastewaters. Highways and 

streets (Sartor and Boyd, 1972) were among the first to be investigated as non-point 

source pollutants. Other early research included the Nationwide Urban Runoff Program 

(US EPA, 1983) which addressed different types of landuse. Stenstrom (1984) studied 

relationship about oil & grease with landuse at San Francisco bay area. This paper 

concluded that 90% reduction in discharge from commercial properties and parking lots, 
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which represented only 9.6% of the total surface area of Richmond, California, would 

result in a 53% reduction total oil and grease discharge. 

2.4.1. Pollutants sources in Urban Runoff 

Heavy metals. Urban storm-water runoff is known to be the largest contribution of 

metals to the local receiving water bodies (Characklis and Wiesner, 1997). The metals 

from anthropogenic sources include As, Pb, Zn, Ba, Cd, Fe and Cr. Whereas Al, Ca, Mg, 

Sr, Hg and Mn are usually from natural sources (Zartman et al, 2001). The chemical 

nature and source of the individual metals lead to different partitioning between solid and 

liquid. Particulate metals in the urban runoff are typically associated with organic matter 

from the tire wear, pavement surface wear and dust from exhausted pipes as well as 

minerals from soil, pavement and sources in the watershed (Roger et al., 1998). 

A pollutant's partition between solid and liquid phases is of concern because the 

particulate fraction plays an important role in determining BMP efficiency. Hunter et al. 

(1981) reported that approximately 50% of total metals in storm-water were associated 

with particles. Characklis and Wiesner (1997) concluded that Zn exists mainly in the 

dissolved phase up to 80% of total concentration, while Fe is usually combined with 

coarse materials. Roger et al. (1998) stated Pb and Zn were often found in the sediments 

from motorways and Zn was associated with the fine particles (<50 /urn ). Pb 

concentrations are declining in urban runoff because of elimination of leaded gasoline 

(Characklis and Wiesner, 1997). 
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Organics and Nutrients. Polynuclear aromatic hydrocarbons and microorganisms such 

as fecal coliforms and pathogens are of concern because of their potential toxicity to 

human health and ecosystems. PAHs are usually combined with the other organic matter 

(Schueler, 1987) and the origins of PAHs in urban runoff are usually pavement leaching, 

tire abrasion, automobile's combustion processes and lubricating oils (Latimer et al., 

1990; Takada et al., 1991; Ngabe et al, 2000; Krein and Schorer, 2000; Kamalakkannan 

et al., 2004). Atmospheric deposition and regional air pollution emission are also a 

significant PAH source (Herricks, 1995). 

Urban runoff also carries significant amount of nutrients such as nitrogen and 

phosphorous (Abustan et al., 1998). Nutrients sources include fertilizer applied to yards, 

roof runoff, various household chemicals and street runoff. Vase et al. (2002) performed 

an experimental study of pollutant accumulation on urban road surfaces and found that 

majority of total phosphorous and nitrogen in the solid samples was associated with 

particles less that 50 /jm in diameter. 

Borst and Selvakumar (2003) found large concentrations of fecal coliforms and 

pathogens in urban runoff. Microorganisms are self-suspended or absorbed to suspended 

particles and prefer particles that are larger than 30 /urn in diameter (Schillinger and 

Gannon, 1985). 

2.4.2. Storm-water Pollutant Loading Models 

Urban land use information is important for storm-water modeling (Wong, 1997; 

Burian et al., 2002) as quantity and quality of storm-water runoff is related to land use. 
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The Runoff Coefficient (RC) is one of the main components for determining storm-water 

runoff volume and represents the fraction of rainfall that actually reaches the receiving 

water (Wong et al., 1997). RC is highly correlated to imperviousness of the surface and 

the following equation is used by the County of Los Angeles, Department of Public 

Works (LADPW, 2000b): 

RC = 0.8x1 +0.1 (2.1) 

where, RC is runoff coefficient, I is the impervious fraction. 

However, RCs used in this report were developed using a Geographical Information 

System (GIS) as a function of hydrologic soil group, slope, and land use according to 

Browne relation (1990) in the Ballona Creek Watershed. They differ from the LA County 

estimates based on soil type as well as imperviousness. 

Then the annual average storm runoff volume is calculated as follows: 

RV = R C x A x R F x C F (2.2) 

where RV is annual storm-water runoff (m /yr), A is drainage area (m ), RF is annual 

rainfall (mm), and CF is conversion factor. The imperviousness and runoff coefficients 

can be estimated as a function of land use types. 

The Event Mean Concentration (EMC) is the average pollutant concentration during a 
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storm event and is widely used for estimating storm-water runoff pollution. The 

mathematical definition of EMCs is total pollutant mass discharged during an event 

divided by total volume discharge of the storm event as follows (Huber, 1993): 

M \C(t)-Q(t)dt 
EMC = — = ^—r (2.3) 

V \Q(t)dt 

where M is total mass of pollutant during the storm event, V is total storm-water runoff 

volume, C(t) is pollutant concentration that is function of time, and Q(t) is storm-water 

flow rate over time. EMCs are also related to land uses although they are dependent on 

sites and storm events (Smullen et al., 1999). 

Based on the information of runoff volume and EMCs for each pollutant type, wet-

weather pollutant load can be estimated as follows: 

PLi = a x RC x RFx A x EMCi (2.4) 

where PLi and EMCi are the annual pollutant load and the EMC for pollutant type i, 

respectively and a is a conversion factor for consistency of the units. These simplistic 

models are most appropriate for longer time periods, such as seasonal or annual periods, 

assuming average annual rainfall. 

This simple modeling approach has been described as the "simple method" or the "spread 

sheet method." The term "volume-concentration" method is used in this dissertation. Park 
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et al. (2009) have performed a sensitivity study of several applications of this method to 

the upper Ballona Creek Watershed, and show the impact of the variability in 

assumptions, such as land use definitions. 
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2.5 Best Management Practices (BMP) 

Reductions in non-point source (NPS) pollution can be attained by reducing activities that 

produce NPS pollutants, reducing the amount of pollutants generated by an existing 

activity and reducing the negative effects these pollutants can have by controlling their 

dispersal. To that end, NPS best management practices (BMPs) are important tools in 

controlling NPS pollution and environmental contamination. Also urban storm-water 

runoff can be controlled by the use of various best management practices. BMPs are 

either non-structural or structural, varying from small, site-specific practices to large-

scale regional practices. 

2.5.1 Structural storm-water BMPs 

An urban storm-water BMP is believed to be a "best" way of treating or limiting 

pollutants in storm-water runoff. The storm-water treatment practices investigated here 

include wet ponds, bioretention, bio-swale, infiltration system, sand filters, and bio-filter 

practices. 

A. Wet ponds, also called wet detention ponds, have been used in many sites in USA 

longer than any other storm-water BMP. Wet ponds are runoff-holding facilities that have 

standing water in them constantly. Storm flows are held in the ponds temporarily and then 

released to minimize large scale flooding. The primary pollutant-removal mechanism is 

settling (sedimentation) while storm-water runoff resides in the pool. Nutrient uptake also 
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occurs through biological activity. Wet ponds can be designed to look like natural lakes to 

enhance the value of surrounding property. They have been and can be used for 

commercial sites as small as 1 acre and for watersheds as large as 100 acres or more. 

Wetlands, also called constructed wetlands, are comparable to wet ponds but are 

much shallower and more heavily vegetated with wetland plants. They serve as a natural 

filter for urban runoff, help slow the flow of water to receiving waters, and replenish 

groundwater. As storm-water runoff flows through the wetlands, sedimentation, 

adsorption, and biological processes achieve pollutant removal. In many sites, 

constructed storm-water wetlands have been located on watersheds as small as 4 to 5 

acres, but they are more commonly used for larger drainage areas and typically serve 

watersheds ranging from 15 acres to more than 100 acres. Due to the vegetative cover, 

wetland effluent is typically cooler than that of wet ponds, minimizing the impact of 

thermal pollution. Wetlands consume a relatively large amount of space and thus have 

limited applicability in highly urbanized settings. 

B. Sand filters are usually two-chambered storm-water treatment practices. Water enters 

the first chamber, where debris and large suspended solids settle out, and then moves to a 

second chamber, where a filter bed filled with sand or another filtering media remove 

other forms of pollution. At the bottom of the sand layer, an underdrain pipe typically 

connects the treated water with the existing drainage network. Sand filters are particularly 

well suited for treating storm-water runoff in urban areas because they can be designed to 

be walked over or driven on, thus preserving expensive land. Typically, the sand filter 
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will treat a drainage catchment of only a few acres. This practice is designed for 

impervious watersheds in particular. 

C. Biofilters pass storm-water slowly over a vegetated surface in the form of a swale or 

filter strip to filter pollutants and infiltrate the runoff. Biofilters are most effective when 

designed to receive sheet flow from paved areas and maximize water contact with the 

biofilter vegetation and the soil surface. They are often placed within vegetated setbacks, 

landscaped common areas and other required open areas in residential, commercial, 

industrial and institutional land uses. Biofilters can have tributary areas of up to 5 acres, 

which makes them appropriate for lawns and parking areas. There are several limitations 

as follows: 

1. Irrigation may be necessary to maintain vegetative cover. 

2. Not appropriate for steep unstable slopes. 

3. Large area requirements may make this BMP infeasible for some sites. 

4. Not appropriate for pollutants toxic to vegetation. 

Biofilters are an effective means for removing storm-water pollutants, infiltrating runoff, 

stabilizing soil and controlling erosion. Biofilters accomplish this in several ways. 

Vegetative covers shield soil surfaces from the impact of falling rain. Vegetation, such 

as turf grass or other ground cover, disperses flow and provides a rough surface to reduce 

flow velocity, which promotes infiltration and sediment deposition. Plants also remove 

nutrients in storm-water and transpire moisture from the soil. Pollutant removal 
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effectiveness for biofilters is a function of area, flow depth, travel time and the quality of 

the vegetative cover. Biofilters are relatively easy to design, install and maintain. Finally, 

maintaining a biofilter often requires little more than normal landscape maintenance 

activities such as irrigation and mowing. Compared with some other means for 

improving storm-water runoff quality, biofilters provide a relatively unobtrusive, 

attractive, long-term and inexpensive storm-water quality management technique. 

D. Bioretention areas are landscaped and vegetated filters for storm-water runoff. 

Surface runoff is directed into shallow, landscaped depressions. Trees and shrubs are 

planted in bedding material consisting of a high percentage of sand and lesser amounts of 

silt, clay, and/or organic matter. During rain events, storm-water pools above the mulch 

and soil in the system. The remaining runoff filters through the mulch (layers of pervious 

material such as old leaves, small pieces of wood and sawdust) and prepared soil mix. 

Typically, the filtered runoff is collected in a perforated underdrain and is returned to the 

storm drain system. Bioretention systems are ideally suited to many ultra-urban areas as 

they will fit existing parking lot lands or other landscaped areas. Because bioretention 

potentially can fulfill two purposes—water quality control and landscaping 

requirements—their use is expected to increase. Bioretention areas typically serve very 

small watersheds, such as (portions of) parking lots or residential runoff areas. 

E. Infiltration System is the process where water enters the ground and moves 

downward through the unsaturated soil zone. Infiltration is ideal for management and 
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conservation of runoff because it filters pollutants through the soil and restores natural 

flows to groundwater and downstream water bodies. The slow flow of runoff allows 

pollutants to settle into the soil where they are naturally mitigated. The reduced volume 

of runoff that remains takes a long time to reach the outfall, and when it empties into a 

natural water body or storm sewer, its pollutant load is greatly reduced. 

Infiltration basins can be either open or closed. Open infiltration basins, include ponds, 

swales and other landscape features, are usually vegetated to maintain the porosity of the 

soil structure and to reduce erosion. Closed infiltration basins can be constructed under 

the land surface with open graded crushed stone, leaving the surface to be used for 

parking or other uses. 

Infiltration systems are often designed to capture the "first flush" storm event and used in 

combination with a detention basin to control peak hydraulic flows. They effectively 

remove suspended solids, particulates, bacteria, organics and soluble metals and nutrients 

through filtration process of the vehicle, absorption and microbial decomposition. 

Groundwater contamination should be considered as a potential adverse effect and should 

be considered where shallow groundwater is a source of drinking water. In cases where 

groundwater sources are deep, there is a very low chance of contamination from normal 

concentrations of typical urban runoff. In some cases infiltration basins may not be 

appropriate due to groundwater contamination concerns. 
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f. Vegetated Swales are open, shallow channels with vegetation covering the side slopes 

and bottom that collect and slowly convey runoff flow to downstream discharge points. 

They are designed to treat runoff through filtering by the vegetation in the channel, 

filtering through a subsoil matrix, and/or infiltration into the underlying soils. Swales 

can be natural or manmade. They trap particulate pollutants (suspended solids and trace 

metals), promote infiltration, and reduce the flow velocity of storm-water runoff. 

