Fine Pore Diffuser Fouling: The Los Angeles Studies

by

Michael K. Stenstrom, Ph.D., P.E. Professor

and

Gail Masutani, Ph.D. Postgraduate Engineer

A Final Report to the American Society of Civil Engineers and the U.S. Environmental Protection Agency

January 10, 1990

UCLA Engr. 90-02

DISCLAIMER

Development of the information in this report has been funded in part by the U.S. Environmental Protection Agency through an agreement with the American Society of Civil Engineers to the University of California, Los Angeles. The report has been subjected to Agency peer and administrative review and approved. of trade names or commercial products does not constitute endorsement or recommendation for use. The opinions expressed in this report are the opinions of the authors and are not necessarily the opinions of the sponsoring agencies, the participating equipment manufacturers, or the partner agencies.

FOREWARD

This report was prepared for the Environmental Protection Agency and is being published as an EPA report available through NTIS. The report is also being issued as a UCLA Engineering report, and is virtually identical, with the exception of some of the introductory pages.

-

Michael K. Stenstrom

ACKNOWLEDGMENTS

The authors are grateful for the support of the US Environmental Protection Agency, the American Society of Civil Engineers, and the University of California, Los Angeles for providing the support for this project. The authors are also grateful for the cooperation of the Los Angeles County Sanitation Districts and the City of Los Angeles, Bureau of Sanitation. Their cooperation made this project possible. There are many individuals who helped us in many ways, but we are especially indebted to Max Augustus, Brian Case, George Ohara, Bryson Timmons, and Fred Yunt.

The active participation of the Steering Subcommittee of the ASCE Committee on Oxygen Transfer, chaired by Hugh J. Campbell, Jr. was especially important. Professor H. David Stensel of the University of Washington served as ASCE's project monitor. Mr. Richard C. Brenner of the US EPA's Risk Reduction Engineering Laboratory in Cincinnati, Ohio served as the EPA project monitor.

The manufacturers cited in this report donated their time and effort to helping us. Mr. Jerry Wren of Sanitaire was especially helpful by providing the acid gas cleaning expertise, and operating the acid control panel during cleaning.

Finally the authors are most grateful and indebted to Ms. Debby Haines, who processed and edited final manuscript and provided other support and assistance throughout the project.

iii

ABSTRACT

This report describes five fine pore diffuser evaluations conducted at three different wastewater treatment plants located in the greater Los Angeles area. The overall goal of the study was to evaluate the performance of fine pore diffusers using selected cleaning methods for extended periods of time at selected treatment plants.

The major part of this study was conducted at the Whittier Narrows Water Reclamation Plant which is operated by the Los Angeles County Sanitation Districts. This study evaluated fine pore ceramic disk and dome aeration systems using HCl acid gas cleaning, and a dome aeration system without acid gas over a 25-month period. A second study, smaller in scope and effort, was conducted at the Valencia Water Reclamation Plant (also operated by the Districts). This study evaluated fine pore plastic disk diffusers over a 13-month period. A third study, also smaller in scope and effort than the Whittier Narrows study, was conducted at the Terminal Island Wastewater Treatment Plant, operated by the City of Los Angeles. In this study the performance of two membrane tube diffusers was evaluated over a 12-month period.

This report summarizes the performance of the six different aeration systems. The principal indicator of performance was oxygen transfer efficiency, as measured through off-gas analysis. For the Whittier Narrows study, changes in diffuser characteristics are also reported.

The fine pore ceramic disk aeration system, which was acid gas cleaned, performed better than the ceramic dome systems which were acid gas cleaned as well as a control dome aeration system which received no cleaning. Part of the differences in performance between the disk system and the two dome systems is attributable to mechanical problems with the domes. The cleaned and uncleaned dome systems had comparable transfer efficiencies during the study. Results for the plastic disk system showed relatively consistent performance over the 13-month period. The tube systems showed high variability due to operational differences, and one tube system showed significant fouling over a relatively brief period.

An important finding of this report is the variability of aeration systems performance during day-to-day changes in plant input and operating modes.

TABLE OF CONTENTS

i DISCLAIMER FOREWARD ii ACKNOWLEDGMENTS iii ABSTRACT iv TABLE OF CONTENTS v LIST OF TABLES vi LIST OF FIGURES vii 1 INTRODUCTION PLANT DESCRIPTIONS 4 4 WHITTIER NARROWS VALENCIA 6 TERMINAL ISLAND 14 19 PROCESS DATA 20 EXPERIMENTAL PROCEDURES OFF-GAS TESTING PROCEDURE 24 GAS CLEANING PROCEDURE 25 LIQUID ACID CLEANING 29 31 CLEAN WATER DATA 31 Whittier Narrows Valencia 33 33 Terminal Island - AERMAX EXPERIMENTAL RESULTS 35 35 WHITTIER NARROWS Whittier Narrows Diffuser Analysis Results 35 41 Off-Gas Testing Results 55 Stationary Testing Off-Gas Testing During HCl Acid Gas Cleaning 57 61 Dome Replacement 67 Ratios of Transfer Rates VALENCIA 67 TERMINAL ISLAND - PARKSON-WYSS 70 TERMINAL ISLAND - AERMAX 75 81 TERMINAL ISLAND - SPIRAL ROLL EFFECT OF PROCESS OPERATION ON AERATION EFFICIENCY 82 82 EFFECT OF SRT. F/M. MLVSS AND AIR FLUX TIME SERIES REGRESSIONS 86 94 CONCLUSIONS REFERENCES 96 98 APPENDIX I SAMPLE DATA SHEET APPENDIX II WHITTIER NARROWS DIFFUSER DATA 100 APPENDIX III PLANT PROCESS DATA 104 TERMINAL ISLAND 105 VALENCIA 111 WHITTIER NARROWS 119 135 APPENDIX IV OFF-GAS DATA APPENDIX V SELECTED DIFFUSER DRAWINGS 142

page

LIST OF TABLES

 \sim

 $\widehat{}$

~

متمر

-

Table 1	Whittier Narrows Plant Description	9
Table 2	Whittier Narrows Diffuser Information	10
Table 3	Valencia Treatment Plant Description	11
Table 4	Valencia Diffuser Layout	12
Table 5	Terminal Island Plant Description	15
Table 6	Terminal Island Parkson-Wyss Tank	16
Table 7	Terminal Island AERMAX Tank	16
Table 8	Whittier Narrows Clean Water Data	32
Table 9	Sanitaire's SOTE Estimates for Whittier Narrows	32
Table 10	Nokia Clean Water Oxygen Transfer Efficiency	34
Table 11	AERMAX Clean Water Efficiency for a Spiral Roll Configuration	34
Table 12	Whittier Narrows Project Chronology	36
Table 13	Summary of Whittier Narrows Operation	
Table 14	Diffuser Analysis Summary	
Table 15	Results of the Analysis of Variance of Diffuser Characteristics	40
Table 16	Mean Values of Diffuser Data	42
Table 17	Lab Diffuser Cleaning Results	43
Table 18	Diffuser Malfunctions for Tank 3 (Domes, uncleaned)	65

LIST OF FIGURES

~

 \sim

~

-

~

~

-

-

Figure 1	Plant Locations
Figure 2	Whittier Narrows WRP Process Flow
Figure 3	Whittier Narrows WRP Tank Schematic8
Figure 4	Valencia WRP Tank Schematic
Figure 5	Terminal Island Tank Schematic17
Figure 6	Whittier Narrows Off-gas Hood Locations (4 of 12 shown)21
Figure 7	Valencia Off-gas Hood Locations
Figure 8	Terminal Island Off-gas Hood Locations
Figure 9	HCl Gas Cleaning Control Panel
Figure 10	In-Tank DWP Monitoring Apparatus
Figure 11	DWP and BRV versus Months in Service
Figure 12	Fouling Substances and BRV/DWP versus Months in Service45
Figure 13	aSOTE versus Time for Tanks 1 and 3 at Whittier Narrows
Figure 14	α Factor versus Time for Tanks 1 and 3 at Whittier Narrows
Figure 15	aSOTE versus Time for Tanks 2 and 3 at Whittier Narrows
Figure 16	α Factor versus Time for Tanks 2 and 3 at Whittier Narrows
Figure 17	Air Flux versus Time at Whittier Narrows51
Figure 18	Air Flux versus Distance at Whittier Narrows
Figure 19	aSOTE versus Distance at Whittier Narrows
Figure 20	α Factor versus Distance at Whittier Narrows
Figure 21	α Factor and α SOTE versus Time of Day

Figure 22	aSOTE during HCl Gas Cleaning	58
Figure 23	aSOTE for Grid 1 Before and After Cleaning	59
Figure 24	Ratio of α SOTE Before and After Cleaning	60
Figure 25	Decrease in DWP versus Time During HCl Acid Gas Cleaning	62
Figure 26	Air Flow Rate versus Time During HCl Acid Gas Cleaning	63
Figure 27	Dome Failures for Tank 3 at Whittier Narrows	.64
Figure 28	Normalized Ratio of aSOTEs Before and After Cleaning	.68
Figure 29	Hood Flux Versus Process Air Flux at Whittier Narrows and Valencia	.69
Figure 30	α SOTE, Air Flux and α Factor at Valencia	.71
Figure 31	α SOTE and α Factor versus Distance at Valencia	.72
Figure 32	Air Flux versus Distance at Valencia	.73
Figure 33	asore, Air Flux and DO for Parkson-Wyss at Terminal Island	.74
Figure 34	aSOTE and Air Flux versus Distance for Parkson-Wyss at Terminal Island	.76
Figure 35	aSOTE, Air Flux and DO for AERMAX at Terminal Island	.77
Figure 36	asote and Air Flux versus Distance for AERMAX at Terminal Island	.78
Figure 37	α SOTE and α Factor versus Months in Service for AERMAX - Terminal Island	80
Figure 38	α Factor versus F/M for Tanks 1 and 2 at Whittier Narrows	.85
Figure 39 7	α SOTE and α Factor versus MLVSS Concentration for Hood Position 1, Fank 1 at Whittier Narrows	.87
Figure 40	α Factor versus MLVSS Concentration at Valencia	88
Figure 41 T	α Factor versus Air Flux at Whittier Narrows for Hood Position 1, Sank 1, and a Test Column	89
Figure 42	αSOTE versus Time for Tank 1 at Whittier Narrows	91
Figure 43	α Factor versus Time for Tank 1 at Whittier Narrows	92

~

viii

INTRODUCTION

The increased interest in energy conservation in the late 1970's created a new market for high efficiency, energy conserving aeration systems for wastewater treatment plants. Most of the high efficiency aeration systems are some form of fine bubble (≤ 2 mm mean bubble diameter), subsurface diffusers.

Clean water efficiencies of high efficiency diffuser systems were previously investigated in an EPA sponsored study (Yunt and Hancuff, 1983). This study showed that full floor coverage ceramic grid systems are capable of transferring in clean water in excess of 4.3 kg/kW-hr (7 lb O_2 /hp power; unless otherwise noted, power number will always refer to wire power). These rates are more than twice the clean water transfer rates obtained in many alternative aeration systems.

Unfortunately, fine pore diffuser systems have several operational disadvantages which reduce their efficiency. The first effect is reduced process water transfer efficiency due to coalescence and depressed film coefficients caused by surface active agents (surfactants) such as detergents, volatile acids, and biologically produced polymers. This phenomena is not limited to fine pore diffusers but seems to impact them more severely than other aeration systems. The second effect is diffuser fouling and plugging caused by the precipitation of inorganic salts and growth of biological slime on the diffuser surface. The third effect is air side fouling from contaminants in the air supply or from liquid contaminants that find their way into the air distribution system because of mechanical failures. All three phenomena cause problems, such as increased pressure drop across the diffuser or coalescence of bubbles as they leave the surface of the diffusers, with a net result of reducing aeration efficiency.

Prior to initiation of this series of research projects, the suppression of aeration efficiency due to surfactants and other contaminants was empirically known and calculated through a coefficient called an "alpha factor (α)." Alpha factors for fine bubble diffusers have been reviewed (Stenstrom and Gilbert, 1981) and studied in process water (Hwang and Stenstrom, 1985; Doyle and Boyle, 1986) for clean, well maintained diffusers. Prediction and measuring techniques for fine bubble diffusers under these conditions have been developed and verified using near full-scale equipment.

The objective of this research, and its sister projects, is to quantify the decrease in aeration efficiency due to fouling and plugging, and in certain cases, to evaluate cleaning techniques. This report addresses three studies performed in the Los Angeles area by UCLA with cooperation of the Los Angeles County Sanitation Districts (Districts) and Bureau of Sanitation of the City of Los Angeles (City).

These investigations were performed with differing goals and levels of effort. The principal study was conducted at the Whittier Narrows Water Reclamation Plant (WNWRP) in Whittier, California. This plant is operated by the Districts and is one of their "upstream" facilities. It treats a relatively constant flow rate (13 MGD), since the diurnal fluctuations in flow rate are passed onto the "downstream" facility, the Joint Water Pollution Control Plant (JWPCP) at Carson. Waste activated sludge, primary sludge, skimmings, and filter backwash sludge are returned to the trunk sewer for treatment at the JWPCP. A portion of the effluent from Whittier Narrows is used for groundwater recharge. The remaining effluent is discharged to the San

Gabriel River for ocean disposal. Industrial discharge to the plant is closely monitored and controlled through Districts' industrial pretreatment and compliance monitoring program.

The goal of the Whittier Narrows project was to evaluate long term fouling of disk and ceramic dome diffusers, and the effectiveness of a patented, in-situ gas cleaning technique (Schmit, et al. (1983). The study was initiated in April 1986 and continued until July 1988. Two ceramic dome diffuser aeration systems (Norton, now Aercor, 0.19m diameter, 3.8 cm high) and one ceramic disk diffuser aeration system (Sanitaire, 0.23 m diameter, 2.54 cm thick disks) were tested. One ceramic dome system served as a control and was not cleaned. The other two systems were periodically cleaned with HCl gas.

The second investigation was performed at the Districts' Valencia Water Reclamation Plant in Valencia, CA. Valencia is north of Los Angeles and is not part of the network of sewers which connect the upstream plants and JWPCP. The Valencia WRP has sludge handling facilities, and treats a diurnally varying wastewater flow (6.4 MGD for the portion of the plant studied in this project). The industrial pretreatment program is in effect for this plant.

The goal of the Valencia study was to monitor the efficiency of plastic disk diffusers (0.18 m Nokia disks) over a period of time to observe fouling and decline in aeration efficiency. The study was begun in June 1987 and continued until March 1988. One aeration tank which had been baffled into three compartments was monitored. The tank was operated in a step feed mode approaching contact stabilization.

The third study was conducted at the Terminal Island Treatment Plant at Terminal Island, CA. This plant is operated by the City and is not part of a network of plants. It treats a diurnally varying wastewater flow rate (21 MGD) and has a significant wastewater contribution from fish canning (40% mass load) and pretreated petroleum refinery wastewater (15% mass load). The plant has sludge handling facilities, and anaerobic digester supernatant is periodically returned to the plant influent. Three tanks were initially used in this study. Two aeration tanks were retrofitted with membrane diffusers. A third tank, with coarse bubble spiral roll diffusers (Chicago Pump, Discfusers), was used as a control.

The first tank was fitted with a full-floor coverage membrane tube (Parkson-Wyss) diffuser. Two air laterals were bolted to each swing arm and spanned the tank width. Diffusers were installed on each lateral to provide near full-floor coverage. A second tank was used as a control and was equipped with "Discfusers" spargers (Chicago Pump) mounted on swing arms. These diffusers existed prior to the study. The third tank was equipped with membrane diffusers (Aertec AERMAX). These diffusers were installed on each swing arm in lieu of the spargers that were previously installed. The goal of this study was to monitor fouling and aeration efficiency. The study was begun in June 1987 and continued until June 1988.

All three plants were periodically monitored with off-gas (Redmon, et al. 1983) oxygen transfer testing. Diffusers from the Whittier Narrows WRP were occasionally removed for analysis to determine dynamic wet pressure, bubble release volume, and mass of fouling material. A test header containing four disk diffusers was also installed at the Whittier Narrows WRP.

The next chapter describes each plant. Following chapters describe the experimental procedures, experimental results, and effects of process operation on oxygen transfer. Appendix I shows a sample data sheet used in off-gas testing. Appendix II contains the raw diffuser data for Whittier Narrows. Appendix III contains the process data for each plant, averaged by month and averaged over the entire period of observation. Appendix IV contains the average values of all the off-gas results for all plants. Appendix V contains schematic diagrams of several of the diffusers.

The terminology in this report is a little different than the EPA design manual. The manual refers to α_f and α_f SOTE, with the "f" subscript denoting field conditions, or fouled conditions, as opposed to new conditions. The terminology for α and α SOTE used in this report is the same as the manuals terminology of α_f and α_f SOTE.

PLANT DESCRIPTIONS

This section provides plant-specific information for each study. Plant operating data for each facility are summarized in Appendix III. Note that several operating parameters changed during the study due to plant upgrades or operational difficulties. In general every attempt was made to maintain constant plant operation. Figure 1 shows the approximate plant locations.

WHITTIER NARROWS

The Whittier Narrows WRP is a full secondary treatment facility with primary clarification, aeration, secondary clarification, filtration, chlorination and dechlorination. The plant is located 38 km inland from the Pacific Ocean. It is operated by the Los Angeles County Sanitation Districts which operates ten other plants in Los Angeles County.

The topology of the Los Angeles Basin is such that long trunk sewers can be operated without pump stations from the inland areas to the JWPCP in Carson. Wastewater flows by gravity from the Whittier Narrows area over 32 km to JWPCP. As growth has occurred the Districts have added treatment capacity at its up-stream plants such as Whittier Narrows. This fortuitous situation allows growth without increasing the size of the trunk sewers, which currently operate at near capacity, and allows the District to concentrate its solids processing facilities at JWPCP. The upstream plants also help to meet the water reclamation needs of the various communities. The Whittier Narrows, San Jose Creek, Long Beach, Los Coyotes, and Pomona water reclamation plants all operate in this fashion.

In addition to solids handling facility design, the unique sewer arrangement provides additional operation freedom to these upstream plants. For example, the flow rate at the Whittier Narrows WRP is set relatively constant and the plant is less disturbed by the diurnal fluctuations in wastewater flow rate. Furthermore, tank maintenance at the Districts' various WRPs can be performed much more easily since a temporary shortfall in capacity at one plant can be treated by another plant.

The Whittier Narrows WRP provides reclaimed water water for various purposes, including groundwater recharge, which requires the plant to produce better than average secondary effluent. Health Department regulations require the plant to meet a turbidity limit 2 NTU or less, and a total coliform limit of 2.2 MPN or less.

Both the Districts' and the City's storm and sanitary sewers are separated. The impacts of stormwater flow on the Whittier Narrows WRP are small compared to plants with combined sewers. There is additional flow during the rainy season (Winter) and for this reason operational flexibility is more limited during these periods.

The Whittier Narrows plant was the location of an early study comparing ceramic disk diffusers, fine bubble tube diffusers, and jet aerators. The disk system used in this study (tank 1) was installed in December 1980, and was the same as used previously. The disks installed at this plant are 2.5 cm thick and are different than the current Sanitaire disk, which is only 1.9 cm thick. The manufacturer reports that the new disks are otherwise identical to the disks used at Whittier Narrows. Both the tube and jet system were replaced with ceramic dome diffusers at the conclusion of the previous study (Yunt and Stenstrom, 1990). Tanks 2 and 3 were placed in

Figure 1 Plant Locations

5

N

service in March and May 1982. The disk and domes had a dry permeability rating of 8.2 to 8.8 m^3/hr (14-15 SCFM).

The critical dimensions of the plant are shown in Tables 1 and 2. Figure 2 shows the process flow and Figure 3 shows the aeration system and air piping. The domes in the two Norton tanks were replaced in September and October 1987. The tapering was changed at this time, and the number of domes were reduced in grid 1 and increased in grid 3. The dissolved oxygen concentration (DO) is automatically controlled. DO probes are located at the effluent end of each aeration tank. Changes in air flow rate are affected by changing the blower operation, which simultaneously increases or decreases the air flow to all three aeration tanks.

VALENCIA

The Valencia WRP is located approximately 60 km north of downtown Los Angeles. As indicated previously, it is not part of the network of sewers that connect the upstream plants to JWPCP. It has anaerobic digestion facilities. It has a unique tank geometry relative to other tanks within the District. The tanks are approximately half as long as tanks at other District plants. Each tank at the time of this study contained only two diffuser grids equipped with 0.18 m (7.3") Nokia disks. The disks were nominally 10.2 ± 0.3 mm thick and were composed of sintered polyethleyene. The dry permeability of the disks was $12.3 \text{ m}^3/\text{hr}$ (21 SCFM). The Districts expanded this plant in 1986 and it was converted to fine pore aeration. Existing baffles were also removed from the aeration tanks. After modification a total of five aeration tanks were in service, with all five operating in single pass mode.

Unfortunately trouble was experienced with the early operation of the expanded and retrofitted plant. Sludge bulking problems occurred. It was concluded that the operational problems were associated with backmixing in the short aeration tanks. The Districts believed that the differential air flow rates through the two grids created a rolling action from the front to back of the tank that destroyed the "plug flow" nature of the tank, creating a more completely mixed plant.

To remedy this problem three of the five tanks were placed in series (serpentine) flow pattern and operated in a step feed mode approaching contact stabilization. Since it was not possible to operate the remaining two tanks in this fashion, they were modified by constructing two wooden baffles across each tank. The tanks were divided into three compartments each, and were also operated in the step feed mode. Plans have been made to further modify the plant and construction of a sixth aeration tank is contemplated.

All tests were conducted in the fourth aeration tank which was one of the single pass tanks. Six hood positions were used. The first position was located in the first compartment in the reaeration zone. The other five hood positions were located in the contact and effluent zones. Tables 3 and 4 show the plant's critical dimensions and diffuser layout. Figure 4 shows the aeration system layout. Grids 1 and 2 have designated half grids 1A/1B and 2A/2B, respectively. Half-grids are served by only one downcomer. The grids are designated this way because the diffuser spacing is different in each half-grid.

)

Figure 2 Whittier Narrows WRP Process Flow

)

}

)

)

)

Figure 3 Whittier Narrows WRP Tank Schematic

 $\mathbf{\infty}$

)

)

Table 1. Whittier Narrows Plant Description

~

	Number	Nominal Size
Primary Clarifiers	2	3.7 sidewater depth (swd) x 6.1 w x 91.4 l meters (12 swd x 20 w x 300 l feet)
Aeration Tanks	3	4.6 swd x 9.1 w x 91.4 l meters (15 swd x 30 w x 300 l feet)
Secondary Clarifiers	6	3.0 swd x 6.1 w x 45.7 l meters (10 swd x 20 w x 150 l feet) (1 clarifier normally used for backwash recovery)
Normal Operation	3	aeration tanks in parallel, conventional activated sludge with tapered aerations. Provisions for step feed and series operation of all 3 tanks
	5	secondary clarifiers
	2	primary clarifiers
Air Filtration	1	two stage, replaceable paper cartridge filters (not functional 4/86 - 9/87)+
Blowers	2	20,400 m ³ /hr centrifugal (12,000 SCFM)
	1	9,300 m ³ /hr centrifugal (5,500 SCFM)
Diffuser Grids Per Tank	3	Flow control to each grid and tank, automatic DO control. 1 probe located at the end of each tank
Design Flow Rate		57 m ³ /day (15 MGD)

+ The air filters had been out of service for an unknown period, perhaps as much as 2 years, prior to the beginning of this study.

Table 2. Whittier Narrows Diffuser Information

~

 $\hat{}$

~

~

~

~

 $\overline{}$

Tank	Grid	Description
1 (Sanitaire disks)	1	792 disks (0.23 m or 9 in. diameter) 2.8 disk/m ² (0.264 disk/ft ²)
	2	774 disks 2.8 disk/m ² (0.258 disk/ft ²)
	3	460 disks 1.7 disk/m ² (0.153 disk/ft ²) 900 domes tank 2, 985 tank 3
2 & 3 (Norton domes)	1	prior to 8/21/87, 990 domes 0.18 m (7 in) domes 3.6 domes/m ² (0.33 dome/ft ²) (0.18 m or 7 in. diameter) after 8/21/87, 836 domes, 3.00 dome/m ² , (0.28 dome/ft ²)
	2	968 domes 3.5 disk/m ² (0.32 dome/ft ²)
	3	574 domes 2.1 disk/m ² (0.19 dome/ft ²) after 8/21/87, 728 domes, 2.61 domes/m ² (0.24 dome/ft ²)
1,2,3	All	3.75 m (12.3 ft) diffuser submergence

Table 3. Valencia Treatment Plant Description

 \sim

 $\overline{}$

 $\overline{}$

 $\overline{}$

 $\overline{}$

	Number	Nominal Size
Primary Clarifiers	5	3.5 swd x 6.1 w x 19.8 l meters (11.4 swd x 20 w x 65 l feet)
Aeration Tanks	5	4.6 swd x 8.1 w x 41.4 l meters, 3.96 m diffuser submer- gence (15 swd x 26.5 w x 135 l feet, 13 feet diffuser submer- gence)
Normal Operation	3	serpentine flow operating as a single contact stabilization process
	2	baffled in three compartments, operating in parallel in con- tact stabilization process
Secondary Clarifiers	6	3.0 swd x 4.9 w x 41.1 l meters (10 swd x 16 w x 135 l feet)
Air Filtration	2	two-stage replaceable paper cartridge filters
Blowers	2	15,500 m ³ /hr Roots centrifugal (9,150 SCFM)
	2	6,100 m ³ /hr Sutor-bilt Positive Displacement (3,600 SCFM)
	1	1700 m ³ /hr Sutor-built Positive Displacement (1000 SCFM)
Diffuser Grids/Tank	2	flow control for each grid and each tank

Table 4.	Valencia	Diffuser	Layout*
----------	----------	----------	---------

Half-Grid ⁺	Description
1A	343 disk 4.1 disk/m ² (0.38 disk/ft ²)
1 B	288 disks 3.4 disk/m ² (0.32 disk/ft ²)
2A	262 disks 3.1 disk/m ² (0.29 disk/ft ²)
2B	205 disks 2.5 disk/m ² (0.23 disk/ft ²)
Zone	
1	reaeration - 257 disks (257 from grid 1A)
2	contact 466 disks (86 from grid 1A, 288 from grid 1B, 92 from 2A)
3	375 disks (170 from grid 2A, 205 from grid 2B)

* Only Tank 4 tested
+ One downcomer serves half-grids 1A & 1B, and a second downcomer serves half-grids 2A & 2B.

)

)

)

)

)

)

)

Figure 4 Valencia WRP Tank Schematic

)

TERMINAL ISLAND

The Terminal Island (TI) study was initiated last among the three studies. It began in June 1987 and continued until July 1988. This study was initially proposed to evaluate a low cost aeration system upgrade. Parkson-Wyss diffusers were to be placed on swing arms. This was the least expensive upgrade alternative for this plant and could serve as a "model" low cost upgrade for other plants using spiral roll, sparged aeration systems.

In early 1988 Parkson changed the design of the aeration system from a simple swing arm installation to a full floor coverage installation. Two headers were attached to the bottom of each swing arm perpendicular to the tank walls. This was a much more expensive installation and was contrary to the goals of the study. Fortunately the plant purchased a second membrane aeration system, which was supplied by Aertec. The system was comprised of 770 AERMAX diffusers which were attached to the swing arms. In this way the initial goal of obtaining an inexpensive fine pore diffuser upgrade was obtained.

Tables 5, 6, and 7 show the critical dimensions of the TI tanks. Figure 5 shows the tank and aeration system. The tanks being tested are numbered 4, 5, and 6 using the plant's terminology. The Parkson-Wyss tank was tank 4 and the AERMAX tank was tank 6. Tank 5 was unmodified and served as a control tank. Tank 5 was equipped with Chicago Pump "Discfusers" in a spiral roll configuration.

The diffuser mounting of both the Parkson-Wyss and AERMAX diffusers were novel. For the Parkson-Wyss, two PVC headers were attached to the ends of a pipe mounted in place of the horizontal diffuser holder on the swing arm. The PVC header was supported from the tank floor by a PVC pipe functioning as a vertical brace. The vertical brace was secured to the floor with a floor flange. It was necessary to compensate for the increased head loss through the diffuser by decreasing its submergence. This was necessary because the plant continued to operate several sparged spiral roll tanks, making it impossible to increase the air system pressure. To increase the elevation of the diffusers a saddle was placed over the PVC header at each location where diffusers were to be located. A vertical nippled extended from the saddle to the tee roughly 0.3 m above the PVC header. Two Parkson-Wyss diffusers were mounted from the tee, perpendicular to the PVC header. The manifolds did not extend completely across the tank floor; a gap was left between the wall and the end of the manifolds to allow maintenance personnel to walk in the tank without having to step over the manifolds. This created non-uniform air flux across the tank and required more careful hood placements, which is discussed later in the report.

To mount the AERMAX diffusers the horizontal sparger tube of the swing arm was removed and rotated 90°. This was facilitated because the particular swing arm design used flanges to connect the horizontal member to the vertical downcomer. After rotation the bosses that were previously used for mounting the spargers were vertical. The lower bosses were plugged and a nipple was inserted into the upper bosses. A tee was fastened to the top of each nipple and two AERMAX diffusers were mounted. One diffuser pointed toward the center of the tank and the other pointed toward the tank wall. A mistake was made in specifying the diffuser length on the tank wall side. In order to not delay the project and avoid the expense of shortening the diffusers, the tees attached to the nipples were rotated so that they were approximately 60° with the wall. This allowed the 0.61 m length diffusers to be used on the inside of the swing

Table 5. Terminal Island Plant Description

~

~

ſ <u></u>	Number	Nominal Size
Primary Clarifiers	6	3.66 swd x 6.1 w x 76.2 l meters (12 swd x 20 w x 250 l feet)
Aeration Tanks	9	4.6 swd x 9.1 w x 91.4 l meters (15 swd x 30 w x 300 l feet)
Normal Operation	3	serpentine operation of 3 each in step feed mode
	2	parallel, conventional operation
	1	aerobic digester
	3	out of service
Secondary Clarifiers	18	3.66 swd x 6.1 w x 45.7 l meters (12 swd x 20 w x 150 l feet)
Air Filtration	3	coarse screens only
Blowers	3	66,300 m ³ /hr Roots centrifugal (39,000 SCFM)
Grids per tank	N/A	Diffusers attached to swing arms, 17 per tank
Design flow rate		114,000 m ³ /day (30 MGD)

Table 6. Terminal Island - Parkson-Wyss Tank*

Zone	Description
×.	
1	6 downcomers+, 0.25 m spacing (10") 530 diffusers
2	6 downcomers, 0.30 m spacing (12") 300 diffusers
3	5 downcomers, 0.46 m spacing (18") 170 diffusers
Total	17 downcomers, 1000 diffusers

* TI Tank 4

+ Downcomer refers to the vertical part of the old swing arms. Each downcomer is equipped with a plug valve. Approximately 3.6 m (12 ft) diffuser submergence.

Table 7. Terminal Island AERMAX Tank*

Zone	Description
1	9 downcomers ⁺ , 0.15 m spacing (6") 270 0.61 m diffusers, 270 0.91 m diffusers
2	5 downcomers, 0.30 m spacing (12") 82 0.61m diffusers, 82 0.91 m diffusers
3	3 downcomers, 0.46 m spacing (18") 32 0.61 m diffusers, 32 0.91 m diffusers
Total	17 downcomers, 770 diffusers

- * TI Tank 6.
- + Downcomer refers to the vertical part of the old swing arms. Each downcomer is equipped with a plug valve. Approximately 4.1 m diffuser submergence.

)

)

)

)

)

)

Influent pipe with sluice gate (typical)

)

)

)

Figure 5 Terminal Island Tank Schematic

17

)

)

arm.

There was very little flow rate control and instrumentation associated with the TI installation, which is consistent with its "low cost" objective. Tank air flow rate was controlled by a single valve for tank 4 and a single valve for tanks 5, 6, and the intrachannel aeration system. Each downcomer retained the plug valve which was installed with the spiral roll sparger system. Using these plug valves it was possible to modulate the flow to each swing arm. However, flow control was very imprecise; a small, almost imperceptible movement in the plug valve would significantly alter the downcomer flow rate. It was intended that all downcomers for both test tanks would always be operated at maximum flow rate; however, this was never practically achieved, and differences in diffuser gas flow rate were detected during off-gas testing. It was not possible to achieve a uniform, tapered gas flow rate.

The two header valves and the blower system were remotely controlled. The operators would turn up the plant air as the load increased during the morning. This increase was detected during the first episode of off-gas testing, and later testing was begun later in the morning to avoid the scatter in aeration rates caused by this flow rate increase.

A large fraction of the TI influent is industrial waste. Approximately 30% of the influent flow is fish cannery wastewater, which accounts for 40% of the plant's BOD loading rate. The waste is seasonal and usually the highest plant loads occur in October. Approximately 25% of the flow and 15% of BOD load is pretreated petroleum refinery effluent. Both industrial waste streams severely impact plant operations from time-to-time. Corrosion is excessive and plant personnel attribute this in part to reduced sulfur compounds in the refinery effluent.

The plant experiences routine foaming problems and sludge settling problems. Antifoam is stocked and frequently used. It is introduced into the primary effluent distribution headers by "cracking" a valve on a plastic storage tank. During the testing antifoam was used. Antifoam has been shown to reduce oxygen transfer rates (Downing, et al. 1960).

Plant operation was changed during the study. At the beginning of the study only five tanks were in service. All five tanks were operated as single aeration systems in conventional mode. Midway through the study the plant manager decided to change operation from conventional to step feed. Therefore tank 5 was removed from service, and tank 3 was returned to service, allowing tanks 1, 2, and 3 to be placed in series (serpentine flow).

This change affected the study in two ways. The return sludges were mixed, which meant that sludge from a conventional system was being mixed with sludge from a step feed system. No impact of this change could be observed on α SOTE. A severe impact on tanks 4 and 6 (the diffuser test tanks) was created by the flow change. More than two months elapsed before the sluice gates controlling the flow to the tanks were readjusted for proper distribution. During this time both tanks 4 and 6 were overloaded. Flow measurements were unavailable to quantify the loading.

Air flow rates in both tanks were increased to account for the overload. The Parkson-Wyss system responded well and air flow rates increased sufficiently to keep positive dissolved oxygen (DO). During this time the air flow rate was 50 to 100% greater than the manufacturer's maximum recommended flow rate. This increased flow was possible in part because tank 4 had its own air header. Increasing flow to this tank did not perturb the other tanks. During the upset (approximately 2 months) the flow rate was temporarily increased to as much as 15 m³/diff-hr (9 SCFM/diffuser).

The AERMAX tank was operated at a depressed DO concentration during this period. The tank effluent DO was frequently less than 0.5 mg/L. The inability to increase the air flow rate resulted in part because the tank shared its air header with tank 5. The in-channel aeration system was also fed by this air header. It was impossible to increase the air flow rate to the AERMAX tank beyond about 5.1 m^3 /diff-hr (3 SCFM/diffusers).

PROCESS DATA

Process data were collected from each plant. Data from the Valencia and Whittier WRPs are stored in a mainframe computer maintained by the Districts. Tapes containing the data were collected twice during the study and converted to SAS format (a statistical analysis program, SAS, 1982) format at UCLA. Data from TI were stored using PC-DOS spreadsheets. These were collected monthly and converted to SAS format. Appendix III summarizes the process data.

At Whittier Narrows it was necessary to calculate several variables from the raw data provided by the Districts. The Districts calculates two sludge age parameters: mean cell residence time (MCRT), and average mean cell residence time (MCRTA). The Districts believes that total system solids affect the growth kinetics of the treatment system. Therefore, they include the biological solids contained in the secondary clarifiers in their computation of sludge mass. Their procedure assumes that the entire secondary clarifier volume is at the same solids concentration as the effluent from the aeration tanks.

The authors believe that the Districts procedure overestimates the true sludge age, and calculated a solids retention time (SRT) which did not include clarifier solids inventory. The SRT calculated is usually 5 to 10% less than the MCRT calculated by the Districts. The SRT calculation also ignores the effluent suspended solids. The Districts calculates an average mean cell retention time, MCRTA, using a three day running average of the mass of solids under aeration and the mass of waste solids. The MCRTA does not show the large fluctuations observed in SRT or MCRT.

Food-to-Mass ratios (F/M) were also calculated from the Districts' raw plant data. F/M was calculated on the basis of both primary effluent BOD_5 and COD and mixed liquor volatile suspended solids (MLVSS). Clarifier solids were ignored in these calculations. Generally there were only five BOD_5 analysis per month which is too few to use in this analysis. Therefore, an F/M ratio based on primary effluent COD, which was measured daily, was used in this analysis. It is not the intent of this report to examine the differences between MCRT calculation procedures. Both are provided in the Appendix.

EXPERIMENTAL PROCEDURES

Off-gas testing was performed at all three plants using a Mark IV Aerator Rator purchased from Ewing Engineering. The procedures were similar to those described previously (Redmon, et al. 1983). CO_2 was measured using an absorption cell (Orsat). Sample off-gas was dried with silica gel and water vapor measurements were not performed.

Three hoods were used at Whittier Narrows and Terminal Island. Only one hood was used at Valencia. Three hoods were constructed of PVC pipe prior to the start of all studies and were used at Whittier Narrows until April 1987. After April these three PVC hoods were moved to Terminal Island. Three new hoods were constructed from custom formed fiberglass-epoxy reinforced foam in the spring of 1987. Beginning in May two of these new hoods were used at Whittier Narrows in tanks 2 and 3. The third hood was used at Valencia. An older hood fabricated from fiberglass pipe was used in tank 1. This hood had been constructed by Districts and UCLA personnel in the previous study (Yunt and Stenstrom, 1990).

The hoods were located in each tank in order to sample a representative surface area. The protocol initially adopted by all the contractors associated with the various projects funded in this study required off-gas sampling of at least 2 % of the tank area. For this study approximately 7 to 9 % were sampled at each plant. Figure 6 shows the hood locations at Whittier Narrows. Two locations were used at each point along the tank length. One location was next to the tank wall and the other location was centered between the two tank walls. Three locations were evaluated in testing prior to the initiation of this project, and were found to be unnecessary. Figure 7 shows the hood locations at Valencia. Two locations per point were used. Figure 8 shows the hood locations for Terminal Island. The nature of the aeration systems required three hood locations at each point in order to obtain a representative sample. A total of five sample points along the tank length were used at Terminal Island for all three aeration systems.

The PVC and fiberglass pipe constructed hoods were $3m \log by 0.61 m$ wide (10 ft x 2 ft). They were equipped with 0.2 m diameter (8 inch) outrigger pontoons for flotation. The ends were also angled so that a tight seal could be made with the tank walls. The fiberglass-epoxy reinforced foam hoods were slightly larger, measuring 3 m long by 0.71 m wide (10 ft x 28 inches). They were also constructed with angled ends to allow a tight seal with tank walls.

The angled ends were expensive to produce and in retrospect were not necessary to test the ceramic or plastic grid system. For the spiral roll systems they were essential. A small, 2 cm gap between the tank wall and hood can easily reduce recovered gas flow rate by 30% or more in a spiral roll system. Since the spiral roll testing always required three hood positions and flow weight averaging of SOTE, a small gap in the hood position above the swing arm might create 20 to 30% overestimation in oxygen transfer efficiency.

Hoods were connected to the off-gas analyzer with a 4 cm diameter, flexible vacuum cleaner hose. In the case of Whittier Narrows and Terminal Island, the hoods closest to the analyzer were connected with 15 m hoses. For the hood on the tank not adjacent to the analyzer, two 15 m lengths were spliced together to create a 30 m hose.

)

)

)

)

)

)

Figure 6 Whittier Narrows Off-gas Hood Locations (4 of 12 shown)

21

)

)

)

}

)

)

)

)

)

)

Figure 7 Valencia Off-gas Hood Locations

)

)

)

ł

)

`}

)

)

)

2

Figure 8 Terminal Island Off-gas Hood Locations

.

Influent Pipe

)

}

1

ì

23

)

Essentially the same off-gas testing methodology was used at Whittier Narrows and Terminal Island. Testing was begun between 7:00 and 7:30 AM. The hoods were first moved to the first tank position. The remaining equipment was then set up. The off-gas analyzer was located between two tanks being tested. At Whittier Narrows, this was always between tanks 2 and 3. Three hoses were used so that all three tanks could be tested from the same analyzer location.

Teams of three people were always used for testing for efficiency and safety reasons. Two people moved hoods, recorded plant data, and collected tank DO and temperature measurements. The other person operated the off-gas analyzer. After the first position in one of the tanks was tested, the analyzer was connected to the hose from another tank. This tank was tested while the team moved the hood at the first tank. In this way there was minimum delay between testing similar positions in each tank.

The testing program was designed this way to minimize experimental errors in testing different tanks because cleaning techniques were being evaluated. For example, tanks 1 and 2 at Whittier were being gas HCl acid gas cleaned and compared with tank 3 which served as a control. Therefore any change in plant operation or load between testing tanks 1 and 3 might be incorrectly attributed to a difference in cleaning technique. This procedure minimized this difference, since the typical elapsed time between testing positions in each tank was only 10 to 20 minutes.

This procedure had the additional advantage in that total testing time was reduced. This occurred because the hood and lines were being flushed when the other tanks were being tested. The gas retention time in the hoods and lines is significant, and in some cases might be as long as 20 minutes. The hood positions opposite the swing arms in the spiral roll tanks were the most problematic in this regard. This hood position typically had 1.7 m^3/hr (1 SCFM) or less air flow rate. The approximate volume of the hood and hose was 0.5 m^3 (17 ft³). The gas retention time under these circumstances was 17 minutes. After moving a hood to this location, it was necessary to wait until the hood and hose were flushed with fresh off-gas, as indicated by a stable oxygen fraction in the off-gas. Measurements were recorded after the off-gas oxygen mole fraction stabilized.

OFF-GAS TESTING PROCEDURE

The general off-gas testing procedure is summarized in the following steps:

- 1. Unchain the hoods from their storage positions, attach hoses and manometer tubing, and move them to the first position.
- 2. Leak check the off-gas analyzer and perform all the set-up procedures as indicated in the instruction manual. Set the Teledyne to read 1.000 using reference gas at the anticipated hood off-gas flow rate. (The Teledyne meter indication was never used; the digital voltmeter was always used).
- 3. Attach the hose and barometer line to the instrument and begin to balance air flux.
- 4. Continue balancing flux using the hood pressure manometer as an indicator. After the hood pressure is approximately balanced (within \pm 5 rotameter units) record the reference gas oxygen content and all other instrument readings.

- 5. After insuring that the reference reading is approximately constant (± 0.002 volts) switch to the sample cell to off-gas by depressing the 4-way valve.
- 6. Wait several minutes for the oxygen analyzer to come to a new constant value. During this time collect a sample from the off-gas stream and analyze it for CO_2 mole fraction using the Orsat meter. Also during this time the hood flux was readjusted, if necessary. These adjustments were usually quite small, and did not change cell pressure.
- 7. After the oxygen analyzer stabilized (± 0.002 volts), record the measurement and return the instrument to reference gas using the 4-way valve.
- 8. Wait several minutes for the oxygen analyzer to restabilize with reference gas $(\pm 0.002 \text{ volts})$. If this value is not consistent with the previous reference gas reading (generally more than ± 0.005), repeat the entire procedure. If the two reference measurements are consistent, record the measurement. Record all other analyzer measurements. If the hood flux fails to stabilize to within approximately ± 5 rotameter units, continue the procedure until a stable hood flux is obtained.
- 9. During the time that off-gas measurements are being made, measure the mixed-liquor DO and temperature. In the case of Whittier Narrows, record the plant air flow rate.

Appendix I shows a sample data sheet. In the case of Valencia only one tank was tested. It was necessary to wait a longer time for the off-gas oxygen measurement to stabilize under these circumstances. At Valencia only two people were used for testing; otherwise, the procedures were the same.

At Terminal Island and Whittier Narrows, the hoods were left in the tanks between tests. This facilitated testing and avoided potential hood damage and needless expense associated with removing the hoods and storing them. At Valencia the hood was removed at the end of testing and was returned to the laboratory at UCLA.

Off-gas measurements were analyzed and corrected to standard conditions (20°C, 1 atm barometric pressure, $\beta = 1.0$, DO = 0) with the exception of alpha factors. The results were reported as α SOTE (α Standard Oxygen Transfer Efficiency). α factors were calculated for each tank test point (except for the Parkson-Wyss tank) using the clean water data, which are discussed later in this report. Overall α SOTEs and α factors were also calculated. These were always flow-weight averaged; therefore, the positions with the highest air flux had the greatest contribution on the overall average. In all cases a β factor of 0.99 was used.

GAS CLEANING PROCEDURE

The HCl gas cleaning at Whittier Narrows was performed periodically. The experimental design for tanks 1 and 2 called for cleaning of grid 1 every 3 months. Grid 2 was cleaned every 6 months and grid 3 was cleaned every 9 months. Gas cleaning was always performed by Sanitaire personnel who came to Whittier Narrows for this purpose. UCLA and Districts' personnel assisted with cleaning. Districts' personnel always changed air flow rates. The timing of the gas cleanings were selected somewhat arbitrarily. Initially it was hoped that the rate of increase diffuser pressure loss, as indicated by an increase in dynamic wet pressure (DWP, Boyle and Redmon, 1983), or a loss in α SOTE as measured by off-gas analysis, would signal the need for acid gas cleaning. The day-to-day fluctuations in plant operation and their effects on OTE, as well as the poor precision of DWP measurements, made this impossible. Also during the planning phase of the project Sanitaire recommended a change in HCl cleaning philosophy. HCl gas cleaning was no longer envisioned as a method of restoring fouled diffusers, but as a method of preventing diffuser fouling.

Sanitaire provided an HCl control panel which consisted of a rotameter, gas regulator, and stainless steel cylinder attachment and hoses. Figure 9 schematically shows the gas cleaning apparatus for two cylinders. During the study combinations of 1, 2, 3, and 4 cylinders were used (gross weight 900 kg or 2000 lb). The HCl gas lines were always flushed with nitrogen gas after use.

In the first two studies a single 270 Kg (600 lb) cylinder was used (gross weight 90 kg or 2000 lb). This size cylinder was most convenient for gas cleaning but was very inconvenient to lease, load and unload at the plant site, since there was no truck loading platform. After the second cleaning a larger manifold was assembled so that four 27 Kg (60 lb) HCl cylinders were used. The smaller cylinders were easier to lease and transport to the site.

The disadvantage of the smaller cylinders was the reduced gas evaporation rate. HCl liquid at ambient temperature (20°C) has a vapor pressure of 4000 KPascal (600 psig). As vapor is removed from the cylinders additional HCl is evaporated. The latent heat of evaporation causes the cylinder temperature to decrease which reduces the HCl vapor pressure, and reduces gas evaporation rate.

At ambient temperature a single 27 Kg cylinder could produce a flow rate of approximately 34 m³/hr (20 SCFM). This flow rate quickly declined to less than 7 m³/hr (4 SCFM) as the HCl temperature dropped. A thick frost formed on the outside of the cylinders. To provide sufficient flow rate with the 27 Kg cylinders it was necessary to manifold 4 cylinders together. Also the cylinders were heated by hosing them with plant effluent. The larger 270 Kg cylinders always provided sufficient HCl flow rate without hosing. The 4 manifolded cylinders were sufficient to produce 34 m³/hr HCl gas flow rate.

The HCl gas was introduced into the downcomer feeding each diffuser grid. One grid at a time was cleaned. Figure 10 shows the in-tank DWP monitoring apparatus and the HCl injection point. The following description describes the cleaning procedure.

- 1. The HCl cylinders were delivered to Whittier Narrows on the day prior to testing.
- 2. At the beginning of the morning shift (7:00 7:30 AM) safety equipment, which included a face shield, apron, gloves, and respirator were brought to the cleaning area. The shield, apron and gloves were used by the Sanitaire operator. The respirator was provided by the Districts in the event of an emergency, but was never used.
- 3. The cylinders were manifolded together, leak checked, and connected to the downcomer with 2.5 cm reinforced tygon tubing.

Figure 9 HCl Gas Cleaning Control Panel

27

)

}

)

)

)

)

)

)

)

)

~

~

~

 \sim

 $\overline{}$

 $\overline{}$

Figure 10 In-Tank DWP Monitoring Apparatus

- 4. The DWP monitoring equipment was connected to the grid being cleaned and initial measurements were recorded.
- 5. The air flow rate to the grid being cleaned was increased to 5 m³/diff-hr (3 SCFM/diffuser) or as high as possible. Generally it was possible to obtain at least 4.3 m³/hr diffusers. Districts' personnel always controlled the air flow rate. This increase in air flow rate is part of the Sanitaire procedure and is required to insure that the HCl gas permeates through the entire diffuser area; otherwise, the gas may permeate only through the areas in the diffusers with the least resistance. The high air flow rate also insures gas distribution throughout the grid system.
- 6. The HCl gas was next turned on to a rate of approximately $34 \text{ m}^3/\text{hr}$ (20 SCFM).
- 7. As the HCl gas flowed into the diffuser grid, data were recorded every minute. HCl gas flow rate, DWP, and air flow rate were recorded. Usually within 30 seconds of introducing the gas a small decrease in DWP and a small increase in air flow rate were observed.
- 8. The original Sanitaire protocol required that 45g HCl/diffuser (0.1 lb HCl/diffuser) be used in gas cleaning. This was more than necessary, as observed by a rapid decrease in DWP to a plateau which occurred after only about 11g HCl/diffuser. The cleaning procedure was modified to conserve HCl gas by observing this plateau in DWP. Consequently, only 10 to 25g HCl/diffuser were normally used. In some instances the additional HCl was used to empty the cylinders.

As the study progressed many of the DWP lines failed. The DWP lines were not renovated prior to the study, and the effect of HCl gas on the lines is unknown. After this happened it was impossible to observe the plateau in DWP; therefore, a known mass of HCl was used, and was determined by integrating the HCl flow rate, and assuming an HCl gas density of 1.22 Kg/m^3 (0.095 lb/ft³). The mass of HCl was based upon the mass used in previous tests, when the plateau was observed. After cleaning several times, a pattern of HCl use was determined. This allowed all the HCl in the cylinders to be completely used. HCl cleaning was always performed first on tank 1. Tank 2 was cleaned after tank 1. This cleaning sequence was used because it was easier for Districts' personnel to change air flow rates.

LIQUID ACID CLEANING

At the beginning of the Whittier Narrows study in April 1986, all three diffuser tanks were fouled. They had not been cleaned in approximately 18 months. Two off-gas analyses were performed to determine the fouled α SOTE. This α SOTE was considered a worst case efficiency that would result if no diffuser maintenance were practiced. After the second off-gas analysis, each tank was dewatered and cleaned using a liquid acid procedure which has sometimes been called the "modified Milwaukee method."

The liquid acid method is a simple and effective in-situ procedure for cleaning dewatered aeration tanks with ceramic diffusers. Immediately after dewatering diffusers can be collected for analysis and foulant characterization. After diffusers are collected the grid system and associated piping are clean using low pressure hoses from the tank top. This hosing cleans the bulk of the slime from the diffusers and makes the tank safer and more convenient for maintenance personnel. After hosing, a solution of 16% hydrochloric acid (conventional muriatic acid diluted 1 to 1) acid is sprayed onto the surface of each diffuser. A hand sprayer suitable for acid service can be used for this purpose. The acid solution is allowed to soak the diffusers surface for at least 30 minutes. All maintenance personnel exit from the tank and the air is turned on for at least 10 minutes. Finally, the diffusers are hosed from the top of the tank.

Protective equipment (rain gear, face shield, gloves, and HCl gas mask) is worn during this procedure. There is a danger of HCl or H_2S inhalation during this procedure and breathing equipment is required. H_2S may be liberated by the acid if the tank has sludge accumulated on the bottom. Tanks should not be entered by maintenance personnel if there is large sludge accumulation. Care should also be taken with the muriatic acid to avoid unnecessarily spraying stainless steel parts.

30

CLEAN WATER DATA

In order to calculate α factors clean water data were obtained for the Whittier Narrows, AERTEC and Nokia aeration systems. No clean water tests were performed specifically for this study. Data from previous studies were used. The clean water data were used to calculate α factors.

Whittier Narrows

At Whittier Narrows the Districts performed a field verification clean water test for the Sanitaire disks when they were installed in 1981. This was done in part because their previous clean water ceramic grid system tests had used domes (Yunt and Hancuff, 1983). The field test was performed at the Whittier Narrows Plant in grid 1 of tank 1 at 4 m (13 ft) submergence to be consistent with the earlier tests at the JWPCP test facility. The entire tank was filled with tap water and grid 1 was isolated from the other grids by a wooden baffle. To prevent hydraulic forces from displacing the baffle it contained a small opening. The opening was sealed during the test but there may have been some interchange of water from grid 1 to grid 2. In spite of this unconventional procedure the test results were reasonably consistent with the manufacturer's and Districts' expectations. Table 8 shows the results of these tests. The tests were extrapolated back to 3.75 m depth (12.3 ft) using a linear correction. These tests were all performed at the diffuser spacing in grid 1, which is 2.8 disk/m² (0.264 disk/ft²).

The diffuser density was less in grids 2 and 3. Therefore, test results for grid 1 are higher than would be expected for grids 2 and 3. The Districts had used literature data for domes at different spacings to estimate SOTE for grids 2 and 3. Sanitaire was consulted and made additional data available. Their predictions are shown in Table 9.

The Sanitaire data were within a few tenths of a percent of the Districts' data for grid 1. Since there was no other source for clean water data for grid 3, and since the Sanitaire data very closely fit the Districts' data, it was used for all analyses concerning Whittier Narrows. Two regressions were used to describe the tabular data, shown in Equation 1 for grids 1 and 2 and Equation 2 for grid 3.

$$SOTE = 34.92 - 1.813 \text{ QPD}$$
 (1)

(2)

where

QPD = gas flow rate per diffuser (m^3/hr)

$$SOTE = 28.5 - 1.416 \text{ QPD}$$

The Districts' previous work with ceramic domes and disks had indicated that they were approximately equivalent in clean water efficiency when the number of domes per unit area is 25% greater than the number of disks. This increase was incorporated in the design of diffuser grids for tanks 2 and 3. For this reason the Sanitaire disk data were also used to estimate the dome efficiency.

Air flow Rate/Diffuser (m ³ /hr)	Submergence (m)	SOTE (%)	Effective depth (m)	SOTE at 3.75 m submergence (%)
1.31 2.14* 2.12 2.12 2.12 2.14 2.16 4 20	3.93 3.92 3.97 3.97 3.97 3.97 3.97 3.97	32.8 26.8 30.6 31.5 30.9 31.0 27.5	1.79 1.82 1.59 1.97 1.95 1.83 1.55	31.8 26.1 29.4 30.3 29.6 29.8 26.4

Table 8.	Whittier	Narrows	Clean	Water	Data	for	Grid	1	of	the
	Ceramic	Disk Syste	em ⁺							

* this test was performed first+ Yunt and Hancuff (1986)

Table 9.	Sanitaire	s SOTE Estimates for	Whittier Narrows
----------	-----------	----------------------	------------------

Grid	Gas Flow/Diffuser (m ³ /hr)	SOTE at 3.75 m submergence (%)
1 & 2	1.3	33
	1.7	31.5
	2.5	30
	3.4	29
3	1.3	27
	1.7	26
	2.5	24.5
	3.4	24

32

Valencia

The Districts performed a clean water test of the Nokia plastic disks in their test tank at JWPCP on December 11 and 12, 1985 (Yunt and Handcuff, 1986). These test results are shown in Table 10. The SOTE was modeled by Equation 3:

(3)

SOTE = 31.3 – 1.875 QPD

Terminal Island - AERMAX

Clean water test results from an independent tester were supplied for the AERMAX system by an AERMAX representative (Anderson 1987). These data were for a wide-band, spiral roll system. The data were collected for one of the manufacturer's other projects. The test report was not inspected and the data were accepted without question. Table 11 shows the clean water SOTEs at 4.1 m (13.5 ft) submergence. No clean water data were available for the Parkson-Wyss system.

Air Flow Rate Per Diffuser (m ³ /hr)	SOTE (%)	C _∞ * (mg/L)
0.66	30.4	10.9
1.32	29.0	10.9
1.31	28.8	10.6
1.32	28.4	10.6
2.61	26.6	10.7

Table 10.	Nokia Clear	n Water Oxygen	Transfer	Efficiency	*
-----------	-------------	----------------	----------	------------	---

Submergence	=	3.96 m (13 ft)
Spacing	=	$3.66 \text{ diffuser/m}^2 (0.34/\text{ft}^2)$

* From Yunt and Hancuff (1986).

	Table 11.	Aermax Clean	Water Efficiency	for a Spiral R	oll Configuration
--	-----------	--------------	------------------	----------------	-------------------

Air Flow/Diffuser (m ³ /hr)	SOTE (%)
1.7	28
3.4	22
8.5	18
11.9	16

* From Anderson (1987) (AERTEC Representative)

EXPERIMENTAL RESULTS

This section describes the chronology of testing and the experimental results at each facility. Findings which are specific to each facility are also discussed here. Results which are applicable to all facilities, particularly results which related to process operation (e.g. effect of sludge age on α SOTE) are discussed in the next chapter.

WHITTIER NARROWS

The Whittier Narrows project history is shown in Table 12. Cleanings and off-gas tests are shown along with dome replacement in September and October 1987. The dome replacement was not envisioned at the beginning of the study but were required because of reduced oxygen transfer and gasket leakages.

The periods of operation at Whittier Narrows are summarized in Table 13. At the end of each phase diffusers were collected and analyzed for DWP, BRV, fouling substance mass and composition, and air distribution profiles. All tanks were tested using off-gas analysis.

Two diffusers were collected from each grid of each tank and sent to Professor W.C. Boyle at the University of Wisconsin for analysis. Diffusers were always collected very soon after tank dewatering so that the fouling slimes did not dry out. Next the diffusers were packed in plastic bags and sent overnight freight to Wisconsin.

At Wisconsin dynamic wet pressure, bubble release vacuum, and fouling substance analysis were performed. Fouling substances were weighed on a per unit area of diffuser area basis and both total and non-volatile masses were determined. Later in the study the nonvolatile fouling substance was further analyzed to determine acid soluble fraction. Acid soluble residue is only available for the final diffuser stone analysis performed in 1988. The statistical summary of these data is presented in this chapter; the raw data are included in Appendix II. A test header was also installed at Whittier Narrows.

Whittier Narrows Diffuser Analysis Results

Several diffusers which were collected for analysis prior to the initial liquid acid cleaning (6/86) and were later cleaned by hosing or liquid acid cleaning, both in-situ and in the laboratory. It is interesting to note how each technique restores the diffuser parameters. Table 14 shows four diffusers selected from the initial sampling in June 1986 when all three tanks were liquid acid cleaned. The original parameters are shown (before any cleaning), along with parameters after hosing and liquid acid cleaning. Hosing is marginally effective at removing DWP and BRV. Acid cleaning is much more effective; however, new diffuser characteristics (as shown in Table 14) were not obtained. Air side BRVs are also shown in Table 14 for a single dome and disk diffuser. These diffusers are from different grids than the others shown in Table 14.

The combined diffuser analyses, excluding the diffusers which were collected for biofilm analysis, are summarized in Table 15. Five sets of conditions were available for analysis: new diffusers; new domes in service for seven months, with and without HCl gas cleaning; used domes in service 15.5 months after an initial liquid acid cleaning, with and without HCl gas cleaning; used domes and disks in service for 18 months without cleaning, and used disks in

Table 12. Whittier Narrows Project Chronology

 $\widehat{}$

 \sim

~

 $\overline{}$

Date	Event	Comments
4/28/86	off-gas testing	background testing performed to determine dirty diffuser efficiency
5/12/86	off-gas testing	background testing
5/13-6/19-86	liquid acid cleaning of all	Diffusers collected for analysis, dome gasket leakage
	three tanks	noted
6/20/86	off-gas testing	
7/02/86	off-gas testing	
7/22/86	off-gas testing	hoods were not moved in order to determine diurnal fluctuations in α SOTE
8/01/86	off-gas testing	
8/86	process operation changed	MLSS temporarily reduced in all three tanks
8/21/86	off-gas testing	
8/26-8/27/86	first HCl gas cleaning	grids 1, 2 and 3 cleaned in tanks 1 & 2
9/04/86	off-gas testing	
9/17/86	off-gas testing	
10/17/86	off-gas testing	
10/31/86	off-gas testing	
11/17/86	off-gas testing	
12/9/86	HCl gas cleaning	grid 1 of tanks 1 & 2 cleaned
1/16/87	off-gas testing	
1/30/87	off-gas testing	
2/13/87	off-gas testing	
2/27/87	off-gas testing	
3/13/87	off-gas testing	
3/26-3/27/87	HCl gas cleaning	grids 1, 2 and 3 of tanks 1 & 2 cleaned. Simultaneous off-gas testing performed. Witnessed by W.C. Boyle
4/03/87	off-gas testing	
4/17/87	off-gas testing	
5/22/87	off-gas testing	
6/05/87	off-gas testing	
6/15-6/16/87	HCl gas cleaning	grid 1 of tanks 1 and 2 cleaned
6/19/87	off-gas testing	
7/10/87	off-gas testing	
7/31/87	off-gas testing	
8/31/87	off-gas testing	
9/9/87	domes replaced in tank 3	gasket leakage noted
9/30/87	domes replaced in tank 2	gasket leakage noted
9/30/87	HCl gas cleaning	grid 1 and 2 of tank 1 cleaned
10/9/87	off-gas testing	
11/13/87	off-gas testing	
12/04/87	off-gas testing	
12/24/87	off-gas testing	

Table 12. Whittier Narrows Project Chronology (Continued)

^

Date	Event	Comments
1/15/88 1/26/88	off-gas testing HCl gas cleaning	grid 1 of tank 2 cleaned, grids 1, 2, 3 of tank 1
	0	cleaned
1/29/88	off-gas testing	
2/19/88	off-gas testing	
3/11/88	off-gas testing	
5/88	tanks 2 & 3 manually cleaned using low pressure hosing	gasket leakage noted, broken bolts noted
6/16/88	off-gas testing	
7/88	tank 1 manually cleaned using tank-top hosing	no significant gasket leakage or mechanical problems noted.
8/12/88	off-gas testing	

Table 13. Summary of Whittier Narrows Operation

~

1

~

Period	Description
4/86-6/86	3 tanks operating without cleaning for the previous 18 months
6/86-9/87	2 tanks operating with old domes after liquid acid cleaning, 1 HCl gas cleaned
10/87-5/88	2 tanks operating with new domes, 1 HCl gas cleaned
6/86-6/88	1 tank operating with old disks after liquid acid cleaning, HCl gas cleaned
7/88	disks manually cleaned by tank top hosing

Treatment	Disk 1 (Grid 1, Tank 1)		Disk 2 (Grid 2, Tank 1)		Dome 1 (Grid 3, Tank 2)		Dome 2 (Grid 1, Tank 2)					
	DWP	BRV	DWP/BRV	DWP	BRV	DWP/BRV	DWP	BRV	DWP/BRV	DWP	BRV	DWP/BRV
Before Cleaning	67.8	132	0.51	24.8	155	0.16	22.8	388	0.06	27.7	175	0.16
Lab Hosing	55.6	94.0	0.59	26.1	35.3	0.74	24.8	83.3	0.30	27.4	49.3	0.55
Field Acid Liquid Cleaning	-	-	-	-	-	-	15.7	22.6	0.70	11.7	17.1	0.68
Lab Liquid Acid Cleaning	24.1	31.5	0.77	23.4	24.9	0.93	21.1	36.1	0.58	23.6	35.0	0.67
New Diffuser	17.3	15.9	1.09	-	-	-	14.1	14.7	0.96	-	-	-
Air Side	17.5+	-	-	-	-	-	12.2*	-	-	-		

Table 14. Lab and Field Diffuser Cleaning Results for Selected Diffusers at the Beginning of the Whittier Narrows Study

)

)

)

)

)

)

Units in cm. DWP measured at 1.27 m³/hr-diffuser air flow rate (0.75 SCFM/diffuser). The diffusers at this point had been in ser-Note: vice approximately 18 months without cleaning. The disks were originally installed in late 1980 and the domes were installed in early 1981. Grid 3

+

* Grid 1

)

)

)

)

39

Period in Service	Number of	Condition	Condition	Tank Number
(months)+	Observations	prior to	prior to	
		service	testing	
0	2	new disk & dome*	new disk	-
7	6	new domes	no cleaning	3
7	6	new domes	acid gas cleaning	2
15.5	6	old domes, liquid acid cleaned	no cleaning	3
15.5	6	old domes, liquid acid cleaned	acid gas cleaning	2
18	6	old domes, liquid acid	no cleaning	2
18	6	old disks, liquid acid	no cleaning	1
18	8	old domes & disks, liquid acid cleaned	lab cleaned	1&2
18	2	old domes &, disks, liquid acid cleaned	in-situ liquid acid cleaned	2
25	6	old disks, liquid acid cleaned	acid gas cleaned	1
25	6	old disks, liquid acid cleaned	acid gas cleaned, lab cleaned	1

Table 15.	Diffuser	Analysis	Summary
-----------	----------	----------	---------

* New domes and disks were all purchased in the original installations in 1980 and 1982. service for 25 months after an initial liquid acid cleaning, with HCl gas cleaning. Additionally, disks and domes were analyzed after in-situ cleaning and after cleaning in the laboratory. The raw data are shown in Appendix II.

An analysis of variance (ANOVA) was performed on the five sets of diffuser conditions to determine the effects of four treatments: length of time in service; cleaning (HCl gas or none); tank number, and grid number. Four dependent variables were examined: DWP at 1.27 $m^3/hr/diff$ (0.75 SCFM/diffuser), BRV, the ratio of DWP at 1.27 m^3/hr to BRV, and mass per unit area of fouling material. SAS (1982) was used to perform the analysis using the SAS ANOVA procedure, which can handle the unbalanced data obtained during the study.

Table 16 shows the results of the ANOVA. The results show that the ratio of DWP to BRV is the most sensitive to the diffuser treatments, followed by BRV, DWP and total mass of fouling material. HCl gas cleaning reduced the accumulation of BRV, DWP and fouling substances. Tank number was significant for BRV and DWP/BRV. Ideally the tank number would not have been significant; however, the unbalanced nature of the experiment (two gas cleaned tanks to one dome control and no disk control) may contribute to this positive effect. It was included to test for variations in flow rates to the tank and other uncontrolled phenomena. It is interesting to note that the grid number (influent versus middle versus effluent) has the least significant effect. This conclusion is contrary to prevailing opinion which suggests that influent grids foul more rapidly than effluent grids. The mass of total fouling material is less sensitive than other parameters, and this may in part be due to high variability in experimental results, caused by the difficulty of scraping representative samples of fouling material from the diffuser surface.

The diffuser characteristics show that HCl gas cleaning, among other factors, is effective in reducing the accumulation of DWP, BRV and fouling material. Table 17 shows the means of the diffuser data for various conditions. Figures 11 and 12 show the various parameters as a function of time in service.

The air side of the diffusers were also analyzed for BRV. This was of particular interest because the air filters at Whittier Narrows had been out of service during most of the study. Also the blowers at Whittier Narrows withdraw most of their intake from the covered headspace above the primary clarifiers. (The Districts cover their primary clarifiers for odor control, and the practice is common throughout California). There was some speculation that the foul air from the primary clarifiers might be more likely to foul the air side of the diffusers. The six domes collected from the HCl gas cleaned tank 2 in 1987 average 14.2 cm BRV, as compared to 24.5 for the diffusers from tank 3, which received no cleaning. The 14.2 cm BRV is virtually the same as new (a new, unused diffuser would be expected to have the same BRV on both sides), while the 24.5 is significant. At the beginning of the study diffusers from tanks 1 and 2 showed almost no increase in air-side BRV (see Table 14). Therefore, HCl gas cleaning appears to be effective at removing both air and liquid side BRV.

41

Dependent Variable	Treatment Variables				
	Length of Service (months)	Cleaning Technique	Grid Number	Tank Number	
BRV	+ (10 ⁻⁴)	+ (3 x 10 ⁻⁴)	- (0.47)	+(1.4 x 10 ⁻³)	0.72
DWP	+ (4 x 10 ⁻⁴)	+ (0.0285)	- (0.83)	- (0.32)	0.49
DWP/BRV	+ (10 ⁻⁴)	+ (10 ⁻⁴)	+ (10 ⁻⁴)	+ (10 ⁻⁴)	0.98
Total Fouling Material	+ (0.0149)	+ (0.005)	- (0.40)	- (0.25)	0.48

Table 16. Results of the Analysis of Variance Diffuser Characteristics

+ or - indicates acceptance or rejection of the hypothesis that the treatment has a statistically significant impact on the dependent variable. The number in parenthesis indicates the level of significance. The smaller the value the more significant the relationship. The smaller the value of 0.05 is normally considered significant.

Table 17. Values of Diffuser Data

~

 \sim

~

 $\overline{}$

 $\widehat{}$

~

Parameter	Grid 1	Grid 2	Grid 3	New
BRV (cm)	58.9	59.7	72.5	12.4
DWP (cm at 1.25 m ³ /hr-diffuser)	27.3	26.2	24.6	11.8
BRV/DWP	0.57	0.59	0.59	0.95
Total Fouling Material (mg/cm ²)	10.0	6.7	4.7	0

Means by Grids (all tanks)

Means by Cleaning Technique (all grids)

Parameter	HCl Gas Cleaning	No Cleaning	
BRV (cm)	46.3	96.3	
DWP (cm at 1.25 m ³ /hr-diffuser)	24.0	30.1	
BRV/DWP	0.59	0.44	
Total Fouling Material (mg/cm ²)	6.6	8.2	

Figure 11 DWP and BRV versus Months in Service

Figure 12 Fouling Substances and BRV/DWP versus Months in Service

Off-Gas Testing Results

The previous section showed that HCl gas cleaning was effective at preventing the buildup of DWP and BRV on both disks and domes. The other question is whether HCl gas cleaning is effective at maintaining the α factor and α SOTE. From an energy standpoint this is the more important performance parameter. For example, an increase of DWP and diffuser orifice loss from 18 to 64 cm, which is uncommonly large, increases total pressure drop through a diffuser system such as those at Whittier Narrows by approximately 3%, which translates to increased blower energy cost of less than 9%. However, a decrease of 40% in α SOTE due to fouling, which was observed at various times during this study, is an increase in blower energy cost of over 60%. The most significant effect of increased DWP is potential overloading of blower motors, or an increase in total system pressure to beyond a centrifugal blower's surge point.

Figures 13-16 show the overall off-gas efficiency for α SOTE and α factors for all three tanks. There is a very large degree of variability in the day-to-day results, and several obvious increases and decreases due to upset conditions or diffuser modifications. Figure 17 shows the air flux and air flow per diffuser versus time for all three tanks, with interpolations (smooth lines) to better illustrate the data. The interpolations have no statistical significance. The air fluxes generally increased over the life of the study, which was probably in response to declining α factors and α SOTE. Plant load was relatively constant. Figure 18 shows the air fluxes as a function of distance down the tanks. The error bars are standard deviations of all the data collected for that position. Grids 1 and 2 were operated at approximately the same gas flow rate and flux. The flux in grid 3 was significantly less than in grids 1 and 2, and is a result of the tapered aeration strategy.

Figures 19 and 20 show the α SOTE and α factor as a function of tank distance. Again the error bars represent standard deviations of all data collected. The α factor and α SOTE were lowest in grid 1 at hood position 1 and increased to a plateau in grid 3. It is interesting to note that α and α SOTE increased faster in the disk system than in the two dome systems.

The negative horizontal axis values of Figures 13-16 represent the fouled α factors and α SOTE after 18 months of operation without cleaning which was prior to this study. The disk system before cleaning was operating at approximately 8.5 to 9.0% α SOTE while the domes were operating at 6.5 to 7.5% α SOTE. The difference was surprising in view of the similar clean water results discussed previously, and the age of the disk system which was installed 16 months before the dome system was installed. An unknown portion of the difference in efficiency was probably due to gasket leakages at the base of the domes.