Vegetated swales can serve as part of a storm-water drainage system and can replace 

curbs, gutters and storm sewer systems. 

2.5.2 Non-structural BMPs 

• Nonstructural BMPs focus on prevention and removal of storm-water volumes 

and constituent loads at their source. There are no physical structures associated 

with nonstructural BMPs 

Examples of common nonstructural BMPs for industries are: 

• Materials management practices that prevent either rainfall or storm-water from 

collecting and transporting water pollutants 

• Storm drain maintenance practices such as street sweeping and catch basin 

cleaning 

• Equipment maintenance 

• Spill prevention, control, and cleanup 

• Eliminating non-storm-water discharges 
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• Employee training 

• Recordkeeping 

• Good housekeeping 

. Benefits of nonstructural BMPs include: 

• Limiting the amount of pollutants that potentially enter storm-water runoff 

• Reducing the need for the more expensive structural BMPs 

• Improving overall BMP efficiency and helping to reduce maintenance 

requirements 

2.5.3 Total BMP costs 

The total cost of a storm-water BMP is made up construction costs plus 

maintenance and operation costs. When comparing storm-water BMP and deciding which 

practice to select, we also should consider the long-term maintenance cost. 

Typical costs for each BMPs were retrieved from Chapter 6.0, "Costs and 

Benefits of Storm Water BMPs," of an EPA on-line document (EPA, 1999). Table 2-2, it 

states that each BMPs construction costs/acre. All values reported in the document need 

to be divided by an adjustment factor to account for regional differences. Using the 

average annual federal inflation rate (3%), the capital cost of wet ponds in 2005 is 

$2,622.22/acre. 

Capitalized at a 3% interest rate over a 25 year finance period, this value 
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becomes $150.59/acre/year. It should be noted hat stormwater ponds can be expected to 

function for up to 50 years. To this value, the annual operation and maintenance costs 

must be added. Operation and maintenance costs for retention basins can range from 3-

6% of the construction costs (EPA, 1999). This study used an average value of 4.5% and 

applied this to the regionally adjusted construction cost, to get $118.00/acre/year O&M 

cost. Thus, the final cost of wet ponds is $268.59/acre/year. Other BMPs' cost 

calculations are similar to this one. 

Table 2-2. Storm-water BMP Costs 

Cost 

Construction 

Finance period 

Sub-total 

capitalized 

over lifespan 

OMR/year 

(% Const.) 

Annual OMR 

Total Cost 

Wet Ponds 

$2,622.22/ac 

25years 

$150.59/ac/yr 

4.5% 

$118.00/ac/yr 

$268.59/ac/yr 

Infiltration 

$7,866.67/ac 

2 5 years 

$451.7/ac/yr 

10.5% 

$826.0/ac/yr 

$l,278/ac/yr 

Bioswale 
Bio-retention 

$10,890/ac 

25years 

$630.1/ac/yr 

5% 

$544.5/ac/yr 

$l,175/ac/yr 

Sandfilter 

$14,670.17/ac 

2 5 years 

$842.5/ac/yr 

12% 

$l,760/ac/yr 

$2,603/ac/yr 

Biofilter 

$15,733.33/ac 

25years 

$903.5/ac/yr 

6% 

$944.0/ac/yr 

$l,848/ac/yr 

Source : ASCE (2001), EPA (1999) 

Any cost estimate needs to be adjusted for inflation and regional differences. All costs 

assume a 3 percent annual inflation rate. In addition, studies are adjusted to the 'twenty 

cities average' construction cost index, to adjust for regional biases, based on a 

methodology followed by the American Public Works Association. Using EPA's rainfall 

zones (Fig. 2-2), a cost adjustment factor is assigned to each zone. 
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Table 2-3 Regional Cost Adjustment Factors 

Rainfall zone 

Adjustment 

Factor 

1 

1.12 

2 

0.9 

3 

0.67 

4 

0.92 

5 

0.67 

6 

1.24 

7 

1.04 

8 

1.04 

9 

0.76 

Source : APWA, 1992 

Figure 2.2 Rainfall zones of United States 

Source: Methodology for Analysis of Detention Basins for Control of Urban Runoff 

Quality, prepared for U.S. EPA, Office of Water, Nonpoint Source Division, Washington, 

DC, 1986. 

[55 FR 48073, Nov. 16, 1990] 

2.5.4 Removal effectiveness 

The performance of structural BMPs is highly dependent on site-specific factors 

including rainfall intensity, duration, and volume, pollutant concentrations, and climate 

patterns. 
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Table 2-4. Median removal rates for 5 BMPs 

Wet ponds 

Infiltration system 

Bioswale 

Biofilter 

Sandfilter 

TSS (Removal %) 

75 

80 

80 

82 

81 

TN (Removal %) 

28 

60 

70 

45 

50 

TP (Removal %) 

46 

55 

35 

59 

35 

Source: Wossink and Hunt (2003) and BMP handbook (CASQA, 2003) 

Table 2-4 shows median removal rates for five BMPs. While BMP performance by 

pollutant removal rate is now widely accepted, many researchers disagree over the use of 

removal rates (Strecker et al., 2001: Jones et al., 2008). Strecker et al. (2001) reported 

that effluent quality concentration can be a better way to characterize BMPs efficiency, 

and it is important to test whether the BMP had a statistically crucial effect on water 

quality. Jones et al. (2008) suggested that BMP analysis should be using an approach that 

focuses on the following: 

o How much the BMP reduces runoff volumes 

o How much runoff is treated (versus bypassed) 

o Whether the BMP can demonstrate a statistical difference in effluent quality 

compared to influent quality 

o What distribution of effluent quality is achieved. 

Table 2-5. Median effluent concentrations for 5 BMPs 
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Wet ponds 

Infiltration system 

Bioswale 

Biofilter 

Sandfilter 

TSS (mg/L) 

20 

27 

22 

32 

16 

TN (mg/L) 

4.5 

10.5 

5 

6 

12 

TP(mg/L) 

2 

3 

2 

4 

1.5 

Source: International Stormwater Best Management Practices Database [1999-2008] 

Thus, this GA tool simulated pollution reductions not only using by BMPs 

removal rates but also using by BMPs effluent concentration. However, this GA 

simulation does not include other potential benefits of BMPs. Energy conservation, 

creation of open space, habitat restoration, flood control, and water reuse benefits have 

not been quantified. There is a need to develop methods to quantify these benefits 

because they may improve water quality and reduce overall cost. 

2.6 Proposition O 

Federal mandates initiated in 1999 under the Clean Water Act established that 

over 60 water quality regulations would be adopted in Los Angeles. These 

regulations are developed for each specific body of water and/or watershed. The goals of 

Proposition O are 

o Protect rivers, lakes, beaches and the ocean; 
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o Conserve and protect drinking water and other water sources; 

o Reduce flooding and use neighborhood parks to decrease polluted runoff; 

o Capture, clean up and reuse storm water. 

It authorized the City of Los Angeles to issue $500 million in general bonds. After 

screening 52 submitted projects, 21 proposals were approved for concept development. 

The on-going project to comply with the Trash TMDLs(Total Maximum Daily Load) by 

installing catch basin inserts and covers in high trash generating areas were also approved 

for continued funding. The time of September, 2007, $462,432,662 has been allocated for 

those projects approved by City Council and $12,842,042 has been recommended by 

COAC (Citizens Oversight Advisory Committee) and AOC (Administrative Oversight 

Committee) and is pending City Council approval. 

In this report (Stenstrom, 2007), storm-water pollutant loads of the project sites were 

estimated using the empirical volume-concentration approach that employs land use 

definitions for pollutant concentrations and runoff coefficients. Dry-weather pollutant 

load were estimated from dry weather runoff and concentration data collected by the Los 

Angeles County Department of Public Works' monitoring programs. The performance of 

proposed Best Management Practices (BMPs) was evaluated assuming all runoff from the 

drainage area passes through the series of proposed BMPs in a sequential way. The 

pollution reduction and the effect of a project on TMDL compliance were estimated at the 

watershed scale because it is required by the TMDL process. Three watersheds were 

considered: Greater Ballona Creek, Los Angeles River, and Dominguez Channel. The 
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annual average stormwater runoff volume and pollutant loads were estimated for each 

watershed to accommodate watershed-scale decision making. Annual stormwater runoff 

volume from the watersheds were approximately 6.54*107, 23.6*107, and 4.32*107 

m /year for BC, LAR, and DC watersheds, respectively, assuming annual average rainfall 

of 305 mm, which is the 30 year average rainfall in the region. The average runoff 

coefficients for the entire watershed were 0.39, 0.36 and 0.49 for BC, LAR, and DC 

watersheds, respectively, which is proportional to the imperviousness of each watershed. 
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Table 2-6. Status of projects funding and calculating cost 

No 

11 

28 

41 

52 

51 

10 

12 

16 

20a 

20b 

20c 

22a 

22d 

23 

29 

31 

35 

36 

36a 

40 

9 

14 

Project title 

Cesar Chavez Complex 

Oros Green Street Trees 

Inner Cabrillo Beach Water 

Quality Improvement Project 

Catch Basin Inserts and Coverings 

Phase II 

Santa Monica Bay Upgrades 

Strathern Pit Multiuse Project 

Cabrito Paseo Walkway/Bike Path 

South Los Angeles Wetlands Park 

Grand Avenue Storm-water BMPs 

La Cienega/Fairfax Powerline 

Storm-water BMPs 

Mar Vista Rec. Cntr BMPs 

Imperial Highway BMPs 

Westminster Dog Park BMPs 

Aliso Wash - Limekiln Creek 

Confluence Restoration Project 

Echo Park Lake Project 

Parking Grove in El Sereno 

Rosecrans Recreational Center 

Storm-water Enhancement 

Lake Machado Water 

Quality/Habitat Improvemen 

Wilmington Drain Project 

Peck Park Canyon Enhancement 
The LA Zoo Parking Lot 

Hansen Dam Recreational Area 
Restoration Project 

Total funding 

$9,540,000 

$972,651 

$8,811,353 

$10,000,000 

$35,000,000 

$22,505,000 

$4,463,009 

$13,380,243 

$1,075,927 

$7,667,888 

$4,556,186 

$2,723,403 

$1,438,755 

$10,893,483 

$84,263,313 

$3,984,635 

$6,754,033 

$99,523,897 

$17,942,534 

$6,190,000 

$13,904,242 

$2,220,702 

total cost 
/mass load 

NA 

$188,696 

NA 

NA 

$117,776 

$22,543 

$500,292 

$61,296 

$165,261 

$2,202 

$2,201 

$170,686 

$13,745,865 

$2,718 

$253,194 

$457,031 

$11,334,565 

$26,738 

NA 

$51,922,120 

$1,595,734 

$294,037 

total cost 
/drainage area 

$14,135 

$115,806 

NA 

NA 

$2,634 

$16,403 

$232,110 

$26,756 

$68,618 

$1,539 

$18,693 

$164,695 

$517,166 

NA 

$115,066 

$1,191,577 

$532,736 

$6,715 

NA 

$62,091 

$421,878 

$29,857 

(Adapted from Proposition O Report, Stenstrom, 2007) 
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Chapter 3: Development of Optimization Procedure 

3.1 Introduction 

Developments of the optimization procedure start from determining which 

optimization method to use. The six heuristics described in Chapter 2 were compared 

based on a number of factors, leading to selection of the genetic algorithm (GA) as the 

heuristic to incorporate into the optimization procedure. The next step was to develop 

methods for predicting the NPS pollution reduction and economic impacts of each BMPs 

placement scenario. These methods were then formulated into a multi-objective 

optimization function. 

The resulting optimization procedure is comprised of three components: GA 

parameters, BMPs characteristics for evaluating each pollutant reduction, and an 

economic component for assessing construction and OMR (Operation, Maintenance and 

Repair) costs. Finally, the optimization procedure was implemented as a computer 

program using Microsoft C # 2.0 ("C sharp") languages and tested. C# is a new computer 

language intended to be a simple, modern, general-purpose, object-oriented programming 

language based on C++ and Java. 

Because of the computer time involved in running a detailed NPS model, using 

such a model to predict pollutant reduction or pollutant loading within the optimization 

procedure may result in total runtimes of several hours. Thus, efficient problem 

formulation that limits unnecessary evaluations of the objective function is desirable. In 

particular, the likelihood of the optimization procedure being used in the future may be 
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improved by reducing runtime. Total runtime of the procedure may be reduced by 

development of a simplified NPS model. 

3.2 Choosing an optimization heuristic 

The BMPs placement problem was determined to be an intractable problem (can 

be solved but not fast enough for the solution to be useful) based on the large number of 

watershed, the exponential number of possible BMP combinations. Literature, 

particularly related to global optimization techniques (e.g., Swisher et al., 2000) and 

watershed-level NPS pollution control (e.g., Braden et al. 1989, Srivastava et al., 1999), 

was examined to determine potential methods for solving BMPs placement problem. 

Six heuristics for solving intractable problems were selected and considered in order to 

determine potential characterizations of the problem. As part of this consideration, 

several factors were compared among the heuristics, including performance for similar 

types of problems in previous studies, proof of convergence, and ease of formulation. 

Next, each heuristic's continuity and differentiability requirements, convergence rate, and 

relative efficiency were considered, as were sensitivity of the heuristic to the problem 

formulation and the number of points needed as a starting requirement. Table 3-1 

summarizes the heuristics in terms of these factors, which are discussed in more detail in 

the following subsections. Factors greatly impacting procedure development are shown in 

bold. 
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Table 3-1 Summary of heuristics in terms of each factor considered 

^^Heur i s t i cs 

Factors ^ ~ ^ \ ^ 
Demonstrated 
performance on 
BMP placement 
problems 
Proven 
convergence 
Formulation 
ease 
Continuity or 
differentiability 
required 
Convergence 
rate 
Relative 
efficiency 
Sensitivity to 
formulation 
Number of 
initial points 
required 

Response 
surface 
method 

No 

Yes 

Low 

Yes 

Uncertain 

Uncertain 

High 

High 

Shuffled 
complex 
evolution 

No 

Uncertain 

Low 

Yes 

Uncertain 

High 

High 

High 

Simulated 
annealing 

No 

Yes 

High 

No 

Uncertain 

Low 

High 

Low 

Tabu 
search 

No 

Uncertain 

Low 

No 

Uncertain 

Uncertain 

High 

Low 

Artifial 
Neural 

Network 

Yes 

Uncertain 

Medium 

No 

Uncertain 

Medium 

High 

Very 

High 

Genetic 
algorithm 

Yes 

Yes 

High 

No 

Uncertain 

Medium 

High 

High 

As a result of the overall process of choosing an optimization heuristic, it was 

determined that the problem was most simply suited to characterization as a 

combinatorial optimization problem. Thus, the response surface methodology (RSM) and 

shuffled complex evolution (SCE) heuristics, which require continuity in the input 

variables, could now be eliminated from consideration. The remaining four heuristics 

were determined to be suitable for solving the BMP placement problem. However, this 

problem appears easier to formulate for use with simulated annealing (SA) and the GA 

than for the tabu search (TS) and artificial neural networks (ANN). 
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In addition to the above heuristics, the use of a classical method, such as integer 

programming or nonlinear optimization, was considered briefly. For example, Braden et 

al. (1989) used nonlinear optimization to address this problem. They evaluated 

management practices by small hydro logic units instead of by fields. The hydrologic 

units were then grouped into catchments within the watershed and their order along the 

catchment flow path identified. This data preparation can become very difficult for large 

or topographically complex watersheds. A NPS model could be incorporated into a 

classical optimization method to overcome this difficulty. However, it seemed that use of 

a classical optimization technique would necessitate careful formulation with regard to 

the relationship between scenarios in order to implement an efficient optimization 

algorithm and prevent enumeration over all possible solutions. As compared to the 

simplicity of using a heuristic to solve this problem, efficient problem formulation using 

classical optimization techniques seemed less straightforward. 

3.2.1 Demonstrated performance on BMP placement problems 

Glover et al. (1995) listed a range of problems for which Tabu Search has provided high 

quality solutions. However, problems dealing with modeling of natural systems were not 
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mentioned. SCE method has not extended beyond its development purpose of improving 

model calibration. Stone et al. (2002) used SA (Simulated Annealing) to assign fields and 

livestock attributes to farms based field characteristics, basic land use data, and 

watershed-level statistical information about farm types. Additionally, TS, SCE, SA, and 

RSM have been used to varying degrees in calibrating NPS models (Ibrahim and Liong, 

1992; Liong et al., 1995; Cooper et al., 1997). However, they were not found in the 

literature to have been used in determining optimal BMPs placement scenarios with 

regard to NPS pollution control. 

Kralisch et al. (2003) applied ANN to optimization of watershed management 

and found that a suitably designed neural network learning procedure will find near-

optimal solutions to the problem if the starting land use scenario is reasonable 

Genetic algorithms have been used to address biologically related questions such 

as biological arms races and symbiosis (Mitchell, 1999), but only one example was found 

in the literature dealing with the response of a watershed to NPS pollution reduction. As 

previously discussed, Srivastava et al. (1999) used a GA and AnnAGNPS to optimize 

BMP placement with regard to NPS loadings and to private costs. They found that the GA 

performed better than did scenarios consisting of random assignments of BMPs. 
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3.2.2 Proven convergence 

Each heuristic was evaluated with regard to proven convergence to the optimum. The 

basic form of RSM is founded on statistical theory (Jacobson and Schruben, 1989; Myers, 

1971), using least squares and experimental design to determine the response surface. For 

each surface suggested by the technique, gradients are used to determine the improving 

direction along the surface. 

The TS, SA, SCE, and GA are general search strategies for intractable problems 

(can be solved but not fast enough for the solution to be useful) and are not intended to 

enumerate over all possible solutions. Nor they are guaranteed to find the optimum, 

regardless of how long they run. Instead, they search in a controlled, but often 

probabilistic, fashion for the best solution achievable within a finite amount of time. 

However, for a connected search space, the SA has been proven to converge arbitrarily 

close to the optimum (Lundy and Mees, 1986). The GAhas also been proven to converge, 

with high probability, to the optimum for a problem involving allocation of documents 

within a computer (Siegelmann and Frieder, 1991). 

By extension, the SCE, as a variation of the GA, can be expected to converge. 

However, since a documented convergence proof for SCE was not found, the SCE was 
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ranked as "uncertain". Likewise, literature on the proven convergence of the TS was not 

found, resulting in a relative ranking of "uncertain." 

3.2.3 Formulation ease 

Solving a problem using the RSM (Response Surface Methodology) often involves 

sampling the search space through a factorial experimental design. The output of each 

point in the experimental design is calculated. Then the RSM is used to fit a response 

surface and determine an optimum. To use this method as an optimization procedure, one 

must relate a given response value with the associated input point. In this respect, the 

RSM is not well suited for a large number, combinatorial optimization problem. In this 

problem there are far more management units in a watershed than there are BMPs. The 

problem representation for this heuristic would necessitate analysis and manipulation of 

logistic regression equations with one dependent variable (pollutant loading at the outlet), 

hundreds of independent variables (each field being a separate variable), and few values 

for each independent variable (values consisting of a one-to-one mapping with each 

possible BMP set; that is, ten values for ten sets of BMPs). This configuration is beyond 

the capability of standard statistical software. 
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For the TA, SA, and GA techniques the problem could be formulated using a 

NPS model to calculate the objective function. However, the runtime for an NPS model is 

lengthy as compared to the other calculations within the optimization heuristics. Thus, 

efficient problem formulation that limits unnecessary evaluations of the objective 

function is desirable. 

For the TS, the need for an efficient problem formulation increases the 

importance of designing a dynamic, problem-specific tabu list. In particular, to minimize 

the number of evaluations of the NPS model, it is preferable that scenarios can be 

checked against the tabu list without requiring evaluation by the NPS model. However, 

the categorical nature of this problem increases the complexity in creating an adaptive list 

based on BMP patterns within scenarios. Thus, TS was ranked as "low" with regard to 

formulation ease. 

Both the SA and GA can be developed to use a NPS model in the objective 

function. Evaluation efficiencies for these heuristics are largely a function of optimization 

parameters, such as cooling rate and crossover rate or mutation rate. Effective values for 

these parameters are problem dependent, but can be determined through sensitivity 

analysis. Thus, the SA and GA were ranked as "high" in formulation ease as compared to 
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the other methods. 

3.2.4 Continuity and differentiability 

The RSM requires continuous data (Myers, 1971), or a continuous representation 

of the data, in order to fit a surface to the optimization function using regression and 

directional search. Although it is possible to regress an equation in which some 

variables are ordinal, but not continuous, the remainder of the RSM requires that, based 

on this regression, the direction(s) of improvement can be ascertained. Because the 

relationships between groups of BMPS and the resulting watershed response cannot be 

precisely determined, it is not clear which BMP in a scenario should be changed to 

improve the watershed response. 

The SCE does not require continuity or differentiability in its objective function 

(Duan et al., 1993). However, use of the Nelder and Mead strategy within the SCE 

implies that the input variables are continuous (Bazaraa et al., 1990). 

Using both techniques for this research problem would require a mapping between the 

BMP on each watershed and some measure of fitness or impact of that BMP on the 

watershed (a continuous, or at least ordinal, representation). Based on this mapping a 
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gradient or path of improvement between BMPs could be determined. However, due to 

natural variation among and within field sites, it is extremely difficult to accurately 

measure interactions among BMPs or to determine an average pollutant reduction value 

for a particular BMP irrespective of its surroundings. 

The TS, SA, ANN and GA do not require continuity or differentiability. They 

require only the capability of mapping each scenario to a fitness function. With this 

regard, these four heuristics are well suited to the BMP optimization replacement 

problem. 

3.2.5 Convergence rate 

Convergence rate can be defined (Bazaraa et al., 1993) as the ratio of the 

improvement of the objective function to the number of iterations, number of functional 

evaluations or amount of computational time. The number of objective function 

calculations required in each iteration of the optimization technique has a significant 

impact on the convergence rate. The RSM and SCE require repeated calculations of the 

objective function for neighboring points in order to determine the improving directions. 

The SCE algorithm requires the optimal function be calculated as many as three times for 

50 



each new point (Duan et al., 1993). 

The TS, SA, and GA methods calculate the objective function only once for each 

new point. However, like the RSM and SCE techniques, the GA requires numerous points, 

or population members, to be created and analyzed from every iteration. The TS may 

require repeated searching through previous iterations to determine if a new solution is 

not tabu. The SA requires multiple evaluations at each level of cooling and multiple 

levels of cooling. 

Due to minimal previous literature on these heuristics for solving watershed 

response problems, neither the computation time nor number of iterations needed for 

convergence is clear. Also, it is not clear how the number of iterations or computational 

time needed for each iteration compare across the heuristics. Thus, this factor was 

determined to be "uncertain" for all heuristics. 

3.2.6 Relative efficiency 

While convergence rate primarily considers the performance of individual 

heuristics, the relative efficiency factor is used to compare heuristics. High relative 

efficiency refers to nearing an optimal solution in the least number of iterations or 

functional evaluations, as compared to other heuristics for the same problem. For 
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example, while Lundy and Mees (1986) demonstrated a problem in which SA converges 

more quickly than a repeated descent algorithm, Eglese (1990) stated that for a problem 

with only a global optimum the descent algorithm will converge more quickly. 

Additionally, Eglese (1990) reviewed a number of modifications to SA that have been 

used to decrease run time. 

Thyer et al. (1999) used calibration of a watershed runoff model for two 

watersheds to compare robustness and efficiency of the S A method used by Sumner et al. 

(1997) with the SCE method. Although results were heavily dependent on the watershed, 

the SCE method appeared to perform better. Cooper et al. (1997) found convergence 

under SA averaged 12000 evaluations. In the same study, SCE and GA techniques 

averaged 6000 and 9000 evaluations, respectively. Based on this study, SCE, SA and GA 

were assigned relative rankings of "high", "low", and "medium", respectively. 

Comparisons of RSM, of ANN and of TS to the other heuristics were not found in the 

literature. Thus, the relative efficiencies of RSM and TS were ranked as "uncertain." 

3.3 Development considerations 

Development of the optimization procedure involved representing the 

relationships of the physical system (i.e., the watershed) as a mathematical model. To 

meet the research goals for the BMPs placement, the model had to provide a way to rank 

pollutant reduction and cost-effectiveness of BMPs through fitness scores and objective 

functions. 
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3.3.1 Program structure 

Assume 

BA=BMPtypeA 

BB = BMP type B 

B c = BMP type C 

Bz = BMP type Z 

The data structure for BMPs types array contains removal rate (R) and construction and 

OMR (Operation, maintenance and repair) money (M), which represent as: RA, RB , • • • , 

Rz and MA, MB ... Mz 

Each BMP type contains different removal rate depending on types of pollutant (TSS, TP 

and TN). Let represent the removal rate of each BMPs for pollutant type as R[
z, R2

Z and 

R3 , 

The construction cost for each BMPs type is calculated by cost per watershed area (acre). 

So, the total cost of building and operating BMPs are wholly depending on the watershed 

area. 

Let watershed property variables as Wn, where n is the index of watersheds. Other 

properties are represented as: 

Wn
A = Area of the watershed (acre). 

53 



W" = Total loading (kg) of pollutant type 1 for watershed index n. 

W" = Total loading (kg) of pollutant type 2 for watershed index n. 

W" = Total loading (kg) of pollutant type 3 for watershed index n. 