Gasket leakage results in much larger bubble size, which appears in the data as reduced α SOTE. Off-gas testing results cannot distinguish between reduced α factors or gasket leakage. Both dome tanks appeared to have large bubble diameter in grid 1 at the beginning of the study and this condition existed throughout the study. The bubble patterns in tank 1 usually appeared finer than the bubble patterns in tanks 2 and 3.

Figure 14 α Factor versus Time for Tanks 1 and 3 at Whittier Narrows

48

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

Figure 13 aSOTE versus Time for Tanks 1 and 3 at Whittier Narrows

47

)

)

)

ÿ

Figure 15 aSOTE versus Time for Tanks 2 and 3 at Whittier Narrows

49

)

)

)

)

}

)

)

)

)

)

)

)

)

)

)

Figure 16 α Factor versus Time for Tanks 2 and 3 at Whittier Narrows

50

-)

)

)

)

Figure 18 Air Flux versus Distance at Whittier Narrows

~

Figure 19 aSOTE versus Distance at Whittier Narrows

Figure 20 α Factor versus Distance at Whittier Narrows

The peak in α factor and α SOTE at month zero resulted because of the liquid acid cleaning. After liquid acid cleaning all three tanks improved. The overall, flow weighted average α SOTEs for tanks 1 to 3 was 10.2, 8.7 and 11.2%, respectively. The disk tank continued to demonstrate high α SOTE, increasing 10.2 and 11.4% on July 2 and August 1, 1986, respectively. The α SOTE for tanks 2 and 3 fell to 9.3 percent for tank 2 and remained at 8.4 to 8.8% for tank 3 for this period.

In August 1986 plant operation was changed. The mixed liquor solids concentration and sludge retention time were reduced from the range of 820 to 1160 on the previous test dates to 700 mg/L on August 21. The F/M ratio, based upon primary effluent COD increased from approximately 1.4 to 2.1 day⁻¹ on August 21. The SRT decreased from slightly greater than 2.0 days to 1.7 days. The lowest α SOTE occurred on October 17, 1986 when the MLVSS for all three tanks averaged 409 mg/L. The COD F/M was 2.2 day⁻¹ and the SRT was 1.2 days. On October 31, 1986 the MLVSS was increased to 843 mg/L, with a corresponding COD F/M of 2.1 day⁻¹. The α SOTE for tank 1 increased from a low of 6.1 to 8.6% (tank 2 increased from 3.4 to 6.7%) from October 17 to October 31. On December 19, 1986 the MLVSS increased to 1080 mg/L with a corresponding COD F/M and SRT of 1.0 day⁻¹ and 2.0 days, respectively. The α SOTE for tank 1 under these circumstances increased to 11.8%. During this period the plant routinely met its effluent permit.

It is unfortunate that changes in plant operation affected the study in this way, since the effects of diffuser fouling for the period of July to December 1986 are masked by the effects of changing plant operation; however, the impact of plant operation, particularly the parameters associated with high rate operation (e.g. high F/M, low SRT, low MLVSS or MLSS) were a particularly valuable finding. After October 1986, changes in plant operation were less dramatic and the data are less scattered.

The disk tank was essentially undisturbed until December 1987, when the plant was placed in step feed operation. The α SOTE and α factor seem to have declined because of the change to step feed.

In August 1988, the disk system was removed from service and manually cleaned using tank top hosing. This increased the α SOTE dramatically, from 5.9% measured on June 16 to 8.7% measured on August 12. Tank top hosing did not restore the disks to previous treatment efficiencies.

Stationary Testing

On July 22, 1986, a stationary test was performed to determine the change in α and α SOTE with the diurnal change in plant loading. The hoods were placed at tank lengths of 12, 73 and 43 meters in tanks 1, 2 and 3, respectively. This hood arrangement could be tested without moving the analyzer using existing hoses.

Figure 21 shows the results of the stationary testing. The transfer efficiencies were relatively constant from approximately 8 AM until slightly after 10 AM when they began to fall. Imposed on Figure 21 are the primary effluent COD's measured in a previous study. They show an increasing concentration up to about 2 PM (1400), which is typical of most domestic wastewaters. The highest plant loading corresponds with lowest α factors.

55

Figure 21 α Factor and α SOTE versus Time of Day

The experimental design for this study anticipated this changing plant load and its impact on aeration efficiency. As indicated previously the study goals were to evaluate HCl acid gas cleaning. Testing each position in the experimental tanks (1 and 2) within just a few minutes of the control tank (3) minimized time of day dependent variability in results. Also almost all tests were conducted on Fridays, which eliminated day-of-the-week variability which often occurs at domestic wastewater treatment plants.

Off-Gas Testing During HCl Acid Gas Cleaning

There seems to be almost no effect of HCl acid gas cleaning in Figures 13-16. This is not surprising since the technique is designed to avoid diffuser fouling. To closely measure the effects of HCl acid gas cleaning, off-gas testing was performed simultaneously with cleaning on March 26 and 27, 1987.

The off-gas testing procedure was modified to monitor the effects of gas cleaning. On March 26 grids 1 of all three tanks were tested in exactly the same fashion as a normal test. After finishing with grid 1, the hood in tank 1, which was being cleaned first, was left at the 18 meter position (position 2). Testing in tanks 2 and 3 was suspended. Off-gas testing continued in tank 1 at intervals during the cleaning. Hood flux was not balanced since flow weight averaging of these results was not applicable. Tests were conducted before, during and after cleaning. As cleaning proceeded to grids 2 and 3 of tank 1, the hoods were moved and testing was performed at the fourth and sixth hood positions. Grid 3 of tank 2 was also cleaned and tested on March 26.

On March 27 testing and cleaning resumed. At the beginning of the morning grids 1 of all three tanks were tested in the normal fashion. After completing testing of grid 1, testing in tanks 1 and 3 was suspended and testing of grids 1 and 2 in tank 2 was performed as it was being cleaned.

At the conclusion of these two days all three grids of tanks 1 and 2 had been HCl acid gas cleaned and tested. These test results include results before, during, and after HCl acid gas cleaning. Two sets of test data from grid 1 of tank 3 were collected which provided a control for tank 1, grid 1 before and after cleaning.

Figure 22 shows α SOTE for all six grids as a function of time. The graphs generally have a trend which shows high α SOTE near time zero, decreased α SOTE in the middle, and increased α SOTE at the conclusion of cleaning. This results because the air flow rate is increased from the nominal value of 5 m³/hr-diffuser just after time zero to 15 to 20 m³/hr-diffuser during cleaning and then back to the nominal value.

During this project there was some speculation that HCl acid gas cleaning temporarily lowered α SOTE immediately after cleaning. Figure 22 shows that this did not happen at Whittier Narrows. The grids in tank 1 all increased slightly in α SOTE at the end of cleaning, while the α SOTE in tank 2 remained almost the same after cleaning. The changes in efficiency show in Figure 22 from before to after testing should be viewed cautiously, since they are also a function of gas flow rate. Whittier Narrows WRP air flow rate controls are manually operated and it was not possible to exactly duplicate the gas flow rates before cleaning.

)

)

)

)

-)-

)

Figure 22 aSOTE during HCl Gas Cleaning

85

}

)

)

)

Figure 23 aSOTE for Grid 1 Before and After Cleaning

Figure 24 Ratio of aSOTE Before and After Cleaning

60

)

2

)

)

)

)

)

)

)

)

Figure 23 shows the α SOTE in grid 1 of tanks 1 to 3 on March 26 and 27. The α SOTE is plotted for hood positions 1 and 2, at 12.2 and 18.3 meters. The α SOTEs were generally lower on March 27 irrespective of cleaning. This result most probably occurs because the differences in day-to-day plant operation were greater than the immediate effects of HCl acid gas cleaning. Figure 24 shows the ratios of α SOTE at each station in tank 1 and 2 to the control tanks for the two days. This figure shows that the ratio of the HCl cleaned tank (tank 1) to the control tanks (tank 3) was slightly less after cleaning at hood position 1, and much greater at hood position 2. For tank 2 the ratio to the control is almost the same at position 1 and slightly greater at position 2. The net conclusion that can be made from this data is that before cleaning, tank 1 had 23.6% higher α SOTE than the control tank, while after cleaning it had 30.5% higher α SOTE than the control tank off-gas testing, but was similarly better on March 27 than March 26 when compared to the control tank. On March 26 it was 7.6% lower in α SOTE than the control and on March 27 it was 0.5% higher than the control. Overall, on March 27 the α SOTE was lower for all three tanks than on March 26.

The effects of HCl acid gas cleaning on DWP have been discussed previously; however, it is interesting to note the changes in DWP during gas cleaning. The DWP is usually elevated before cleaning and usually decreases very shortly after the application of HCl gas. The decrease in DWP causes the air flow rate to increase.

Figure 25 shows the decrease in DWP after application of HCl gas during the March 26/27, 1987 cleaning. DWP data are shown for grids 2 and 3 of tank 1 and grids 1 and 3 of tank 2. DWP lines for the other grids were not functioning. Figure 26 shows the air flow rate to each grid during this same period. The increase in air flow rate is dramatic. For grid 2, tank 2 the flow rate increased from approximately 4,050 m³/hr to almost 4,500 m³/hr, or 10%. There is some speculation that this increase in flow rate is wholly or partially instrument error, since the flow measuring devices (venturi flow tubes in the case of Whittier Narrows) are calibrated for air and not the combination of air and HCl gas; however, this is not true because the HCl gas is introduced downstream of the flow measuring device. Also the flow rate remains elevated even after the HCl gas flow is terminated.

It is difficult to identify statistically significant conclusions from off-gas analysis during or immediately following HCl acid gas cleanings. This is not surprising in view of a cleaning philosophy of preventing fouling, as opposed to restoring a fouled tank. In a later section the fouling rates for all systems are regressed as a function of time, and the effects of HCl gas cleaning on maintaining high α SOTE and α factors are discussed.

Dome Replacement

Sixteen months after the initial liquid acid cleaning of all three tanks the performance of tanks 2 and 3 was so poor that Districts' personnel felt that they had to manually clean the domes in both tanks. During September and October 1987 tanks 2 and 3 were dewatered for cleaning. It is common practice during such cleanings to dewater the tanks to just a few centimeters above the diffusers so that the diffuser's air release pattern can be observed. In this way gasket leaks and uneven air distribution can be observed.

Figure 25 Decrease in DWP versus Time During HCl Acid Gas Cleaning

Figure 26 Air Flow Rate versus Time During HCl Acid Gas Cleaning
* * * * 00000 * * × 0 × 0 ** * * 0 0 О **EO***********OO*****O*****OE**** * * * * = 0 0 * 0 * * 0 * 0**0*00*0*=0*000*= × * 00 × 0 * 0 * * * 00 x XI 000 * * 8 **X X O E O X O X O E O X X O E O X X O E O X X X** O **E O E O X X** $\bullet \bullet \times \blacksquare \bullet + \circ \times \times \circ$ XXX 22 00***** **0000■* $\bullet \times \times \times \bullet \times * * * \circ \circ *$ 0000**** * 0 **IIII I X X X X X X X** 000 = * * * 0 * * • 0 * * * * * * * * * * * • • 0 = * 0 000**00000 0***0*0*0*0*0*0*0*0*0****0***

)

)

0 O $\mathbf{\Omega}$ * * * * O XX × x * * * * 0 = * x 0 * * * * * * 0 * 0 * $\cap \pm \pm$ * * * X * * * X \circ 000 XX 00 0 XX 0 0000* * **O X** x × * x 0 * × x * x XOXOX * * - 22 * XX × × XOXX X * * * 0 XXXX ¥ x * **X X O * X X** × x × × $00 * 0 * 0 \times \times \times \times$ 0 **x x • x x** 0 0 • *** x x** * * * * * * 0 * 0 * * x

O 0 × × × 0 × റ O О 0 × 0 0 0 റ 0 O \cap \cap Ο 0 0 0 * О 0 0 0 × О 0 0 0 0 × 0 00 0 0 × x x O Normal Operation Leakage and Non-Uniform Distribution × Gasket Leakage (Blank-no diffuser installed) Plugged-No Air Flow * Non-Uniform Distribution ("hot spot")

.

2

)

)

Grid %	Normal %	Clogged %	Gasket Leaks %	Non-Uniform Air Distribution %	Leaks & Non-Uniform Air Distribution %
1	26.1	3.3	41.0	19.2	10.4
2	9.2	4.8	42.9	39.4	3.8
3	12.8	0.7	22.6	53.5	10.4
Total*	16.6	3.3	37.5	34.7	7.9

Table 18. Diffuser Malfunctions for Tank 3 (Domes, uncleaned)

* Columns must be weighted by the number of diffusers per grid to obtain the total

When tank 3 was dewatered the domes were observed and the number of malfunctioning domes were counted. The first half (toward influent side) of each grid were counted. Malfunctions were classified into plugged diffusers (no air flow, no gasket leakage), leakage around the dome bottom gasket, bolt breakages, and non-uniform air distribution ("hot spots").

Figure 27 shows the results of the survey. Normally functioning diffusers are indicated by an open circle; plugged diffusers are denoted by a closed circle. The stars indicated "hot spots" and the crosses indicate gasket leaks. The closed squares denote diffusers with both gasket leaks and hot spots. No bolt breakages were observed.

Table 18 summarizes the failure statistics. For grid 1 only 26% of the diffusers were performing properly. For grids 2 and 3 the number of properly functioning diffusers was only 9 and 13%, respectively. Grid 3 had the fewest clogged diffusers while having the most non-uniform air distributions. There appears to be few trends in the data shown in Table 18; however, the following speculation is offered, based upon the premise that the fouling rate of grids closest to the influent is greatest. The statistical analysis shown previously suggested that the early grids fouled more rapidly only on the basis of ratio of BRV to DWP.

As the dome ages gas flow becomes uneven due to clogging at the dome surface. As a greater area of the dome surface is clogged the DWP increases. At some point during this period of increasing DWP, the gasket begins to leak, because of elevated pressure. The gasket leakage further reduces air flow rate through the dome causing even more non-uniform air distribution. Eventually no gas flow occurs through the dome and only gasket leakage occurs.

Tank 2 was similarly observed during dewatering, but detailed sampling was not performed; however, several small areas in each grid were counted, indicating that the gasket leakage rate was approximately the same as tank 3. It was also observed that the majority of the leaks were at the two edges of the dome furthest from the air manifold pipe. This supports the speculation that the PVC dome holders were warped and that this contributed to the leakage problem. The air flow rate to the tank was also increased and decreased while observing diffusers that were clogged, leaking or having non-uniform air distribution. The malfunctions did not change with changing air flow rate.

The domes were functioning so poorly that the Districts felt that they could not be cleaned in-situ. The domes were replaced with new domes that were purchased at the time of the original dome installation (1981/82) and kept in storage as spares for the San Jose Creek and Whittier Narrows WRP. Therefore, the domes tested and cleaned after October 1987 were new domes and gaskets manufactured at approximately the same time as the original domes, but there is no way of knowing if they were from the same batch as the original domes.

Gaskets and domes removed from tanks 2 and 3 were analyzed at this time. The underside of the domes appeared clean, except for a black stain that radiated outward from the middle of the dome. This stain was caused by the air striking the dome undersurface as it flowed in a narrow stream from the orifice hole in the dome mounting bolt. Almost all gaskets showed evidence of nonelastic deformation, which probably contributed to the leaks. Some gaskets appeared to have stretched under the air pressure and were no longer in contact with the entire lower side of the domes. As indicated previously, the gaskets and bolts used at Whittier Narrows were different from the current Norton dome installation. The bolts were fiber-reinforced ABS and were purchased for future compatibility with the HCl gas cleaning process. The gaskets were a spongy material, as opposed to hard rubber and were standard issue at the time of purchase. When the domes were replaced in tank 2 several were replaced using hard rubber gaskets. In May 1988, tank 2 was again dewatered. All the fiber reinforced ABS bolts used with the hard rubber gaskets had failed.

In July 1988, tank 1 was dewatered for manual cleaning and inspection. There were five leaking "o-rings" in the entire tank. In some cases there was non-uniform air distribution, with the air exiting close to the disk periphery; however, this disappeared when the air flow rate was increased slightly.

Ratios of Transfer Rates

A final procedure was used to evaluate the improved transfer efficiencies that might be due to acid gas cleaning. The ratio of transfer efficiency just after cleaning to just before cleaning was calculated for each tank. Next, the ratio for each gas cleaned tank, (tanks 1 and 2) was divided by the same ratio for the uncleaned, control tank (tank 3). Equation 4 shows the overall ratio.

$$R_{i,j} = \frac{\alpha \text{SOTE}_{i,j} / \alpha \text{SOTE}_{i,j-1}}{\alpha \text{SOTE}_{3,j} / \alpha \text{SOTE}_{3,j-1}}$$
(4)

where

i = tank number (1 or 2) j = date of off-gas testing immediately following gas cleaning j-1 = date of off-gas testing immediately before gas cleaning

Generally the elapsed time between off-gas testing was 2 weeks. Table 12 shows the testing schedule.

Figure 28 shows the ratios. A value of 1 indicates that the test tank had the same α SOTE before and after the cleaning, relative to the control tank. It was necessary to normalize the transfer rates with respect to the control in order to remove the fluctuations in transfer rate due to influent changes and process operational changes. The mean value of the ratios for both tanks is approximately 1, and is also shown on Figure 28. This suggests that gas cleaning had no observable, immediate impact on α SOTE. The early part of the testing showed a ratio greater than 1.0 for Tank 1. The data at 15.6 months biases the average downward. If one excludes this data point the averages are greater than 1.0, but the 5% confidence intervals cross 1.0, suggesting that the data are not statistically significant.

VALENCIA

Off-gas testing was performed at Valencia on tank 4 beginning on May 27, 1987. Seven tests were performed with testing ending on June 14, 1988. For the first three tests air flow measurements were available. For the last four tests air flow measurements were unavailable, due to blockage in the manometer lines.

Numbers above bars indicate grids gas cleaned. DR indicates dome replacement.

Figure 28 Normalized Ratio of aSOTEs Before and After Cleaning

In order to estimate α factors for Valencia, it was necessary to use the hood gas flow rate to estimate the air flow rate per diffuser. At some plants this can be quite problematic because it is difficult to obtain a close balance between measured air flow rate and hood flow rate. At Whittier Narrows the air flow measurements were quite reliable and were used to calculate the air flow rate per diffuser in order to estimate SOTE and α factors.

Figure 29 shows the measured air fluxes using the air distribution system instrumentation and the air fluxes using the off-gas hood and analyzer rotameters. The top graph shows Whittier Narrows for all three tanks and all tests. The correlation between the two measured values is 0.993 (slope of the straight line) with an intercept of 0.0313 m³/m²-hr. The correlation coefficient (R²) is 0.803. This is a good match between the process air flux and the hood fluxes. There is no bias in underestimating or overestimating the process air flow rate using hood flux. The scatter results from random error as well as maldistribution within the grid. Also at Whittier Narrows there was a small time difference between measuring hood flux and measuring plant air flow rate (\pm 5-10 minutes). The lower graph in Figure 29 shows the same data at Valencia for the first three tests. The fit is not as good (R² = 0.6) but the correlation is unbiased (slope = 1.04 with an intercept of 0.0642 m³/m²-hr).

This unbiased estimate of the process air flow rate from the hood air flux provides justification for using hood flux to estimate air flow rate per diffuser; therefore, the hood flux was used for tests 4 to 7 at Valencia. The hood fluxes were also used at Terminal Island to estimate air flow rate per diffuser for both the Parkson-Wyss and AERMAX tanks, since no plant instrumentation was available.

Figure 30 shows the α SOTE, α factor and air flux for Valencia for the 13 month period of observation. Figure 31 shows the α factor and α SOTE versus tank distance. The error bars represent the standard deviation of the data. The trend of higher α factor in the stabilization zone to lower α factor in the contact zone and back to higher α factor in the effluent zone is consistent with expectations, and was also observed at the San Jose Creek WRP. α factors for endogenous activated sludge, as in the stabilization zone, are higher than α factors for nonendogenous activated sludge (Stenstrom and Gilbert, 1981).

Figure 32 shows the air flux versus tank distance. The air flux was not tapered so heavily as Whittier Narrows. The low flux at hood position 4 is possibly an artifact of the proximity of the hood locations to the baffle and the edge of grid 2A.

There is very little evidence for a declining oxygen transfer efficiency at Valencia. The drop in efficiency at months 7 and 9 are probably due to the increase in flux as opposed to other fouling phenomena.

TERMINAL ISLAND - PARKSON-WYSS

The upper half of Figure 33 shows the α SOTE and air flux of the Parkson-Wyss system as a function of time. The lower half of Figure 33 shows the α SOTE and air flux as a function of tank distance. Figure 34 shows the air flux, air flow per diffuser and DO concentration as a function of tank distance. The performance of the tank is highly variable and this can in part be attributed to changes in plant operation. The peak in air flux and the resulting decrease in α SOTE occurred because of tank overloading. No clean water data were available; therefore, no α

Figure 30 α SOTE, Air Flux and α Factor at Valencia

Figure 31 α SOTE and α Factor versus Distance at Valencia

Figure 32 Air Flux versus Distance at Valencia

Figure 33 aSOTE, Air Flux and DO for Parkson-Wyss at Terminal Island

factors were calculated.

After about four months of operation plant personnel decided to change the contacting pattern. Tank 5 (the spiral roll control tank) was removed and tank 2 was returned to service, allowing tanks 1, 2, and 3 to be operated in serpentine flow for step feed. Both tanks 4 and 6 would have been unaffected by this change, except that the sluice gates controlling the influent flow to each tank were not readjusted properly. There is no instrumentation to monitor flow rate to each tank. The loading on tanks 4 and 6 were greater than the overall plant coverage.

Between months 5 and 7 the Parkson-Wyss tank was dewatered for repair. The diffuser manifolds had failed in two places. The horizontal part of the first swing arm failed which effectively removed this arm from service. Also a hold down point on the eighth swing arm failed, allowing the manifold to rise slightly, increasing air flow rate. Fortunately both failures were far away from off-gas hood locations, and did not directly affect α SOTE measurements. These two malfunctions were repaired during dewatering. The diffusers were also cleaned by hosing from the tank top. The tank was out of service for approximately three weeks.

During dewatering diffuser characteristics were noted. The diffuser membranes were no longer as flexible or as loose as when they were new. The membranes had shrunk and were taut. Six diffusers showed excessive air flow which was later attributed to membrane ruptures. Several diffusers were sampled and most had sludge inside the membranes. The manufacturer, prior to operation of the tank, had indicated that minor differences in piping elevation might cause this problem.

Testing continued until month 12. The period from month 8 to month 12 is the most representative period of operation. The air flow per diffuser at this time was within the manufacturer's guidelines $(3 \text{ m}^3/\text{hr or } < 5 \text{ SCFM/diffuser})$.

The Parkson-Wyss system was always able to provide sufficient DO concentration in tank 4. This resulted because the diffusers were elevated well above the floor during installation, providing sufficient pressure to allow as much as 20 m^3 /diff-hr (12 SCFM/diffuser) gas flow rate. Tank 4 does not share its air header with other tanks, which allowed the air pressure to be increased.

The air flux, as shown in Figure 34 is tapered, showing a decline from 16 m³/m²-hr to 10 m³/m²-hr over the tank length. The α SOTE increases along tank length, which is mostly attributable to the decrease in air flow rate per diffuser.

The Parkson-Wyss system performed satisfactory throughout the study and there were no problems with its operation. It was decommissioned at the end of the study and the diffusers were salvaged. The Terminal Island treatment plant is being retrofitted with a full floor coverage ceramic dome system. This is not because of any lack of performance of the Parkson-Wyss system, but because of a preference for a ceramic grid system by City personnel. Also the City did not wish to reuse the swing arms, since they are old and prone to failure.

75

Figure 35 aSOTE, Air Flux and DO for AERMAX at Terminal Island

Figure 36 aSOTE and Air Flux versus Distance for AERMAX at Terminal Island

TERMINAL ISLAND - AERMAX

Figures 35 and 36 show the performance of the AERMAX system at Terminal Island. The first test showed an α SOTE of approximately 16%, which was the highest α SOTE measured anywhere in this study. The α SOTE declined in a nearly linear fashion to 8.5% after four months of operation.

In December 1987 the second swing arm was lifted for inspection. When it was lifted two diffusers on swing arm 3 had moved and were overlapping the diffusers on swing arm 2. During lifting several diffusers were bent and one of the bosses on the swing arm failed. To repair this failure it was necessary to dewater the tank. The diffuser were hosed and liquid acid cleaned when the tank was dewatered.

The tank remained empty for 2.5 months and was exposed to sunlight during this period. The tank was placed back in service in month 7. α SOTE was 11.5% and gradually declined over the next four months. There seems to be no ill effects from the longer period of dewatering.

The air flux to tank 6 was always controlled by the pressure drop through the diffusers. This resulted because the diffusers were not mounted as high as necessary above the horizontal part of the swing arm. Several unsuccessful attempts were made to increase the air pressure and flow rate to the AERMAX system.

Unlike the Parkson-Wyss system, the AERMAX system shared an air header with tank 5 and the channel aeration system. The channel aeration system consumed too much air when the system pressure was increased. Therefore, it was not possible to increase system pressure. Fouling not only affected α SOTE but also reduced air flux, which probably accelerated the rate of fouling. Also the DO concentration was low which has been implicated in accelerated fouling rates (Rieth et al. 1988).

The AERMAX system, unlike the other systems described in this report, clearly shows fouling as a function of time. The results shown in Figure 35 are replotted in Figure 37 with time calculated as months in service since cleaning, or since the diffusers were new. The top of Figure 37 shows α SOTE versus time and the bottom shows α versus time. The straight lines are best fits, and the correlation coefficient (R^2) for all lines is greater than 0.9. The α SOTE decline is 1.9 percentage points per month for the first period and 1.0 percentage points per month for the second period. The second period is undoubtedly more typical of routine performance. The authors in previous studies have noted initial periods of excellent performance with new diffusers, which have never been achieved again in subsequent operation. The decline in α factor is similar. The decline in period 1 was 0.07 per month which decreased to 0.035 per month in period 2. The air flow rate per diffuser was changing because of increased pressure drop due to fouling and this decline has been included in the α calculations. Diffusers were collected at the end of the study and analyzed for DWP. Next, they were lab cleaned and reanalyzed. The DWP of four diffusers at 0.3 m³/hr increased from 15.7 cm (6.2 in) new to 85 to 386 cm (average = 236 cm) over the period of the study. After nylon brushing while flushing from the inside with water, the DWP decreased to 34 cm. After high pressure hosing from the outside the DWP decreased to 20.3 cm.

The decline in air flow rate due to increased diffuser head loss limited the DO in the tank. Towards the end of the study influent flow had to be diverted to other tanks in order to achieve satisfactory DOs.

The AERMAX system was removed from service at the conclusion of testing for the same reasons that the Parkson-Wyss system was removed. The diffusers were salvaged for later reuse.

TERMINAL ISLAND - SPIRAL ROLL

Tank 5 at Terminal Island was equipped with swing arms using FMC Chicago Pump "Discfusers." This tank served as a control for the first three months of the study. Off-gas testing was performed twice, but with limited success due to the high air fluxes. After equipping the off-gas instrument with a larger manometer and second vacuum cleaner it was not possible to capture 100% of the off-gas for all positions at all times. During periods of high flow rate it was not possible to perform a flow weighted average. Therefore, only limited data are available. The α SOTE for tank 5 ranged from 3.5 to 4.5%.

81

EFFECT OF PROCESS OPERATION ON AERATION EFFICIENCY

The preceding sections have described the various observations of α factors and α SOTEs for the five different diffusers being evaluated. The discussions have been restricted to phenomena which are related to the diffuser characteristics or cleaning procedures. In this chapter aspects of process operation and their effects on α factors and α SOTE are discussed. Most of the discussion relates to Whittier Narrows, since the majority of data collection was there.

The period from August to October 1986 at Whittier Narrows shows dramatic changes in α factors, α SOTEs and process operation. From observing the data, especially from the point of view of operating the off-gas analyzer, one soon comes to believe that activated sludge process operating variables dramatically affect α and α SOTE. For example, after testing at Whittier Narrows on August 21, 1986 for only 30 minutes, the differences in α SOTE were readily apparent, as if one were testing a different plant or using a malfunctioning analyzer.

EFFECT OF SRT, F/M, MLVSS AND AIR FLUX

At first it was believed that a relationship between SRT and α SOTE or α could be easily obtained. Others have shown such a relationship for specific conditions (Brenner and Boyle, 1987). There are "outliers" which point to such a relationship. For example, the SRT at Whittier Narrows on the day of testing in month 4 (Figures 13-16) was 1.2 days, the lowest value in the entire study for any plant tested at any time. This day also corresponds to the lowest tank average α factor obtained anywhere, of 0.12. Some of the highest α factors were obtained at the highest SRT. The following discussion explores the reasons for a relationship between α SOTE, α and SRT. The reader is referred to the Process Data section where the calculation procedures for SRT, MCR, and MCRTA are discussed.

There are theoretical reasons why α should be a function of SRT. Current mathematical models of the activated sludge predict substrate concentration as a function of SRT. Since substrates are partially comprised of surfactants, lower substrate concentration, or higher SRT, implies lower surfactant concentration and higher α factors. Nevertheless, regressions of SRT, α SOTE and α factors have been disappointing, producing low R² and little statistical significance. Upon reflection there are reasons for the poor correlation which relate to the steady-state nature of SRT calculation. By definition the SRT can be related to the mean organism growth rate, as follows (Lawrence and McCarty, 1970):

$$\frac{1}{\theta_{\rm c}} = \mu - K_{\rm D} \tag{5}$$

where

 $\theta_c = SRT
\mu = organism growth rate (T⁻¹)
K_D = decay coefficient (T⁻¹)$

This relationship is only valid for steady-state conditions. When steady-state conditions exist the SRT can be equated to the wasting rate and mass of solids under aeration, as follows

$$\theta_{c} = \frac{XV}{Q_{w}X_{w}}$$

where

X	=	MLVSS concentration (mg/L)
V	=	aeration tank volume (l^3)
X _w	=	waste volatile solids concentration (mg/L)
Q _w	=	waste solids flow rate (l^3/T)

Equation 6 provides a "working definition" for SRT which is the foundation of its use throughout activated sludge plants in the United States; however, the success of SRT as a operational strategy exists because of its relationship to microbial growth rate, as shown in Equation 5. When steady-state conditions do not exist both Equations 5 and 6 are not valid, and Equation 7 is applicable as follows:

$$\frac{1}{\theta_{\rm c}} = \mu - K_{\rm D} - \frac{dX}{Xdt}$$
(7)

(6)

where

$$\frac{dX}{dt}$$
 = time derivatives of X (mg/L-T)

Although satisfactory effluent was produced throughout the study period, the SRT at Whittier Narrows ranged from 1.2 to over 4 days during the study and sometimes changed as much as 30 to 40% between the daily observations. Therefore, the SRT calculated by Equation 5 should be quite different than the true SRT (kinetically meaningful) calculated by Equation 7. For example, if the MLVSS concentration was to decrease from 1000 to 700 mg/L in one day, and if the SRT were 1.5 days before the change, the magnitude of the difference between Equations 5 and 7 would be 0.35 days^{-1} , a difference of 20% or more.

A further complication in successfully determining a relationship between SRT and α or α SOTE relates to sampling frequency. One must sample at twice the maximum frequency to estimate the parameter without bias. An SRT of 1.5 days implies a time constant of 0.66 days⁻¹, which means that SRT measurements would have to be made at a rate of 1.32 per day to correctly estimate SRT. Therefore, at SRT's less than 2 days, a daily measurement is too infrequent for proper estimation of SRT.

A final complication in measuring SRT is the accuracy of the parameters used to calculate it. There are three sources for experimental error: MLVSS measurement, waste sludge MLVSS measurement, and waste sludge flow rate. It is extremely difficult to accurately and precisely measure sludge flow rates and concentrations.

An alternate approach was taken to relate α and α SOTE to process operation and regressions of MLVSS and F/M (COD basis) were made. There are similar problems with measuring F/M as with SRT. The sampling frequency rate requirements are similar. F/M ratio is also valid only for steady state conditions; however, the magnitude of the time derivative is smaller than in the SRT equation. Equation 8 shows the same model arranged to calculate F/M.

$$\frac{Q(S_o-S)}{XV} = \frac{\mu}{Y}$$

where

S_o,S influent and effluent substrate concentration (mg/L) biological yield (mass cells/mass substrate)

Since effluent substrate, S is usually small when compared to S_o, the left hand side of Equation 8 is nearly equal to the working definition of the F/M ratio, QS₀/XV. Equation 8 must also be rewritten for the nonsteady-state case, as follows:

$$\frac{Q(S_o-S)}{XV} = \frac{\mu}{Y} + \frac{dS}{Xdt}$$
(9)

The magnitude of the term $\frac{dS}{Xdt}$ is much smaller relative to the F/M ratio than the derivative term in the SRT equation, Equation 7. A change in the effluent substrate concentration for Whittier Narrows as a function of F/M is so small that it is hard to measure, but for the sake of example, suppose that the hypothetical change from 1000 mg/L MLVSS to 700 mg/L MLVSS mentioned previously produced a change of 10 mg/L in S. The difference in Equation 8 and 9 is only 0.012 mg S/mgX-day. If the F/M ratio for this case were 1.0 mgS/mgX-day, the difference would be approximately 1%; however, for Equation 7, the differences from the dynamic term could be more than 25%. Therefore, F/M ratio is a much better indicator of process conditions during nonsteady-state operation.

The experimental error in measuring F/M is less than in measuring SRT. It is easier to measure dilute liquid flow rates than sludge flow rates. Influent COD is probably more accurately and precisely measured than waste sludge MLVSS concentration.

It is important to note the sign of the error on SRT or F/M calculation. For both cases, the working definition of SRT and F/M, which includes the error, under estimates process loading. The SRT predicted by Equation 6 is always greater than the true SRT predicted by Equation 7, when the SRT is declining. Also, Equation 8 under estimates F/M when F/M is increasing.

Since F/M is also an indicator of growth rate and effluent substrate concentration, it should be related to α SOTE and α in the same way that SRT is related. MLVSS concentration should be correlated as well, since it is a component in the calculation of SRT and F/M ratio. Additionally, there is conflicting evidence (Stenstrom and Gilbert, 1981) implicating solids concentration affecting α factors.

The regressions on MLVSS and F/M were much more successful, and meaningful correlations were obtained. Figure 38 shows the average α factor for tanks 1 and 2 at Whittier Narrows as a function of F/M (COD basis) with best-fit regressions. The correlation coefficient (R^2) in both cases is less than 0.35. Tank 1 shows a more meaningful trend. The correlation in tank 2 is dominated by the two extreme points. For tank 1 the data from the period from just after liquid acid cleaning to the onset of step feed operation are plotted. For tank 2 the data from the period is from just after liquid acid cleaning to dome replacement are plotted.

(8)

Figure 38 α Factor versus F/M for Tanks 1 and 2 at Whittier Narrows

Figure 39 shows the average α and α SOTE as a function of MLVSS concentration at hood position 1 for all three tanks at Whittier Narrows. The correlation (R²) is approximately 0.5. The data for hood position 1 correlate much better than the tank average data. The α SOTE or α factor at position 1 may be more strongly influenced by MLVSS concentration due to rate of removal of soluble substrate, which according to the models described previously, should be linearly related to MLVSS concentration. The relationship shown in this figure is the most dramatic evidence for the low α factors observed in the August to October period of 1986. Figure 40 shows the tank average α factor for the plastic disks at Valencia. The trend is similar, but the absolute value of MLVSS concentration is quite different.

Figure 41 shows α factors as a function of air flux, and α decreases slightly with increasing air flux. A similar relationship was found by Hwang and Stenstrom (1983) for the column study at Whittier Narrows. One possible explanation for this phenomena is bubble collision. Bubbles coalesce in activated sludge mixed liquor; an increasing air flux will result in more bubble collisions in a fashion similar to increasing surface area or particle concentration for flocculation.