Representation of chromosome: 

Let's assume that the each element in a chromosome array is called DNA (also can be 

called gene). The number of genes (DNA) available in a chromosome array is based on 

the number of watersheds. Every DNA will contain the values of a randomly picked type 

of BMPs of the five available types. Refer to the chromosome figure below. 

Wi 

Bp 

w 2 

BP 

w3 

BP 

W4 

BP 

W5 

BP 

w„., 

BP 

wn 

BP 

Figure 3.1 Representation of single chromosome. 

Where p represents randomly picked BMPs type chosen from available set of provided 

BMPs, which is {A, B, C, ... , Z } and n is index number of watershed. 

Therefore the chromosome can be written as 

where i = chromosome population index and D' is the DNA registered within the 

chromosome array. 
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3.3.2 Objective function 

In any optimization problem, the formulation of the objective function is very crucial to 

the outcome of the optimization. 

In this study, the fitness function is the same as the objective function. The objective 

functions used in this study were primarily of two kinds. One kind was designed to 

maximize pollutant reduction at the watershed outlet. The second function type was 

designed to minimize construction cost of BMPs. 

Pollutant reduction performance of each BMPs can be simply estimated by multiplying 

by (1-PR) to pollutant load, where the PR (pollutant removal rate) are given in Table 2-3. 

The form of equation used in this study is 

Objective function 1: Total pollutant reduction 

f{x) = Y4TPi*(l-{wu-PR;)) (3.1) 

Where: 

TP: Total Pollutant (kg). 

PR: Pollutant Removal rate of BMP. 

w\[. Weighting penalty factor (Penalty of satisfying desired water quality) 

Objective function2: Total cost (Construction cost + lyear maintenance cost) 

g(x) = YJw2i(Costi*Areai) (3.2) 
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Where: 

Cost: Construction and OMR cost of BMPs 

w2\. Weighting penalty factor (Penalty of exceeding desired cost) 

The ultimate objective function can be written as 

Max f(x) + Min g(x) (3.3) 

This simulation model does not consider watershed soil type, watershed slope and 

sediment loads. 

3.3.3 Fitness Value 

Five kinds of BMPs are being considered in this study: wet ponds, infiltration, 

bio-filter, sand filter and bio swale. Each of them has a different construction cost 

function, OMR cost, and pollutant removal rate. 

Let the fitness value for each chromosome be F,. Hence, the fitness value for each 

chromosome can be calculated as: 

Fi =1L(Rm>j,Pon +to">i,pol2+to»,j,Po,3)+1L(Cost,j) (3.4) 
7=1 7=1 

Where, Rm : Remaining pollutant (kg), Cost : Total cost of construction and 1 

year OMR 
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In other words, for this simulation, the lower the fitness value, the better solution set for 

the chromosome. 

3.4 Program Implement 

This optimization model was developed using the Microsoft® C# language. This model 

user interface consists of four parts. This model is easy to use and support all user input 

parameters. 

1. Watershed input window. 

Users can open an existing Microsoft excel file to provide watershed data. Or 

users can type in data directly from user interface. 

2. BMPs input window. 

Users can type in each BMPs properties (pollutant removal rate, construction and 

OMR cost) directly from user interface. 

3. Graph and time window. 

Graph shows average and the best fitness value of current chromosome. Time 

window shows calculation time of simulation. 

4. Genetic algorithm setting 

This window supports all GA operators. Users can type in all GA settings 

(population, crossover rate, mutation rate, overlapping rate and iteration number) 

directly from interface. 

5. Result window. 

This window shows the selected BMP type for each watershed, removed 
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pollutant loading and total cost of selected BMPs. The result can be saved to excel 

file. 

3.4.1 Input data 

The pollution loading and area of watersheds were adapted from Proposition O 

report (Stenstrom et al, 2007). In this report, Geographical Information System (GIS) was 

employed to identify the areas generating high pollutant loads. Storm-water pollutant 

loads generated from the drainage areas of the project sites were estimated using the 

empirical models described in the previous chapter for selected water quality parameters 

such as total suspended solids (TSS), total nitrogen (TN), and total phosphorous (TP). 

The input data are in Table 3-2, and Table 3-3. The output of the Proposition O report is 

the percentage of pollutant loads removed from the project site by the series of BMPs. 

The Proposition O projects were grouped for their location in each watershed: Ballona 

Creek, Los Angeles River, and Dominguez Channel. Finally, the cost-effectiveness of the 

projects was evaluated on both the cost per unit of drainage area treated and the cost per 

the unit mass of pollutant removed. 
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Table 3-2. Watershed area and pollutant loading. 

Name of watershed 

La Cienega/Fairfax Powerline BMPs (#20b) 

Mar Vista Recreation Center BMPs (#20c) 

Temescal Recreation Center BMPs (#22e) 

Westchester/LAX Storm-water BMPs (#22f) 

Penmar Water Quality Improvement (#22g) 

Los Angeles Zoo Parking Lot 

Strathern Pit Multiuse Project (#10) 

Cabrito Paseo Walkway/Bike Path (#12) 

Hansen Dam Recreational Area Parking Lot 

South Los Angeles Wetlands Park (#16) 

Aliso Wash-Limekiln Creek Restoration (#23) 

Oros Streetend Biofiltration Project (#28) 

Echo Park Lake Rehabilitation Project (#29) 

Parking Grove in El Sereno Project (#31) 

Rosecrans Recreation Center Project (#35) 

Machado Lake Rehabilitation (#36) 

Peck Park Canyon Project (#40) 

Area 

(Acre) 

5000 

243 

1600 

2080 

1470 

33 

1370 

19 

74 

500 

11830 

8.4 

732 

3.3 

13 

14820 

100 

TN 

(kg) 

14070 

542 

1130 

3673 

2469 

81 

4044 

45 

54 

1442 

18858 

17.4 

1848 

1.17 

8.19 

26764 

149 

TP 

(kg) 

1351 

63 

80 

453 

266 

14 

441 

5 

4 

124 

1848 

2 

153 

0.1 

0.52 

2640 

15 

TSS 

(kg) 

386368 

14636 

75215 

111937 

69057 

2308 

220659 

1352 

3891 

34019 

732153 

767 

39289 

156 

580 

823275 

4126 

Adapted from Proposition O report (Stenstrom, 2007) 
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Table 3-3 The input data of BMPs property 

Wet ponds 
Infiltration 
system 
Biofilter 

Bioswale 

Sandfilter 

Construction 
cost 

$2,622/acre 

$7,866/acre 

$15,733/acre 

$10,890/acre 

$14,670/acre 

O&M 

4.5% 

10.5% 

6% 

5% 

12% 

TSS 
(Remov. %) 

75 

80 

79 

80 

80 

TN 
(Remov. %) 

28 

60 

41 

70 

30 

TP 
(Remov. %) 

46 

55 

59 

35 

33 

There are many different construction and OMR costs as well as pollutant removal rates 

for the BMPs. The code allows the user to input these parameters. 

3.4.2 Implementation of the GA 

The initial population consists of randomly generated chromosomes. Each chromosome 

represents a set of BMPs placement strategy. Because there are 17 sets of input watershed 

data, each chromosome has 17 DNAs. Each DNA holds characteristics (pollutant removal 

rate and cost) for a randomly picked single BMP. The initial size of the population is set 

at one hundred. The model will calculate minimum remaining pollutant and then 

calculate each population's minimum cost and then rank the entire chromosome by 

fitness values. The less the cost and the remaining pollutant, the less fitness value it will 

have. At each generation, new individuals are added to the population through crossover, 

mutation and overlapping, while parents individuals with low fitness values are discarded 

from the population. 
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1). Crossover operation: 

Crossover operation is used to create new chromosomes for the next generation by 

randomly combining two selected chromosomes from the current generation through the 

selection process. This model uses an elitist selection strategy, which ensures the fittest 

chromosome from one generation is propagated into the next generation without any 

disturbance. The crossover rate is the user-defined probability that crossover reproduction 

will be performed. For example, a crossover rate of 0.6 means that on average 60% of the 

population undergoes the crossover operation. There are several crossover methods 

available, like single point, multi-point, uniform crossover, etc. This model used a 

uniform crossover method. In this model, this operation exchange the BMP type set in 

each chromosome. 

• Assume a and b are 2 randomly generated numbers from the range (0, n), where 

a<b. n represents number of watersheds. 

• Assume r and s is randomly selected chromosome indices. In order to select a 

better fitness value of chromosome to perform crossover, r and s will be 

randomly selected from the range of (0, population/3). It can be written as 

0<r<P/3and0<s<P/3. 

• Let Cr and Cs be the identified chromosome, where r and s range from (0, P/3) 

• When crossover is performed, the resulting chromosome becomes: 

C =iDr Dr D5 •••Ds ••• Dr Dr\ 

C =IDS Ds Dr •••Dr ••• Ds Ds\ 
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2). Mutation operation: 

For each chromosome generated by the crossover operation, a mutation operation is 

applied using a predefined user's input. Mutation prevents the population from becoming 

saturated with chromosomes that are all similar and reduces the chance of premature 

convergence. High mutation rates increase the probability of destroying good 

chromosomes. If the population size is 500, the chromosome length is 17 and the 

mutation rate is 0.05, on average 425 DNA positions will alter in the whole population 

(500x17x0.05). 

• Assume a and b be 2 randomly generated numbers from the range (0, n), where 

a<b. n represents number of watersheds. 

• Note that mutation on a certain DNA location in chromosome mean changing 

BMP in use. The mutation happen rate is based on simulation setting from GA 

property. 

• Let r and s be randomly selected chromosome indices. In order to select a better 

fitness value of chromosome to perform crossover, r and s will be randomly 

selected from the range of (0, population/'3). It can be written as 0<r<P/3 and 

o<s<m. 

In order to beteter offspring chromosomes, select 2 chromosomes, where index 

number is from the range (0, P/3) 

• After the chromosome set has been sorted, chromosome located at the end of 

the array list will contain larger fitness value. 
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3). Overlapping operation 

• Overlapping operation is to produce a new chromosome by inheriting the same 

DNA from two parents' chromosome and randomly placed DNA for the 

unmatched DNA. 

• The newly produced chromosome will replace its parent if the fitness value is 

better than its parent. 

In order to beteter offspring chromosomes, select 2 chromosomes, where index 

number is from the range (0, P/3) 

Let Cr and Cs is the identified chromosome, where r and s is from range (0, P/3) 

After overlapping is performed, the following chromosome resuls: 

c r={A',A'.-.^i.A r} 

Cs={Dl,Ds
2,-,Dly,D

s
n} 

• Let Cy be the child chromosome produced by overlapping from Cr and C$. D* 

is assigned with a new BMP type where BMP in used in D[ is not same as D[. 

User interface looks like next page. 
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4. Results 

4-1 Parameter evaluation 

In this part of the study, the effect of number of populations and generations were 

first investigated for the Prop. O GA simulation. The optimum population size and the 

number of generations were then selected. The population size and the number of 

generations are related by the total number of simulations in one GA run; therefore these 

two were studied together. 

Several population sizes were considered to investigate improved convergence. 

Population sizes of 50, 100, 300, 500 and 1000 were initially investigated while keeping 

the number of generations at 300. The simulation was repeated 10 times for each 

parameter condition, and the results were averaged. Then optimum population size and 

the number of generations were selected from these simulation runs. The remaining GA 

parameters were as follows: 

Crossover rate: 60% 

Mutation rate: 5% 

Overlapping rate: 60% 

Number of generation: 300 times 

The calculation time increased with an increase with increasing population size. 

Similar results were obtained for various population sizes in this study; however, better 

minimum fitness value and cost were obtained when the population was one hundred 
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cases. The larger the population size, the longer the calculation time required for 

convergence. Table 4-1 and Figure 4.1 show the simulation results as a function of 

different number of population sizes. The large variability in fitness value at the 

beginning of each simulation occurs because the chromosome is random. After 300 

generations, chromosomes are selected based on the fitness value, and the variability 

decreases. This pattern occurs in the other sensitivity graphs as well. 

Table 4-1 Model parameters comparison with different population sizes 

Population 

50 

100 

300 

500 

1000 

Cost ($1,000) 

135 

128 

155 

132 

222 

Pollutant 

reduction 1(%) 

54.1 

53.9 

54.5 

54.2 

57.4 

Mean Fitness 

Value 

883883 

894855 

926974 

929897 

941123 

Minimum 

Fitness Value 

771131 

770014 

780511 

771435 

782632 

Calculation 

Time (s) 

8 

8.7 

9.7 

12 

22.1 
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Figure 4.1 Number of population vs. parameter sets for Proposition O data 
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Different numbers of generation were considered to investigate better convergence. 

Generations of 50, 100, 300, 500, 1000 and 1500 were used. The following GA 

parameters were used:. 

Population: 100 

Crossover rate: 60% 

Mutation rate: 5% 

Overlapping rate: 60% 

Table 4-2 and Figure 4.2 show the simulation results as a function of the generation 

number. Table shows a slightly better minimum fitness value occurred when applying 300 

generation numbers. 

Table 4-2 Model parameters comparison with different numbers of generation 

Generation 

50 

100 

300 

500 

1000 

2000 

Cost ($1,000) 

148 

139 

128 

128 

128 

128 

Pollutant 

reduction (%) 

54.3 

54.3 

53.9 

53.9 

53.9 

53.9 

Mean Fitness 

Value 

934166 

916740 

894855 

878357 

866630 

858641 

Minimum 

Fitness Value 

778738 

772934 

770014 

769885 

769841 

769877 

Calculation 

Time (s) 

1.5 

3.3 

8.7 

14.3 

27.8 

38.8 
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Figure 4.2 Number of generations vs. parameter sets for Proposition O 

69 



Based on the results, a population size of 100 and 300 generations were considered as the 

optimum population size and number of generations. These were used for the rest of the 

GA operator study. 

The effects of crossover rate were investigated for this study and they ranged from 40% 

to 80%, in increments of 10%. The following GA parameters were maintained constant: 

Population: 100 

Mutation rate: 5% 

Overlapping rate: 60% 

Number of generation: 300 times. 

Table 4-3 and Figure 4.3 show the simulation results as a function of different crossover 

rates. The poorest performance occurred with 40% crossover rate while crossover rates of 

50, 60, 70 and 80% showed similar results. The crossover rate has less effect on results as 

compared to other GA parameters. The 60%) crossover rate gave the best mean fitness 

value and the shortest calculation time. Therefore, 60%> crossover rate was identified as 

the optimum rate for this simulation. 

Table 4-3 Model parameters comparison with different crossover rates 

Crossover 

(%) 

40 

50 

60 

70 

80 

Cost ($1,000) 

139 

128 

129 

129 

128 

Pollutant 

reduction (%) 

54.4 

53.9 

53.9 

53.9 

53.9 

Mean Fitness 

Value 

901304 

894640 

893778 

899220 

895022 

Minimum 

Fitness Value 

773537 

770247 

770918 

770615 

769989 

Calculation 

Time (s) 

10.6 

8.9 

7.9 

8.8 

8.8 
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Figure 4.3 Different crossover rates vs. parameter sets for Proposition O 
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The effect of different mutation rates on convergence were investigated by varying the 

mutation rate from 1% to 15%. The other GA parameters were maintained constant as 

shown below. 

Population: 100 

Crossover rate: 60% 

Overlapping rate: 60%> 

Number of generation: 300 times. 

Table 4-4 and Figure 4.4 show the simulation results for different mutation rates. 

Almost identical results were obtained for different mutation rates. The mutation rate has 

less effect on result compared to other GA parameters, and a mutation rate of 5% showed 

the best mean and minimum fitness values. Therefore, 5% mutation rate was identified as 

the optimum rate for this simulation in terms of cost. 

Table 4-4 Model parameters comparison with different mutation rates 

Mutation 

(%) 

1 

3 

5 

10 

15 

Cost ($1,000) 

128 

128 

129 

128 

128 

Pollutant 

reduction (%) 

53.9 

53.9 

53.9 

53.8 

53.9 

Mean Fitness 

Value 

914887 

917322 

909278 

919203 

917139 

Minimum 

Fitness Value 

771008 

770400 

770213 

770376 

770879 

Calculation 

Time (s) 

8.8 

8.7 

8.5 

9 

8.8 
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Figure 4.4 Different mutation rates vs. parameter sets for Proposition O 
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The effect of overlapping rates was investigated by varying the rate from 30% to 80% , in 

increments of 10%. While keeping the other GA parameters constant at the values shown 

below: 

Population: 100 

Crossover rate: 60% 

Mutation rate: 5% 

Number of generation: 300 times. 

Table 4-5 and figure 4.5 show the simulation results against different overlapping rates. 

Convergence was nearly independent on overlapping rate. An overlapping rate of 60% 

had slightly lower mean fitness and was selected. 

Table 4-5 Model parameters comparison with different overlapping rates 

Overlapping 

(%) 

30 

40 

50 

60 

70 

80 

Cost ($1,000) 

137 

130 

129 

129 

131 

129 

Pollutant 

reduction (%) 

54.4 

54 

53.9 

53.9 

54 

53.9 

Mean Fitness 

Value 

911140 

909666 

910813 

909278 

911634 

905526 

Minimum 

Fitness Value 

773914 

771097 

771413 

770213 

771294 

770301 

Calculation 

Time (s) 

8.4 

8.7 

8.5 

8.5 

8.2 

8.5 
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Figure 4.5 Different overlapping rates vs. parameter sets for Proposition O 
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Based on these results, it can be concluded that crossover, mutation and 

overlapping rates do not significantly affect the convergence for this simulation. A 

population size of 100, crossover rate of 60%, mutation rate of 5%, overlapping rate of 

60% and 300 generations gave the best results in terms of minimum fitness value, and 

selected for the Proposition O simulation case. These values are typical of the values 

found by others (Goldberg, 1989; Holland, 1975). 

4-2 Simulation results 

Proposition O was passed to help the City of Los Angeles comply with the 

TMDL requirements of the Clean Water Act. Table 4-6 shows initial BMPs, total cost and 

pollutant reduction selected by Proposition O managers (Stenstrom, 2007). As expected, 

the total costs of the watersheds with the larger drainage areas were greater than the costs 

of those with smaller drainage areas. For example, the cost for the larger drainage areas 

(La Cienega, Aliso Wash and Machado) corresponded to 36% of cost of the entire BMPs 

cost. The smaller drainage area projects are often local and decentralized and their small 

scale prevents them from having a serious impact on receiving waters. They will need to 
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Table 4-6 Proposition O project result from report (Stenstrom et al., 2007) 

Name of watershed 

La Cienega/Fairfax BMPs 

Mar Vista Recreation BMPs 

Temescal Recreation BMPs 

Westchester/LAX BMPs 

Penmar Water Improvement 

Los Angeles Zoo Parking Lot 

Strathern Pit Multiuse Project 

Cabrito Paseo Walkway 

Hansen Dam Parking Lot 

South LA Wetlands Park 

Aliso Wash-Limekiln Creek 

Oros Streetend Biofiltration 

Echo Park Rehabilitation 

Parking Grove in El Sereno 

Rosecrans Recreation Center 

Machado Rehabilitation 

Peck Park Canyon Project 

Total 

BMP 

Applied 

BF 

BF 

BF 

IS 

BF 

SF 

WP 

BS 

BS 

WP 

BS 

BF 

IS 

BF 

BS 

BS 

IS 

TSS 

reduction 

(%) 

82 

85 

99 

NA 

NA 

90 

65 

64 

82 

65 

82 

77 

92 

87 

91 

93 

87 

80 

TN 

reduction 

(%) 

63 

90 

80 

NA 

NA 

68 

37 

25 

50 

35 

63 

63 

50 

86 

68 

26 

70 

54 

TP 

reduction 

(%) 

70 

87 

75 

NA 

NA 

70 

29 

47 

58 

29 

70 

53 

60 

53 

77 

60 

64 

55 

Total Cost/ 
watershed 

area 

$1,534 

$18,750 

$11,654 

$692 

$16,044 

$421,341 

$16,427 

$234,895 

$30,009 

$26,760 

$921 

$121,581 

$115,114 

$1,328,212 

$519,541 

$6,716 

$61,900 

Total Cost($) 

$7,667,888 

$4,556,186 

$18,646,000 

$1,438,755 

$23,585,000 

$13,904,242 

$22,505,000 

$4,463,009 

$2,220,702 

$13,380,243 

$10,893,483 

$972,651 

$84,263,313 

$3,984,635 

$6,754,033 

$99,523,897 

$6,190,000 

$324,949,037 

WP : Wet ponds, IS : Infiltration system, BF : Biofilter, SF : Sandfilter, BS : Bioswale 

(Three largest drainage area projects in bold.) 

be scaled-up to have the necessary impact on TMDL compliance. 

Table 4-7 shows result from this GA simulation. The pollutant reduction rates for total 
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suspended solids were quite similar with Proposition O's result, within the precision of 

BMP performance estimates. However, the pollutant reduction rates for total phosphorous 

and total nitrogen are lower than Proposition O's result. This is because the Proposition O 

selection process assumed the best reported TN and TP reduction rates among the various 

result, while, the GA simulation used average reported TN and TP reduction rates of each 

BMP properties. Total cost is only 158 million dollars compared to Prop. O's 325 million 

dollars. 

The GA simulation results were similar to the manager-selected results with respect to 

costs among the different projects. The total costs of watersheds with larger drainage 

areas were greater than the total costs of smaller drainage areas. For example, the cost for 

the three largest drainage areas (La Cienega, Aliso Wash and Machado) corresponded to 

54% of cost from the entire BMPs cost. 

The GA optimization selected more wet ponds (11) than were selected by the Prop O 

managers (2). The GA technique selected wet ponds due to low cost and did not address 

land constraints as the Prop O managers addressed land constraints. 
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Table 4-7 Result from this GA simulation with removal rates 

Name of watershed 

La Cienega/Fairfax BMPs 

Mar Vista Recreation BMPs 

Temescal Recreation BMPs 

Westchester/LAX BMPs 

Penmar Water Improvement 

Los Angeles Zoo Parking Lot 

Strathern Pit Multiuse Project 

Cabrito Paseo Walkway 

Hansen Dam Parking Lot 

South LA Wetlands Park 

Aliso Wash-Limekiln Creek 

Oros Streetend Biofiltration 

Echo Park Rehabilitation 

Parking Grove in El Sereno 

Rosecrans Recreation Center 

Machado Rehabilitation 

Peck Park Canyon Project 

Total 

Selected 
BMP 

WP 

WP 

BS 

WP 

IS 

WP 

BF 

WP 

WP 

WP 

WP 

WP 

BS 

WP 

BF 

WP 

BF 

TSS 
reduction 

(%) 

75 

75 

80 

75 

80 

75 

92 

75 

75 

75 

75 

75 

80 

75 

92 

75 

92 

78.9 

TN 

reduction 

(%) 

38 

38 

70 

38 

60 

38 

55 

38 

38 

38 

38 

38 

70 

38 

55 

38 

55 

46.1 

TP 

reduction 

(%) 

46 

46 

35 

46 

55 

46 

49 

46 

46 

46 

46 

46 

35 

46 

49 

46 

49 

45.8 

Cost/ 
area 

$2,717 

$2,717 

$11,340 

$2,717 

$8,730 

$2,717 

$16,642 

$2,717 

$2,717 

$2,717 

$2,717 

$2,850 

$11,340 

$2,989 

$16,642 

$2,717 

$16,642 

Total Cost 
($1,000) 

$13,585 

$660 

$18,144 

$5,651 

$12,832 

$90 

$22,799 

$52 

$201 

$1,359 

$32,142 

$23 

$8,301 

$9 

$216 

$40,266 

$1,664 

$157,995 

WP : Wet ponds, IS : Infiltration system, BF : Biofilter, SF : Sandfilter, BS : Bioswale 

(Three largest drainage area projects in bold.) 