Figure 41 also shows the column results, which exhibit the same trend but with greater α factors. The α factors were greater because all experiments were conducted using a new diffuser. The air fluxes are much greater because the column was only 0.5 m in diameter. The air flow per diffuser spanned the range measured during this study, but the diffuser density was much greater.

It has been suggested that this relation between α and air flux is a function of plant load since increased plant load usually requires increased air flux. There is evidence to show that higher loading rates reduce α factors. There are two reasons why the relationship between α and air flux is plausible. A multiple linear regression of α factor with both air flux and load, as indicated by F/M (COD basis), was made and air flux was more significant than F/M ratio. The similar findings of Hwang (1983) were performed at constant load, and are therefore free of any spurious effects of plant load upon α .

TIME SERIES REGRESSIONS

The preceding part of this chapter discussed the effects of process variables on α and α SOTE. While this information is interesting and potentially more important than diffuser fouling, the goal of this research is to ascertain fouling rates over time in service. The only previous discussion of fouling over time was the result for the an AERMAX system at Terminal Island. This section describes fouling over time. This discussion primarily relates to Whittier Narrows.

To determine fouling over time the effects of F/M, air flux and time in service were investigated using multiple linear regression with SAS (1982). Models of the following form were used:

$$\alpha \text{SOTE} = a + b F/M + c AF + d TS$$
(10)

where

F/M AF = food-to-mass ratio, COD basis (days⁻¹) = air flux (m^3/m^2 -min)

Figure 39 aSOTE and a Factor versus MLVSS Concentration for Hood Position 1, Tank 1 at Whittier Narrows

Figure 40 α Factor versus MLVSS Concentration at Valencia

Figure 41 α Factor versus Air Flux at Whittier Narrows for Hood Position 1, Tank 1, and a Test Column

TS	=	time in service or since cleaning (months)
a.b.c.d	=	regression parameters

The same regressions were performed using α as the dependent variable, and MLVSS concentration was tested in place of F/M for certain regressions.

The period of regression was always a subset of the study period. The period prior to initial liquid acid cleaning was not used. Also the very first test after liquid cleaning was not used in all cases. For the dome system, the regressions covered the period up to dome replacement in September/October 1987. For the disk system, the period was longer, continuing until the onset of step feed operation, in December 1987.

Figure 42 shows the most successful time series regression for the disk system for α SOTE while Figure 43 shows similar regressions for α . The figures are plotted in the same way as Figures 13-16 for the sake of comparison.

The top of Figure 42 shows a regression for the period from liquid acid cleaning to the onset of step feed operation for tank 1 at Whittier Narrows. It includes the period of low SRT during months 1 to 4 in determining the parameters a through d. The predicted values show the same trend as the measured values, but miss the extremes. This regression accounted for only approximately 30% of the variability ($R^2 = 0.31$). The form of the regression is:

$$\alpha \text{SOTE} = 15.37 - 2.0375 \text{ F/M} - 38.977 \text{ AF}$$
(11)

F/M and AF flux are significant at 2.7% and 5.7%, respectively. Time in service is not significant, indicating that changes in process operation over-shadowed the effect of fouling.

The lower part of Figure 42 shows a similar regression, but using only the data points from month 6 to the onset of step feed operation. This period of operation is much more stable with respect to F/M and SRT. The regression accounted for 74% of the variability ($R^2 = 0.74$). The form of the regression is:

$$\alpha \text{SOTE} = 16.5 - 0.218 \text{ TS} - 58.4 \text{ AF}$$
(12)

In this case it appears that the effects of fouling can be separated from other aspects of process operation. F/M is not significant, which most probably results because it did not vary widely during this period. Both AF and TS were significant at the 1% level.

This result is similar in consequences to the AERMAX finding in that a statistically significant fouling effect was obtained. In the case of the AERMAX system for period 2, the decline was 1 percentage point of α SOTE per month, while in this case it is only 0.23 percentage point of α SOTE per month.

Figure 43 shows similar results for α . The regressions for the top and bottom of Figure 43 are

$$\alpha = 0.477 - 0.0673 \, \text{F/M} - 0.814 \, \text{AF} \tag{13}$$

TS	=	time in service or since cleaning (months)
a.b.c.d	=	regression parameters

The same regressions were performed using α as the dependent variable, and MLVSS concentration was tested in place of F/M for certain regressions.

The period of regression was always a subset of the study period. The period prior to initial liquid acid cleaning was not used. Also the very first test after liquid cleaning was not used in all cases. For the dome system, the regressions covered the period up to dome replacement in September/October 1987. For the disk system, the period was longer, continuing until the onset of step feed operation, in December 1987.

Figure 42 shows the most successful time series regression for the disk system for α SOTE while Figure 43 shows similar regressions for α . The figures are plotted in the same way as Figures 13-16 for the sake of comparison.

The top of Figure 42 shows a regression for the period from liquid acid cleaning to the onset of step feed operation for tank 1 at Whittier Narrows. It includes the period of low SRT during months 1 to 4 in determining the parameters a through d. The predicted values show the same trend as the measured values, but miss the extremes. This regression accounted for only approximately 30% of the variability ($R^2 = 0.31$). The form of the regression is:

$$\alpha \text{SOTE} = 15.37 - 2.0375 \text{ F/M} - 38.977 \text{ AF}$$
(11)

F/M and AF flux are significant at 2.7% and 5.7%, respectively. Time in service is not significant, indicating that changes in process operation over-shadowed the effect of fouling.

The lower part of Figure 42 shows a similar regression, but using only the data points from month 6 to the onset of step feed operation. This period of operation is much more stable with respect to F/M and SRT. The regression accounted for 74% of the variability ($R^2 = 0.74$). The form of the regression is:

$$\alpha \text{SOTE} = 16.5 - 0.218 \text{ TS} - 58.4 \text{ AF}$$
(12)

In this case it appears that the effects of fouling can be separated from other aspects of process operation. F/M is not significant, which most probably results because it did not vary widely during this period. Both AF and TS were significant at the 1% level.

This result is similar in consequences to the AERMAX finding in that a statistically significant fouling effect was obtained. In the case of the AERMAX system for period 2, the decline was 1 percentage point of α SOTE per month, while in this case it is only 0.23 percentage point of α SOTE per month.

Figure 43 shows similar results for α . The regressions for the top and bottom of Figure 43 are

$$\alpha = 0.477 - 0.0673 \, \text{F/M} - 0.814 \, \text{AF} \tag{13}$$

Figure 42 aSOTE versus Time for Tank 1 at Whittier Narrows

Figure 43 α Factor versus Time for Tank 1 at Whittier Narrows

~

~

(14)

The significance levels and correlation coefficients are nearly identical to the regression for α SOTE.

Equations 11 through 14 have implications for future designers. They indicate that for F/M ratios of 1 to 1.5, and air fluxes of $0.1 \text{ m}^3/\text{m}^2$ -min. or less, that the clean diffuser α and α SOTE are roughly 0.3 to 0.4, and 9 to 10%, respectively at the diffuser density and submergence used in this study.

CONCLUSIONS

This project has as it goals the investigation of fouling and diffuser cleaning techniques. The principal investigation was at the Whittier Narrows Water Reclamation Plant operated by the Los Angeles County Sanitation Districts. The Whittier Narrows project investigated the benefits of HCl acid gas cleaning on disk and dome ceramic diffusers. Shorter studies with reduced level of effort were conducted at the Valencia treatment plant, also operated by the Districts, and the Terminal Island Treatment plant, operated by the Bureau of Sanitation of the City of Los Angeles. The following conclusions are made.

1. The disk system at Whittier Narrows out performed the two dome systems for the duration of the study for almost all circumstances, with the one exception of one test conducted immediately after dome replacement. The magnitude of the difference in α SOTE was 2 percentage points (-9% α SOTE for disks versus 7% for domes). For the period of stable operation where nearly identical side-by-side test results were obtained, the difference was 2.8 percentage points (9.8 versus 7.0).

The difference in performance of the two systems is probably not attributable to HCl acid gas cleaning, or at least not entirely attributable to cleaning, since the disk system was superior to the dome system prior to all cleaning and shortly after dome replacement as well. Dome gasket leakage was a major factor in the performance of the dome system and its overall impact on the conclusions of this study are unknown.

- 2. The domes at Whittier Narrows showed severe gasket leakage problems, both before and after acid gas cleaning. It is not clear what the cause of the leakage was, but the domes at Whittier Narrows used plastic bolts and spongy gaskets which may have contributed to the problem. Gaskets from sample diffusers showed non-elastic deformation which may have contributed to the problem. Plastic bolts with hard rubber gaskets failed.
- 3. The effects of HCl acid gas cleaning on the dome α SOTE were not discernible.
- 4. The effects of HCl acid gas cleaning was not detectable in the short term on the α SOTE of the disk system; however, two off-gas tests directly before and directly after acid gas cleaning provided partial evidence for improved α SOTE.
- 5. The HCl acid gas cleaning was effective in reducing diffuser DWP, BRV, and the quantity of fouling substances, for both dome and disk diffusers.
- 6. The plastic disks at the Valencia WRP showed α SOTEs approximately the same as the dome system at Whittier Narrows (7%). This fact might be construed to support the efficiency of acid gas cleaning because the disks at Whittier Narrows, which transferred 9.8% during the period of stable operations, have about the same clean water SOTE as the plastic disks. The Valencia WRP is operated at higher SRT and lower F/M which suggests that it should have had higher α SOTEs for the same conditions. No significant trend in transfer rates (e.g. decrease due to fouling) was observed.
- 7. During the period of stable operation the disks at Whittier Narrows, with HCl gas cleaning, decreased in αSOTE efficiency by 0.23 percentage points per month. The AER-MAX system decreased by 1% per month at Terminal Island. These results are the most

significant findings with respect to fouling. The dome systems at Whittier Narrows decreased from an α SOTE of 10 to 12% when new, or just after liquid acid cleaning, to 7 to 8% within several weeks. The decline was too rapid to correlate to process operation or time in service, and may have been partially due to gasket leakage problems. The decreases were not necessarily linear, and one should not always expect a linear decrease in transfer efficiency.

- 8. It seems reasonable to use a tank average α factor of 0.25 for plants designed and operated in a fashion (low SRT) similar to the Whittier Narrows Water Reclamation Plant with similar aeration systems.
- 9. The effects of process operation, F/M, MLVSS and air flux, have a much more pronounced effect on α SOTE and α than fouling. Statistically significant relationships between α and α SOTE and F/M, MLVSS and air flux were obtained. α and α SOTE decrease with increasing F/M and air flux.

REFERENCES

- 1. Anderson, A., Personal Communication, Gerlick-Mitchell Co., El Segundo, CA, July 30, 1987.
- 2. Barish, N., Economic Analysis for Engineering and Managerial Decision Making, McGraw Hill, New York, NY, pp. 685-700, 1962.
- 3. Boyle, W.C. and Redmon, D.T., "Biological Fouling of Fine Bubble Diffusers: State-ofthe-Art," ASCE Journal of Environmental Engineering Division, 109, 991, 1983.
- 4. Brenner, R.C. and Boyle, W.C., "Status of Fine Pore Aeration in the United States," A manuscript presented at the 11th United States/Japan Conference on Sewage Treatment, Tokyo, Japan, October 12-14, 1987.
- 5. Downing, A.L., Bagley, R.W. and Boon, A.G., "The Performance of Mechanical Aerators," J. Inst. of Sewage Purification, 231, 1960.
- 6. Doyle, M.L. and Boyle, W.C., "Translation of Clean to Dirty Water Oxygen Transfer Rates," in *Aeration Systems: Design, Testing, Operation and Control,* W.C. Boyle, ed., Noyes Publications, Park Ridge, NJ, 1986.
- 7. Hwang, H.J. and Stenstrom, M.K., "Evaluation of Fine-Bubble Alpha Factors in Near Full-Scale Equipment," JWPCF, 57, pp. 1142-1151, 1985.
- 8. Hwang, H.J., "Comprehensive Studies on Oxygen Transfer under Nonideal Conditions," Ph.D. Dissertation, Civil Engineering Dept., University of California, Los Angeles, CA, 1983.
- 9. Lawrence, A.W. and McCarty, P.L., "Unified Basis for Biological Treatment Design and Operation," ASCE Journal of the Sanitary Engr. Division, 96, 757-778, 1970.
- 10. Mueller, J.A., "Comparison of Dual Nonsteady State and Steady State Testing of Fine Bubble Aerators at Whittier Narrows Plant, Los Angeles," a Report Submitted to the ASCE Committee on Oxygen Transfer Standards, Manhattan College, Bronx, NY, March 1982.
- Redmon, D.T., Boyle, W.C. and Ewing, L., "Oxygen Transfer Efficiency Measurements in Mixed Liquor Using Off-Gas Techniques," J. Water Pollution Control Fed., 55, 1338 1983.
- 12. Rieth, M.G. et al., "Effects of Selected Design Parameters on the Fouling of Ceramic Diffusers," A manuscript presented at the 61st Annual Conference of the Water Pollution Control Federation, Dallas, TX, October 1988.
- 13. SAS User's Guide, SAS Institute, Inc., Cary, NC, 1982.
- 14. Standard Methods for the Examination of Water and Wastewater, 15th Edition, American Public Health Association, Washington, DC, 1980.

- 15. Schmit, F. et al., In Place Gas Cleaning of Diffusion Elements, U.S. Patent No. 4,382,867, May 10, 1983.
- 16. Stenstrom, M.K. and Gilbert, R.G., "Effects of Alpha, Beta and Theta Factor upon the Design, Specification and Operation of Aeration Systems," *Water Research*, **15**, pp. 643-654, 1981.
- 17. Yunt, F. and Hancuff, T.O., "Aeration Equipment Evaluation Phase I. Clean Water Test Results," Los Angeles County Sanitation Districts, Los Angeles, CA.
- 18. Yunt, F. Personal Communication, November 8, 1982.
- 19. the Air Diffusion Equipment for the Valencia Water Reclamation Plant Stage Three," Los Angeles County Sanitation Districts, Whittier, CA, 1986.
- 20. Yunt, F. and Stenstrom, M.K., "Aeration Equipment Evaluation Phase II. Process Water Test Results," Los Angeles County Sanitation Districts, Los Angeles, CA, 1990.

APPENDIX I SAMPLE DATA SHEET
Whittier Narrows

)

)

)))))))))))

)

Tank No. ____ Location _____ Date____

)

)

Time	Position	CO ₂ Frac.	Sensor (Ref)	Sensor (Offgas)	MLSS Temp (°C)	DO (mg/L)	Roto 1	Roto 2	Roto 3	Roto 4	Man 2 ("H ₂ O)	Man 3 ("Hg)	Cell Temp (°F)	Offgas Temp (°F)	Airflow
								1				L			
									<u> </u>		<u> </u>	ļ			
											 		ļ		
										ļ					
								ļ							
							<u> </u>					<u> </u>		<u> </u>	
								<u> </u>			_				
									_						

)

APPENDIX II WHITTIER NARROWS DIFFUSER DATA

KEY:

~

1

МО	=	month of year
DAY	=	day of month
YR	=	year (e.g. $86 = 1986$)
SERVICE	=	months in service
CLEAN	=	N means no HCl gas cleaning, G means HCl gas cleaning
COND	=	condition of the diffuser during testing; dirty = as is, from tank;
		hose = after hosing in the laboratory; MM = liquid acid in the
		laboratory; in-situ = cleaned in tank
TANK	=	N3 means Norton domes, tank 3; N2 means Norton domes, tank 2;
		S means Sanitaire disks, tank 1
GRID	=	grid number
NO	=	sample number, 1 or 2
DWP5. DWP75		•
DWP10, DWP20	=	DWP in cm w.c. at 0.5, 0.75, 1.0, and 2.0 SCFM, respectively
DWPAVG	=	average of above
BRVAVG	=	BRV in cm w.c.
VFOUL	=	mg/cm ² of volatile fouling material
NVFOUL	=	mg/cm ² of nonvolatile fouling material
ACENTER, AMIDDLE		
AOUTER	=	air flux (SCFM/ft ²) in the center midway and outer parts of the
		diffuser, respectively
TFOUL	=	total fouling substances (mg/cm ²)
PVOLAT	=	fouling substance percent volatile
BRVDWP	=	ratio of BRV to DWP at 0.75 SCFM
DATE	=	date, years, months, days
•	=	missing data point (no data collected)

OBS	мо	DAY	YR	SERVICE	CLEAN	COND	TANK	GRID	NO	DWP5	DWP75	DWP 10	DWP20	DWPAVG
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 2 2 3 4 5 6 7 8 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6666666555555777777777799	555555530000088888888888888888888888888	86 866 866 866 866 866 866 866 866 866	$18.0 \\ $	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	DIRTY DIRTY DIRTY DIRTY DIRTY DIRTY DIRTY DIRTY DIRTY DIRTY DIRTY HOSE MM HOSE MM HOSE MM HOSE MM HOSE MM INSITU DIRTY DIRTY DIRTY	\$ \$ \$ \$ \$ \$ \$ \$ 8	1 1 2 2 3 3 3 1 1 2 2 2 3 3 1 1 2 2 1 1 3 3 1 3 1	12121121212212112222112112	44.450 23.368 22.098 22.098 22.098 18.288 21.082 23.114 26.416 19.304 19.304 19.304 19.304 19.304 22.606 23.876 21.590 24.130 21.082 22.352 19.304 39.624 23.114	67.818 25.654 27.686 24.892 24.638 24.638 24.638 24.638 24.638 27.686 31.750 22.860 22.352 55.626 24.130 26.162 23.368 27.432 23.662 24.8922 21.684 15.748 42.164 42.164	44.704 52.832 62.484 40.640 40.640 40.640 40.640 42.164 69.850 25.146 28.702 24.638 30.734 25.908 27.432 22.606 43.942 255.778	325.628 41.148 44.704 40.894 40.894 28.448 48.768 56.388 67.310 42.164 42.164 42.164 42.164 42.164 42.164 42.164 42.164 42.5212 186.690 30.988 39.116 32.258 48.768 40.640 34.798 29.718 58.674 44.704	34.798 39.878 46.990 31.242 31.242 31.242 32.004 88.138 25.654 29.464 25.400 32.766 27.940 27.432 23.114
OBS	BRVAV	/G	VFOUL	NVFOUL	ACEN	FER AM	IDDLE	AOUTER	TFO	UL PV	/OLAT	BRVDWP	DATE	
1 2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	131.8 92.4 154.9 91.6 63.2 98.4 175.0 104. 307.3 248.0 93.1 31. 35. 324. 493.3 35. 35. 35. 35. 35. 35. 36. 177. 22. 83. 35. 36. 35. 36. 35. 36. 38. 35. 35. 36. 35. 38. 35. 35. 35. 35. 35. 35. 35. 35. 35. 35	326 326 326 327 327 328 329 329 3006 329 3006 300	2.1700 9.1450 2.1700 2.4800 0.7750 0.7750 4.4330 7.0525 2.2010 2.0925 2.4335 2.2940	2.17000 5.27001 1.24000 4.03001 1.86000 1.86000 2.01500 2.72801 4.03001 2.72801 2.72801 2.75901 2.75901 2.26300 2.277451 <td>3. 32. 4. 2. 3. 5. 5. 5. 7. 04. 5. 3. 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.</td> <td>90 900 900 900 900 900 900 900 900 900</td> <td>1.92 2.39 2.2.90 2.2.22 2.2.22 2.2.22 2.2.22 2.2.22 2.2.46 3.12 2.2.22 2.2.22 2.2.22 2.2.48 1.89 7.1.1 3 2.3</td> <td>1.3457554015550109951353 </td> <td>4.34 14.45 2.27 11.0 2.27 11.0 4.4 4.5 </td> <td>400 0 150 0 100 0 350 0 350 0 900 0 9515 0 5515 0 6685 0 0685 0 2625 0 8500 0</td> <td>500000 634409 636364 .294118 .294118 .294118 .277778 .619048 .636364 .503546 .431310 .431310 .431310 .518152 .452599</td> <td>0.51445 0.27824 0.29945 0.16066 0.26870 0.55429 0.30924 0.24936 0.15820 0.49603 0.21951 0.73770 0.05894 0.08989 0.59189 0.76613 0.74101 0.93878 0.55670 0.67391 0.29878 0.58451 0.68657 0.69663 0.50000 0.64706</td> <td>860605 860605 860605 860605 860605 860605 860530 860530 860530 860530 860530 860530 860530 860530 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708</td> <td></td>	3. 32. 4. 2. 3. 5. 5. 5. 7. 04. 5. 3. 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	90 900 900 900 900 900 900 900 900 900	1.92 2.39 2.2.90 2.2.22 2.2.22 2.2.22 2.2.22 2.2.22 2.2.46 3.12 2.2.22 2.2.22 2.2.22 2.2.48 1.89 7.1.1 3 2.3	1.3457554015550109951353 	4.34 14.45 2.27 11.0 2.27 11.0 4.4 4.5 	400 0 150 0 100 0 350 0 350 0 900 0 9515 0 5515 0 6685 0 0685 0 2625 0 8500 0	500000 634409 636364 .294118 .294118 .294118 .277778 .619048 .636364 .503546 .431310 .431310 .431310 .518152 .452599	0.51445 0.27824 0.29945 0.16066 0.26870 0.55429 0.30924 0.24936 0.15820 0.49603 0.21951 0.73770 0.05894 0.08989 0.59189 0.76613 0.74101 0.93878 0.55670 0.67391 0.29878 0.58451 0.68657 0.69663 0.50000 0.64706	860605 860605 860605 860605 860605 860605 860530 860530 860530 860530 860530 860530 860530 860530 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708 860708	

)

1

,

,

101

)

)

)

}

19:41 FRIDAY, JANUARY 12, 1990 2

,

,

1

					S	SAS			19	:41 FRIDAY,	JANUARY	12, 1990
OBS	MO DAY	r YR	SERVICE C	LEAN CON	D TANK	GRID	NO	DWP 5	DWP75	DWP 10	DWP20	DWPAVG
2789012334567890123456789012 333333333344424456789012	9 10 9 10 9 10 10 1 10 1 10 1 10 1 10 1	87 87 87 87 87 87 87 87 87 87 87 87 87 8	15.5 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 7.00 7.00 7.00 7.00 7.00 7.00 7.00	N DIR N DIR N DIR G DIR G DIR G DIR G DIR G DIR G DIR S DIR N DIF N DIF S DIF G DIF S DIF	TY N3 TY N3 TY N3 TY N2 TY N3 TY N2 TY N2	22331122331122331122331122	1212121212121212121212121212	41.402 33.274 46.482 35.560 25.908 24.892 24.892 24.892 36.322 32.258 30.988 20.574 22.352 18.034 20.574 25.654 16.510 17.018 18.034 17.272 16.764 16.002	55.118 38.100 49.530 37.592 28.956 25.908 32.258 22.098 23.622 19.558 22.352 26.924 17.272 18.288 20.574 19.050 18.034 17.272 26.670 19.812 20.828 20.828	64.516 40.894 51.816 39.370 26.670 26.416 40.640 35.052 33.528 23.114 25.146 20.320 23.876 27.432 17.780 19.304 19.304 19.304 18.542	77.216 61.976 81.280 55.372 38.354 31.496 32.004 49.022 42.164 37.592 30.480 33.274 26.670 33.020 29.464 22.352 25.908 27.686 37.592 29.972 26.416 25.400 55.626 31.750 35.814 33.020	59.690 43.688 57.404 41.910 30.988 27.178 27.178 27.178 35.814 33.528 24.130 26.162 21.082 24.892 27.432 18.542 20.574 20.574 20.566 19.304
OBS	BRVAVG	VFOUL	NVFOUL	ACENTER	AMIDDLE	AOUTER	т	FOUL P	VOLAT	BRVDWP	DATE	
2222333333333344423456789012 333333333344423456789012	55.626 51.308 46.736 42.418 35.816 52.578 54.610 34.798 56.3882 53.088 46.4886 51.3014 31.7500 22.8690 22.654 34.5900 22.654 31.5900 20.734 63.5006 53.086 108.7120	2.3250 3.4100 6.3550 7.2075 2.4800 1.7820 1.5500 3.5650 3.4100 6.2000 7.5950 4.3400 1.3950 1.0850 11.1755 11.43950 3.310 8.5095 3.317 2.201 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.40 5.20 5.40 5.90 2.40 5.70 7.90 11.60 8.00 4.50 3.50 4.70 3.50 3.90 3.80 3.90 3.80 6.70 4.90 8.24 2.52	1.7 2.0 2.5 3.0 5.0 3.0 2.5 2.5 2.5 1.0 9 4.8 1.0 9 4.0 6 8.9 6 7.5 3.5 3.5	4.09 2.81 2.0547612913.07 3.07802.470 1.243.13078021.07 1.071.0.01 	358954225400111 101111011714444	.6425 .4250 .9125 .7650 .5025 .4800 .1925 .6500 .2300 .2300 .2300 .2300 .2300 .4000 .3950 .8600 .8600 .3950 .89025 .9025 4.3995 4.3995 4.3995 4.5105 4.4950 3.1310 .7872	0.638298 0.628571 0.713043 0.738095 0.450704 0.625000 0.571429 0.686567 0.733333 0.606061 0.612500 0.612500 0.622222 0.750000 0.777778 0.624242 0.638961 0.624242 0.638961 0.624242 0.638961 0.624242 0.737931 0.737931 0.702970 0.609714	0.99087 0.74257 1.05978 0.90244 0.68263 0.72340 0.40157 0.73913 0.61860 0.92701 0.39189 0.50820 0.36842 0.43564 0.55497 0.55497 0.54900 0.71287 0.59559 0.88235 0.78889 0.56198 0.42000 0.37321 0.19159 0.28772	870910 870910 870910 870910 871001 871001 871001 871001 871001 871001 87001 880504 880504 880504 880504 880504 880504 880601 880601 880601 880601 880601 880601 880705 880705	

102

1

}

)

)

)

)

)

																	S	AS						19:41 FR	DAY, JANU	JARY 12,	1990
0 B S	MO	D A Y	Y R	S E R V I C E	CLEAN	C O N D	TANK	G R I D	N	D W P 5	1	D W P 7 5	D W P 1 0	D W P 2 0	D W P A V G	B R V A V G		V F O U L	N F U L	A C E N T E R	AMIDDLE	A O U T E R	T F O U L	P V O L A T	B R V D W P	D A T E	
53 55 55 57 59 61	777777777777777777777777777777777777777	55555555555	88 88 88 88 88 88 88 88 88	25 25 25 25 25 25 25	G	DIRTY DIRTY HOSE MM HOSE MM HOSE MM NFW	\$ \$\$\$ \$\$\$\$\$\$	3 3 1 1 2 2 3 3 4			2 2 1 1 1 1 1	1.844 5.908 8.034 7.526 7.780 7.018 8.288 7.526		40.64 48.00 24.63 23.11 25.65 24.89 26.41 24.38	068442645	54. 38. 24. 18. 18. 15. 21. 18. 12.	102 862 638 288 034 494 844 034	1.11135	0.790502	2.6	• • • • • • •	• • • • • • •	1.9018	35 0.58435	2 0.40376 0.66667 0.73196 0.95833 0.98592 1.09836 0.83721 0.97183 0.94898	880705 880705 880705 880705 880705 880705 880705 880705 880705	

}

,

,

3

)

)

.

)

))

APPENDIX III PLANT PROCESS DATA

This appendix contains a summary of the process data for Terminal Island, Valencia and Whittier Narrows for the period of testing and some period, up to one year, prior to testing. The average of all process data are presented, followed by monthly averages.

KEY:

~

~

QAVG	=	average influent flow rate (MGD)
QRAVG	=	average recycle flow rate (MGD)
QWAVG	=	average waste sludge flow rate (MGD)
QAIR	=	air flow rate (1000 sft ³ /day)
PEFFSS	=	primary effluent TSS (mg/L)
SEFFSS	=	secondary effluent TSS (mg/L)
PECOD	Ξ	primary effluent COD (mg/L)
SECOD	=	secondary effluent COD (mg/L)
PEBOD	=	primary effluent BOD ₅ (mg/L)
FEBOD	Ξ	secondary effluent BOD ₅ (mg/L)
DO	=	aeration tank DO (mg/L) (Terminal Island only)
DOIMIN, DOIMAX	=	aeration tank maximum and minimum DO's (mg/L). Valencia and
.*		Whittier Narrows only
MCRT	=	mean cell retention time (days)
MCRTA	=	average mean cell retention time (days) (Valencia and Whittier
		Narrows only)
SRT	=	solids retention time (days) neglects secondary clarifier solids
		(Valencia and Whittier Narrows only)
MLSS	=	mixed liquor suspended solids (mg/L)
MLVSS	=	mixed liquor volatile suspended solids (mg/L)
XRAVG	=	recycle suspended solids (mg/L)
FM	=	food-to-mass ratio (days ⁻¹) (COD and MLVSS tanks)
SVI or SVI1	=	sludge volume index (ml/G)
TEMP	=	mixed liquor temperature (°F)

Terminal Island

~

7

23:31 MONDAY,	JANUARY 16	5,1989 1
---------------	------------	----------

1

J

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
QAVG	489	20.58118609	2.05659022	14.5000000	28.2000000	0.09300222	10064.2000	4.22956	9.993
ORAVG	457	16.71006565	1,94378999	10,5000000	23.0000000	0.09092666	7636.5000	3.77832	11.632
QWAVG	457	0.34211160	0.10361310	0.000000	0.9760000	0.00484682	156.3450	0.01074	30.286
QAIR	457	46.00464989	4.82418412	33.2000000	59.2000000	0.22566582	21024.1250	23.27275	10.486
PEFFSS	467	97.80299786	39.93744776	38,0000000	352.0000000	1.84808468	45674.0000	1594.99973	40.835
SEFFSS	489	13.08793456	6.27367954	4.0000000	62.000000	0.28370560	6400.0000	39.35905	47.935
PECOD	487	391.66940452	102.67169474	204,000000	1500.000000	4.65249859	190743.0000	10541.47690	26.214
SECOD	<u> </u>	81,46216769	23.30154915	36.000000	214.0000000	1.05373248	39835.0000	542,96219	28.604
PEBOD	488	180,98565574	48.50607827	78.000000	420.0000000	2.19576699	88321.0000	2352.83963	26.801
FFBOD	489	19,69325153	8.16830988	4,000000	59.000000	0.36938374	9630,0000	66.72129	41.478
00	313	2.75814696	0.93016011	0.900000	5.400000	0.05257576	863.3000	0.86520	33.724
MCRT	447	16 19373602	6 88956488	3,7000000	85,000000	0.32586524	7238,6000	47,46610	42.545
MLSS	456	2581 50877193	487 65699521	1550,0000000	4540,000000	22.83663113	1177168.0000	237809.34498	18.890
MLVSS	456	2186 70228070	406 44069376	1333.0000000	3859,0000000	19.03332935	997136.2400	165194.03754	18.587
XRAVG	456	4894 44956140	886 73044685	2820 0000000	8080,0000000	41.52495776	2231869.0000	786290.88536	18.117
FM	4,57	0 23378556	0 07093287	0,000000	0 5000000	0.00331810	106.8400	0.00503	30.341
FMCOD	456	0 50003533	0 14503794	0.0000000	1 6818182	0.00679202	228, 4265	0.02104	28.953
CVI	450	110 21350640	31 72803020	45 0000000	223 000000	1 48580157	50303 0000	1006 66847	28.762
TEMD	420	78 68507157	3 72835310	70 0000000	90 0000000	0.16860196	38477 0000	13,90062	4.738

)

SAS

)

)

,

)

1

)

					SAS		23:31 MO	NDAY, JANUARY 1	16, 1989 2
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
				YEAR=	87 MONTH=3				
QAVG QAIR PECOD MLSS MCVSS MCRT FM FMCOD SV1 TEMP	31 31 30 31 30 31 30 31 30	21.05483871 48.00000000 411.36666667 3160.32258065 2600.44838710 17.04333333 0.19935484 0.45831186 93.09677419 73.93548387	1.27980173 0.0000000 81.71332704 357.16461070 302.13176057 7.70757278 0.05977377 0.12921518 18.62141212 2.75602956	$\begin{array}{c} 18.700000\\ 48.000000\\ 286.000000\\ 2425.000000\\ 2012.7500000\\ 8.6000000\\ 0.1300000\\ 0.3071667\\ 58.0000000\\ 70.0000000\end{array}$	25.600000 48.000000 654.000000 3715.000000 3715.000000 37.600000 0.3400000 0.7739474 148.000000 79.0000000	0.22985918 0.0000000 14.91874416 64.14865778 54.26446611 1.40720383 0.01073569 0.02359136 3.34450435 0.49499752	$\begin{array}{c} 652.70000\\ 1488.00000\\ 12341.00000\\ 97970.00000\\ 80613.90000\\ 511.300000\\ 6.180000\\ 13.749356\\ 2886.00000\\ 2292.00000\end{array}$	1.63789 0.00000 6677.06782 127566.55914 91283.60075 59.40668 0.00357 0.01670 346.75699 7.59570	6.078 0.000 19.864 11.302 11.618 45.223 29.984 28.194 20.002 3.728
				YEAR=	87 MONTH=4				
QAVG QAIR PECOD MLSS MLVSS MCRT FM FMCOD SVI TEMP	30 30 30 30 29 30 30 30 30	$\begin{array}{c} 19.46666667\\ 50.0000000\\ 434.0000000\\ 2818.0333333\\ 2362.15300000\\ 16.92068966\\ 0.21933333\\ 0.50576859\\ 62.73333333\\ 76.23333333\end{array}$	1.61252283 0.00000000 107.17050546 602.91776092 486.59473064 14.46254718 0.06927871 0.16115504 9.17618106 1.38173637	$\begin{array}{c} 17.1000000\\ 50.00000000\\ 286.0000000\\ 2025.0000000\\ 1713.6000000\\ 0.1200000\\ 0.2422222\\ 48.0000000\\ 74.0000000\end{array}$	$\begin{array}{c} 23.1000000\\ 50.0000000\\ 750.0000000\\ 3945.0000000\\ 3274.3500000\\ 0.3500000\\ 0.9722222\\ 80.0000000\\ 78.0000000\end{array}$	0.29440504 0.00000000 19.56656778 110.07721933 88.83963678 2.68562759 0.01264850 0.02942275 1.67533379 0.25226939	584.000000 1500.000000 13020.000000 84541.000000 70864.590000 490.700000 6.580000 15.173058 1882.000000 2287.000000	2.60023 0.00000 11485.51724 363509.82644 236774.43189 209.16527 0.00480 0.02597 84.20230 1.90920	8.284 0.000 24.694 21.395 20.600 85.473 31.586 31.863 14.627 1.813
				YEAR=	87 MONTH=5				
QAVG QAIR PECOD MLSS MLVSS MCRT FM FMCOD SVI TEMP	31 31 30 25 31 31 31 30 31	$\begin{array}{c} 17.51612903\\ 50.0000000\\ 391.32258065\\ 2876.33333333\\ 2454.1400000\\ 16.89200000\\ 0.15612903\\ 0.37526952\\ 99.43333333\\ 79.90322581 \end{array}$	1.18014032 0.00000000 84.95464951 350.43060539 306.15338206 5.49719019 0.04814405 0.11332118 18.34475089 1.95541707	$\begin{array}{c} 14.500000\\ 50.0000000\\ 204.0000000\\ 2210.000000\\ 1900.600000\\ 8.500000\\ 0.000000\\ 0.000000\\ 60.000000\\ 75.0000000\end{array}$	20.300000 50.0000000 577.0000000 3560.0000000 3097.2000000 0.2500000 0.5567544 140.0000000 86.0000000	0.21195946 0.0000000 15.25830548 63.97958247 55.89570447 1.09943804 0.00864693 0.02035308 3.34927796 0.35120327	543.000000 1550.000000 12131.000000 86290.000000 73624.200000 422.300000 4.840000 11.633355 2983.000000 2477.000000	$\begin{array}{r} 1.39273\\ 0.0000\\ 7217.29247\\ 122801.60920\\ 93729.89334\\ 30.21910\\ 0.00232\\ 0.01284\\ 336.52989\\ 3.82366\end{array}$	6.737 0.000 21.710 12.183 12.475 32.543 30.836 30.197 18.449 2.447
				YEAR=	=87 MONTH=6				
QAVG QAIR PECOD MLSS MLVSS MCRT FM FMCOD SVI TEMP	30 30 30 28 30 30 30 30 30	$\begin{array}{c} 17.80333333\\ 50.0000000\\ 361.6000000\\ 2588.0000000\\ 2240.51666667\\ 23.13214286\\ 0.17933333\\ 0.38646730\\ 110.2000000\\ 79.23333333\end{array}$	1.27805977 0.00000000 62.57332251 305.40137524 278.03487171 15.29333076 0.04517654 0.08107483 16.72165641 1.04000442	$\begin{array}{c} 14.900000\\ 50.000000\\ 240.000000\\ 1900.000000\\ 1634.000000\\ 12.600000\\ 0.100000\\ 0.2525926\\ 84.000000\\ 76.000000\end{array}$	20.300000 50.000000 3190.000000 2743.4000000 84.6000000 0.270000 0.5125000 152.0000000 81.0000000	0.23334072 0.00000000 11.42427341 55.75840744 50.76199034 2.89016785 0.00824807 0.01480217 3.05294280 0.18987796	$\begin{array}{c} 534.100000\\ 1500.000000\\ 10848.000000\\ 77640.000000\\ 67215.500000\\ 647.700000\\ 5.380000\\ 11.594019\\ 3306.000000\\ 2377.000000\end{array}$	1.633437 0.00000 3915.420690 93270.000000 77303.389885 233.885966 0.002041 0.006573 279.613793 1.081609	7.179 0.000 17.305 11.801 12.409 66.113 25.191 20.978 15.174 1.313