Table 4-8 shows the result of GA simulation when constrained to wet ponds as the only 

BMP. Total cost 109 million dollar is slightly lower than 157 million dollars. TSS and TP 

reductions are greater while TN reduction is 8% lower than the optimal result using five 

different BMPs (Table 4-7). If all watersheds had sufficient area and slope for wet ponds, 

using wet ponds for all watersheds could be a good scenario. 
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Table 4-8 Result from this GA simulation using only Wet Ponds 

Name of watershed 

La Cienega/Fairfax BMPs 

Mar Vista Recreation BMPs 

Temescal Recreation BMPs 

Westchester/LAX BMPs 

Penmar Water Improvement 

Los Angeles Zoo Parking Lot 

Strathern Pit Project 

Cabrito Paseo Walkway 

Hansen Dam Parking Lot 

South LA Wetlands Park 

Aliso Wash-Limekiln Creek 

Oros Streetend Biofiltration 

Echo Park Rehabilitation 

Parking Grove in El Sereno 

Rosecrans Recreation Center 

Machado Rehabilitation 

Peck Park Canyon Project 

Total 

Selected 

BMP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

WP 

Remaining 
TSS 
(kg 

96592 

3659 

18803 

27984 

17264 

577 

55164 

338 

972 

8504 

183038 

191 

9822 

39 

145 

205818 

1031.5 

75% 

Remaining 
TN 

(kg) 

8723 

336 

700 

2277 

1530 

50 

2507 

27 

33 

894 

11691 

10 

1145 

0.72 

5.07 

16593 

92 

38% 

Remaining 
TP 
(kg 

729.5 

34.0 

43.2 

244.6 

143.6 

7.5 

238.1 

2.7 

2.1 

66.9 

997.9 

1.1 

82.6 

0.05 

0.28 

1425.6 

8.1 

46% 

Total Cost 
($1,000) 

$ 13,715 

$667 

$4,389 

$ 5,705 

$ 4,032 

$91 

$3,758 

$52 

$203 

$ 1,372 

$ 32,450 

$23 

$ 2,008 

$9 

$36 

$40,651 

$274 

$109,430 

Table 4-9 shows result of applying effluent concentrations of BMPs from Table 2-5, as 

opposed to pollutant removal rates of each BMP, it shows much approved pollutant 

reduction as well as total cost. With this simulation, only 9 wet ponds are selected for best 

solution. Unfortunately, only a limited number BMPs are sufficiently well documented to 

use this approach. 
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Table 4-9 Result from this GA simulation with effluent concentration 

Name of watershed 

La Cienega/Fairfax BMPs 

Mar Vista Recreation BMPs 

Temescal Recreation BMPs 

Westchester/LAX BMPs 

Penmar Water Improvement 

Los Angeles Zoo Parking Lot 

Strathern Pit Multiuse Project 

Cabrito Paseo Walkway 

Hansen Dam Parking Lot 

South LA Wetlands Park 

Aliso Wash-Limekiln Creek 

Oros Streetend Biofiltration 

Echo Park Lake Rehabilitation 

Parking Grove in El Sereno 

Rosecrans Recreation Center 

Machado Lake Rehabilitation 

Peck Park Canyon Project 

Total 

Selected 

BMP 

WP 

BF 

IS 

WP 

WP 

SF 

WP 

BF 

IS 

WP 

WP 

BF 

WP 

IS 

SF 

WP 

WP 

Remaining 

TSS 

(kg) 

8.5 

12 

10 

8.5 

8.5 

7 

8.5 

12 

10 

8.5 

8.5 

12 

8.5 

10 

7 

8.5 

8.5 

99.99% 

Remaining 

TN 

(kg) 

2 

4 

3 

2 

2 

1.5 

2 

4 

3 

2 

2 

4 

2 

3 

1.5 

2 

2 

99.81% 

Remaining 

TP 

(kg 

20 

32 

27 

20 

20 

16 

20 

32 

27 

20 

20 

32 

20 

27 

16 

20 

20 

99.52% 

Total Cost 
($1,000) 

13,585 

4,044 

13,967 

5,651 

3,994 

540 

3,722 

316 

646 

1,359 

32,142 

140 

1,989 

29 

213 

40,266 

272 

$122,873 

(Three largest drainage area projects in bold.) 
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Table 4-10 Total cost comparison O project result with GA simulation 

Name of watershed 

La Cienega/Fairfax BMPs 

Mar Vista Recreation BMPs 

Temescal Recreation BMPs 

Westchester/LAX BMPs 

Penmar Water Improvement 

Los Angeles Zoo Parking Lot 

Strathern Pit Multiuse Project 

Cabrito Paseo Walkway 

Hansen Dam Parking Lot 

South LA Wetlands Park 

Aliso Wash-Limekiln Creek 

Oros Streetend Biofiltration 

Echo Park Lake Rehabilitation 

Parking Grove in El Sereno 

Rosecrans Recreation Center 

Machado Lake Rehabilitation 

Peck Park Canyon Project 

Total 

Proposition O 

BMP 

Applied 

BF 

BF 

BF 

IS 

BF 

SF 

WP 

BS 

BS 

WP 

BS 

BF 

IS 

BF 

BS 

BS 

IS 

Total Cost 

($1,000) 

$7,668 

$4,556 

$18,646 

$1,439 

$23,585 

$13,904 

$22,505 

$4,463 

$2,221 

$13,380 

$10,893 

$972 

$84,263 

$3,985 

$6,754 

$99,524 

$6,190 

$324,949 

GA simulation 

BMP 

Applied 

WP 

WP 

BS 

WP 

IS 

WP 

BF 

WP 

WP 

WP 

WP 

WP 

BS 

WP 

BF 

WP 

BF 

Total Cost 

($1,000) 

$13,585 

$660 

$18,144 

$5,651 

$12,832 

$90 

$22,799 

$52 

$201 

$1,359 

$32,142 

$23 

$8,301 

$9 

$216 

$40,266 

$1,664 

$157,995 

WP : Wet ponds, IS : Infiltration system, BF : Biofilter, SF : Sandfilter, BS : Bioswale 

The cost-effectiveness of projects was evaluated in two ways: 1) the total cost of a project 

for the drainage area it treats, and 2) total cost per the unit of pollutant load (kg) removed. 
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The pollutants used in the cost analysis were Total Suspended Solids, and nutrients (Total 

Nitrogen, Total Phosphorous). Table 4-11 shows cost effectiveness results from 

Proposition O project report. For TSS removal, the Aliso Wash-Limekiln Creek 

Confluence Restoration Project and the La Cienega/Fairfax Powerline Easement 

Stormwater BMPs are the most cost-effective projects that cost less than $25/TSS kg. 

Strathern Pit Multiuse Project, the Machado Lake Project, the Santa Monica Bay 

Beaches LFD upgrades, Westchester/LAX Stormwater BMP, Penmar Water Quality 

Improvement and Runoff Reuse Project, and South Los Angeles Wetlands Park cost less 

than $500/TSS kg. The Peck Park Canyon Enhancement Project is the most expensive 

project that costs $40,000/TSS kg. The LA Zoo Parking Lot Project, Rosecrans 

Recreational Center Storm Water Enhancements and Westminster Dog Park Stormwater 

BMPs are also expensive projects that cost more than $10,000/TSS kg. 

For nutrient removal, the Aliso Wash-Limekiln Creek Confluence Restoration 

Project and the La Cienega/Fairfax Powerline Easement Stormwater BMPs are the most 

cost effective projects that cost approximately $1,000/TKN kg. Westchester/LAX 

Stormwater BMP, Penmar Water Quality Improvement and Runoff Reuse Project, 

Machado Lake Project, Santa Monica Bay Beaches LFD upgrades, and Strathern Pit 

Multiuse Project cost less than $25,000/TKN kg. The Peck Park Canyon Enhancement 

Project is the most expensive project because it costs approximately $8 million/TKN kg. 

The LA Zoo Parking Lot Project, Rosecrans Recreational Center Storm Water 

Enhancements and Westminster Dog Park Stormwater BMPs are also expensive projects 

that cost more than $1 million/TKN kg. The Prop. O result shows that the Aliso Wash-
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Limekiln Creek Confluence Restoration Project and The Mar Vista BMP are the most 

cost-effective projects for total mass reduction criteria. Conversely, Rosecrans recreation 

center BMPs, Parking Grove in El Sereno, and La Cinega powerline BMP are the most 

expensive projects to reduce pollutant loading. 

Table 4-12 shows the result from this GA simulation. These results are quite 

different than chosen by the Proposition O project results. Total cost is 158 million 

dollars compared to Prop. O's 325 million dollars. The result shows that the Oros 

Streetend Biofiltration and La Cienega/Fairfax BMPs and Cabrito Paseo Walkway are the 

most cost-effective projects on the basis of pollutant reduction. Conversely, Peck Park 

Canyon Project, Rosecrans Recreation, and Temescal Recreation BMPs are the most 

expensive on the basis of pollutant removal. 

Both results show that the unit cost of TP reduction is much larger than unit costs 

of TSS and TN reduction. 

84 



Table 4-11 Results of cost effectiveness in case of Proposition O from report. 

Watershed 

Mar Vista BMPs 

Aliso Wash Creek 

Strathern Pit Project 

Penmar Improv. 

South LA Park 

Hansen Parking Lot 

Oros Biofiltration 

Machado Rehab. 

Echo Park 

Cabrito Walkway 

LA Zoo Parking Lot 

Peck Park Project 

La Cienega BMPs 

Parking El Sereno 

Rosecrans Rec. 

Temescal BMPs 

LAX BMPs 

Total 

Cost($) 

/TSS 

reduction 

(kg) 

13 

17 

127 

345 

492 

573 

1,323 

2,058 

2,145 

3,368 

6,024 

15,246 

15,428 

25,543 

129,885 

NA 

NA 

Cost($) 

/TN 

reduction 

(kg) 

382 

722 

15,837 

10,750 

24,916 

50,992 

66,483 

26,596 

57,714 

163,062 

197,672 

77,501 

254,747 

2,053,935 

714,712 

NA 

NA 

Cost($) 

/TP 

reduction 

(kg) 

3,747 

6,551 

87,910 

118,517 

185,836 

590,612 

593,079 

243,931 

577,145 

1,045,201 

1,016,391 

1,238,000 

2,839,958 

44,273,722 

11,256,721 

NA 

NA 

Cost($)/ 

Total mass 

reduction 

(kg) 

13 

16 

126 

333 

481 

566 

1,295 

1,896 

2,060 

3,290 

5,813 

12,610 

14,473 

25,214 

108,848 

NA 

NA 

Cost($) 

/mass 

loads 

(kg) 

299 

14 

100 

329 

376 

562 

1,236 

116 

2,040 

3,183 

5,786 

1,442 

19 

25,336 

11,472 

244 

12 

Total Cost 

($1,000) 

4,556,186 

10,893,483 

22,505,000 

23,585,000 

13,380,243 

2,220,702 

972,651 

99,523,897 

84,263,313 

4,463,009 

13,904,242 

6,190,000 

7,667,888 

3,984,635 

6,754,033 

18,646,000 

1,438,755 

$324,949,037 
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Table 4-12 Results of cost effectiveness from GA simulation. 

Name of watershed 

Oros Streetend Biofiltration 

La Cienega/Fairfax BMPs 

Cabrito Paseo Walkway 

LA Zoo Parking Lot 

South LA Wetlands Park 

Aliso Wash-Limekiln Creek 

Mar Vista Recreation BMPs 

Machado Rehabilitation 

Westchester/LAX BMPs 

Hansen Dam Parking Lot 

Parking Grove El Sereno 

StrathernPit Project 

Penmar Water Improvement 

Echo Park Rehabilitation 

Temescal Recreation BMPs 

Rosecrans Recreation 

Peck Park Canyon Project 

Total 

Cost($) 

/TSS 

reduction 

(kg) 

40 

47 

51 

52 

53 

59 

60 

65 

67 

69 

77 

112 

232 

264 

302 

405 

438 

Cost($) 

/TN 

reduction 

(kg) 

3,448 

2,541 

3,019 

2,913 

2,479 

4,485 

3,206 

3,959 

4,049 

9,798 

20,167 

10,251 

8,662 

6,417 

22,938 

48,029 

20,308 

Cost($) 

/TP 

reduction 

(kg) 

24,783 

21,860 

22,445 

13,923 

23,817 

37,811 

22,782 

33,157 

27,120 

109,271 

194,915 

105,509 

87,713 

155,012 

648,000 

849,082 

226,422 

cost($y 
Total mass 

reduction 

(kg) 

39 

46 

50 

51 

52 

58 

59 

64 

66 

68 

76 

111 

226 

253 

297 

402 

428 

Cost($) 

/mass 

loads 

(kg) 

29 

34 

37 

37 

38 

43 

43 

47 

49 

51 

57 

101 

179 

201 

237 

368 

388 

Total 
Cost 

($1,000) 

$23 

$13,585 

$52 

$90 

$1,359 

$32,142 

$660 

$40,266 

$5,651 

$201 

$9 

$22,800 

$12,832 

$8,301 

$18,144 

$216 

$1,664 

$157,994 

Table 4-13 shows the cost effectiveness comparison result of the Proposition O with GA 

simulation. Even cost/total mass loads of La Cienega power line, LAX stormwater BMP 

and Strathem pit project are larger than Prop. O's result. As a whole the results are 

much less costly than the BMPs selected by the Prop. O's mangers. The LA zoo parking 

lot and the Parking Grove in El Sereno' stand out as very expensive in Prop O mangers' 

selection, with the unit cost more than 100 times more than the optimal costs. 
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The simulation results as well as the Prop O managers' results do not consider BMP 

implementation plans and regional BMPs in an integrated fashion. The next generation of 

BMP optimization should include this integration. 
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Table 4-13. Comparison of cost-effectiveness 

Watershed 

La Cienega BMPs 

Mar Vista BMPs 

Temescal BMPs 

LAX BMPs 

Penmar Improv. 

LA Zoo Parking Lot 

Strathern Pit Project 

Cabrito Walkway 

Hansen Parking Lot 

South LA Park 

Aliso Wash Creek 

Oros Biofiltration 

Echo Park 

Parking El Sereno 

Rosecrans Rec. 

Machado Rehab. 

Peck Park Project 

Total 

Proposition O report 
Cost($)/ 

Total mass 
reduction 

(kg) 

14,473 

13 

NA 

NA 

333 

5,813 

126 

3,290 

566 

481 

16 

1,295 

2,061 

25,214 

108,848 

1,896 

12,610 

cost($y 
Total mass 

loads 
(kg) 
19 

299 

244 

12 

329 

5,786 

100 

3,183 

562 

376 

14 

1,236 

2,040 

25,336 

11,472 

116 

1,442 

Total Cost 
($1,000) 

7,668 

4,556 

18,646 

1,439 

23,585 

13,904 

22,505 

4,463 

2,221 

13,380 

10,893 

973 

84,263 

3,985 

6,754 

99,524 

6,190 

$324,949 

GA simulation 
cost($y 

Total mass 
reduction 

(kg) 

46 

59 

297 

66 

226 

51 

111 

50 

68 

52 

58 

39 

253 

76 

402 

64 

428 

Cost($)/ 
Total mass 

loads 
(kg) 

34 

43 

237 

49 

179 

37 

101 

37 

51 

38 

43 

29 

201 

57 

368 

47 

388 

Total Cost 
($1,000) 

13,585 

660 

18,144 

5,651 

12,832 

89 

22,799 

52 

201 

1,359 

32,142 

23 

8,301 

9 

216 

40,266 

1,664 

$157,994 

(Larger value of cost($)/mass load(kg) than Proposition O in bold.) 
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5. Conclusions 

The main goal of this research was to demonstrate the use of an advanced optimization 

technique that is suitable for watershed-level best management practice (BMP) 

optimization. Choosing and locating BMPs for a single watershed quickly become an 

intractable problem (can be solved but not fast enough for the solution to be useful). For 

example, selecting 5 non-mutually exclusive BMPs (i.e., they can occur at the same time) 

for 16 sub-watersheds produces (25)16 = 1.2xl024 possible decision scenarios. Current 

practice for agencies responsible for stormwater management is to rank BMPs based on 

effectiveness for at most one or two criteria, and choose BMPs based on ranking. 

Optimization of BMP selection is clearly beyond the capabilities of current stormwater 

management practice. 

In this dissertation, six different optimization techniques were evaluated for the ability to 

optimize the BMP selection problem. The following techniques were reviewed for the 

applicability: Neural Networks, Simulated Annealing, Tabu Searches, Response Surface 
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Methods, Shuffled Complex Evolution and Genetic Algorithms. A Genetic Algorithm 

(GA) was selected for this study because the technique has proven convergence, does not 

require continuous input data, and has only a modest data requirement, especially when 

compared to a neural network. A code was written in C# to use a GA to optimize the 

BMP problem. 

The input data including watershed area and pollutant total loadings for the optimization 

tool were adapted from the City of Los Angeles' recent Proposition O stormwater 

management project. Proposition O, approved by the voters in 2004, provided $500 

million to improve stormwater management. At the time of this writing, 21 proposed 

projects had been approved for construction, and were described in sufficient detail to 

allow them to be studied for BMP optimization. 

The GA chromosome was set up by initializing the DNA for each watershed. Every DNA 

contains the properties of randomly picked BMPs of the five available types. The 

properties include pollutant removal rates, BMP construction cost by watershed area and 

maintenance cost. 
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A sensitivity analysis of GAs parameters was performed to find better parameters to 

improve solutions. Based on this study, population size of 100, crossover rate of 60%, 

mutation rate of 5%, overlapping rate of 60% and a number of generations of 300 gave 

the best results in terms of fitness values. These operation values were the boundaries of 

the optimum GA operator ranges defined in the various literatures. 

Overall, the BMP placement optimization model performed well in reducing the pollutant 

load and minimizing BMP total cost from the watershed. 

Among many optimization heuristics, the genetic algorithm appeared to be the most 

suited to the BMP placement problem type. Its implementation was successful the 

optimal selections and placements were about half the cost of the manually selected 

BMPs ($324 vs. 157 million). The pollutant removal rates for total suspended solids were 

quite similar, within the precision of BMP performance estimates. The manually selected 

BMPs had better total nitrogen and total phosphorus removal rates (55% versus 45%). 

The GA code was very efficient and took, on average, 9 seconds to execute on 2 GHz 
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Pentium IV processor running under MS Windows. 

The example provided in this dissertation demonstrates the applicability of the GA 

technique to BMP selection and suggest that the GA technique can be useful to a broad 

range of intractable problems. 
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Appendix 

(Program codes, C#) 

private void Forml_Load(object sender, System.EventArgs e) 

{ 
//Inialize operation UI. 

InitializeUIO; 

//Load starting up problem property values. 

LoadStartUpLandProperties(); 

//Update system info. 

IbllnfoDisp.Text = "Click \"Simuate\" button to start. 

public void LoadStartUpLandPropertiesQ 

string[] area = {"78", "111", "123", "82", "75", "101", "160", "108", "120", "185", "75", "80", "155", 
220", "125", "101", "84", "34", "45", "54", "88", "121", "133", "89", "79", "121", "150", "118", "110", "195", "78", 
88", "135", "240", "145", "100", "84", "31", "43", "52", "75", "82", "150", "210", "121", "111", "86", "30", "42", 
56"}; 

string[] no_pol_l = {"12", "19", "23", "11", "14", "20", "21", "15", "17", "25", "15", "12", "23", "21", 
14", "11", "12", "11", "15", "14", "12", "19", "23", "10", "14", "20", "27", "15", "18", "25", "15", "12", "29", "21", "17" 
11", "15", "11", "15", "14", "15", "11", "23", "41", "34", "31", "22", "11", "11", "12" }; 

string[] no_pol_2 = {"2.1", "3.1", "5.2", "5.3", "4.5", "3", "3.2", "6.1", "4.5", "4", "3", "2.4", "1.1", "2.1", 
5.1", "1", "3", "4.5", "4.5", "5.2", "4.1", "6.1", "5.9", "5.3", "4.5", "3.9", "3.2", "6.1", "4.5", "4.2", "3.5", "2.4", "1.1", 
2.7", "5.1", "1.7", "3", "4.5", "4.2", "5.2", "3.3", "2.4", "1.1", "3.1", "6.1", "4", "3", "4.5", "4", "5.2"}; 

string!] no_pol_3 = {"177", "265", "188", "140", "174", "160", "185", "195", "108", "145", "145", 
152", "183", "251", "194", "110", "100", "43", "130", "88", "187", "295", "198", "143", "179", "169", "195", "195", 
118", "145", "149", "152", "183", "153", "194", "110", "111", "143", "139", "88", "175", "152", "283", "251", "234", 
110", "100", "143", "139", "90" }; 

string!] BMPjype = {"WP", "IS", "BS", "SF", "BF" }; 
string!] cost = {"2.6", "7.9", "10.8", "14.6", "15.7"}; //Cost of BMP per area. 

string!] rep_l = {"38", "60", "70", "40", "55"}; 
string!] rep_2 = {"46", "55", "35", "33", "49"} 
string!] rep_3 = {"75", "80", "80", "80", "92' 
string!] OMR = {"4.5", "10.5", "5", "12", "6"}; //OMR cost of BMP (% of consturcion) 

//Removal(%)ofTN. 
//Removal {%) of TP. 
//Removal (%) of TSS. 
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for (int id = 0; id < area.Length; id + +) 

{ 
ListViewItem item = new ListViewItem(Convert.ToString(id + 1)); 
item.SubItems.Add(area[id]); //Area. 
item.SubItems.Add(no_pol_l[id]); //pollutant type 1. 
item.SubItems.Add(no_pol_2[id]); //polllutant type 2. 
item.SubItems.Add(no_poi_3[id]); //polllutant type 3. 
IvWatershedProp.Items.Add(item); 

} 

for (int id = 0; id < BMPjype.Length; id + +) 

{ 
ListViewItem item = new ListViewItem(BMP_type[id]); 
item.SubItems.Add(cost[id]); 
item.SubItems.Add(rep_l[id]); 
item.SubItems.Add(rep_2[id]); 

item.SubItems.Add(rep_3[id]); 
item.SubItems.Add(OMR[id]); 

IvBMP.Items.Add(item); 

} 

private void butSimulate_Click(object sender, System.EventArgs e) 

{ 
//Clear previous data object. 

m_arlLandPropData.Clear(); 

m_arlBMPPropData.Clear(); 

//Load watershed property into data structure from UI. 

if (IvWatershedProp.Items.Count > 0) 

{ 
//Generate watershed property data object from UI value and store in List. 

for (int i = 0; i < IvWatershedProp.Items.Count; i++) 

{ 
LandProperty lp_data = new LandPropertyO; 
lp_data.land_id = lvWatershedProp.Items[i].SubItems[0].Text; 
lp_data.area = Convert.ToDouble(lvWatershedProp.Items[i].SubItems[l].Text); 
lp_data.in_pollutant_typel = Convert.ToDouble 

(lvWatershedProp.Items[i].SubItems[2].Text); 
lp_data.in_pollutant_type2 = Convert.ToDouble 

(lvWatershedProp.Items[i].SubItems[3].Text); 
lp_data.in_pollutant_type3 = Convert.ToDouble 

(lvWatershedProp.Items[i].SubItems[4].Text); 

m_arlLandPropData.Add(lp_data); 

} 
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SumJd.Text = Convert.ToString(lvWatershedProp.Items.Count); 

double suml = 0, sum2 = 0, sum3 = 0, sum4 = 0; 

for (int id = 0; id < IvWatershedProp.Items.Count; id++) 

{ 
suml += Convert.ToDouble(lvWatershedProp.Items[id].SubItems[l].Text); 
sum2 += Convert.ToDouble(lvWatershedProp.Items[id].SubItems[2].Text); 
sum3 += Convert.ToDouble(lvWatershedProp.Items[id].SubItems[3].Text); 
sum4 += Corivert.ToDouble(lvWatershedProp.Items[id].SubItems[4].Text); 

Sum_Area.Text = Corwert.ToString(suml); 
Sum_N.Text = Convert.ToString(sum2); 
Sum_P.Text = CQnvert.ToString(sum3); 
Sum_SS.Text = Convert ToString(sum4); 

} 
else 

{ 
string msg = "Please input watersheds for simulation."; 
MessageBox.Show(this, "Error", msg, MessageBoxButtons.OK, 

MessageBoxIcon.Exclamation); 
return; 

//Load BMP property into data structure from UI, 
if (IvBMP.Items.Count > 0) 

{ 
//Generate BMP property data object from UI value and store in arraylist. 

for (int i = 0; i < IvBMP.Items.Count; i + +) 

{ 
BMPProperty b_data = new BMPPropertyO; 
b_data.BMP_id = lvBMP.Items[i].SubItems[0].Text; 
b_data.cost = Corivert.ToDouble(lvBMP.Items[i].SubItems[l].Text); 
b_data.rep_type_l = Convert.ToDouble(lvBMP.Items[i].SubItems[2].Text); 
b_data.rep_type_2 = Convert.ToDouble(lvBMP.Items[i].SubItems[3].Text); 
b_data.rep_type_3 = ConverLToDouble(lvBMP.Items[i].SubItems[4].Text); 
b_data.OMR = Convert.ToDouble(lvBMP.Items[i].SubItems[5].Text); 
m_arlBMPPropData.Add(b_data); 

} 
} 
else 

{ 
string msg = "Please input BMP data for simulation."; 
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MessageBox.Show(this, "Error", msg, MessageBoxButtons.OK, 

MessageBoxlcon.Exclamation); 

return; 

} 

//Load GA Engine property data. 

m_GAGeneration = Convert ToInt32(udGANumGeneration.Value); 
m_GAPopulation = Convert.ToInt32(udGAPopulation.Value); 
m_GaEngine.RegisterOperationValues( 

Convert.ToInt32(udGACrossOverRate.Value), 
Convert.ToInt32(udGAMutationRate. Value), 
Convert.ToInt32(udGAOverlapRate.Value) 

); 

//Perform solution simulation. 

GenerateChromosomO; 

//Supply data to GA Engine. 

m_GaEngine.SupplyData(m_arll_andPropData.Count, m_arlChromosom, m_arlBMPPropData, 
m_arlLandPropData); 

//Start simulation thread. 

Thread sim = new Thread(new ThreadStart(PerformSimulation)); 

sim.StartO; 
m_ResetFlag = false; 
m_SimRunning = true; 

butSimulate.Enabled = false; 

private void PauseCheckingO 

{ 
if (m_PauseFlag) 

{ 
IbllnfoDisp.Text = "Simulation paused..."; 

while (m_PauseFlag && !m_ResetFlag) 

{ 

//Loop still when pause flag still on. 

ThreacJ.SIeep(250); 

} 

if (!m_ResetFlag) 
IbllnfoDisp.Text = "Simulation resumed..."; 

} 

} 

private void PerformSimulationQ 
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//Simulation variables. 
int curr_gen = 0; //Variable hold current generation. 

Initialized); 
pbSolve.MaxValue = m_GAGeneration; 
IbllnfoDisp.Text = "Simulation started..."; 

Stopwatch stopWatch = new Stopwatch(); 

stopWatch.StartO; 

while (curr_gen < m_GAGeneration && !m_ResetFlag) 

{ 
//Execute this when pause flag detected. 