•

107

					SAS		23:31 MON	IDAY, JANUARY 16,	1989 3
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
				YEAR=	87 MONTH=7				
QAVG	31	19.53870968	0.92219933	17.40000000	21.50000000	0.16563189	605.700000	0.850452	4.720
QAIR PECOD	0 31	411.03225806	103,27874382	271.00000000	786.00000000	18,54940998	12742.000000	10666.498925	25, 127
MLSS	0	•	•	•	•	•	•	•	•
MCRT	U 0	•	•	•	•	•	•	•	•
FM	ŏ	•	•	•	•	•	•	•	•
FMCOD	0	•	•	•	•	•	•	•	•
TEMP	31	79.29032258	2.00322321	75.00000000	83.00000000	0.35978951	2458.000000	4.012903	2.526
				YEAR=	87 MONTH=8				
QAVG	31	20.07741935	1.44053455	17.0000000	22.2000000	0.25872764	622.400000	2.07514	7.175
QAIR	31	45.76393548	2.24940223	39.1020000	49.8490000	0.40400457	1418.682000	5.05981	4.915
MLSS	31	2760.00000000	355.04929235	2065.0000000	3420.0000000	63.76873539	85560.000000	126060.00000	12.864
MLVSS	31	2337.24354839	296.65811881	1775.9000000	2872.8000000	53.28137103	72454.550000	88006.03946	12.693
MCRT	31	17.23548387	4.93136549	10.6000000	30.6000000	0.88569939	534.300000	24.31837	28.612
FMCOD	31	0.42231781	0.08772012	0.2868627	0.6388462	0.01575500	13.091852	0.00769	20.771
SVI TEMP	31	101.87096774 83.09677419	21.37247753	74.0000000	173.0000000 88.0000000	3.83861028	3158.000000 2576.000000	456.78280 3.15699	20.980 2.138
				YFAR:	=87 MONTH=9				
0.0.10	20	01 5000000	1 11565055	10 700000		0.05846080	647 000000	2 00100	6 666
	30	21.59333333 48 94333333	1.41565955	41.9000000	53,600000	0.20846289	1468.300000	10.87013	6.736
PECOD	30	384.433333333	68.09966496	268.0000000	505.0000000	12.43324089	11533.000000	4637.56437	17.714
MLSS	30	2718.50000000	328.82012167	2105.0000000	3290.0000000	60.03406600	81555.000000	108122.67241	12.096
MLVSS MCRT	30	2322.39333333	303.28404455	11.7000000	27.3000000	0.57218945	482,200000	9.82202	19.498
FM	30	0.25400000	0.05524865	0.1600000	0.3600000	0.01008698	7.620000	0.00305	21.751
FMCOD	30	0.48873315	0.08648818	0.3415385	0.6391905	0.01579051	14.661994	0.00748	17.696
TEMP	30 30	85.76666667	2.54183389	82.0000000	90.0000000	0.46407325	2573.000000	6.46092	2.964
				YEAR	=87 MONTH=10				
QAVG	31	22.11935484	1,99422823	16.800000	25.2000000	0.35817396	685.700000	3.97695	9.016
QAIR	31	50.55483871	5.57302065	39.900000	59.2000000	1,00094406	1567.200000	31.05856	11.024
PECOD	31	429.41935484	112.83491605	254.0000000	811.0000000	20.26574918	13312.000000	12731.71828	26.276
MLVSS	31	2689.43709677	441.28502467	2141.4000000	3859.0000000	79.25713014	83372.550000	194732.47299	16.408
MCRT	31	15.19032258	3.09508803	7.100000	22.7000000	0.55589422	470.900000	9.57957	20.375
EMCOD	31	0.21129032	0.04022785	0.1300000	0.2900000	0.00722513	6.550000	0.00162	19.039 26 h50
SVI	31	108.54838710	20.00139780	73.0000000	156.0000000	3.59235709	3365.000000	400.05591	18.426
TEMP	31	82.74193548	2.03253113	80.0000000	88.0000000	0.36505337	2565.000000	4.13118	2.456

}

)

)

1

)

)

108

N I

)

)

)

)

}

					SAS		23:31 MON	DAY, JANUARY 16	, 1989 4
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
				YEAR=8	37 MONTH=11				
QAVG QAIR PECOD MLSS MLVSS MCRT FM FMCOD SVI TEMP	30 30 30 30 30 30 30 30 30 30	20.79666667 49.89666667 371.63333333 2434.8333333 1971.86666667 19.56000000 0.22333333 0.47227598 66.96666667 80.53333333	1.42235437 3.47031583 45.31155241 260.57126675 237.46896869 5.56804925 0.04088110 0.07884016 16.85533443 0.93710241	$18.600000 \\44.300000 \\281.000000 \\2040.000000 \\1611.600000 \\11.600000 \\0.160000 \\0.3447222 \\45.000000 \\79.000000 \\79.000000 \\$	$\begin{array}{c} 23.600000\\ 56.800000\\ 485.000000\\ 3085.000000\\ 2591.400000\\ 33.300000\\ 0.310000\\ 0.6480603\\ 105.000000\\ 83.000000\\ \end{array}$	0.25968519 0.63359009 8.27271979 47.57358688 43.35570362 1.01658206 0.00746383 0.01439418 3.07734896 0.17109071	$\begin{array}{c} 623.90000\\ 1496.90000\\ 11149.00000\\ 73045.00000\\ 59156.00000\\ 586.80000\\ 6.700000\\ 14.168279\\ 2009.00000\\ 2416.00000\end{array}$	2.023092 12.043092 2053.136782 67897.385057 56391.511092 31.003172 0.001671 0.006216 284.102299 0.878161	6.839 6.955 12.193 10.702 12.043 28.467 18.305 16.694 25.170 1.164
				YEAR=	87 MONTH=12				
QAVG QAIR PECOD MLSS MLVSS MCRT FM FMCOD SVI TEMP QAVG QAIR PECOD MLSS MLVSS MCRT FM	31 31 31 31 31 31 31 31 31 31 31 31 31 3	20.63870968 42.56451613 335.93548387 2378.38709677 1980.83064516 15.47096774 0.21129032 0.46853817 144.96774194 75.96774194 75.96774194 23.01935484 45.39354839 372.00000000 2674.35483871 2228.34838710 15.38064516 0.29290323	1.52919966 3.43865753 44.95919297 270.86093325 225.96725931 3.05332535 0.03422883 0.07835756 36.31297644 1.99137927 1.80100330 2.70689681 66.33701832 326.82753336 280.23445585 2.40602291 0.07142332	17.400000 36.100000 234.000000 1960.000000 1646.400000 0.130000 0.3380000 76.000000 71.000000 40.600000 227.000000 2050.000000 1681.000000 11.300000 0.1700000	24.500000 48.200000 2915.000000 23.800000 0.310000 0.6668229 223.000000 80.000000 88 MONTH=1 26.100000 51.200000 532.000000 3525.000000 2961.000000 0.4600000	0.27465237 0.61760112 8.07490943 48.64805972 40.58491786 0.54839342 0.00614768 0.01407343 6.52200310 0.35766228 0.32346974 0.48617302 11.91448021 58.69995784 50.33159408 0.43213447 0.01282801	639.800000 1319.500000 10414.000000 73730.000000 61405.750000 479.600000 14.524683 4494.000000 2355.000000 1407.200000 1407.200000 11532.000000 82905.000000 69078.800000 476.800000 9.080000	2.338452 11.824366 2021.329032 73365.645161 51061.202280 9.322796 0.001172 0.006140 1318.632258 3.965591 	7.409 8.079 13.383 11.388 11.408 19.736 16.200 16.724 25.049 2.621 7.824 5.963 17.833 12.221 12.576 15.643 24.385
FMCOD	31	0.61666221	0.12289753	0.3584211	0.8624000	0.02207305 3.61643453	19.116529	0.01510 405 43656	19.929
TEMP	31	74.61290323	2.67927129	72.0000000	87.0000000	0.48121133	2313.000000	7.17849	3.591
				YEAR=					
QAVG QAIR PECOD MLSS MLVSS MCRT FM FMCOD SVI TEMP	29 29 29 29 29 29 29 29 29 29	22.03448276 41.00689655 362.55172414 2611.55172414 2236.21206897 13.31724138 0.27551724 0.56816970 146.79310345 74.89655172	2.02118704 2.36823187 57.49322085 231.89862105 202.00869397 1.65617221 0.06162016 0.10141737 16.64842187 1.89632780	$\begin{array}{c} 20.300000\\ 38.200000\\ 248.000000\\ 2255.000000\\ 1939.300000\\ 9.700000\\ 0.180000\\ 0.3951923\\ 112.000000\\ 71.000000\end{array}$	$\begin{array}{c} 28.200000\\ 46.300000\\ 491.000000\\ 3235.000000\\ 2782.100000\\ 17.300000\\ 0.450000\\ 0.7583333\\ 190.000000\\ 78.000000\\ \end{array}$	0.37532501 0.43976962 10.67622309 43.06249286 37.51207274 0.30754346 0.01144258 0.01883273 3.09153433 0.35213923	639.00000 1189.20000 10514.00000 75735.00000 64850.150000 386.200000 7.990000 16.476921 4257.000000 2172.000000	4.085197 5.608522 3305.470443 53776.970443 40807.512438 2.742906 0.003797 0.010285 277.169951 3.596059	9.173 5.775 15.858 8.880 9.034 12.436 22.365 17.850 11.341 2.532

109

,

						SAS		23:31 MOI	DAY, JANUARY 1	6,1989 5
	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAX I MUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
					YEAR=8	38 MONTH=3				
	QAVG QAIR PECOD MLSS MLVSS MCRT FM FMCOD SVI TEMP	31 31 31 31 31 31 31 31 31 31	21.82903226 40.67419355 352.29032258 2098.61290323 1802.15000000 14.30967742 0.25774194 0.53997118 118.54838710 76.25806452	1.45239883 2.39331956 39.94929582 377.30047066 319.30415072 3.05737958 0.05619666 0.08087733 20.66049162 2.03253113	$\begin{array}{c} 18.900000\\ 33.600000\\ 287.000000\\ 1550.000000\\ 1333.000000\\ 10.000000\\ 0.1400000\\ 0.2751724\\ 60.000000\\ 73.000000\end{array}$	$\begin{array}{c} 26.500000\\ 45.100000\\ 456.000000\\ 3570.000000\\ 3034.500000\\ 28.000000\\ 0.410000\\ 0.7125000\\ 149.000000\\ 83.000000\\ \end{array}$	0.26085853 0.42985288 7.17510534 67.76516499 57.34871843 0.54912158 0.01009322 0.01452600 3.71073384 0.36505337	$\begin{array}{c} 676.70000\\ 1260.90000\\ 10921.00000\\ 65057.00000\\ 55866.65000\\ 443.60000\\ 7.990000\\ 16.739107\\ 3675.000000\\ 2364.00000\end{array}$	2.10946 5.72798 1595.94624 142355.64516 101955.14067 9.34757 0.00316 0.00654 426.85591 4.13118	6.654 5.884 11.340 17.979 17.718 21.366 21.803 14.978 17.428 2.665
					YEAR=	88 MONTH=4				
1	QAVG QAIR PECOD MLSS MLVSS MCRT FM FMCOD SVI TEMP	30 30 30 30 30 30 30 30 30 30	21.54666667 42.15333333 387.86666667 2187.16666667 1883.56500000 14.24666667 0.2793333 0.53291291 113.10000000 77.73333333	1.49360322 3.34300436 72.23798472 252.81069425 222.64938501 2.04226604 0.07524367 0.10165381 14.83321064 1.91064772	$\begin{array}{c} 17.500000\\ 35.300000\\ 264.000000\\ 1765.000000\\ 1517.900000\\ 8.600000\\ 0.170000\\ 0.360000\\ 78.000000\\ 74.000000\end{array}$	$\begin{array}{c} 25.000000\\ 48.300000\\ 573.000000\\ 2945.000000\\ 2562.150000\\ 18.500000\\ 0.500000\\ 0.7142857\\ 145.000000\\ 80.000000\\ \end{array}$	0.27269339 0.61034630 13.18879125 46.15670667 40.65003020 0.37286506 0.01373755 0.01855936 2.70816136 0.34883495	646.400000 1264.600000 11636.000000 65615.000000 56506.950000 427.400000 8.380000 15.987387 3393.000000 2332.000000	2.230851 11.175678 5218.326437 63913.247126 49572.748647 4.170851 0.005662 0.010333 220.024138 3.650575	6.932 7.931 18.624 11.559 11.821 14.335 26.937 19.075 13.115 2.458
10				*********	YEAR=	88 MONTH=5				
	QAVG QAIR PECOD MLSS MLVSS MCRT FM FMCOD SVI TEMP	31 31 31 31 31 31 31 31 31 31	$\begin{array}{c} 20.15161290\\ 43.01935484\\ 411.74193548\\ 2139.03225806\\ 1847.78387097\\ 13.09354839\\ 0.26419355\\ 0.55194243\\ 153.41935484\\ 79.35483871 \end{array}$	1.07513440 4.08512908 81.14553499 139.45381168 120.42909421 1.22798900 0.06417550 0.12530492 20.87386595 1.11200681	$\begin{array}{c} 17.100000\\ 34.500000\\ 294.000000\\ 1920.000000\\ 1651.200000\\ 11.300000\\ 0.150000\\ 0.3920000\\ 112.000000\\ 76.000000\end{array}$	$\begin{array}{c} 22.2000000\\ 53.3000000\\ 562.0000000\\ 2460.0000000\\ 2115.6000000\\ 16.8000000\\ 0.4100000\\ 0.8348551\\ 210.0000000\\ 81.0000000\\ \end{array}$	0.19309984 0.73371084 14.57416832 25.04664397 21.62970384 0.22055334 0.01152626 0.02250543 3.74905700 0.19972232	624.700000 1333.600000 12764.000000 66310.000000 57281.300000 405.900000 8.190000 17.110215 4756.000000 2460.000000	1.155914 16.688280 6584.597849 19447.365591 14503.166731 1.507957 0.004118 0.015701 435.718280 1.236559	5.335 9.496 19.708 6.519 6.517 9.379 24.291 22.703 13.606 1.401
					YEAR=	88 MONTH=6				
	QAVG QAIR PECOD MLSS MLVSS MCRT FM FMCOD SVI TEMP	31 30 30 30 30 30 30 30 30 30	20.15161290 42.00143333 491.0000000 2122.16666667 1839.11833333 0.28666667 0.64665449 118.76666667 79.35483871 U C L A	1.07513440 5.92291606 248.06965095 373.01586204 318.89994552 5.14060800 0.08363852 0.27569115 23.29227093 1.11200681 / 0 A C S Y M	17.100000 33.200000 276.000000 1605.000000 1380.300000 0.150000 0.3650000 76.000000 76.0000000	22.200000 56.1040000 1500.0000000 2780.000000 2418.600000 26.900000 0.4800000 1.6818182 166.000000 81.0000000 VS2 REL 3.8	0.19309984 1.08137158 45.29111455 68.10306732 58.22289792 0.93854232 0.01527023 0.05033409 4.25256740 0.19972232 CPU MODEL 309	624.700000 1260.043000 14730.000000 63665.000000 55173.550000 472.900000 8.600000 19.399635 3563.000000 2460.000000	1.15591 35.08093 61538.55172 139140.83333 101697.17526 26.42585 0.00700 0.07601 542.52989 1.23656	5.335 14.102 50.523 17.577 17.340 32.611 29.176 42.633 19.612 1.401

~

)

)

)

)

)

)

)

)

)

)

Valencia

					SAS		23:22 MON	DAY, JANUARY	16, 1989 1
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAX I MUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
QAVG	547	6.42453382	0.92313584	4.0100000	9.2600000	0.03947044	3514.2200	0.8522	14.369
QRAVG	547	2.26552102	0.37610479	1.4800000	4.0500000	0.01608108	1239.2400	0.1415	16.601
QWAVG	547	0.13444223	0.03891171	0.0004000	0.2360000	0.00166374	73.5399	0.0015	28.943
QAIR	547	7.98098720	1.26496107	4.900000	11.2200000	0.05408583	4365.6000	1.6001	15.850
PEFFSS	527	114.59962049	34.66582784	66.0000000	540.0000000	1.51006718	60394.0000	1201.7196	30.250
SEFFSS	538	8.04646840	6.28050667	1.0000000	52.0000000	0.27077187	4329.0000	39.4448	78.053
PECOD	528	330.29734848	42.42941043	209.0000000	529.0000000	1.84650308	174397.0000	1800.2549	12.846
SECOD	537	40.10242086	9.99004793	23.0000000	102.0000000	0.43110239	21535.0000	99.8011	24.911
PEBOD	78	176.32051282	37.67754286	97.0000000	337.0000000	4.26614165	13753.0000	1419.5972	21.369
FEBOD	78	8.21794872	5.23883460	1.0000000	28.0000000	0.59318121	641.0000	27.4454	63.749
DO1MAX	330	2.98151515	1.10972113	1.0000000	6.2000000	0.06108814	983.9000	1.2315	37.220
DOIMIN	328	0.52256098	0.24689539	0.1000000	2,9000000	0.01363252	171.4000	0.0610	47.247
MCRT	482	6.34292344	8.73730164	2.1718000	105.1338000	0.39797318	3057.2891	76.3404	137.749
MCRTA	547	5.33967002	1.59309817	2.3054000	11.4825000	0.06811596	2920.7995	2.5380	29.835
SRT	526	7.15543207	38.46950499	0.8920336	611.9738806	1.67735013	3763.7573	1479.9028	537.627
MLSS	547	3552.08043876	1204,56649024	1079.0000000	7132.0000000	51.50354400	1942988.0000	1450980.4294	33.912
MLVSS	546	2839.62910256	960,93822685	798.4600000	5919.5600000	41.12435968	1550437.4900	923402.2758	33.840
XRAVG	526	5649.64638783	1209,93140319	2086.0000000	9883.0000000	52.75551618	2971714.0000	1463934.0004	21.416
FM	78	0.56707197	0.30209893	0.1931652	1.8058051	0.03420597	44.2316	0.0913	53.273
FMCOD	527	1.05278120	0.43380594	0.3427604	3.3467347	0.01889688	554.8157	0.1882	41.206
SVI	547	209.71115174	82.71483696	93.0000000	741.000000	3.53663104	114712.0000	6841.7443	39.442
TEMP	547	74.97623400	3.72956975	66.0000000	82.0000000	0.15946489	41012.0000	13.9097	4.97

)

)

)

)

)

)

)

7

)

					SAS		23:22 MOI	NDAY, JANUARY	16, 1989 2
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
				YEAR=	87 MONTH=1				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI TEMP	31 31 27 31 26 31 29 4 27 31 31	4.78258065 6.37741935 336.1111111 2111.64516129 1778.32967742 5.87655769 5.41130645 3.88756862 0.53171753 1.18199631 171.51612903 71.61290323	0.32854191 0.41610069 30.70245960 551.11066937 479.96703565 1.64436459 1.07894227 1.55550360 0.14044365 0.30697656 54.35737973 0.95489683	$\begin{array}{r} 4.010000\\ 5.800000\\ 295.000000\\ 1458.000000\\ 1210.140000\\ 3.7098000\\ 3.9409000\\ 2.0542405\\ 0.3847845\\ 0.6579483\\ 93.000000\\ 70.000000\end{array}$	$\begin{array}{c} 5.6100000\\ 7.7000000\\ 416.0000000\\ 3292.0000000\\ 2831.1200000\\ 9.1925000\\ 7.1665000\\ 7.1162234\\ 0.7103587\\ 1.7314968\\ 350.000000\\ 74.000000\\ \end{array}$	0.05900787 0.07473389 5.90869111 98.98239822 86.20462440 0.32248643 0.19378375 0.28884977 0.07022182 0.05907767 9.76287360 0.17150453	$\begin{array}{c} 148.260000\\ 197.700000\\ 9075.000000\\ 65461.000000\\ 55128.220000\\ 152.790500\\ 167.750500\\ 112.739490\\ 2.126870\\ 31.913900\\ 5317.000000\\ 2220.000000\end{array}$	$\begin{array}{c} 0.10794\\ 0.17314\\ 942.64103\\ 303722.96989\\ 230368.35531\\ 2.70393\\ 1.16412\\ 2.41959\\ 0.01972\\ 0.09423\\ 2954.72473\\ 0.91183\end{array}$	6.870 6.525 9.135 26.099 26.990 27.982 19.939 40.012 26.413 25.971 31.692 1.333
				YEAR=	87 MONTH=2	*********			**********
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SV1 TEMP	28 28 28 28 28 28 28 28 28 28 28 28 27 28 28	4.83071429 6.13214286 347.66666667 1870.75000000 1570.07714286 15.12206429 5.81172143 50.22154450 0.77084819 1.47406322 191.64285714 71.85714286	0.23266457 0.22452183 31.58870295 812.06684750 666.15819851 28.30739752 1.53197251 159.02438084 0.09685810 0.26722623 23.05743920 1.14549959	$\begin{array}{r} 4.3300000\\ 5.8000000\\ 306.0000000\\ 1293.0000000\\ 1086.1200000\\ 3.9837000\\ 4.3874000\\ 1.5840368\\ 0.6608871\\ 0.5674226\\ 152.0000000\\ 69.0000000\end{array}$	5.2600000 6.5000000 428.0000000 4918.0000000 4032.7600000 105.1338000 9.9916000 611.9738806 0.8768416 1.9556677 265.0000000 74.0000000	0.04396947 0.04243064 6.07924872 153.46620903 125.89206622 5.34959529 0.28951559 30.05278315 0.04842905 0.05142771 4.35744643 0.21647907	$\begin{array}{c} 135.260000\\ 171.700000\\ 9387.000000\\ 52381.000000\\ 43962.160000\\ 423.417800\\ 162.728200\\ 1406.203246\\ 3.083393\\ 39.799707\\ 5366.000000\\ 2012.000000\end{array}$	$\begin{array}{r} 0.05413\\ 0.05041\\ 997.84615\\ 659452.56481\\ 443766.74544\\ 801.30875\\ 2.34694\\ 25288.75370\\ 0.00938\\ 0.07141\\ 531.64550\\ 1.31217\end{array}$	4.816 3.661 9.086 43.409 42.428 187.193 26.360 316.646 12.565 18.129 12.031 1.594
				YEAR=	87 MONTH=3	********		***********	
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FM FMCOD SVI TEMP	31 31 31 30 31 30 31 30 31 31	4.96580645 6.12580645 325.25806452 5011.87096774 4074.09322581 8.26452000 8.73911613 7.31620125 0.26539727 0.52965445 187.32258065 71.87096774	0.27483054 0.29661169 31.48435351 1183.65103928 975.89725262 1.95365623 1.59135813 2.37703625 0.09953255 0.16799791 47.67975608 0.95714630	4.3500000 5.6000000 280.0000000 2853.0000000 2282.4000000 4.5350000 6.3772000 3.4113391 0.1931652 0.3427604 116.0000000 70.0000000	5.6900000 6.5000000 435.0000000 7132.0000000 5919.5600000 11.3273000 11.4825000 11.0034635 0.4126095 0.9226943 278.0000000 74.0000000	0.04936102 0.05327303 5.65475682 212.59000240 175.27632080 0.35668720 0.28581636 0.43398546 0.04976628 0.03017332 8.56353699 0.17190855	153.94000 189.90000 10083.00000 155368.00000 126296.89000 247.93560 270.91260 219.48604 1.06159 16.41929 5807.00000 2228.00000	0.0755 0.0880 991.2645 1401029.7828 952375.4477 3.8168 2.5324 5.6503 0.0099 0.0282 2273.3591 0.9161	5.534 4.842 9.680 23.617 23.954 23.639 18.210 32.490 37.503 31.713 25.453 1.332

)

)

)

ì

)

113

)

)

						SAS		23:22 MON	IDAY, JANUARY 16	, 1989 3
	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAX I MUM VAL UE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
					YEAR=	87 MONTH=4				
	QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FMCOD SVI TEMP	30 30 30 30 24 30 29 5 30 30 30	$\begin{array}{c} 5.31266667\\ 6.08666667\\ 327.5333333\\ 4373.2000000\\ 3445.3423333\\ 7.51565000\\ 7.19407333\\ 6.42402205\\ 0.38299509\\ 0.67005580\\ 214.2333333\\ 74.33333333\end{array}$	0.63830559 0.58940843 41.22916053 1044.45502701 776.97418207 1.57204501 0.84058723 1.94037032 0.08835493 0.21935987 33.75130479 1.24105998	4.4900000 4.900000 247.000000 2418.000000 1982.7600000 4.7336000 5.5765000 2.7978540 0.2395894 0.370090 148.000000 72.0000000	$\begin{array}{c} 6.6100000\\ 7.5000000\\ 444.0000000\\ 5895.0000000\\ 4564.5600000\\ 11.1731000\\ 8.4903000\\ 9.1714757\\ 0.4562434\\ 1.2526935\\ 288.0000000\\ 76.0000000\end{array}$	0.11653812 0.10761076 7.52738042 190.69052620 141.85542871 0.32089234 0.15346953 0.36031772 0.03951353 0.04004945 6.16211699 0.22658552	$159.38000\\182.60000\\9826.00000\\131196.00000\\103360.27000\\180.37560\\215.82220\\186.29664\\1.91498\\20.10167\\6427.00000\\2230.00000$	0.4074 0.3474 1699.8437 1090886.3034 603688.8796 2.4713 0.7066 3.7650 0.0078 0.0481 1139.1506 1.5402	12.015 9.684 12.588 23.883 22.551 20.917 11.684 30.205 23.069 32.738 15.754 1.670
					YEAR=	87 MONTH=5				
114	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI TEMP	31 31 29 31 23 31 23 27 5 29 31 31	5.77677419 7.91290323 343.31034483 3137.58064516 2545.71806452 5.64600000 4.95249355 4.33720923 0.88902021 1.03773795 220.38709677 77.29032258	0.46924327 0.57604510 50.35027553 941.04207395 737.11184761 4.03761820 1.24921016 2.94534675 0.51894903 0.29308274 60.52474834 1.10131886	4.9300000 6.6000000 286.0000000 1399.0000000 1147.1800000 2.9747000 3.8818000 1.5202751 0.6037489 0.4631186 132.0000000 75.0000000	6.7900000 8.8000000 509.0000000 5163.0000000 4182.0300000 23.2296000 8.0918000 17.1920326 1.8058051 1.6986357 349.0000000 80.0000000	0.08427858 0.10346075 9.34981144 169.01614591 132.38919602 0.84190159 0.22436477 0.56683225 0.23208106 0.05442410 10.87056571 0.19780271	$\begin{array}{r} 179.080000\\ 245.300000\\ 9956.000000\\ 97265.000000\\ 78917.260000\\ 129.858000\\ 153.527300\\ 117.104649\\ 4.445101\\ 30.094401\\ 6832.000000\\ 2396.000000\end{array}$	0.22019 0.33183 2535.15025 885560.18495 543333.87588 16.30236 1.56053 8.67507 0.26931 0.08590 3663.24516 1.21290	8.123 7.280 14.666 29.993 28.955 71.513 25.224 67.909 58.373 28.242 27.463 1.425
					YEAR	=87 MONTH=6				
	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI	30 30 29 30 25 25 27 5 29 30	6.78333333 7.94333333 344.24137931 3424.3333333 2784.05600000 4.61356400 4.96110000 3.50263272 0.53113586 1.13155947 208.20000000	0.34150108 0.77889547 38.99144153 1028.07118811 852.93381130 0.81028670 0.93282556 1.09910601 0.21085836 0.35593665 29.63502122	6.100000 6.300000 287.000000 1506.000000 1204.8000000 3.5918000 4.1577000 1.7087287 0.2576331 0.5276355 160.0000000	7.500000 10.200000 428.000000 6454.000000 5292.2800000 7.3378000 7.2607011 0.7710279 2.2098638 299.0000000	0.06234928 0.14220621 7.24052892 187.69926015 155.72369617 0.16205734 0.17030987 0.21152305 0.09429873 0.06609578 5.41058987	203.50000 238.30000 9983.00000 102730.00000 83521.68000 115.33910 148.83300 94.57108 2.65568 32.81522 6246.00000	0.1166 0.6067 1520.3325 1056930.3678 727496.0865 0.6566 0.8702 1.2080 0.0445 0.1267 878.2345	5.034 9.806 11.327 30.023 30.636 17.563 18.803 31.379 39.700 31.455 14.234

)

)

)

.

)

)

)

)

)

)

					SAS		23:22 MOI	NDAY, JANUARY 1	6,1989 4
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAX I MUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
				YEAR=8	87 MONTH=7				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI TEMP	31 31 29 31 26 31 28 4 29 31 31	7.03612903 8.14903226 321.72413793 4033.64516129 3309.19870968 6.28288462 5.54923871 5.19810606 0.42322874 0.90410613 182.38709677 79.51612903	0.25964947 0.53396851 30.86016451 957.02784872 765.65412830 2.86566358 1.38709658 2.59111448 0.12837251 0.22898232 28.88907224 1.02862263	6.6300000 7.2800000 277.0000000 2652.0000000 2174.6400000 3.3803000 2.4764135 0.2501122 0.4658521 141.0000000 77.0000000	$\begin{array}{c} 7.7300000\\ 8.9800000\\ 400.0000000\\ 6700.0000000\\ 5427.0000000\\ 16.1420000\\ 8.1072000\\ 11.8918977\\ 0.5519114\\ 1.3884260\\ 260.000000\\ 82.0000000\\ \end{array}$	0.04663442 0.09590357 5.73058869 171.88727582 137.51554096 0.56200287 0.24912990 0.48967461 0.06418625 0.04252095 5.18863054 0.18474608	$\begin{array}{c} 218.12000\\ 252.62000\\ 9330.00000\\ 125043.00000\\ 102585.16000\\ 163.35500\\ 172.02640\\ 145.54697\\ 1.69291\\ 26.21908\\ 5654.00000\\ 2465.00000\end{array}$	0.06742 0.28512 952.34975 915902.30323 586226.24418 8.21203 1.92404 6.71387 0.01648 0.05243 834.57849 1.05806	3.690 6.553 9.592 23.726 23.137 45.611 24.996 49.847 30.332 25.327 15.839 1.294
				YEAR=	87 MONTH=8				
QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FMCOD SVI TEMP	31 31 31 30 31 31 31 31 31 31 31	$\begin{array}{r} 7.11419355\\ 8.07419355\\ 352.93548387\\ 3918.93548387\\ 3170.05967742\\ 5.73530667\\ 5.27687097\\ 4.67264893\\ 0.51817652\\ 1.04497989\\ 196.70967742\\ 80.32258065 \end{array}$	0.42767413 0.55073753 35.10169558 900.13250637 718.12307366 4.58262120 1.23116915 4.67648920 0.26668301 0.30384372 25.31954916 0.47519096	$\begin{array}{c} 6.1000000\\ 7.1000000\\ 289.0000000\\ 2363.0000000\\ 1961.2900000\\ 2.7645000\\ 3.8254000\\ 2.4090651\\ 0.342295\\ 0.6296243\\ 160.000000\\ 80.000000\\ \end{array}$	8.1300000 9.8000000 435.0000000 5857.0000000 4688.7600000 28.6971000 8.1413000 28.6281608 0.9144062 1.9800953 254.0000000 81.0000000	0.07681254 0.09891538 6.30445064 161.66857067 128.97871154 0.83666833 0.22112451 0.83992225 0.13334151 0.05457194 4.54752527 0.08534682	$\begin{array}{r} 220.54000\\ 250.30000\\ 10941.00000\\ 121487.00000\\ 98271.85000\\ 172.05920\\ 163.58300\\ 144.85212\\ 2.07271\\ 32.39438\\ 6098.00000\\ 2490.00000\end{array}$	$\begin{array}{r} 0.18291\\ 0.30331\\ 1232.12903\\ 810238.52903\\ 515700.74892\\ 21.00042\\ 1.51578\\ 21.86955\\ 0.07112\\ 0.09232\\ 641.07957\\ 0.22581\end{array}$	6.012 6.821 9.946 22.969 22.653 79.902 23.331 100.082 51.466 29.077 12.872 0.592
				YEAR=	=87 MONTH=9				
QAVG QAIR PECOD MLSS MCVSS MCRT MCRTA SRT FM FMCOD SVI TEMP	30 30 29 30 29 30 29 59 30 30	6.87866667 8.53633333 332.96551724 3577.8000000 2837.84500000 6.99673448 5.89497333 5.47795089 0.69522472 1.09993529 207.50000000 79.866666667	0.38671680 0.99904259 30.75070587 885.86623883 670.56983009 4.34455564 1.02264779 3.54397109 0.58888468 0.48876866 42.25517720 0.77607915	$\begin{array}{r} 6.340000\\ 6.3700000\\ 282.0000000\\ 1170.0000000\\ 936.0000000\\ 3.7089000\\ 4.4273000\\ 2.7415930\\ 0.3156471\\ 0.5966076\\ 142.0000000\\ 78.0000000\end{array}$	$\begin{array}{c} 7.650000\\ 10.6400000\\ 411.0000000\\ 6041.0000000\\ 4651.5700000\\ 26.0363000\\ 8.1451000\\ 21.1937919\\ 1.7366839\\ 3.3467347\\ 314.0000000\\ 81.0000000\\ \end{array}$	0.07060451 0.18239939 5.71026273 161.73630731 122.42874077 0.80676373 0.18670909 0.65809891 0.26335724 0.09076205 7.71470457 0.14169202	206.36000 256.09000 9656.00000 107334.0000 85135.35000 202.90530 176.84920 158.86058 3.47612 31.89812 6225.00000 2396.00000	0.14955 0.99809 945.60591 784758.99310 449663.89703 18.87516 1.04581 12.55973 0.34679 0.23889 1785.50000 0.60230	5.622 11.703 9.235 24.760 23.630 62.094 17.348 64.695 84.704 44.436 20.364 0.972

)

)

}

)

)

115

)

)

)