PauseCheckingO; 

//Perform GA cross over operation. 
m_GaEngine.PerformCrossOver(); 

//Perform overlapping. 
m_GaEngine.PerformOverlappping(); 

//Perform mutation operation. 

m_GaEngine.PerformMutation(); 

//Sort chromosom set. 

BubbleSortChromosomO; 

//Update chromosom result list. 

DisplayBestChromosomResult(); 

//Update result UI and graph. 
UpdateFitnessValueToGraph(); 

//Sleep the thread for a minimum time. 

Thread.Sleep(lO); 

//Increase generation counter. 

curr_gen++; 

//Update progress bar UI. 
pbSolve.Value = curr_gen; 
IblGenDisp.Text = curr_gen.ToString(); 

}//End simulation loop. 

stopWatch.StopO; 
/ / Get the elapsed time as a TimeSpan value. 
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TimeSpan ts = stopWatch.Elapsed; 

/ / Format and display the TimeSpan value. 

string elapsedTime = String.Format("{0:00}:{l:00}:{2:00}.{3:00}", ts.Hours, ts.Minutes, ts.Seconds, 

ts.Milliseconds/10); 

RunTime.Text = elapsedTime; 

if (m_ResetFlag) 

{ 

/ /No need to do result UI update if it is a reset case. 

InitializeUK); 

} 
else 

{ 

/ /Update complete UI. 

m_SimRunning = false; 

pbSolve.Value = pbSolve.MaxValue; 

IbllnfoDisp.Text = "Simulation completed."; 

//Display simulation result. 

DisplayAIIChromosomsResultO; 

//Calculate display result. 

CalculateOptimalChromosomResultO; 

} 

} 

private void DisplayBestChromosomResult() 

{ 

int count = 0; 

IvResultChr.Items.ClearfJ; 

foreach (Chromosom c in m_arlChromosom) 

{ 

LisiViewltem item = new ListViewItem(c.CurrJd.ToStringO); 

//Display fitness value in this chromosom. 

item.SubItems.Add(c.ObtainFitnessValue().ToString()); 

IvResultChr.Items.Add(item); 

if (count > 6) break; 

count++; 
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private void DisplayAIIChromosomsResultO 

{ 

IvResultChr.Items.ClearO; 

foreach (Chromosom c in m_arlChromosom) 

ListViewItem item = new ListViewItem(c.CurrJd.ToStringO); 

//Display fitness value in this chromosom. 

item.SubItems.Add(c.ObtainFitnessValue().ToString()); 

IvResultChr.Items.Add(item); 

} 

} 

private void CalculateOptimalChromosomResultO 

{ 

Chromosom optimal_chr = m_arlChromosom[0]; 

foreach (DNA d in optimal_chr.Dna) 

{ 

ListViewItem item = new ListViewItem(d.reg_watershed_prop.land_id); //Display 

Watershed ID. 

item.SubItems.Add(d.reg_BMP_prop.BMP_id); //Display BMP ID, 

item.SubItems.Add(d.Obtain_RMP_Typel().ToString());//Remain Mass of Pollutant Type 1. 

item.SubItems.Add(d.Obtain_RMP_Type2().ToString());//Remain Mass of Pollutant Type 2. 

item.SubItems.Add(d.Obtain_RMP_Type3().ToString());//Remain Mass of Pollutant Type 3. 

item.SubItems.Add(d.Obtain_BMP_Cost().ToString()); //Display Cost 

IvResultLand.Items.Add(item); 

} 

/ /Get a percentage of removal efficiency 

double s u m l = 0, sum2 = 0, sum3 = 0; 

s u m l = Convert.ToDouble(Sum_N.Text); 

sum2 = Convert. ToDouble(Sum_P. Text); 

sum3 = Convert. ToDouble(Sum_SS.Text); 

string r em l = "", rem2 = "", rem3 = ""; 

r em l = optimal_chr.ObtainTotalRMP_Typel().ToString() 

rem2 = optimal_chr.ObtainTotalRMP_Type2().ToString() 

rem3 = optimal_chr.ObtainTotalRMP J"ype3().ToString() 

double remN = 0, remP = 0, remSS = 0; 

remN = Convert. ToDouble(reml); 

remP = Convert.ToDouble(rem2); 

remSS = Convert.ToDouble(rem3); 
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//Until here for removal efficiency, Nasty code.. 

IblTotalPollutantl.Text = string.Format("{0:N2} \n ({1:P})", 
optimal_chr.ObtainTotalRMP_Typel().ToString(),((remN - suml) / suml)); 

lblTotalPollutant2.Text = string.Format("{0:N2} \n ({1:P})", 
optimal_chr.ObtainTotalRMP_Type2().ToString(), ((remP - sum2) / sum2)); 

lblTotalPollutant3.Text = string.Format("{0:N2} \n ({1:P})", 
optimal_chr.ObtainTotalRMP_Type3().ToString(), ((remSS - sum3) / sum3)); 

IblTotalBMPCost.Text = string.Format("{0:C2}", 

Convert.ToDecimal(optimal_chr.ObtainTotalBMPCost().ToString())); 

} 

private void InitializeUIO 

{ 
Control.CheckForlllegalCrossThreadCalls = false; 

//Clear off the UI progress bar. 
pbSolve.Value = 0; 

//Clear result display UI. 
IvResultChr.Items.ClearO; 
IvResultLand.Items.ClearfJ; 
IblGenDisp.Text = "—-"; 

/* IblTotalPollutantl.Text = "—"; 
lblTotalPollutant2.Text = "—"; 
IblTotalPollutantB.Text = "—"; 
IblTotalBMPCost.Text = "---"; */ 
IbllnfoDisp.Text = "—"; 

//Clear off graph display data. 
exMovGraph.ClearGraphDataQ; 

} 

private void BubbleSortChromosom() 

{ 

int m, n; 
Object tmp_chr; 
for (m = 0; m < (m_arlChromosom.Count -1); m++) 

{ 
for (n = (m + 1); n < m_arlChromosom.Count; n++) 

{ 
i f( 

(m_arlChromosom[m]).ObtainFitnessValue() > 

(m_arlChromosom[n]).ObtainFitnessValue() 

{ 
tmp_chr = m_arlChromosom[m]; 
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m_arlChromosom[m] = m_arlChromosom[n]; 

m_arlChromosom[n] = (Chromosom)tmp_chr; 

} 

private void GenerateChromosom() 

m_arlChromosom.Clear(); //Clear previous generated chromosom. 

m_GAPopulation = Convert.ToInt32(udGAPopulation.Value); 

for (int i = 0; i < m_GAPopulation; i++) 

{ 

Chromosom chr = new ChromosomO; 

for (int m = 0; m < m_arlLandPropData.Count; m++) 

{ 

DNA dna = new DNA(); 

dna.reg_watershed_prop = m_arlLandPropData[m]; 

dna.reg_BMP_prop = 

m_arlBMPPropData[m_RandomEngine.Next(m_arlBMPPropData.Count)]; 

//Register generated dna data object into chromosom, 

chr.Register_Dna(dna); 

//Store complete generated chromosom in arraylist data structure. 

m_arlChromosom.Add(chr); 

} 

} 

namespace GAMultiVarSim 

{ 

//This is Genetic Algorithm Engine, that take user GA setting from UI and perform GA calculation. 

/ /The chromosome data structure defined in datastructure.es. 

public class GaEngine 

{ 

private int cross_over_rate; 

private int mutation_rate; 

private int overlapping_rate; 

private double m_crossover_percent; 

private double m_mutation_percent; 

private double m_overlapping_percent; 
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private int m_dna_size; 

private List<Chromosom> m_arlChromosom = null; 

private List<BMPProperty> m_arlBMPPropData = null; 

private List<LandProperty> m_arlLandPropData = null; 

private Random m_RandomEngine = null; 

public GaEngine() 

{ 

//Initialize internal data. 

cross_over_rate = 1; 

mutation_rate = 1; 

overlapping_rate = 1; 

m_crossover_percent = O.Ol; 

m_mutation_percent = 0.01; 

m_overlapping_percent = 0.01; 

m_RandomEngine = new Random(System.DateTime.Now.Millisecond); 

m_dna_size = 0; 

} 

public void SupplyData(int chr_size, List<Chromosom> arlChromosom, List'<BMPPropei'ty> 

arlBMPPropData, List<LandProperty> arlLandPropData) 

{ 

m_arlChromosom = arlChromosom; 

m_arlLandPropData = arlLandPropData; 

m_arlBMPPropData = arlBMPPropData; 

m_dna_size = chr_size; 

} 

public void RegisterOperationValues(int cross_over_rate, int mutation_rate, int 

overlapping_rate) 

{ 

this.cross_over_rate = cross_over_rate; 

this.mutation_rate = mutation_rate; 

this.overlapping_rate = overlapping_rate; 

m_crossover_percent = Convert.ToDouble(this.cross_over_rate) / 100; 

m_mutation_percent = Convert.ToDouble(this.mutation_rate) / 100; 

m_overlapping_percent = Convert. ToDouble(this.overlapping_rate) / 100; 

public void PerformCrossOverO 

{ 

int a, b, tmp; 

102 



//Randomly find 2 points. 

a = m_RandomEngine.!Mext(m_dna_size); 
b = m_RandomEngine.Next(m_dna_size); 
if (a > b) 

{ 
tmp = b; 
b = a; 

a = tmp; 

} 

//Perform random 2 fix points cross over. 
if(m_RandomEngine.NextDouble() < m_crossover_percent) 

{ 
Chromosom cl = SelectChromosom(); 
Chromosom c2 = SelectChromosom(); 
Chromosom tmp_cl = cl.Clone(); 
Chromosom tmp_c2 = c2.Clone(); 
DNA tmp_dna; 
for(int m=0; m<m_dna_size; m++) 

{ 
if(m>=a && m< = b) 

{ 
tmp_dna = tmp_cl.GetDna(m); 
tmp_cl.SetDna(m, tmp_c2.GetDna(m)); 
tmp_c2.SetDna(m, tmp_dna); 

if( tmp_cl.ObtainFitnessValue() < cl.ObtainFitnessValue()) cl.Copyf tmp_cl); 
if( tmp_c2.0btainFitnessValue() < c2.0btainFitnessValue()) c2.Copy( tmp_c2 ); 

} 

public void PerformMutation() 

{ 

int chr_idx, fer_idx; 

//Continue to do mutation when the chance is given. 

double d = m_RandomEngine.NextDouble(); 
if( d < m_mutation_percent) 

{ 
chr idx = 
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m_RandomEngine.Next( Convert.ToInt32( (2*m_arlChromosom.Count)/3 ), m_arlChromosom.Count); 

Chromosom opr_c = m_arlChromosom[chr_idx]; 

/ /Mutat ion happen to all the location of DNA. 

for(int p=0; p<m_dna_size; p++) 

{ 

fer_idx = 

m_RandomEngine.Next( m_arlBMPPropData.Count ); 

opr_c.UpdateDna(p, m_arlBMPPropData[fer_idx]); 

} 

} 

} 

public void PerformOverlapppingO 

{ 
if(m_RandomEngine.NextDouble() < m_overlapping_percent) 

{ 

Chromosom c l = SelectChromosom(); 

Chromosom c2 = SelectChromosomO; 

Chromosom tmp = CreateChromosom(); 

for(int m=0; m<m_dna_size; m + +) 

{ 

if( cl.GetDna(m).reg_BMP_prop.BMP_id = = 

c2.GetDna(m).reg_BMP_prop.BMP_id) 

{ 
/ /Only copy the dna to new produce dna when both parents dna registered the used BMP are the same. 

tmp.SetDna(m, cl.GetDna(m)); 

} 

} 

//Check the new produced chromosom. Replace its parents when the fitness value is better. 

if(tmp.ObtainFitnessValue() < cl.ObtainFitnessValue()) cl.Copy( tmp ); 

if(tmp.ObtainFitnessValue() < c2.0btainFitnessValue()) c2.Copy( tmp ); 

} 

} 

#region Private Methods For GA Engine 

private Chromosom CreateChromosom() 

{ 

Chromosom c = new Chromosom(); 

for(int m=0; m<m_dna_size; m + +) 

{ 
DNA dna = new DNA(); 

dna.reg_watershed_prop = m_arlLandPropData[m]; 
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dna.reg_BMP_prop = 

m_arlBMPPropData[m_RandomEngine.Next(m_arlBMPPropData.Count)]; 

//Register generated dna data object into chromosom. 

c.Register_Dna(dna); 

} 
return c; 

} 
private Chromosom SelectChromosom() 

{ 

int idx; 

idx = m_RandomEngine.Next( Convert.ToInt32(m_arlChromosom.Count/3 ) ) ; 

return m_arlChromosom[idx]; 

} 
#endregion 

} 

} 
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