					SAS		23:22 MON	NDAY, JANUARY 16	5 , 1989 5
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAX I MUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
				YEAR=	87 MONTH=10				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI TEMP	31 31 31 31 29 31 30 4 31 31	7.17483871 8.80225806 345.51612903 3370.83870968 2647.64838710 3.56732069 3.85462258 2.70019963 0.57292993 1.22837083 183.03225806 70967742	0.85059928 0.95218594 51.50525602 581.40617453 472.94709378 1.09844601 0.72056760 1.05076124 0.22885801 0.44353980 35.24058633 0.78288136	4.790000 6.780000 258.000000 1943.000000 1437.820000 2.1875000 2.5818000 1.0848129 0.3599885 0.5939704 110.0000000	9.2600000 10.4300000 499.000000 3650.400000 6.1283000 6.4166000 6.6679576 0.8751820 2.6497879 258.0000000 8.10000000	0.15277214 0.17101764 9.25061706 104.42363158 84.94380562 0.20397630 0.12941776 0.19184188 0.11442900 0.07966210 6.32939615 0.14060964	222.42000 272.87000 10711.00000 104496.00000 82077.10000 103.45230 119.49330 81.00599 2.29172 38.07950 5674.00000 2471.00000	0.72352 0.90666 2652.79140 338033.13978 223678.95351 1.20658 0.51922 1.10410 0.05238 0.19673 1241.89892 0.61290	11.855 10.818 14.907 17.248 17.863 30.792 18.694 38.914 39.945 36.108 19.254 0.982
IEMP	31	19.10961142	0.78288130	79.0000000	81.000000	0.14080984	2471.00000	0.01290	0.902
				YEAR=	87 MONTH=11			****	
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI TEMP	30 30 30 28 30 30 30 30 30 30 30	$\begin{array}{c} 6.99400000\\ 7.90133333\\ 319.40000000\\ 2293.9333333\\ 1689.95900000\\ 3.36254643\\ 3.15282333\\ 2.00402714\\ 0.86771794\\ 1.75130151\\ 151.70000000\\ 75.96666667\end{array}$	$\begin{array}{c} 0.44051381\\ 0.75908172\\ 48.07938837\\ 536.84178195\\ 455.36530491\\ 0.97263437\\ 0.83387868\\ 0.81039493\\ 0.20303435\\ 0.48802740\\ 32.07765362\\ 1.58621939\end{array}$	$\begin{array}{c} 6.3300000\\ 6.5700000\\ 247.0000000\\ 1079.0000000\\ 798.4600000\\ 2.1718000\\ 2.3054000\\ 0.8920336\\ 0.6030443\\ 1.0783851\\ 94.0000000\\ 73.0000000\end{array}$	$\begin{array}{r} 7.8700000\\ 9.7000000\\ 416.0000000\\ 3437.0000000\\ 2680.8600000\\ 5.8436000\\ 4.6871000\\ 3.9344879\\ 1.0703471\\ 3.0354069\\ 203.0000000\\ 79.0000000\\ \end{array}$	0.08042645 0.13858873 8.77805519 98.01345126 83.13794980 0.18381062 0.15224472 0.14795719 0.10151717 0.08910120 5.85655149 0.28960271	$\begin{array}{c} 209.820000\\ 237.040000\\ 9582.000000\\ 68818.00000\\ 50698.770000\\ 94.151300\\ 94.584700\\ 60.120814\\ 3.470872\\ 52.539045\\ 4551.000000\\ 2279.000000\\ \end{array}$	0.19405 0.57621 2311.62759 288199.09885 207357.56092 0.94602 0.69535 0.65674 0.04122 0.23817 1028.97586 2.51609	6.298 9.607 15.053 23.403 28.945 28.926 26.449 40.438 23.399 27.867 21.145 2.088
				YEAR:	-87 MONTH=12				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI TEMP	31 31 31 31 31 31 30 5 31 30 5 31 31 31	6.96129032 8.79838710 326.25806452 3382.38709677 2623.66290323 5.05382800 4.18585161 3.57437256 0.82707524 1.20433786 163.16129032 71.06451613	0.43643054 1.07067921 43.13542067 1199.14079455 954.44499949 3.57226432 0.74440432 2.67861295 0.50343352 0.44297066 61.10269867 2.78011371	6.290000 7.050000 223.000000 1484.000000 1157.5200000 2.4874000 3.3432000 1.7440373 0.3328250 0.6110927 119.000000 66.0000000	7.870000 11.220000 407.000000 5661.000000 4406.620000 21.1668000 5.766900 16.5753667 1.6556594 2.3848929 317.000000 76.000000	0.07838524 0.19229966 7.74735026 215.37204458 171.42338240 0.71445286 0.13369896 0.48904558 0.22514231 0.07955988 10.97436865 0.49932316	215.80000 272.75000 10114.00000 104854.00000 81333.55000 126.34570 129.76140 107.23118 4.13538 37.33447 5058.00000 2203.00000	0.1905 1.1464 1860.6645 1437938.6452 910965.2571 12.7611 0.5541 7.1750 0.2534 0.1962 3733.5398 7.7290	6.269 12.169 13.221 35.453 35.453 35.453 70.684 17.784 74.935 60.869 36.78 37.449 3.91

)

)

116

λ

						SAS		23:22 MO	NDAY, JANUARY	16, 1989 6
	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
					YEAR=	88 MONTH=1				
	QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FMCOD SVI TEMP	31 31 31 31 29 31 31 31 31 31	$\begin{array}{r} 6.84580645\\ 9.47161290\\ 318.32258065\\ 3702.74193548\\ 2954.15516129\\ 4.90711034\\ 4.80990000\\ 3.59517823\\ 0.40406804\\ 0.97862563\\ 342.70967742\\ 69.45161290\\ \end{array}$	$\begin{array}{c} 0.42682373\\ 0.70136104\\ 44.64182426\\ 866.42891487\\ 666.95358321\\ 1.27954966\\ 0.60932778\\ 1.36437791\\ 0.04737431\\ 0.30981464\\ 103.08805089\\ 0.99460913\\ \end{array}$	$\begin{array}{c} 6.090000\\ 8.080000\\ 239.000000\\ 1988.000000\\ 1590.400000\\ 3.0580000\\ 3.8268000\\ 1.7056966\\ 0.3372154\\ 0.5386806\\ 155.000000\\ 67.000000\end{array}$	$\begin{array}{r} 8.090000\\ 10.660000\\ 439.000000\\ 5780.000000\\ 4566.200000\\ 6.9791000\\ 6.1007000\\ 6.5645283\\ 0.4489207\\ 1.6332854\\ 511.000000\\ 71.000000\end{array}$	0.07665980 0.12596816 8.01790833 155.61522694 119.78839975 0.23760641 0.10943850 0.24504951 0.02368715 0.05564435 18.51516052 0.17863707	212.22000 293.62000 9868.00000 114785.00000 91578.81000 142.30620 149.10690 111.45053 1.61627 30.33739 10624.00000 2153.00000	0.18218 0.49191 1992.89247 750699.06452 444827.08216 1.63725 0.37128 1.86153 0.00224 0.09599 10627.14624 0.98925	6.235 7.405 14.024 23.400 22.577 26.075 12.668 37.950 11.724 31.658 30.080 1.432
					YEAR=	88 MONTH=2				***
117	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI TEMP	29 29 29 29 29 29 29 29 29 29 29 29	$\begin{array}{r} 6.74827586\\ 8.94620690\\ 317.75862069\\ 3211.03448276\\ 2646.11724138\\ 5.01770714\\ 4.68811379\\ 3.77916556\\ 0.52321079\\ 1.14602337\\ 334.06896552\\ 70.93103448 \end{array}$	0.32036886 0.90766739 34.53947552 1058.28518580 866.09894506 1.86453642 1.27887977 2.06527848 0.17802996 0.48758418 198.82367117 0.75266358	$\begin{array}{r} 6.2400000\\ 6.9300000\\ 256.0000000\\ 1343.0000000\\ 1141.5500000\\ 2.4836000\\ 3.1361000\\ 1.6793363\\ 0.2622924\\ 0.5094436\\ 100.000000\\ 69.0000000\\ \end{array}$	$\begin{array}{r} 7.7400000\\ 10.2900000\\ 383.0000000\\ 5695.0000000\\ 4442.1000000\\ 9.3349000\\ 7.5146000\\ 8.2321270\\ 0.6596628\\ 2.4787627\\ 741.0000000\\ 72.0000000\end{array}$	0.05949100 0.16854960 6.41381959 196.51862546 160.83053650 0.35236426 0.23748201 0.38351259 0.08901498 0.09054211 36.92062886 0.13976612	$195.700000 \\ 259.440000 \\ 9215.000000 \\ 93120.000000 \\ 76737.400000 \\ 140.495800 \\ 135.955300 \\ 109.595801 \\ 2.092843 \\ 33.234678 \\ 9688.000000 \\ 2057.000000 \\ \end{array}$	0.1026 0.8239 1192.9754 1119967.5345 750127.3826 3.4765 1.6355 4.2654 0.0317 0.2377 39530.8522 0.5665	4.747 10.146 10.870 32.958 32.731 37.159 27.279 54.649 34.026 42.546 59.516 1.061
					YEAR=	88 MONTH=3				
	QAVG QAIR PECOD MLSS MCVSS MCRT MCRTA SRT FM FMCOD SVI TEMP	31 30 31 30 25 25 4 29 4 29 31 31	6.71774194 9.62516129 348.1000000 4111.51612903 3303.07833333 9.14324000 5.62243548 10.56771459 0.45853733 0.94918214 248.45161290 72.09677419	0.29109803 0.43209467 57.59211512 934.92255904 752.45567307 19.40022348 0.86596611 35.32492757 0.21177281 0.35273504 60.34502946 0.97825827	6.300000 8.900000 282.000000 1756.000000 3.0615000 4.3912000 1.8265239 0.3054792 0.4806918 145.0000000 71.0000000	$\begin{array}{c} 7.3100000\\ 10.7600000\\ 529.0000000\\ 6452.0000000\\ 6452.0000000\\ 102.1800000\\ 102.1800000\\ 7.0934000\\ 194.1722684\\ 0.7696259\\ 1.8226179\\ 341.0000000\\ 74.0000000\\ 74.0000000\end{array}$	0.05228275 0.07760649 10.51483353 167.91704859 3.737898189 3.88004470 0.15553211 6.55967437 0.10588641 0.06550125 10.83828724 0.17570037	208.25000 298.38000 10443.00000 127457.00000 99092.35000 228.58100 174.29550 306.46372 1.83415 27.52628 7702.00000 2235.00000	0.08474 0.18671 3316.85172 874080.19140 566189.53993 376.36867 0.74990 1247.85051 0.04485 0.12442 3641.52258	4.333 4.489 16.545 22.739 22.780 212.181 15.402 334.272 46.184 37.162 24.288

)

,

						SAS		23:22 MOI	NDAY, JANUARY	16, 1989 7
	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
					YEAR=	88 MONTH=4	***********			
	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FM FMCOD SVI	30 30 30 26 30 29 4 30 30	6.87933333 8.38666667 304.2000000 3636.4000000 2894.07166667 5.43894615 4.89236667 3.79696047 0.48142771 0.91848978 195.60000000	0.37477288 0.63164445 28.43431632 566.63493082 398.93931468 2.90339907 0.50394480 1.90104457 0.05690997 0.16465008 32.30949471	6.1100000 7.2800000 248.0000000 3065.0000000 2473.6000000 2.5282000 3.9453000 1.8856594 0.4090896 0.5961506 144.0000000	7.6600000 9.7800000 354.0000000 5444.0000000 4028.5600000 18.6889000 5.6617000 12.4919706 0.5467514 1.1989452 262.0000000	0.06842385 0.11532197 5.19137215 103.45291116 72.83602058 0.56940341 0.09200731 0.35301511 0.02845499 0.03006085 5.89887969	206.38000 251.60000 9126.00000 109092.00000 86822.15000 141.41260 146.77100 110.11185 1.92571 27.55469 5868.00000	0.14045 0.39897 808.51034 321075.14483 159152.57680 8.42973 0.25396 3.61397 0.00324 0.02711 1043.90345	5.448 7.532 9.347 15.582 13.785 53.382 10.301 50.068 11.821 17.926 16.518
	ТЕМР	30	74.06666667	1.25762045	71.0000000	76.000000	0.22960903	2222.00000	1.58161	1.698
					YEAR=	88 MONTH=5			*****	
118	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FM FMCOD SVI TEMP	31 31 31 31 28 31 31 31 31 31 31	6.81419355 8.27096774 306.74193548 4806.48387097 3827.78000000 6.11440714 6.09591613 5.39078244 0.42184076 0.72918175 178.48387097 74.09677419	0.29606051 0.43142674 38.12170663 963.54452832 784.34190803 1.26988963 0.89605168 1.54819258 0.08007370 0.26026994 31.09862909 0.59748577	6.160000 7.300000 209.000000 1878.000000 1521.180000 3.6172000 4.8809000 1.5336716 0.3095206 0.3990307 143.000000 73.000000	7.3000000 9.0000000 404.0000000 6211.0000000 4968.800000 7.5838000 7.6658256 0.4937775 1.5905424 273.0000000 75.0000000	0.05317404 0.07748653 6.84686063 173.05770603 140.87196528 0.23998658 0.16093563 0.27806360 0.04003685 0.04674586 5.58547867 0.10731161	211.24000 256.40000 9509.00000 149001.00000 118661.18000 171.20340 188.97340 167.11426 1.68736 22.60463 5533.00000 2297.00000	$\begin{array}{c} 0.08765\\ 0.18613\\ 1453.26452\\ 928418.05806\\ 615192.22869\\ 1.61262\\ 0.80291\\ 2.39690\\ 0.00641\\ 0.06774\\ 967.12473\\ 0.35699\\ \end{array}$	4.345 5.216 12.428 20.047 20.491 20.769 14.699 28.719 18.982 35.693 17.424 0.806
					YEAR=	88 MONTH=6				
	QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FM SVI TEMP	30 30 23 30 23 30 29 5 23 30 29 5 30 30	6.93166667 7.96633333 330.08695652 3770.00000000 2875.24466667 5.27411739 4.99418667 4.31042494 0.52959108 1.04127058 201.40000000 76.13333333	0.18055629 0.64206823 47.90133139 839.46444339 558.25533502 1.58079319 1.02982662 2.02188215 0.08501597 0.23161197 72.43384616 1.59164485	6.5400000 7.1000000 242.0000000 2915.0000000 2273.7000000 4.1035000 2.5669491 0.3891247 0.5584186 145.0000000 74.0000000	7.2800000 9.5700000 424.0000000 5922.0000000 4323.0600000 10.4981000 8.3893000 9.0954850 0.6207603 1.5236713 373.0000000 79.0000000	0.03296492 0.11722508 9.98811805 153.26453729 101.92301328 0.32961817 0.18801976 0.37545409 0.03802030 0.04829443 13.22455049 0.29059326	207.95000 238.99000 7592.00000 113100.00000 86257.34000 121.30470 149.82560 125.00232 2.64796 23.94922 6042.00000 2284.00000	0.03260 0.41225 2294.53755 704700.55172 311649.01908 2.49891 1.06054 4.08801 0.00723 0.05364 5246.66207 2.53333	2.605 8.060 14.512 22.267 19.416 29.973 20.621 46.907 16.053 22.243 35.965 2.091

)

)

)

)

)

)

)

)

)

Whittier Narrows

 $\overline{}$

 $\widehat{}$

 $\widehat{}$

 $\overline{}$

 $\overline{}$

^

 $\overline{}$

-

~

_

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
QAVG	1218	13.06271708	1.76789905	6.8900000	18.550000	0.05065634	15910.3894	3,1255	13.534
QRAVG	1218	3.30699507	0.69300437	1.8300000	5.590000	0.01985694	4027.9200	0.4803	20.956
QWAVG	1218	0.23642693	0.08505757	0.0200000	0.549000	0.00243719	287.9680	0.0072	35.976
QAIR	1218	11.97371617	2.05853447	7.0100000	18.420000	0.05898404	14583.9863	4.2376	17.192
PEFFSS	1206	91.27280265	18.22904636	36.0000000	181.000000	0.52491659	110075.0000	332.2981	19.972
SEFFSS	1214	9.42009885	3.45406192	2.000000	34.000000	0.09913358	11436.0000	11.9305	36.667
PECOD	1210	230.99917355	22.51203151	143.0000000	326.000000	0.64717540	279509.0000	506.7916	9.746
SECOD	1213	38.72794724	5.80430466	22.000000	70.000000	0.16665556	46977.0000	33.6900	14.987
PEBOD /	190	102.46315789	20.40583511	40.0000000	176.000000	1.48039487	19468.0000	416.3981	19.915
FEBOD	190	5.17368421	1.76273660	1.0000000	9.000000	0.12788235	983.0000	3.1072	34.071
DOIMAX	1134	2.77680776	1.27550763	0.4000000	8.000000	0.03787708	3148.9000	1.6269	45.934
DOIMIN	1133	0.95066196	0.72956980	0.1000000	5.700000	0.02167464	1077.1000	0.5323	76.743
DO2MAX	1143	2.83788276	1.34415439	0.2000000	9.400000	0.03975814	3243.7000	1.8068	47.365
DO2MIN	1143	0.76386702	0.67439907	0.1000000	5.400000	0.01994775	873.1000	0.4548	88.287
DO3MAX	1128	3.35842199	1.34568883	0.800000	8.500000	0.04006730	3788.3000	1.8109	40.069
DO3MIN	1127	0.87311446	0.80642148	0.1000000	5.500000	0.02402150	984.0000	0.6503	92.361
MCRT	1208	3.13326291	1.25232946	1.0283000	20.091400	0.03603173	3784.9816	1.5683	39,969
MCRIA	1218	3.01999089	0.80933191	1.7840000	8.338000	0.02319012	3678.3489	0.6550	26.799
SRT	1169	2.72058078	1.26333542	0.9936506	20.643600	0.03694974	3180.3589	1.5960	46.436
MLSS	1176	1047.00651927	190.51533598	555.3333333	1671.666667	5.55554002	1231279.6667	36296.0932	18, 196
MLVSS	1169	770.82220654	146.02334066	409.0955556	1278.746667	4.27085694	901091.1594	21322.8160	18.944
XRAVG	1206	5807.36069652	1673.54954654	2122.0000000	12002.000000	48.19088706	7003677.0000	2800768.0847	28.818
FM	181	0.59345738	0.15647682	0.1877968	1.450409	0.01163083	107.4158	0.0245	26.367
FMCOD	1161	1.33867756	0.27953706	0.6125202	2.556257	0.00820396	1554.2046	0.0781	20.882
SVII	1187	170.75484414	48.61196165	97.0000000	654.000000	1.41097002	202686.0000	2363.1228	28.469
TEMP	1215	76.43950617	3.69015160	66.0000000	83.000000	0.10586589	92874.0000	13.6172	4.828

)

)

)

)

.

)

)

.

)

)

) .)

						SAS		22:50 MON	DAY, JANUARY 1	6,1989 2
	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
	**				YEAR=	35 MONTH=4				
	QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FMCOD SVI1 TFMP	30 30 27 27 30 27 4 27 30 30	$\begin{array}{c} 10.73966667\\ 9.50733333\\ 255.90000000\\ 998.666666667\\ 707.36460905\\ 2.71334333\\ 2.56023667\\ 2.38241359\\ 0.49433236\\ 1.31382759\\ 230.23333333\\ 74.533333333\end{array}$	1.45843914 1.56589059 22.16917711 117.60069335 88.44541817 0.78034652 0.22627633 0.72160646 0.10355553 0.29755346 54.92859524 0.81030725	6.8900000 7.2700000 222.0000000 765.66666667 564.04111111 1.52510000 2.24730000 1.30609658 0.42184385 0.73566773 159.00000000	$\begin{array}{c} 12.7100000\\ 11.6500000\\ 315.0000000\\ 1261.3333333\\ 882.9333333\\ 4.9418000\\ 2.9165000\\ 4.2840065\\ 0.6460798\\ 1.9069501\\ 351.0000000\\ 7660000000000000000000000000000$	0.26627334 0.28589120 4.04751946 22.63226399 17.02132866 0.14247113 0.04131222 0.13887323 0.05177777 0.05726419 10.02854355	322.190000 285.220000 7677.000000 26964.000000 19098.844444 81.400300 76.807100 64.325167 1.977329 35.473345 6907.000000	2.127045 2.452013 491.472414 13829.923077 7822.591995 0.608941 0.051201 0.520716 0.010724 0.088538 3017.150575	13.580 16.470 8.663 11.776 12.504 28.760 8.838 30.289 20.949 22.648 23.858
			14.93333333	0.81930725	73.0000000		0.14958435	2236.000000	0.671264	1.099
121	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 30 30 31 31 30 4 30 31 31 31	12.19870968 10.44580645 233.70967742 1057.22222222 745.33740741 2.63500645 2.50447742 2.27137970 0.52061963 1.27250410 160.48387097 76.70967742	0.70306824 0.87667468 19.14539727 91.47837855 58.16150087 0.57933716 0.32788028 0.54555682 0.10766697 0.12979579 24.82588833 1.10131886	9.00000000 8.79000000 191.00000000 876.33333333 619.73333333 1.50740000 2.09250000 1.22486009 0.41813398 0.92583000 118.00000000 74.00000000	85 MONTH=5 13.1100000 12.0000000 290.0000000 1242.3333333 861.3511111 3.5857000 3.3128000 3.2111459 0.6690858 1.5484122 204.0000000 79.0000000	0.12627478 0.15745542 3.43861486 16.70159049 10.61878867 0.10405203 0.05888904 0.09960459 0.05383348 0.02369736 4.45886117 0.19780271	$\begin{array}{c} 378.160000\\ 323.820000\\ 7245.000000\\ 31716.666667\\ 22360.122222\\ 81.685200\\ 77.638800\\ 68.141391\\ 2.082479\\ 38.175123\\ 4975.000000\\ 2378.000000\\ \end{array}$	0.4943049 0.7685585 366.5462366 8368.2937420 3382.7601836 0.3356315 0.1075055 0.2976322 0.0115922 0.0168469 616.3247312 1.2129032	5.763 8.393 8.192 8.653 7.803 21.986 13.092 24.019 20.681 10.200 15.469 1.436
					YEAK=	85 MUNIH=6			***********	
	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	30 30 28 28 29 30 27 30 30 30	11.71500000 10.79000000 238.03448276 990.58333333 708.64904762 2.76545172 2.78816000 2.47770245 0.60383858 1.33912907 172.46666667 79.20000000	0.49666995 0.47375972 21.38838596 149.22691383 106.49242838 0.72162268 0.46133886 0.71832281 0.03176767 0.23433927 41.19234389 1.09544512	$\begin{array}{c} 10.5400000\\ 10.0200000\\ 171.0000000\\ 788.3333333\\ 559.71666667\\ 1.74210000\\ 2.23090000\\ 1.79378561\\ 0.56831205\\ 0.83180836\\ 122.0000000\\ 76.0000000\end{array}$	$12.4600000\\11.9200000\\277.0000000\\1318.6666667\\939.8222222\\5.3096000\\3.6835000\\4.9104109\\0.6295129\\1.7334854\\274.0000000\\80.0000000$	0.09067911 0.08649630 3.97172356 28.20123592 20.12517729 0.13400197 0.08422857 0.13824129 0.01834107 0.04509861 7.52065865 0.2000000	$\begin{array}{r} 351.450000\\ 323.700000\\ 6903.000000\\ 27736.333333\\ 19842.173333\\ 80.198100\\ 83.644800\\ 66.897966\\ 1.811516\\ 36.156485\\ 5174.000000\\ 2376.000000\end{array}$	0.246681 0.224448 457.463054 22268.671811 11340.637303 0.520739 0.212834 0.515988 0.001009 0.054915 1696.809195 1.200000	4.240 4.391 8.985 15.065 15.028 26.094 16.546 28.991 5.261 17.499 23.884 1.383

)

)

)

)

)

)

)

)

)

						SAS		22:50 MOI	NDAY, JANUARY 1	6,1989 3
	VARIABLE	N .	, MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAX1MUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
					YEAR=8	B5 MONTH=7			****	***
	QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 29 29 30 31 29 5 29 31 31	11.90032258 10.37451613 217.48387097 866.39080460 625.67938697 2.65042333 2.51023226 2.31868817 0.55013146 1.38242375 212.83870968 81.19354839	0.58115680 1.03926525 15.34464286 118.99910194 86.41128211 0.74702214 0.47009407 0.69213351 0.07019024 0.24379937 38.33544641 1.27591418	10.0600000 8.1700000 197.0000000 579.0000000 1.39170000 1.39170000 1.14659237 0.46948013 1.04074697 137.0000000 78.0000000	$\begin{array}{c} 12.8400000\\ 11.9000000\\ 270.0000000\\ 1034.333333\\ 760.4855556\\ 4.2059000\\ 3.3236000\\ 3.7034318\\ 0.6580760\\ 1.9243921\\ 318.0000000\\ 83.0000000\\ \end{array}$	0.10437884 0.18665755 2.75597922 22.09757848 16.04617225 0.13638696 0.08443139 0.12852597 0.03139003 0.04527241 6.88524943 0.22916095	$\begin{array}{r} 368.910000\\ 321.610000\\ 6742.000000\\ 25125.333333\\ 18144.702222\\ 79.512700\\ 77.817200\\ 67.241957\\ 2.750657\\ 40.090289\\ 6598.000000\\ 2517.000000\end{array}$	0.337743 1.080072 235.458065 14160.786262 7466.909676 0.558042 0.220988 0.479049 0.004927 0.059438 1469.606452 1.627957	4.884 10.017 7.056 13.735 13.811 28.185 18.727 29.850 12.759 17.636 18.012 1.571
					YEAR=	85 MONTH=8		******		
122	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 31 31 31 31 31 31 31 31 31	11.98516129 9.88516129 219.83870968 903.50537634 648.43086022 2.91736774 2.86959677 2.45388519 0.78088366 1.36989782 167.22580645 80.96774194	$\begin{array}{c} 0.80557586\\ 1.20773858\\ 21.15356042\\ 132.00283024\\ 91.27347944\\ 0.74223872\\ 0.52683580\\ 0.69932171\\ 0.12602323\\ 0.26703425\\ 32.22081075\\ 1.40199551\\ \end{array}$	9.28000000 8.8600000 197.0000000 646.66666667 444.0444444 1.80940000 2.27290000 1.48522819 0.60778851 0.99201186 106.0000000 78.0000000	$\begin{array}{c} 13.1800000\\ 12.6300000\\ 289.0000000\\ 1267.000000\\ 1267.000000\\ 5.0284000\\ 3.9717000\\ 4.6400123\\ 0.8982754\\ 2.5279150\\ 259.000000\\ 83.000000\\ \end{array}$	0.14468570 0.21691625 3.79929161 23.70840819 16.39320084 0.13331001 0.09462250 0.12560189 0.06301162 0.04796077 5.78702845 0.25180583	371.540000 306.440000 6815.000000 28008.666667 20101.356667 90.438400 88.957500 76.070441 3.123535 42.466833 5184.000000 2510.000000	0.648952 1.458632 447.473118 17424.747192 8330.848048 0.550918 0.277556 0.489051 0.015882 0.071307 1038.180645 1.965591	6.721 12.218 9.622 14.610 14.076 25.442 18.359 28.499 16.139 19.493 19.268 1.732
					YEAR=	85 MONTH=9				
	QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	30 30 28 28 29 30 28 5 28 30 30	$\begin{array}{c} 11.46066667\\ 9.99033333\\ 223.70000000\\ 839.59523810\\ 596.90138889\\ 3.06260690\\ 2.80253667\\ 2.73424352\\ 0.69368864\\ 1.44818510\\ 196.70000000\\ 80.50000000\\ \end{array}$	0.75299372 0.47480292 21.46552971 145.14988300 90.28150220 1.06516073 0.51831177 1.11979707 0.42605137 0.30525931 32.70784995 0.57235147	$\begin{array}{r} 9.8300000\\ 8.7600000\\ 193.0000000\\ 565.0000000\\ 416.21666667\\ 1.91910000\\ 2.25430000\\ 1.71844335\\ 0.44107787\\ 1.00010238\\ 134.0000000\\ 80.0000000\\ \end{array}$	$\begin{array}{c} 12.5000000\\ 10.7600000\\ 278.0000000\\ 1099.6666667\\ 751.8700000\\ 5.9478000\\ 4.0784000\\ 6.1348315\\ 1.4504090\\ 2.3603937\\ 259.0000000\\ 82.0000000\\ \end{array}$	0.13747722 0.08668676 3.91905161 27.43074952 17.06160020 0.19779538 0.09463035 0.21162176 0.19053597 0.05768859 5.97160907 0.10449660	343.820000 299.710000 6711.000000 23508.666667 16713.238889 88.815600 84.076100 76.558819 3.468443 40.549183 5901.000000 2415.000000	0.567000 0.225438 460.768966 21068.488536 8150.749639 1.134567 0.268647 1.253945 0.181520 0.093183 1069.803448 0.327586	6.570 4.753 9.596 17.288 15.125 34.780 18.494 40.955 61.418 21.079 16.628 0.711

)

)

)

)

)

)

)

)

)

					SAS		22:50 MON	IDAY, JANUARY 16,	, 1989 4
VARIABLE	E N	MEAN	STANDARD	MINIMUM VALUE	MAX1MUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
				YEAR=8	5 MONTH=10				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FM SVI1 TEMP	31 30 30 30 31 31 30 31 30 31 31	10.33064516 9.45483871 219.66666667 898.92222222 659.54955556 3.41289677 3.25411935 3.15840681 0.50713229 1.15768666 179.22580645 79.22580645	0.97667782 0.60952917 18.45279781 123.73311049 97.45222329 1.03426542 0.56741007 0.92853731 0.18130387 0.24583273 34.61089393 0.99027530	7.4700000 7.9500000 191.0000000 555.3333333 409.09555556 1.02830000 2.41380000 1.94729071 0.26851226 0.73725849 132.0000000 77.0000000	11.9800000 10.5700000 296.0000000 1113.3333333 841.7022222 6.7078000 4.1278000 6.5907824 0.6637839 1.7446469 266.0000000 81.0000000	0.17541652 0.10947467 3.36900454 22.59047191 17.79226032 0.18575955 0.10190986 0.16952694 0.09065193 0.04564999 6.21630006 0.17785869	320.250000 293.100000 6590.000000 26967.666667 19786.486667 105.799800 100.877700 94.752204 2.028529 33.572913 5556.000000 2456.000000	0.953900 0.371526 340.505747 15309.882631 9496.935824 1.069705 0.321954 0.862182 0.032871 0.060434 1197.913978 0.980645	9.454 6.447 8.400 13.765 14.776 30.305 17.437 29.399 35.751 21.235 19.311 1.250
				YEAR=	85 MONTH=11				
QAVG QAIR PECOD MLSS MLVSS MCRT SRT FM 12 SVI1 TEMP	30 30 26 26 29 30 26 30 30 30	$\begin{array}{c} 10.34766667\\ 9.44833333\\ 205.33333333\\ 900.94871795\\ 645.94303419\\ 2.64364138\\ 2.74101000\\ 2.43872745\\ 0.47640210\\ 1.10176334\\ 127.83333333\\ 74.93333333\end{array}$	0.66072418 0.64220033 11.19523708 125.44731315 94.19217922 0.61604920 0.32571987 0.50232743 0.05733875 0.17034093 18.00399062 2.37709375	8.3000000 7.7100000 180.0000000 661.66666667 460.9611111 1.45860000 2.36590000 1.78121575 0.41067084 0.76098805 103.0000000 68.0000000	11.7500000 10.4500000 227.000000 1154.6666667 846.7555556 5.1931000 3.6287000 4.6136157 0.5161440 1.4861892 183.000000 78.000000	0.12063118 0.11724920 2.04396130 24.60224222 18.47260615 0.11439746 0.05946804 0.09851452 0.03310454 0.03340661 3.28706393 0.43399596	$\begin{array}{r} 310.430000\\ 283.450000\\ 6160.000000\\ 23424.666667\\ 16794.518889\\ 76.665600\\ 82.230300\\ 63.406914\\ 1.429206\\ 28.645847\\ 3835.000000\\ 2248.000000\end{array}$	$\begin{array}{c} 0.436556\\ 0.412421\\ 125.33333\\ 15737.028376\\ 8872.166626\\ 0.379517\\ 0.106093\\ 0.252333\\ 0.003288\\ 0.029016\\ 324.143678\\ 5.650575\end{array}$	6.385 6.797 5.452 13.924 14.582 23.303 11.883 20.598 12.036 15.461 14.084 3.172
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 30 30 30 31 31 31 29 31 31	10.18548387 8.92161290 208.53333333 871.14444444 643.2794444 2.50832581 2.48262258 2.19255117 0.45484486 1.10082086 184.09677419 73.12903226	0.67222436 0.82828778 23.74684492 86.34940530 60.64226473 0.49712309 0.22471176 0.40843644 0.15980599 0.20062459 38.73960492 0.95714630	8.9000000 7.0100000 172.0000000 733.66666667 489.1111111 1.56950000 2.05310000 1.51745009 0.29849941 0.86785632 138.00000000 70.00000000	11.6200000 10.9900000 272.0000000 1045.0000000 771.2000000 3.3285000 2.8488000 3.0833825 0.6614782 1.5785630 274.0000000 74.0000000	0.12073506 0.14876488 4.33556088 15.76517237 11.07171211 0.08928594 0.04035942 0.07456995 0.07990300 0.03725505 6.95783844 0.17190855	315.750000 276.570000 6256.000000 26134.33333 19298.383333 77.758100 76.961300 65.776535 1.819379 31.923805 5707.000000 2267.000000	0.4518856 0.6860606 563.9126437 7456.2197957 3677.4842714 0.2471314 0.0504954 0.1668203 0.0255380 0.0402502 1500.7569892 0.9161290	6.600 9.284 11.388 9.912 9.427 19.819 9.051 18.628 35.134 18.225 21.043 1.309

)

)

•

)

)

,

1

)

)

					SAS		22:50 MOI	NDAY, JANUARY 16	, 1989 5
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
				YEAR=	86 MONTH=1				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FM FMCOD SVI1 TEMP	31 31 29 27 29 31 26 25 31 31	13.21096774 12.91354839 228.10344828 1022.93827160 730.80213992 2.88929310 2.61689677 2.12786693 0.65570457 1.45466207 186.58064516	2.00830999 2.05380062 23.37481066 124.63056645 81.76644810 1.77034993 0.53046949 0.60206284 0.12677453 0.29277585 56.33280524 1.16674347	$\begin{array}{c} 8.5900000\\ 8.8800000\\ 183.0000000\\ 767.66666667\\ 568.0733333\\ 1.37380000\\ 2.09170000\\ 1.57135513\\ 0.52467595\\ 0.94008683\\ 127.0000000\\ 70.0000000\end{array}$	$\begin{array}{c} 15.3800000\\ 14.6300000\\ 287.0000000\\ 1326.66666667\\ 928.66666667\\ 10.9128000\\ 3.9054000\\ 4.6230102\\ 0.7850451\\ 1.9579076\\ 407.0000000\\ 76.0000000\end{array}$	0.36070312 0.36887348 4.34059337 23.98516370 15.73596027 0.32874573 0.09527513 0.11807424 0.6338726 0.05855517 10.11767050 0.20955331	$\begin{array}{r} 409.540000\\ 400.320000\\ 6615.000000\\ 27619.333333\\ 19731.657778\\ 83.789500\\ 81.123800\\ 55.324540\\ 2.622818\\ 36.366552\\ 5784.000000\\ 2257.000000\end{array}$	4.033309 4.218097 546.381773 15532.778094 6685.752035 3.134139 0.281398 0.362480 0.016072 0.085718 3173.384946 1.361290	15.202 15.904 10.247 12.184 11.189 61.273 20.271 28.294 19.334 20.127 30.192 1.603
				YEAR=	86 MONTH=2				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	28 28 26 27 27 27 28 27 28 25 28 28	14.77428571 14.28678571 219.61538462 1032.60493827 764.12814815 2.35511481 2.30785357 1.99479564 0.72101419 1.42820622 164.57142857 71.53571429	$\begin{array}{c} 0.96191718\\ 0.46957075\\ 22.18301499\\ 125.82741664\\ 84.46361283\\ 0.36143505\\ 0.16282332\\ 0.35371844\\ 0.20311797\\ 0.19942786\\ 25.52620813\\ 1.73166892 \end{array}$	12.0200000 12.8900000 176.0000000 817.66666667 625.14222222 1.83730000 1.98820000 1.51757367 0.51117915 1.10613649 137.00000000 66.00000000	16.5900000 14.9400000 262.0000000 1301.3333333 970.8333333 3.0443000 2.6069000 2.7912743 0.9251901 1.7778751 238.0000000 74.0000000	0.18178526 0.08874053 4.35044716 24.21549762 16.25502987 0.06955821 0.03077071 0.06807314 0.10155898 0.03988557 4.82399990 0.32725467	$\begin{array}{r} 413.680000\\ 400.030000\\ 5710.000000\\ 27880.333333\\ 20631.460000\\ 63.588100\\ 64.619900\\ 53.859482\\ 2.884057\\ 35.705156\\ 4608.000000\\ 2003.000000\end{array}$	0.925285 0.220497 492.086154 15832.538778 7134.101892 0.130635 0.026511 0.125117 0.041257 0.039771 651.587302 2.998677	6.511 3.287 10.101 12.185 11.054 15.347 7.055 17.732 28.171 13.964 15.511 2.421
		,		YEAR=	86 MONTH=3				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FM FM SVI1 TEMP	31 30 30 29 28 4 28 31 31	14.01548387 12.88870968 219.5000000 1068.18888889 797.59296296 2.15368621 2.13806129 1.88017205 0.54800996 1.28765574 139.74193548 73.03225806	0.94933604 0.90679561 20.11647121 119.26806419 90.30620782 0.27775149 0.11675230 0.25995072 0.16708941 0.19451874 22.48550310 1 81629423	$\begin{array}{c} 12.0100000\\ 11.5700000\\ 183.0000000\\ 763.3333333\\ 556.16666667\\ 1.70430000\\ 1.90340000\\ 1.41444426\\ 0.37749825\\ 0.90634305\\ 111.0000000\\ 69.0000000\\ \end{array}$	16.000000 14.550000 262.000000 1271.333333 966.213333 2.6715000 2.3212000 2.3343186 0.7774021 1.8169788 196.0000000 76.0000000	0.17050579 0.16286530 3.67274835 21.77526972 16.48758237 0.05157716 0.02096933 0.04912607 0.08354471 0.03612122 4.03851557 0.32621607	434.480000 399.550000 6585.000000 32045.666667 23927.788889 62.456900 66.279900 52.644817 2.192040 37.342017 4332.000000 2264.000000	0.901239 0.822278 404.672414 14224.871137 8155.211171 0.077146 0.013631 0.067574 0.027919 0.037838 505.597849 3.298925	6.773 7.036 9.165 11.165 11.322 12.897 5.461 13.826 30.490 15.106 16.09

124

)

)

)

-)-

						SAS		22:50 MO	NDAY, JANUARY	16, 1989 6
	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAX I MUM VAL UE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
					YEAR=	86 MONTH=4		***********		
	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	30 30 28 26 30 30 28 3 26 30 30 30	13.65966667 12.25100000 223.9000000 1092.32142857 796.39769231 2.12388667 2.12355667 1.87107996 0.50813088 1.26457748 161.13333333 75.73333333	0.76407475 0.47405332 15.18699534 90.22338451 55.79898354 0.26378387 0.13351070 0.21253645 0.14682947 0.12376413 26.93892624 1.31131241	$\begin{array}{c} 11.9900000\\ 11.2200000\\ 902.0000000\\ 902.0000000\\ 688.52666667\\ 1.65440000\\ 1.8470000\\ 1.55402248\\ 0.40453085\\ 1.09731875\\ 120.0000000\\ 72.0000000\\ \end{array}$	$\begin{array}{c} 16.300000\\ 13.3100000\\ 259.0000000\\ 1307.6666667\\ 911.0077778\\ 2.7322000\\ 2.3184000\\ 2.4409422\\ 0.6761598\\ 1.6177479\\ 239.000000\\ 78.000000\\ \end{array}$	0.13950033 0.08654990 2.77275331 17.05061699 10.94308100 0.04816012 0.02437561 0.08477203 0.02427214 4.91835253 0.23941180	$\begin{array}{r} 409.790000\\ 367.530000\\ 6717.000000\\ 30585.000000\\ 20706.340000\\ 63.716600\\ 63.706700\\ 52.390239\\ 1.524393\\ 32.879014\\ 4834.000000\\ 2272.000000\end{array}$	0.5838102 0.2247266 230.6448276 8140.2591123 3113.5265635 0.0695819 0.0178251 0.0451717 0.0215589 0.0153176 725.7057471 1.7195402	5.594 3.870 6.783 8.260 7.006 12.420 6.287 11.359 28.896 9.787 16.718 1.731
	*=*****				YEAR=	86 MONTH=5				
125	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 18 17 31 31 31 31 2 17 31 31	12.14032258 10.35548387 233.25806452 1053.62962963 782.46712418 2.72369355 2.71789355 2.68791320 0.61491750 1.33823260 176.48387097 77.51612903	2.02476745 1.30466557 13.42129587 121.08841306 69.52828806 0.69388987 0.37046545 0.73166449 0.06643115 0.15119828 22.78577183 1.06053344	$\begin{array}{r} 9.6000000\\ 8.7400000\\ 202.0000000\\ 770.66666667\\ 650.22888889\\ 1.60780000\\ 2.21010000\\ 1.82839351\\ 0.56794358\\ 1.10232580\\ 139.0000000\\ 76.0000000\\ \end{array}$	$18.5500000\\16.1400000\\262.0000000\\1237.6666667\\899.3711111\\4.5082000\\3.4679000\\4.5727084\\0.6618914\\1.6095402\\229.0000000\\80.0000000$	0.36365897 0.23432485 2.41053590 28.54081266 16.86308680 0.12462630 0.06653756 0.17245497 0.04697391 0.03667097 4.09244543 0.19047743	376.350000 321.020000 7231.000000 18965.333333 13301.941111 84.434500 84.254700 48.382438 1.229835 22.749954 5471.000000 2403.000000	4.099683 1.702152 180.131183 14662.403776 4834.182840 0.481483 0.137245 0.535333 0.004413 0.022861 519.191398 1.124731	16.678 12.599 5.754 11.493 8.886 25.476 13.631 27.221 10.803 11.298 12.911 1.368
	********				YEAR=	86 MONTH=6				
	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FM FMCOD SVI1 TEMP	30 30 25 22 30 22 22 22 22 28 30	12.78966667 10.45000000 229.066666667 939.97333333 683.89121212 2.68678333 2.55696333 2.23714306 0.70023389 1.54055992 169.92857143 78.43333333	1.62351148 1.47011142 11.40155263 125.66614795 67.97818340 0.87197621 0.33757035 0.58032859 0.18093065 0.19505335 25.51532375 0.93526074	9.4900000 7.5700000 209.0000000 653.0000000 545.1111111 1.71770000 1.93990000 1.31379660 0.57229660 1.18914399 138.0000000 76.0000000	14.5500000 12.8700000 256.0000000 1116.3333333 791.3244444 5.6989000 3.2642000 3.7667569 0.8281712 1.9763636 255.0000000 80.0000000	0.29641129 0.26840440 2.08162919 25.13322959 14.49299740 0.15920035 0.06163163 0.12372647 0.12793729 0.04158551 4.82194295 0.17075447	383.690000 313.500000 6872.000000 23499.333333 15045.606667 80.603500 76.708900 49.217147 1.400468 33.892318 4758.000000 2353.000000	2.635790 2.161228 129.995402 15791.980741 4621.033418 0.760343 0.113954 0.336781 0.032736 0.038046 651.031746 0.874713	12.694 14.068 4.977 13.369 9.940 32.454 13.202 25.941 25.839 12.661 15.015 1.192

- }

)

)

)

)

)

)

)

)

					SAS		22:50 MOI	NDAY, JANUARY 1	6,1989 7
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
				YEAR=	86 MONTH=7				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1	31 31 31 31 31 31 31 5 31 31	14.19290323 11.84322581 228.51612903 968.20430108 696.14612903 2.44014839 2.38230000 1.95403569 0.60797154 1.56491715 219.00000000	0.46222068 0.79516618 13.71585692 109.54747584 86.11505854 0.30338107 0.20791973 0.29075491 0.10395604 0.21721110 33.14513539	13.3600000 10.4000000 192.0000000 772.0000000 530.10666667 1.93160000 1.98810000 1.52187500 0.46321758 1.25325599 173.0000000	$15.2200000\\13.6100000\\266.0000000\\1209.0000000\\842.2700000\\3.2041000\\2.6533000\\2.8308015\\0.7105770\\2.0827500\\277.0000000$	0.08301728 0.14281606 2.46344063 19.67530748 15.46672110 0.05448885 0.03734349 0.05222112 0.04649056 0.03901227 5.95304205	$\begin{array}{r} 439.980000\\ 367.140000\\ 7084.000000\\ 30014.333333\\ 21580.530000\\ 75.644600\\ 73.851300\\ 60.575106\\ 3.039858\\ 48.512432\\ 6789.000000\end{array}$	$\begin{array}{r} 0.213648\\ 0.632289\\ 188.124731\\ 12000.649462\\ 7415.803307\\ 0.092040\\ 0.043231\\ 0.084538\\ 0.010807\\ 0.047181\\ 1098.600000\\ \end{array}$	3.257 6.714 6.002 11.315 12.370 12.433 8.728 14.880 17.099 13.880 15 135
TEMP	31	79.41935484	0.56416272	78.00000000	80.0000000	0.10132661	2462.000000	0.318280	0.710
				YEAR=	86 MONTH=8				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 31 31 31 31 31 31 31 31 31	14.04064516 11.24741935 219.61290323 817.47311828 590.23057348 2.16520968 2.17074839 1.73857148 0.71459385 1.75218874 224.45161290 79.64516129	0.55514524 0.80781585 11.33924577 92.54547528 66.71656242 0.19908764 0.08345198 0.16895857 0.11419619 0.23255356 34.55414949 0.55065943	11.9200000 10.1000000 196.0000000 675.0000000 484.7733333 1.86870000 1.98880000 1.45633228 0.55492319 1.33791060 169.0000000 78.0000000	15.0600000 13.2200000 241.0000000 1013.0000000 739.4900000 2.5593000 2.3349000 2.1201158 0.8194618 2.1447237 292.0000000 80.0000000	0.09970703 0.14508801 2.03658866 16.62165804 11.98264834 0.03575720 0.01498842 0.03034585 0.05709809 0.04176785 6.20610846 0.09890135	435.26000 348.67000 6808.00000 25341.666667 18297.147778 67.121500 67.293200 53.895716 2.858375 54.317851 6958.00000 2469.00000	0.3081862 0.6525665 128.5784946 8564.6649940 4451.0997016 0.0396359 0.0069642 0.0285470 0.0130408 0.0540812 1193.9892473 0.3032258	3.954 7.182 5.163 11.321 11.303 9.195 3.844 9.718 15.981 13.272 15.395 0.691
				YEAR=	86 MONTH=9				
QAVG QAIR PECOD MLSS MCVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	30 30 30 30 30 30 30 30 30 30 30	$12.59433333\\10.87766667\\226.83333333\\759.00000000\\546.11311111\\2.21675333\\2.13856667\\1.91281407\\0.70456288\\1.75323112\\212.50000000\\78.333333333$	0.93837601 1.24818401 15.10214265 101.87032550 0.40894569 0.12010611 0.42614888 0.17106197 0.21676290 40.51628025 1.24105998	$\begin{array}{c} 10.9800000\\ 8.3600000\\ 205.0000000\\ 629.66666667\\ 437.12666667\\ 1.65640000\\ 1.91320000\\ 1.38620793\\ 0.51530464\\ 1.33574762\\ 137.00000000\\ 75.00000000\end{array}$	14.6600000 13.6100000 265.0000000 967.0000000 693.01666667 3.25470000 2.40550000 3.08185166 0.90247600 2.07426200 307.00000000 80.00000000	0.17132324 0.22788618 2.75726140 18.59889174 13.84494779 0.07466293 0.02192828 0.07780379 0.07650124 0.03957531 7.39722688 0.22658552	$\begin{array}{r} 377.830000\\ 326.330000\\ 6805.000000\\ 22770.000000\\ 16383.39333\\ 66.502600\\ 64.157000\\ 57.384422\\ 3.522814\\ 52.596934\\ 6375.000000\\ 2350.000000\end{array}$	0.880550 1.557963 228.074713 10377.563218 5750.477376 0.167237 0.014425 0.181603 0.029262 0.046986 1641.568966 1.540230	7.451 11.475 6.658 13.422 13.886 18.448 5.616 22.279 24.279 12.364 19.066

7

)

)

)

)

)

126

)

)

)

					SAS		22:50 MON	IDAY, JANUARY 16	6,1989 8
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAX I MUM VAL UE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
				YEAR=8	6 MONTH=10				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 31 31 31 31 31 31 31 31 31	12.67419355 13.23773871 237.09677419 865.82795699 624.40154122 2.76743871 2.56841613 2.63802462 0.68556019 1.64298496 251.25806452 76.29032258	1.53012586 2.38187378 16.47898629 191.22793983 137.64076191 1.18457776 0.44052741 2.02231449 0.12896091 0.32328069 105.61880128 0.52874369	$\begin{array}{c} 7.8000000\\ 8.6300000\\ 188.0000000\\ 558.0000000\\ 412.9200000\\ 1.49290000\\ 1.96010000\\ 1.29743901\\ 0.51720240\\ 1.17372318\\ 133.0000000\\ 75.00000000\end{array}$	15.000000 18.420000 280.000000 1182.333333 882.8088889 8.186000 3.4130000 12.6475535 0.8280574 2.5562574 654.000000 77.0000000	0.27481872 0.42779716 2.95971331 34.34555189 24.72101061 0.21275645 0.07912106 0.36321841 0.05767307 0.05806293 18.96969670 0.09496517	392.90000 410.369900 7350.00000 26840.666667 19356.447778 85.790600 79.620900 81.778763 3.427801 50.932534 7789.000000 2365.000000	2.341285 5.673323 271.556989 36568.124970 18944.979339 1.403224 0.194064 4.089756 0.016631 0.104510 11155.331183 0.279570	12.073 17.993 6.950 22.086 22.044 42.804 17.152 76.660 18.811 19.676 42.036 0.693
				YEAR=	86 MONTH=11				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	30 30 30 30 30 30 30 30 30 30 30 30	$\begin{array}{c} 14.67098667\\ 10.86833333\\ 234.80000000\\ 1164.6000000\\ 821.75066667\\ 3.01992000\\ 2.95192333\\ 2.44577238\\ 0.61049279\\ 1.39673322\\ 155.60000000\\ 74.3000000\end{array}$	$\begin{array}{c} 1.59727635\\ 1.22668908\\ 13.87232422\\ 97.12414144\\ 72.79043098\\ 0.38996812\\ 0.20542994\\ 0.33304225\\ 0.02909766\\ 0.19452570\\ 29.65735357\\ 0.70221325\end{array}$	$\begin{array}{c} 10.9000000\\ 9.0600000\\ 209.0000000\\ 940.3333333\\ 65.0000000\\ 1.67880000\\ 2.60580000\\ 1.32038814\\ 0.57036876\\ 0.94148143\\ 105.0000000\\ 73.0000000\\ \end{array}$	$\begin{array}{c} 18.4300000\\ 13.0700000\\ 259.0000000\\ 1342.333333\\ 968.1777778\\ 3.8047000\\ 3.2614000\\ 3.1257055\\ 0.6382466\\ 1.8456630\\ 221.0000000\\ 76.0000000\end{array}$	0.29162143 0.22396176 2.53272830 17.73236105 13.28965367 0.07119811 0.03750620 0.06080492 0.01301287 0.03551537 5.41466718 0.12820601	$\begin{array}{r} 440.129600\\ 326.050000\\ 7044.000000\\ 34938.000000\\ 24652.520000\\ 90.597600\\ 88.557700\\ 73.373171\\ 3.052464\\ 41.901997\\ 4668.000000\\ 2229.000000\end{array}$	2.5512918 1.5047661 192.4413793 9433.0988506 5298.4468419 0.1520751 0.0422015 0.1109171 0.0008467 0.0378402 879.5586207 0.4931034	10.887 11.287 5.908 8.340 8.858 12.913 6.959 13.617 4.766 13.927 19.060 0.945
		~		YEAR=	86 MONTH=12				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 31 31 31 31 31 31 31 31 31 31	14.17645161 11.48709677 237.93548387 1129.25806452 838.05025090 2.58848065 2.64202258 2.08589156 0.64089305 1.35410785 168.70967742 71.19354839	0.74762534 1.25125322 12.62520095 141.06900622 103.49261735 0.34167492 0.23590410 0.30828293 0.13621334 0.21108640 36.30903795 0.98045414	$\begin{array}{c} 12.6600000\\ 9.1300000\\ 218.0000000\\ 855.0000000\\ 632.7000000\\ 2.14820000\\ 2.31520000\\ 1.65035044\\ 0.49630275\\ 1.00658575\\ 118.0000000\\ 70.0000000\\ \end{array}$	$\begin{array}{c} 15.2500000\\ 15.7300000\\ 270.0000000\\ 1441.0000000\\ 1080.7500000\\ 3.2091000\\ 3.2087000\\ 2.6925722\\ 0.7738629\\ 2.0484322\\ 263.0000000\\ 73.0000000\end{array}$	0.13427748 0.22473171 2.26755303 25.33674147 18.58782280 0.06136663 0.04236963 0.05536925 0.06091646 0.03791224 6.52129573 0.17609476	$\begin{array}{r} 439.470000\\ 356.100000\\ 7376.000000\\ 25979.557778\\ 80.242900\\ 81.902700\\ 64.662638\\ 3.204465\\ 41.977343\\ 5230.000000\\ 2207.000000\end{array}$	0.558944 1.565635 159.395699 19900.464516 10710.721847 0.116742 0.055651 0.095038 0.018554 0.04557 1318.346237 0.961290	5.274 10.893 5.306 12.492 12.349 13.200 8.929 14.779 21.254 15.589 21.522 1.377

)

127

)

					SAS		22:50 MOI	NDAY, JANUARY	16, 1989 9
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
*******				YEAR=	87 MONTH=1				
QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 31 31 31 31 31 31 31 31 31	14.52387097 12.58935484 245.16129032 1139.60215054 841.76007168 2.73880323 2.73519677 2.19545873 0.58770286 1.40848154 140.77419355 69.54838710	0.37158828 1.22740902 24.61584419 95.16953369 68.85874617 0.26920514 0.14187530 0.22127057 0.12461761 0.17532949 19.79176542 0.80988516	$\begin{array}{c} 13.7600000\\ 9.74000000\\ 201.0000000\\ 950.3333333\\ 677.90444444\\ 2.05760000\\ 2.47440000\\ 1.63544119\\ 0.40531415\\ 1.13356309\\ 104.0000000\\ 68.0000000\\ \end{array}$	$\begin{array}{c} 15.3800000\\ 14.9600000\\ 326.0000000\\ 1351.0000000\\ 998.5000000\\ 3.1774000\\ 3.0023000\\ 2.5503156\\ 0.7423733\\ 1.9214870\\ 171.0000000\\ 71.0000000\\ \end{array}$	0.06673923 0.22044917 4.42113613 17.09295284 12.36739590 0.04835067 0.02548156 0.03974137 0.05087493 0.03149011 3.55470601 0.14545967	$\begin{array}{r} 450.240000\\ 390.270000\\ 7600.000000\\ 35327.666667\\ 26094.562222\\ 84.902900\\ 84.791100\\ 68.059221\\ 3.526217\\ 43.662928\\ 4364.000000\\ 2156.000000\end{array}$	0.1380778 1.5065329 605.9397849 9057.2401434 4741.5269244 0.0724714 0.0201286 0.0489607 0.0155295 0.0307404 391.7139785	2.558 9.750 10.041 8.351 8.180 9.829 5.187 10.079 21.204 12.448 14.059 1.164
				VEAR=	87 MONTH-2	0.14949907	2190.000000	0.6559140	1.104
QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	28 28 28 28 28 28 28 28 5 28 28 28 28 28 28	14.25428571 13.57214286 240.28571429 1305.98809524 952.59488095 3.29859286 3.25787500 2.63218654 0.57234909 1.19678288 125.89285714 70.57142857	$\begin{array}{c} 1.36692255\\ 1.21078596\\ 11.54654716\\ 143.01444522\\ 88.44505503\\ 0.43678872\\ 0.28299306\\ 0.34595068\\ 0.07155108\\ 0.7155108\\ 0.14102562\\ 11.61206042\\ 0.63412649\end{array}$	9.7300000 11.6200000 222.0000000 1079.6666667 781.6444444 2.5875000 2.7895000 2.0096080 0.4792210 0.7714972 105.0000000 70.0000000	15.4900000 15.9000000 278.0000000 1671.6666667 1175.7388889 4.1910000 3.7787000 3.3809842 0.6460464 1.4365409 146.0000000 72.0000000	0.25832408 0.22881704 2.18209231 27.02718971 16.71454431 0.08254531 0.05348066 0.06537853 0.03199861 0.02665134 2.19447315 0.11983864	399.120000 380.020000 6728.000000 36567.666667 26672.656667 92.360600 91.220500 73.701223 2.861745 33.509921 3525.000000 1976.000000	$\begin{array}{c} 1.868477\\ 1.466003\\ 133.322751\\ 20453.131540\\ 7822.527759\\ 0.190784\\ 0.080085\\ 0.119682\\ 0.005120\\ 0.019888\\ 134.839947\\ 0.402116\end{array}$	9.590 8.921 4.805 10.951 9.285 13.242 8.686 13.143 12.501 11.784 9.224 0.899
0.01/0				THE TEAR	0/ MUNIH=3				*****
QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 31 30 31 31 31 31 31 31	14.38000000 14.59322581 236.45161290 1315.53763441 944.83673835 3.50537333 3.47273871 2.78560405 0.53493797 1.20705216 114.41935484 71.96774194	0.69356086 0.85562214 9.41218611 136.87224856 97.87351540 0.45113744 0.28728153 0.35952713 0.11062696 0.17230117 7.28822884 1.13970379	12.97000000 12.80000000 219.0000000 989.00000000 725.26666667 2.67630000 2.96540000 2.08429505 0.37635930 0.84839768 100.00000000 69.00000000	$15.9300000\\15.9500000\\251.0000000\\1627.6666667\\1182.7711111\\4.4492000\\3.9066000\\3.5493544\\0.6326942\\1.7746019\\125.0000000\\75.0000000$	0.12456721 0.15367427 1.69047853 24.58298154 17.57860229 0.08236605 0.05159729 0.06457298 0.04947388 0.03094620 1.30900454 0.20469684	445.780000 452.390000 7330.000000 40781.666667 29289.938889 105.161200 107.654900 86.353725 2.674690 37.418617 3547.000000 2231.000000	0.481027 0.732089 88.589247 18734.012425 9579.225017 0.203525 0.082531 0.129260 0.012238 0.029688 53.118280 1.298925	4.823 5.863 3.981 10.404 10.359 12.870 8.272 12.907 20.680 14.275 6.370 1.584

.

)

)

128

						SAS			22:50 MONDAY, JANUARY 16, 1989 10			
	VARIABLE		N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.	
						YEAR=8	7 MONTH=4			*************		
	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FM FMCOD SVI1 TEMP	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		14.17533333 14.19733333 243.9000000 1225.1777778 906.26522222 3.45452667 3.40610000 2.80228870 0.58651774 1.27786547 128.6333333 75.60000000	1.43949880 0.97140472 9.14386925 112.26892773 87.98669917 0.50783281 0.21870414 0.37585156 0.11920927 0.19901691 13.51495553 1.27576887	$\begin{array}{c} 10.250000\\ 11.970000\\ 228.000000\\ 1060.000000\\ 787.733333\\ 2.5816000\\ 2.9474000\\ 2.1148037\\ 0.4409368\\ 0.7622582\\ 107.000000\\ 73.000000\end{array}$	15.4100000 15.8500000 269.0000000 1478.6666667 1069.5688889 4.6722000 3.7346000 3.6821788 0.7542933 1.5418621 157.0000000 78.0000000	0.26281532 0.17735343 1.66943448 20.49740807 16.06409996 0.09271716 0.03992973 0.06862079 0.05331201 0.03633535 2.46748200 0.23292246	$\begin{array}{r} 425.260000\\ 425.920000\\ 7317.000000\\ 36755.333333\\ 27187.956667\\ 103.635800\\ 102.183000\\ 84.068661\\ 2.932589\\ 38.335964\\ 3859.000000\\ 2268.000000\end{array}$	2.072157 0.943627 83.610345 12604.312133 7741.659230 0.257894 0.047832 0.141264 0.014211 0.039608 182.654023 1.627586	10.155 6.842 3.749 9.163 9.709 14.701 6.421 13.412 20.325 15.574 10.507 1.688	
						YEAR=	87 MONTH=5					
129	QAVG QAIR PECOD MLVSS MCRTA MCRTA SRT FM FMCOD SVI1 TEMP		31 31 31 31 31 31 31 31 31 31 31 31	14.76677419 13.28193548 231.87096774 1168.09677419 852.21254480 3.28076129 3.02925484 2.64215641 0.63332399 1.34449955 154.61290323 77.35483871	0.81422924 0.86747303 11.78909648 114.63469172 84.85747368 1.02596872 0.43326175 0.86847697 0.14157531 0.18540084 22.41380143 0.79784656	$\begin{array}{c} 10.6300000\\ 10.8600000\\ 209.0000000\\ 888.6666667\\ 666.5000000\\ 1.97280000\\ 2.46210000\\ 1.58059817\\ 0.47922017\\ 0.96848656\\ 124.0000000\\ 76.0000000\end{array}$	$\begin{array}{c} 15.2900000\\ 14.8200000\\ 257.0000000\\ 1390.6666667\\ 1015.1866667\\ 6.7765000\\ 4.3216000\\ 5.6294021\\ 0.8659081\\ 1.9241516\\ 241.0000000\\ 79.0000000\end{array}$	0.14623989 0.15580276 2.11738423 20.58899843 15.24085219 0.18426942 0.07781611 0.15598307 0.06331440 0.03329897 4.02563758 0.14329747	$\begin{array}{r} 457.770000\\ 411.740000\\ 7188.000000\\ 36211.000000\\ 26418.58889\\ 101.703600\\ 93.906900\\ 81.906849\\ 3.166620\\ 41.679486\\ 4793.000000\\ 2398.000000\end{array}$	$\begin{array}{r} 0.662969\\ 0.752509\\ 138.982796\\ 13141.112545\\ 7200.790839\\ 1.052612\\ 0.187716\\ 0.754252\\ 0.020044\\ 0.034373\\ 502.378495\\ 0.636559\end{array}$	5.514 6.531 5.084 9.814 9.957 31.272 14.303 32.870 22.354 13.790 14.497 1.031	
						YEAR=	87 MONTH=6					
	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP		30 30 30 30 30 30 30 30 30 30 30 29	14.26066000 12.76600000 231.10000000 1135.67777778 822.15411111 4.66690667 4.18103000 3.88440627 0.57299140 1.36065752 146.70000000 78.96551724	1.20742026 1.98396086 18.26500328 166.18411715 123.10333713 1.83385108 0.75406451 1.71228040 0.11156231 0.28172389 34.81096736 0.77840306	$\begin{array}{c} 9.7400000\\ 10.2800000\\ 184.0000000\\ 754.333333\\ 588.3800000\\ 3.2113000\\ 3.51150000\\ 2.63490016\\ 0.45006929\\ 0.83353961\\ 98.0000000\\ 78.0000000\end{array}$	$\begin{array}{c} 16.6098000\\ 15.8500000\\ 260.0000000\\ 1424.0000000\\ 1036.743333\\ 10.2089000\\ 6.9123000\\ 9.3963761\\ 0.7323352\\ 2.0587452\\ 2.0587452\\ 239.0000000\\ 80.000000\\ \end{array}$	0.22044377 0.36222004 3.33471810 30.34092989 22.47549155 0.33481387 0.13767271 0.31261820 0.04216659 0.05143551 6.35558402 0.14454582	$\begin{array}{r} 427.819800\\ 382.980000\\ 6933.000000\\ 34070.333333\\ 24664.623333\\ 140.007200\\ 125.430900\\ 116.532188\\ 4.010940\\ 40.819726\\ 4401.000000\\ 2290.000000\end{array}$	$\begin{array}{r} 1.457864\\ 3.936101\\ 333.610345\\ 27617.160792\\ 15154.431614\\ 3.363010\\ 0.568613\\ 2.931904\\ 0.012446\\ 0.079368\\ 1211.803448\\ 0.605911\end{array}$	8.467 15.541 7.904 14.633 14.973 39.295 18.035 44.081 19.470 20.705 23.729 0.986	

)

)

)

)

J.

)

)

)

)

}

						SAS		22:50 MO	NDAY, JANUARY 1	6, 1989 11
V	ARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
-					YEAR=	B7 MONTH=7				
Q	AVG	31	14.46903226	0.66054197	13 70000000	16 1600000	0 11863684	448 540000	0 436316	JI 565
Q.	AIR	31	12.78096774	1.26338000	10.02000000	14.5300000	0.22690975	396.210000	1.596129	9.885
P	ECOD	31	226.16129032	12.82730622	201.00000000	248.0000000	2.30385221	7011.000000	164.539785	5.672
M		31	1059.24731183	140.28698014	845.66666667	1494.3333333	25.19628544	32836.666667	19680.436798	13.244
M		31	//0.160/5269	96.11281886	617.33666667	1075.9200000	17.26237186	23874.983333	9237.673949	12.480
M	CRTA	31	4.30000492	1 37810167	3 54060000	8 3380000	0.20210120	133.302000	2.40/015	30.527
S	RT	31	3.62681608	1.36787616	2.03829733	8.3712205	0.24753053	112 431200	1.077412	30.0//
F	M	5	0.57522196	0.09990486	0.43138590	0.6652100	0.04467881	2.876110	0.009981	17.368
F	MCOD	31	1.42653525	0.19428218	1.00875013	1.8018574	0.03489411	44.222593	0.037746	13.619
Ş	VII	31	173.16129032	41.24810846	108.00000000	247.0000000	7.40837898	5368.000000	1701.406452	23.821
I	EMP	31	79.87096774	0.67041954	78.00000000	81.0000000	0.12041090	2476.000000	0.449462	0.839
-					YEAR=	87 MONTH=8				
Q	AVG	31	14.82129032	0.45494866	14.11000000	15.8000000	0.08171119	459.460000	0.206978	3 070
Q	AIR	31	12.77965806	1.89743659	10.26000000	16.4399000	0.34078967	396.169400	3.600266	14.847
P	PECOD	31	201.80645161	26.09012502	163.00000000	293.0000000	4.68592478	6256.000000	680.694624	12.928
M		31	874.19354839	100.81132998	658.66666667	1021.3333333	18.10624937	27100.000000	10162.924253	11.532
I M		31	03/.23055914	74.32743025	4/5./666666/	755.2933333	13.34960056	19754.333333	5524.566887	11.664
E N		31	2.19104039	0.04134029	2 20540000	4.2357000	0.11518955	86.733300	0.411328	22.923
s	SRT	31	2.29024338	0.540004700	1 42017633	3.9030000	0.00751602	00.294000 70 007545	0.232720	17.047
H F	M	5	0.75752365	0.15746571	0.58208710	0.9648898	0.07042081	3.787618	0.024795	20.787
3 F	MCOD	31	1.57713826	0.29183400	1.17128301	2.4345341	0.05241493	48.891286	0.085167	18.504
<u> </u>	SVI 1	31	206.87096774	31.67200860	166.00000000	296.0000000	5.68846067	6413.000000	1003.116129	15.310
1	FEMP	31	80.67741935	0.74775650	80.00000000	82.0000000	0.13430103	2501.000000	0.559140	0.927
-					YEAR=	87 MONTH=9				
C	AVG	30	12.32666667	1.71815927	10.18000000	15.7200000	0.31369153	369.800000	2,952071	13 939
C	AIR	30	13.75264000	1.91010443	10.47000000	16.1799000	0.34873576	412.579200	3.648499	13.889
P	PECOD	30	208.83333333	31.52129366	143.00000000	255.0000000	5.75497453	6265.000000	993.591954	15.094
Ņ	MLSS	30	862.40555556	129.54124540	612.50000000	1156.0000000	23.65088741	25872.166667	16780.934259	15.021
. r		29	653.72672414	102.75624418	441.00000000	878.5600000	19.08135551	18958.075000	10558.845719	15.719
r N		30	2.10231001	0.53688/65	1.29630000	3.7071000	0.09802183	81,159500	0.288248	19.846
5	SRT	30	2.58175274	0.29331027	2.22340000	3.1310000	0.05355203	50.010800 77 h52542	0.000035	10.998
Ē	FM	5	0.56030896	0.14389825	0.34419200	0.7226051	0.06435325	2.801545	0.314282	21.727
F	FMCOD	29	1.32592662	0.34081658	0.70894154	2.0911113	0.06328805	38.451872	0.116156	25.704
5	SVI1	30	231.43333333	41.29346891	146.0000000	311.0000000	7.53912147	6943.00000	1705.150575	17.842
٦	TEMP	30	81.3000000	0.65125873	80.0000000	83.0000000	0.11890303	2439.000000	0.424138	0.801

)

)

)

)

)

)

)

						SAS		22:50 MO	NDAY, JANUARY 1	6, 1989 12
	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
					YEAR=	87 MONTH=10				
	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1	31 31 31 31 31 31 31 31 31	14.37709677 10.83870968 222.0000000 1208.20430108 879.87849462 4.40328065 3.95744839 3.80275286 0.51778810 1.24608220 148.80645161	0.96860103 1.02841866 23.84533497 206.32846301 157.95284515 1.76411550 0.81471319 1.77898024 0.27757921 0.31588249	10.10000009.3300000147.0000000806.666666672.81240002.567900002.212466410.187796800.72012638	$\begin{array}{c} 15.7700000\\ 13.1000000\\ 280.0000000\\ 1581.6666667\\ 1154.6666667\\ 10.1441000\\ 5.1621000\\ 10.0416945\\ 0.9488444\\ 2.0771277\\ 200000000\\ \end{array}$	0.17396588 0.18470944 4.28274859 37.05768592 28.36916846 0.31684450 0.14632681 0.31951428 0.12413720 0.05673417	445.690000 336.000000 6882.000000 37454.333333 136.501700 122.680900 117.885339 2.588940 38.628548	0.938188 1.057645 568.600000 42571.434648 24949.101292 3.112104 0.663758 3.164771 0.077050 0.099782	6.737 9.488 10.741 17.077 17.952 40.064 20.587 46.781 53.609 25.350
	TEMP	31	80.16129032	0.86010752	78.00000000	249.0000000 82.0000000	6.56389921 0.15447987	4613.000000 2485.000000	1335.627957	24.560
					YEAR=	87 MONTH=11			•••••••••••••••••••••••••••••••••••••••	
131	QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	30 30 30 30 30 30 30 5 30 30 30 30	$\begin{array}{c} 14.36066667\\ 11.21900000\\ 237.43333333\\ 1136.68888889\\ 817.55311111\\ 3.44254000\\ 3.30098667\\ 2.87224655\\ 0.67481483\\ 1.39673902\\ 159.63333333\\ 77.26666667\end{array}$	0.90259753 0.60211323 17.35965067 128.27454791 93.61157056 0.95614452 0.44840858 0.96379517 0.19210520 0.19939846 29.14823391 1.63861450	$\begin{array}{c} 10.2600000\\ 9.5600000\\ 196.0000000\\ 896.0000000\\ 647.96666667\\ 1.78880000\\ 2.72620000\\ 1.44759674\\ 0.47099049\\ 1.02076857\\ 118.0000000\\ 74.0000000\\ \end{array}$	$\begin{array}{c} 15.6600000\\ 12.1400000\\ 286.0000000\\ 1358.6666667\\ 1032.5866667\\ 6.2917000\\ 4.3971000\\ 6.2775353\\ 0.9851272\\ 1.8886181\\ 242.0000000\\ 79.0000000\end{array}$	0.16479101 0.10993033 3.16942409 23.41962115 17.09105628 0.17456731 0.08186783 0.17596412 0.08591206 0.03640501 5.32171508 0.29916871	430.820000 336.570000 7123.000000 34100.666667 24526.593333 103.276200 99.029600 86.167396 3.374074 41.902171 4789.000000 2318.000000	0.814682 0.362540 301.357471 16454.359642 8763.126142 0.201070 0.928901 0.036904 0.039760 849.619540 2.685057	6.285 5.367 7.311 11.285 11.450 27.774 13.584 33.555 28.468 14.276 18.259 2.121
		*	******		· YEAR=	-87 MONTH=12				
	QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FMCOD SVII TEMP	31 31 31 31 31 31 31 5 31 31 31	$\begin{array}{c} 14.31645161\\ 13.79288710\\ 241.61290323\\ 1076.02150538\\ 804.30161290\\ 3.60547097\\ 3.41440645\\ 3.07030944\\ 0.59741472\\ 1.44146203\\ 214.0000000\\ 72.12903226 \end{array}$	0.45987352 1.75121158 21.42222743 135.42711407 103.61057720 1.38510153 0.76245317 1.39408512 0.14003765 0.19961956 39.38443009 1.56507583	$\begin{array}{c} 13.1700000\\ 10.9000000\\ 157.0000000\\ 838.333333\\ 608.9433333\\ 2.1320000\\ 2.43140000\\ 1.68505579\\ 0.42054486\\ 1.13939408\\ 150.0000000\\ 70.0000000\end{array}$	$\begin{array}{c} 15.2400000\\ 17.1498000\\ 273.0000000\\ 1394.0000000\\ 1017.6200000\\ 7.4810000\\ 4.8020000\\ 7.6986957\\ 0.7634797\\ 1.9063182\\ 287.0000000\\ 74.0000000\end{array}$	0.08259572 0.31452688 3.84754563 24.32342773 18.60900901 0.24877158 0.13694063 0.25038508 0.06262674 0.03585273 7.07365246 0.28109592	443.810000 427.579500 7490.000000 33356.666667 24933.35000 111.769600 105.846600 95.179593 2.987074 44.685323 6634.000000 2236.000000	0.211484 3.066742 458.911828 18340.503226 10735.151707 1.918506 0.581335 1.943473 0.019611 0.039848 1551.133333 2.449462	3.212 12.696 8.866 12.586 12.882 38.417 22.330 45.405 23.441 13.848 18.404 2.170

)

)

)

)

)

·

1

)

)

)

	22.	50	MO

))

22:50 MONDAY, JANUARY 16, 1989 13

)

)

)

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
				YEAR=4	38 MONTH=1				
QAVG QAIR PECOD MLSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	31 31 31 31 31 31 31 31 31 31 31 29	12.54129032 13.99933548 239.09677419 1235.72043011 939.70344086 4.02040000 3.80238065 3.25563109 0.49788677 1.06087387 158.29032258 70.34482759	1.86907774 1.70537107 27.79011196 130.03281913 91.22872180 1.36775435 0.81031388 1.17366415 0.11464147 0.19522220 24.35459375 1.00980416	8.4500000 10.7900000 168.0000000 944.66666667 726.8033333 2.31360000 2.61840000 1.80382058 0.39462707 0.61252017 106.00000000 67.00000000	$\begin{array}{c} 14.7100000\\ 16.0999000\\ 296.0000000\\ 1555.6666667\\ 1151.1933333\\ 8.3549000\\ 5.0342000\\ 6.5281740\\ 0.6472563\\ 1.4374814\\ 208.0000000\\ 72.0000000\\ \end{array}$	0.33569627 0.30629369 4.99125145 23.35458375 16.38516213 0.24565593 0.14553667 0.21079630 0.05732074 0.03506294 4.37421417 0.18751592	$\begin{array}{r} 388.780000\\ 433.979400\\ 7412.000000\\ 38307.333333\\ 29130.806667\\ 124.632400\\ 117.873800\\ 100.924564\\ 1.991547\\ 32.887090\\ 4907.000000\\ 2040.000000\end{array}$	3.493452 2.908290 772.290323 16908.534050 8322.679680 1.870752 0.656609 1.377488 0.013143 0.038112 593.146237 1.019704	14.903 12.182 11.623 10.523 9.708 34.020 21.311 36.050 23.026 18.402 15.386 1.436
				YEAR=	88 MONTH=2				********
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	29 29 29 29 29 29 29 29 29 29 29 29	12.47620690 14.85515862 255.68965517 1270.70114943 953.72114943 4.54785862 3.93696207 3.86216812 0.51758164 1.11857596 119.55172414 71.96551724	1.36006936 0.73308454 19.40931928 112.03862517 81.59177163 3.43800963 0.86496588 3.66872488 0.11558015 0.19121945 10.94984086 0.90564731	9.3700000 12.6300000 221.0000000 1049.6666667 808.2433333 2.9129000 2.9987000 2.587314 0.3715173 0.6734882 97.0000000 70.0000000	$\begin{array}{c} 14.1400000\\ 16.0697000\\ 314.0000000\\ 1492.0000000\\ 1096.4266667\\ 20.0914000\\ 5.8214000\\ 20.6436004\\ 0.6625497\\ 1.4274888\\ 152.0000000\\ 73.0000000\end{array}$	0.25255854 0.13613038 3.60422011 20.80505039 15.15121163 0.63842236 0.16062013 0.68126511 0.05168901 0.03550856 2.03333440 0.16817448	361.810000 430.799600 7415.000000 36850.333333 27657.913333 131.887900 114.171900 112.002875 2.587908 32.438703 3467.000000 2087.000000	1.849789 0.537413 376.721675 12552.653530 6657.217198 11.819910 0.748166 13.459542 0.013359 0.036565 119.899015 0.820197	10.901 4.935 7.591 8.817 8.555 75.596 21.970 94.991 22.331 17.095 9.159 1.258
				YEAR=	88 MONTH=3				
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1	31 31 31 31 31 31 31 31 31 31	13.13096774 13.63869677 254.19354839 1253.92473118 974.38225806 3.26541290 3.16807419 2.63549483 0.43582022 1.14149496 133.12903226	1.05340196 1.05606287 17.83520742 118.96092448 91.92511723 0.87000735 0.29841565 0.85707664 0.08325449 0.14794520 12.31460362	$\begin{array}{r} 9.4800000\\ 12.1700000\\ 230.0000000\\ 1012.6666667\\ 820.2600000\\ 2.4392000\\ 2.8123000\\ 1.9010149\\ 0.2930441\\ 0.8610466\\ 115.0000000\end{array}$	14.2900000 16.3197000 309.0000000 1618.6666667 1278.7466667 7.2199000 3.7033000 6.7096483 0.4931596 1.5745076 164.0000000	0.18919658 0.18967449 3.20329782 21.36601277 16.51023844 0.15625793 0.05359703 0.15393551 0.03723254 0.02657174 2.21176810	407.060000 422.799600 7880.000000 38871.666667 30205.850000 101.227800 98.210300 81.700340 2.179101 35.386344 4127.000000	1.109656 1.115269 318.094624 14151.701553 8450.227177 0.756913 0.089052 0.734580 0.006931 0.021888 151.649462	8.022 7.743 7.016 9.487 9.434 26.643 9.419 32.521 19.103 12.961 9.250
TEMP	31	73.64516129	1.56094815	72.0000000	76.0000000	0.28035456	2283.000000	2.436559	2.12

SAS

132

)

)))))))

					SAS		22:50 MO	NDAY, JANUARY 16	5, 1989 14
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
		********		YEAR=	88 MONTH=4				
QAVG QAIR PECOD MLSS MCVSS MCRT MCRTA SRT FM FMCOD SVI1	30 30 30 30 30 30 30 30 30 30	13.85700000 14.11765667 247.16666667 1118.1111111 873.33722222 3.47770667 3.49039333 2.86541483 0.64911858 1.30604671 145.366666667	0.57858418 1.26653090 15.59417074 90.60208710 72.11180850 0.62090253 0.25186680 0.54338023 0.12135146 0.13503773 12.78329549	12.23000000 11.70000000 221.0000000 918.66666667 707.3733333 2.48660000 2.99520000 2.03604543 0.51200354 1.05696811 125.00000000	$14.8400000\\16.4399000\\293.0000000\\1272.0000000\\992.1600000\\5.2458000\\4.0140000\\4.3165759\\0.8331878\\1.6684912\\179.0000000$	0.10563454 0.23123585 2.84709303 16.54160229 13.16575473 0.11336077 0.04598438 0.09920720 0.05427002 0.02465440 2.33389977	$\begin{array}{r} 415.710000\\ 423.529700\\ 7415.000000\\ 33543.333333\\ 26200.116667\\ 104.331200\\ 104.711800\\ 85.962445\\ 3.245593\\ 39.181401\\ 4361.000000\\ \end{array}$	0.3347597 1.6041005 243.1781609 8208.7381865 5200.1129250 0.3855200 0.0634369 0.2952621 0.0147262 0.0182352 163.4126437	4.175 8.971 6.309 8.103 8.257 17.854 7.216 18.963 18.695 10.339 8.794
IEMP	30	77.50000000	1.00858385	75.00000000	79.0000000	0.18414137	2325.000000	1.0172414	1.301
QAVG QAIR PECOD MISS	31 31 31 31	12.49612903 11.77935484 236.64516129	1.68629708 1.49995541 15.55752420	9.64000000 8.70000000 209.00000000	88 MONTH=5 14.6900000 14.4900000 265.0000000	0.30286790 0.26939994 2.79421383	387.380000 365.160000 7336.000000	2.843598 2.249866 242.036559	13.495 12.734 6.574
MLSS MLVSS MCRTA MCRTA SRT FM FMCOD	31 31 31 31 31 5 31	857.46392473 3.59628387 3.37394516 3.31537908 0.59170865 1.17264316	127.00380380 102.77302854 0.73056110 0.39831063 0.63769141 0.13496186 0.29864588	877.66666667 658.46000000 2.37980000 2.94280000 2.29199120 0.39426620 0.69688403	1347.5000000 1037.5750000 5.5820000 4.4364000 4.6006795 0.7688743 1.8946275	22.81055650 18.45858083 0.13121265 0.07153870 0.11453276 0.06035678 0.05363838	33780.833333 26581.381667 111.484800 104.592300 102.776752 2.958543 36.351938	16129.966129 10562.295395 0.533720 0.158651 0.406650 0.018215 0.089189	11.655 11.986 20.314 11.805 19.234 22.809 25.468
	31 31	144.29032258 78.51612903	9.19852723	126.00000000	172.0000000	1.65210426	4473.000000	84.612903	6.375
ى 				YEAR=					
QAVG QAIR PECOD MLSS MLVSS MCRT MCRTA SRT FM FMCOD SVI1 TEMP	30 30 30 30 30 30 30 5 30 30 30	$12.23800000\\12.05433333\\241.60000000\\1060.23333333\\822.76516667\\4.73892333\\4.66415333\\5.00706826\\0.52275942\\1.19531939\\140.62962963\\79.33333333$	1.39857169 1.83905839 24.91447440 102.47919703 81.40006766 1.09350081 0.61849239 1.43190341 0.04524233 0.18440875 21.70811289 0.80229556	$\begin{array}{c} 10.6300000\\ 9.1800000\\ 188.0000000\\ 885.0000000\\ 672.6000000\\ 2.85720000\\ 3.78980000\\ 2.50871244\\ 0.47602241\\ 0.86336017\\ 108.0000000\\ 78.0000000\\ \end{array}$	14.500000 15.500000 289.000000 1264.000000 1011.200000 6.1621000 8.8798193 0.5935095 1.6917520 184.000000 80.0000000	0.25534309 0.33576459 4.54873988 18.71005596 14.86155108 0.19964502 0.11292074 0.26142860 0.02023299 0.03366828 4.17772827 0.14647846	367.140000 361.630000 7248.000000 31807.000000 24682.955000 142.167700 139.924600 150.212048 2.613797 35.859582 3797.000000 2380.000000	$\begin{array}{r} 1.956003\\ 3.382136\\ 620.731034\\ 10501.985824\\ 6625.971014\\ 1.195744\\ 0.382533\\ 2.050347\\ 0.002047\\ 0.034007\\ 471.242165\\ 0.64678\end{array}$	11.428 15.256 10.312 9.666 9.893 23.075 13.261 28.598 8.655 15.428 15.428

)

)

-

)

)

)

·

-2-

)

)

)

				SAS		22:50 M	NDAY, JANUARY	16,	1989 15
VARIABLE N	MEAN	STANDARD	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE		c.v.
			YEAR=	88 MONTH=7					
QAVG 31 QAIR 31 PECOD 31 MLSS 31 MLVSS 31 MCRT 31 MCRTA 31 SRT 31 FM 5 FMCOD 31 SVI1 5 TEMP 31	11.05806452 11.20741935 238.19354839 1051.35483871 814.38784946 3.93462903 3.78890000 4.17369074 0.56013462 1.08591084 174.40000000 81.09677419	1.04514567 1.43820946 18.16116618 120.23401366 101.57237931 1.27590258 0.83138019 1.61475072 0.17210459 0.18125965 19.61631974 0.87005129	9.6900000 9.2000000 199.0000000 514.7500000 2.0913000 2.4514000 2.10867700 0.40568505 0.80419689 155.0000000 80.0000000	$\begin{array}{c} 13.7400000\\ 14.5600000\\ 274.0000000\\ 1254.3333333\\ 953.2933333\\ 7.0176000\\ 5.1202000\\ 8.7321562\\ 0.8242525\\ 1.5885231\\ 203.0000000\\ 82.0000000\\ \end{array}$	0.18771370 0.25831004 3.26184174 21.59466634 18.24293786 0.22915887 0.14932029 0.29001779 0.07696751 0.03255519 8.77268488 0.15626582	342.800000 347.430000 32592.000000 25246.023333 121.973500 117.455900 129.384413 2.800673 33.663236 872.000000 2514.000000	1.092329 2.068446 329.827957 14456.218041 10316.948238 1.627927 0.691193 2.607420 0.029620 0.032855 384.80000 0.756989		9.451 12.833 7.625 11.436 12.472 32.428 21.943 38.689 30.726 16.692 11.248 1.073

)

)

)

)

)

.

2

)

)

)
APPENDIX IV OFF-GAS DATA

This appendix contains a statistical summary for the off-gas data collected for Terminal Island, Valencia and Whittier Narrows for the entire period of testing. Note that averages in the text were calculated for selected periods of operation, and may not match the averages presented here.

Key

~

~

ASOTE1 - ASOTE6	=	α SOTE for hood locations 1 to 6
ASOTET	=	flow weighted average α SOTE for the entire basin
ALPHA1 - ALPHA6	=	α for hood locations 1 to 6
ALPHAT	=	flow weighted α for the entire basin
FLUM1 - FLUM6	Ξ	hood flux (m^3/m^2-min) for hood positions 1 to 6
FLUMT	=	average hood flux for the entire basin
DO1 - DO6	=	DO (mg/L) at hood positions 1 to 6
DOT	=	average basin DO

)

)

)

)

)

)

)

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
				BASIN	I, WHITTIER				
ASOTE 1	35	6.57918279	2.02214952	3.50824073	11.43249516	0.34180565	230.27139776	4.08908867	30.736
ASOTE2	35	9.43882736	2.65548417	4.36932499	14.99287814	0.44885875	330.35895743	7.05159617	28.134
ASOTE3	35	9.53813865	1.78378615	6.34898457	12.82873371	0.30151489	333.83485284	3.18189302	18.702
ASOTE4	35	9.52677228	2.27792380	3.39660129	14.03466998	0.38503940	333.43702965	5.18893682	23.911
ASOTE5	35	10.09868778	1.79622037	5.36737328	13.98455062	0.30361666	353.45407231	3.22640762	17.787
ASOTE6	35	9.85715410	2.11670981	5.66521431	14.06566742	0.35778926	345.00039345	4.48046042	21.474
ASOTET	35	8.94717736	1.54768734	5.85570553	11.80321240	0.26160691	313.15120758	2.39533610	17.298
ALPHA1	35	0.20834406	0.06449000	0.11870880	0.36907770	0.01090080	7.29204211	0.00415896	30.954
ALPHA2	35	0.29727998	0.08128239	0.13598696	0.47311850	0.01373923	10.40479928	0.00660683	27.342
ALPHA3	35	0.30104521	0.05238025	0.20942241	0.39856087	0.00885388	10.53658245	0.00274369	17.399
ALPHA4	35	0.30081424	0.06754341	0.11202636	0.42557203	0.01141692	10.52849846	0.00456211	22.454
ALPHA5	35	0.38731313	0.06442366	0.20947269	0.50698647	0.01088959	13.55595947	0.00415041	16.633
ALPHA6	35	0.37954826	0.07758613	0.22581416	0.51233744	0.01311445	13.28418905	0.00601961	20.442
ALPHAT	35	0.30017537	0.04844134	0.19778511	0.39646833	0.00818808	10.50613796	0.00234656	16.138
FLUM1	35	0.08319474	0.02639613	0.03826104	0.14744625	0.00446176	2.91181581	0.00069676	31.728
FLUM2	35	0.08340025	0.02465903	0.04594462	0.14557827	0.00416814	2.91900892	0.00060807	29.567
FLUM3	35	0.08509377	0.02221973	0.04025598	0.14114726	0.00375582	2.97828194	0.00049372	26.112
FLUM4	35	0.09305978	0.02567449	0.04961009	0.15744021	0.00433978	3.25709227	0.00065918	27.589
FLUM5	35	0.05717092	0.01430952	0.03320937	0.08260955	0.00241875	2.00098205	0.00020476	25.029
FLUM6	35	0.05849458	0.01332763	0.03127193	0.08498089	0.00225278	2.04731043	0.00017763	22.784
FLUMT	35	0.07673567	0.01651026	0.04680917	0.11500882	0.00279074	2.68574857	0.00027259	21.516
D01	35	0.36385714	0.57026837	0.01000000	3.20000000	0.09639295	12.73500000	0.32520601	156.729
D02	35	0.84928571	0.76740792	0.05000000	3.35000000	0.12971561	29.72500000	0.58891492	90.359
DO3	35	1.45714286	1.09992599	0.10000000	4.95000000	0.18592143	51.00000000	1.20983718	75.485
D04	35	2.81142857	1.15674720	0.45000000	5.30000000	0.19552596	98.40000000	1.33806408	41.144
D05	35	2.32285714	1.10703584	0.27500000	4.90000000	0.18712321	81.30000000	1.22552836	47.658
D06	35	2.05285714	1.02914820	0.27500000	4.55000000	0.17395780	71.85000000	1.05914601	50.132
DOT	35	1.64290476	0.78435343	0.24166667	3.94166667	0.13257993	57.50166667	0.61521031	47.742

)

)

)

c	۸	c
. 3	~	3

)

)

)

)

)

)

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
				BASIN 2,	WHITTIER				
ASOTE1 ASOTE2 ASOTE3 ASOTE4 ASOTE5 ASOTE6 ASOTE6 ASOTET ALPHA1 ALPHA2 ALPHA4 ALPHA5 ALPHA6 ALPHA6 ALPHA6 ALPHA6 ALPHA7 FLUM1 FLUM2 FLUM3 FLUM4 FLUM5 FLUM5 FLUM6 FLUM5 FLUM6 FLUM7 DO1 DO2 DO3 DO4 DO5	34444444444444444444444444444444444444	4.65301059 6.12861566 7.55857069 7.91497713 8.58216544 6.88929497 0.14349510 0.18819454 0.23179392 0.23942832 0.29685948 0.32278738 0.22607448 0.10517571 0.10301441 0.09566422 0.10515172 0.06963597 0.07041444 0.09150941 0.31323529 0.68750000 1.27867647 2.15735294 1.88044118	0.94388194 1.64866532 2.18369554 2.09255931 1.89892167 2.08396533 1.38993139 0.02882749 0.04904692 0.06425945 0.06172358 0.06172358 0.06704159 0.07398845 0.04302483 0.02549263 0.02554353 0.02723142 0.02710784 0.01828099 0.01942725 0.02034691 0.56047988 0.85553567 1.33247793 1.29246841 1.32206185	BASIN 2, 2.48017292 3.14307865 3.01181907 1.84019539 4.57312398 4.49884468 3.07378911 0.07739326 0.09819666 0.09585268 0.05856411 0.17536340 0.17246457 0.10413790 0.06708381 0.05222896 0.04810761 0.06343989 0.03904809 0.03684372 0.05743616 0.05000000 0.10000000 0.10000000 0.28500000	WHITTIER 7.05352099 11.48837059 15.14053558 12.09394403 12.94720482 14.19851143 11.17990096 0.21839662 0.34608436 0.45213825 0.36311186 0.46740509 0.51184314 0.35459809 0.19347816 0.16891360 0.16222120 0.18353880 0.1182426 0.1182426 0.11962914 0.14461082 3.3000000 3.7000000 5.35000000 4.95000000 4.70000000	$\begin{array}{c} 0.16187442\\ 0.28274377\\ 0.37450070\\ 0.35887096\\ 0.32566238\\ 0.35739711\\ 0.23837127\\ 0.00494387\\ 0.00841148\\ 0.01102040\\ 0.01058551\\ 0.00149754\\ 0.01268891\\ 0.00737870\\ 0.00437195\\ 0.00438068\\ 0.00467015\\ 0.00464896\\ 0.00313516\\ 0.00313516\\ 0.00313516\\ 0.00313516\\ 0.00348947\\ 0.09612151\\ 0.14672316\\ 0.22851808\\ 0.22165650\\ 0.22673174 \end{array}$	158.20236016 208.37293257 256.99140343 265.08181574 269.10922225 291.79362507 234.23602882 4.87883327 6.39861435 7.88099336 8.14056284 10.09322248 10.97477104 7.68653240 3.57597403 3.50248984 3.25258362 3.57515848 2.36762307 2.39409090 3.11131999 10.65000000 23.37500000 43.47500000 73.35000000	0.89091311 2.71809734 4.76852621 4.37880447 3.60590350 4.34291151 1.93190927 0.00083102 0.00240560 0.00412928 0.00380980 0.00449458 0.00547429 0.00185114 0.00064987 0.00065247 0.00065247 0.00073483 0.00033419 0.00033419 0.00033419 0.00037742 0.00041400 0.31413770 0.73194129 1.77549744 1.67047460 1.74784753	$\begin{array}{c} 20.285\\ 26.901\\ 28.890\\ 26.840\\ 23.991\\ 24.283\\ 20.175\\ 20.090\\ 26.062\\ 27.723\\ 25.780\\ 22.584\\ 22.922\\ 19.031\\ 24.238\\ 24.796\\ 28.466\\ 25.780\\ 26.780\\ 26.252\\ 27.590\\ 22.235\\ 178.933\\ 124.442\\ 104.208\\ 59.910\\ 70.306\end{array}$
DOT	34	1.37943627	0.96028678	0.40416667	4.25833333	0.16468782	46.90083333	0.92215070	69.614

<u>)</u>

))))

S	AS.	
_		

)

,

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
				BASIN 3	, WHITTIER				
ASOTE 1	34	4.83889650	0.93913220	1.91489689	6.12525315	0.16105984	164.52248090	0.88196928	19.408
ASOTE2	34	6.97122582	1.78199559	3.42911566	12.87866819	0.30560972	237.02167796	3.17550829	25.562
ASOTE3	34	7.69653968	2.07275094	3.70350801	13.44500680	0.35547385	261.68234899	4.29629647	26.931
ASOTE4	34	7.88076779	2.37144385	3.29337953	14.11073014	0.40669926	267.94610486	5.62374591	30.092
ASOTE5	34	8.26524546	1.87731031	5.07881879	13.35817808	0.32195606	281.01834551	3.52429399	22.713
ASOTE6	34	8.78364565	2.07380043	4.49928037	14.94042125	0.35565384	298.64395202	4.30064822	23.610
ASOTET	34	7.18004491	1.47883395	3.47832825	11.25467116	0.25361793	244.12152694	2.18694986	20.596
ALPHA1	34	0.14930371	0.02808062	0.05973268	0.18999944	0.00481579	5.07632629	0.00078852	18.808
ALPHA2	34	0.21440341	0.05303929	0.10696673	0.39252176	0.00909616	7.28971611	0.00281317	24.738
ALPHA3	34	0.23691001	0.06046369	0.11706232	0.39748041	0.01036944	8.05494032	0.00365586	25.522
ALPHA4	34	0.24269401	0.06844984	0.10419880	0.41937751	0.01173905	8.25159626	0.00468538	28.204
ALPHA5	34	0.31084143	0.06588390	0.19545181	0.48051355	0.01129900	10.56860848	0.00434069	21.195
ALPHAG	34	0.33171793	0.07272341	0.17309939	0.53514739	0.01247196	11.27840951	0.00528869	21.923
ALPHAT	34	0.23585650	0.04485806	0.11709132	0.35658675	0.00769309	8.01912098	0.00201225	19.019
FLUM1	34	0.11034193	0.03264550	0.06071331	0.18272800	0.00559866	3.75162571	0.00106573	29.586
FLUM2	34	0.09921061	0.03168800	0.04586258	0.18919676	0.00543445	3.37316082	0.00100413	31.940
FLUM3	34	0.10307112	0.03175825	0.05189990	0.19511446	0.00544650	3.50441801	0.00100859	30.812
FLUM4	34	0.10963626	0.03328312	0.04534934	0.18386239	0.00570801	3.72763280	0.00110777	30.358
FLUM5	34	0.06967404	0.01870386	0.03101057	0.09947636	0.00320769	2.36891748	0.00034983	26.845
FLUM6	34	0.06931146	0.02111082	0.01612537	0.12567050	0.00362048	2.35658965	0.00044567	30.458
FLUMT	34	0.09354090	0.02497870	0.04746480	0.15185130	0.00428381	3.18039074	0.00062394	26.704
D01	34	0.28382353	0.46043796	0.02500000	2.60000000	0.07896446	9.65000000	0.21200312	162.227
D02	34	0.64558824	0.74948140	0.05000000	3.70000000	0.12853500	21.95000000	0.56172237	116.093
DO3	34	1.17573529	1.11451316	0.10000000	4.85000000	0.19113743	39.97500000	1.24213959	94.793
D04	34	2.12352941	1.30119323	0.30000000	5.30000000	0.22315280	72.20000000	1.69310383	61.275
D05	34	1.87573529	1.33574808	0.17500000	4.65000000	0.22907891	63.77500000	1.78422293	71.212
D06	34	1.91176471	1.26629134	0.15000000	5.10000000	0.21716717	65.00000000	1.60349376	66.237
DOT	34	1.33602941	0.88313313	0.25000000	4.10833333	0.15145608	45.42500000	0.77992412	66.101

I I

)

SAS	

)

)

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAX1MUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
				VAL	ENCIA				
ASOTE 1	7	7.27765844	1.63932999	4.22975756	9.41314985	0.61960850	50.94360907	2.68740282	22.526
ASOTE2	1	4.71781018	1.92243602	2.79060074	7.49284788	0.72661252	33.0246/126	3.695/6024	40.748
ASOTE3	<u>/</u>	5.06941065	0.74885817	4.09/66046	6.24348034	0.28304178	32.4858/458	0.26078822	14.112
ASOTE4	1	7.43994336	1.81287836	4.90458950	9.8/3522/2	0.68520361	52.07960350	3.28072/93	24.307
ASOTES	<u> </u>	10.06560691	1.84065614	6.16892661	11.53506276	0.69570263	70.45924840	3.38801501	18.287
ASOIE6	<u>/</u>	9.05083043	1.98406871	5.0/2134/1	10.863/8/45	0.74990748	63.35581299	3.93052803	21.921
ASOTET	<u>1</u>	7.04583846	1.01195896	4.98322130	7.80319801	0.38248453	49.32086923	1.02406093	14.303
ALPHA1	7	0.28396227	0.07416600	0.15/29/8/	0.38508674	0.02803211	1.98//358/	0.00550059	20.118
ALPHA2	7	0.20113374	0.09804954	0.11216626	0.32434551	0.03705924	1.40793620	0.00961371	48.748
ALPHA3	7	0.20453037	0.01737537	0.18183845	0.22473458	0.00656727	1.431/1259	0.00030190	8.495
ALPHA4	7	0.28922094	0.08321999	0.20542248	0.40825822	0.03145420	2.02454660	0.00692557	28.774
ALPHA5	7	0.40401600	0.07994032	0.24829179	0.48534666	0.03021460	2.82811203	0.00639045	19.786
ALPHA6	7	0.35785219	0.08645521	0.19751520	0.45065950	0.03267700	2.50496536	0.00747450	24.159
ALPHAT	7	0.28258609	0.05135105	0.18878790	0.33385601	0.01940887	1.97810262	0.00263693	18.172
FLUM1	7	0.14015411	0.02594950	0.10325791	0.16998626	0.00980799	0.98107878	0.00067338	18.515
FLUM2	7	0.14929993	0.03858711	0.08797182	0.21421330	0.01458456	1.04509952	0.00148897	25.845
FLUM3	7	0.13787150	0.04638143	0.06821922	0.18364274	0.01753053	0.96510052	0.00215124	33.641
FLUM4	7	0.10099657	0.03399689	0.04524204	0.15365805	0.01284962	0.70697599	0.00115579	33.661
FLUM5	7	0.13339907	0.03105553	0.09957645	0.18583665	0.01173789	0.93379347	0.00096445	23.280
FLUM6	7	0.11703291	0.02468361	0.09021046	0.16243175	0.00932953	0.81923037	0.00060928	21.091
FLUMT	7	0.12979235	0.02138298	0.08241298	0.14214376	0.00808201	0.90854644	0.00045723	16.475
D01	7	0.98571429	0.75039672	0.25000000	2.15000000	0.28362330	6.9000000	0.56309524	76.127
D02	7	0.57142857	0.63891649	0.10000000	1.90000000	0.24148774	4.00000000	0.40821429	111.810
D03	7	0.36785714	0.36420984	0.10000000	1.15000000	0.13765838	2.57500000	0.13264881	99.009
D04	7	0.3000000	0.21794495	0.1000000	0.75000000	0.08237545	2.10000000	0.04750000	72.648
D05	7	2.38571429	0.99025009	0.7000000	3.75000000	0.37427935	16.70000000	0.98059524	41.507
D06	7	2,45714286	1.03860025	0.7000000	3.90000000	0.39255400	17.20000000	1.07869048	42.269
DOT	7	1.17797619	0.47994933	0.4000000	1.92500000	0.18140379	8.24583333	0.23035136	40.744

139

)

) ?

SAS

)

)

)

)

.

)

1

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c.v.
				TERMINAL ISLA	ND, PARKSON-WY	SS			
ASOTE 1	8	5.46753785	1.34109321	3.63561957	7.52688430	0.47414805	43.74030282	1.79853100	24.528
ASOTE2	8	7.10450182	2.62573575	3.96733729	10.01259005	0.92833778	56.83601455	6.89448821	36.959
ASOTE3	8	7.47183846	2.62074508	3.62240449	11.08078007	0.9265/331	59.77470765	6.86830476	35.075
ASOTE4	8	7.10243674	2.93779741	2.82850556	11.21408484	1.03866824	56.81949389	8.63065365	41.363
ASOTE5	8	7.91200856	2.64750705	3.97354297	12.64330959	0.93603509	63.29606848	7.00929357	33.462
ASOTET	8	6.66830556	1.99013564	3.77851716	9.37002114	0.70361920	53.34644449	3.96063986	29.845
FLUM1	8	0.27163346	0.12186042	0.17360219	0.54499376	0.04308416	2.17306766	0.01484996	44.862
FLUM2	8	0.20849715	0.06648909	0.14086483	0.31729890	0.02350744	1.66797719	0.00442080	31.890
FLUM3	8	0.18028840	0.08799787	0.09669722	0.37099093	0.03111194	1.44230718	0.00774362	48.809
FLUMA	Ř	0.20476276	0.12915196	0.09385011	0.41322704	0.04566211	1.63810210	0.01668023	63.074
FI UM5	ĕ	0 16426730	0 12337346	0.06185511	0 40410035	0.04361910	1.31413843	0.01522101	75,105
FLUMT	8	0 20588081	0.00625872	0 11792066	0 40396963	0 03403260	1 64711851	0 00926574	46 753
	9	1 27092222	0.61060005	0.6000000	2 26666667	0 21588113	10 16666667	0 37283730	40.750
001	0	1 01041667	1 07215502	0.00000000	3 90000007	0.2100113	15 20222222	1 15166171	56 174
002	0	1.91041007	1.07315502	0.45000000	3.80000000	0.37941700	10.20333333		51 570
003	8	1.78541667	0.92089663	0.95000000	3.40000007	0.32550012	14.28333333	0.84805060	21.279
D04	8	2.25625000	1.10/22510	0.9000000	4.06666667	0.39146319	18.05000000	1.22594742	49.074
D05	8	1.85833333	1.17726479	0.46666667	4.16666667	0.41622596	14.86666667	1.38595238	63.351
DOT	8	1.81625000	0.84381492	0.96000000	3.18000000	0.29833362	14.53000000	0.71202361	46.459

,

)

)

)

c		c
. J	~	э.

)))

,

,

))

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM .VALUE	STD ERROR OF MEAN	SUM	VARIANCE	C.V.
				TERMINAL	ISLAND AFRMAX				
					TUCKIU ALITIAN				
ASOTE 1	R	11 13360831	4.09986737	7.25251336	18.81633643	1,44952201	89.06886647	16.80891249	36.824
ASOTE2	Ř	10 65606259	3 49391870	5.24300729	15.80361571	1.23528680	85,24850069	12.20746792	32.788
ASOTES	Ř	12 63463199	3 68343384	5.59361097	16.97413728	1.30229052	101.07705592	13.56768486	29,153
450TEU	Ř	12 48996812	2 71141242	8.50230566	16.71090430	0.95862905	99.91974495	7.35175729	21.709
ASOTES	Ř	13 99368678	2,70633539	9.82120316	17.72273732	0.95683405	111.94949424	7.32425126	19.340
ASOTET	Å	11 73673886	2 74895007	8 61141449	16 59664259	0.97190062	93 89391085	7.55672648	23.422
	R R	0 36438115	0 13414131	0 23688441	0 61243416	0 04742611	2 91504920	0.01799389	36.813
	8	0 35604296	0 12475313	0 16831076	0 54616402	0.04410689	2.84834367	0.01556334	35.039
	8	0.1010000	0 12522305	0 1835/878	0 55005084	0 04427303	3 35287990	0 01568081	20 878
	U 9	0 4 15 103 72	0.10130546	0.27530305	0 50334140	0.03581680	3 32082976	0 01026280	24 405
	0	0 4 5 103 72	0 11010860	0 31033816	0 66986431	0 03802027	3 75463028	0 01212390	23 461
	0	0.40932070	0.10203003	0.31933010	0 58531776	0.03092921	3 13311224	0.010/038/	26 157
	0	0.39103903	0.10243943	0.27799740	0.126/13220	0.01228605	0 11528765	0 00120775	66 917
	0	0.05191090	0.03475274	0.02512035	0.15704007	0.01670312	0.55198505	0.00120775	68 852
	0	0.00090203	0.04749011	0.02343030	0.15704407	0.0160/9312	0.5200100505	0.00225007	60.012
FLUM3	0	0.00010230	0.04537393	0.02107750	0.14700037	0.01004211	0.22001042	0.00205679	64 521
	0	0.03270906	0.02110743	0.01012333	0.00022000	0.00740200	0.2010/249	0.00044552	04.231
FLUM5	8	0.02454523	0.02329371	0.00909832	0.07989347	0.00823557	0.19030100	0.00034260	50 077
FLUMI	8	0.04885063	0.02881080	0.023/3830	0.09503439	0.01018618	0.39080508	0.00083008	20.9//
001	8	0.33333333	0.31282126	0.05000000	0.83333333	0.11059902	2.0000000/	0.09785714	93.040
002	8	0.45416667	0.47748930	0.05000000	1.23333333	0.16881796	3.03333333	0.22799603	105.135
D03	8	0.56250000	0.62581693	0.05000000	1./000000/	0.22125970	4.50000000	0.39164683	111.250
004	8	0.30625000	0.32280240	0.05000000	0.90000000	0.11412/88	2.45000000	0.10420139	105.405
D05	8	0.23958333	0.26561362	0.05000000	0.83333333	0.09390860	1.91666667	0.07055060	110.865
DOT	8	0.37916667	0.33781158	0.0700000	0.92666667	0.11943443	3.033333333	0.11411667	89.093

)))))

APPENDIX V SELECTED DIFFUSER DRAWINGS

)

)

)

 $\overline{}$

Norton Dome Diffuser (Drawing courtesy of LACSD)

Sanitaire Disk Diffuser (Drawing courtesy of LACSD)