University of California, Los Angeles

Aeration Systems Past, Present and Future. What to Expect from Aeration **System Upgrades** Michael K. Stenstrom **Professor, Civil and Environmental Engineering Department**

Outline

- Aeration system types
- Terminology
- Mechanical (surface) aerators and combined (jets and turbines)
- Diffused aeration
 - Coarse
 - Fine pore
- Current Performance Estimates
- Maintenance and Economics
- Conclusions

Terminology

Efficiency

- Standard oxygen transfer efficiency (SOTE) (percent oxygen transferred)
- Standard oxygen transfer rate (SOTR) (mass transferred per unit time)
- Standard aeration efficiency (SAE) (mass transferred per unit time per unit power)

Terminology Cont

- SOTE percent
- SOTR Ib O2/hr or kg O2/hr
- SAE Ib O2/hp-hr or kg O2/kW-hr
- All above at standard conditions (e.g. 20°C, clean water, etc.)
- OTE, OTR, AE at process conditions

Standard and Process Conditions

- Adustment formulas based upon driving force, temperature, barometric pressure, water quality, saturation concentration, etc.
- Driving force and water quality the most significant
- Driving force = $(DO_s DO)/DO_s$
- Water quality alpha factor, 0 to 1 !
- Total correction can result in process water transfer of only 30 to 80% of clean water transfer

Mechanical Aerators

- Two types
 - High speed (900-1200 RPM)
 - Low speed (30-80 RPM)
- Operate at the surface
- Modest efficiency
- High heat loss
- Mist, spray
- Often simple to install, especially high speed
- Higher alpha factors (0.6 to 0.9) depending upon energy density

Specifications

- 1 to 75 hp (1 to 56 kW)
- Up to 2.2 lb O2/hp-hr (1.3 kg O2/kW-hr)
- 900 to 1200 rpm motors, no gear box
- Floc shearing potential
- Quick installation, quick delivery
- 8 ft (2.5 m) depth without draft tubes

High Speed – Out of Service

For Sale !!!!

Low Speed Vertical Michael K. Stenstrom (Radial Pumping)

Specifications

- 5 to 150 hp (112 kW), rarely greater, but possible
- 3 to 3.5 lb O2/hp-hr (1.8-2.2 kg O2/kW-hr)
- ~40 to 80 RPM impellers
- Depths to 15 ft (3.5 m) without draft tubes or lower impellers
- Usually pier mounted, but occasionally mounted on floats
- Long lead time for purchase and installation
- Less potential for floc shear
- Lower impellers and draft tubes for operation at greater depth
- New impeller designs

In Service

Maintenance

Combined Types

- Turbines using mechanical energy to make fine bubbles from a coarse orifice
 - Sparged
 - Down draft
- Jets air and water flowing through a venturi creates fine bubbles without a small orifice
- Alpha factors similar to fine bubble diffusers, as opposed to mechanical aerators (0.3 to 0.6)

Down Draft Turbine

Motor/Gear

Support Columns

Draft Tube

Diffused – Coarse Bubble

- Low maintenance, low efficiency
- 1 % /ft or (3%/m) SOTE
- 2.0-3.0 SAE (1.2 1.8 kg O2/kW-hr)
- Large orifices 0.25 in (60 mm)
- Handles large air flow and high OTRs for many industrial applications
- Phased out in most municipal applications in favor of more efficient fine pore systems
- Alpha in the 0.6 to 0.8 range

Floor Coverage

- Spiral roll least efficient but great mixing (0.3 to 0.5 % SOTE/ft)
- Cross roll and "ridge and furrow"
- Full floor coverage most efficient
- Odd arrangements often work well
- Depth limited by blower restrictions

Floor Configurations

Spargers

Fine Pore Diffusers

- Ceramic plates original custom build systems
- Ceramic domes imported from England, technology ruined in the US
- Ceramic discs pioneered by Sanitaire
- Ceramic tubes old and new versions
- Membrane discs sometimes interchangeable with discs
- Membrane tubes many manufacturers
- Plastic tubes and discs some special uses
- Panels proprietary geometry

Fine Pore Diffusers

- Usually implemented with full floor coverage
- Quiescent systems low turbulence and low fluid velocities
- Suitable for low to medium rate systems
- Requires routine cleaning
- Highest efficiency of all the systems, so far! 8.0 SAE (4.8 kg O2/kW-hr)
- Best system to minimize VOC release

Fine Pore Plates

Developed and used by many large US cities, in custom, site-specific designs.

Domes On Air Headers

() a

Ceramic Disc Diffusers

Membrane Discs

D

Other Discs

Mini Panel

Diffused Aerator Problems

- Coarse bubble
 - Piping failure
 - Corrosion
 - Leaks
- Fine pore
 - Fouling (biological)
 - Scaling (chemical)
 - Leaks into the piping system that foul diffusers
 - Back pressure build up
 - Material failures (membrane problems)
 - Piping failures
 - Leaks

Material Failures

- Hardening of the membrane from leaching of membrane components, resulting in increased pressure drop and reduced efficiency
- Softening of the membrane due to absorption of wastewater constituents, resulting in membrane expansion, increased pressure drop and reduced efficiency
- Change in pore size due to aging

Fouling and Scaling

- Fouling biological growth on diffuser surfaces, coalescing bubbles, increasing pressure drop
- Scaling precipitation of minerals (calcium carbonate, silica)
- Fouling from the inside due leaks into the piping system

Tank With Partial Cleanse From Hosio Copy right 2001, 2006 Michael K. Stenstrom

1777777777

Diffuser Coated With Bioslime

How Does this Affect Design, Operation and Economics?

- Alpha factors the mother of all fudge factors!
- Efficiency decline over time by fouling/scaling
- Economics of cleaning and replacement
- Monitoring New instruments coming

A tale of two tanks

20 years of field Results

What we learned?

- Fine pore diffuser performance is a function of the MCRT (sludge age or SRT)
- Higher MCRT means higher transfer efficiency!

Performance as a Function of Diffuser Age

Power Wasted Compared to Cleaning Cost

Efficiency per process type

NEW & 5.4 1.6 **CLEANED** NE W ¢^{Ŭ9} αSOTE/Z (%/m 4.60%/m +.6 <24 mo. USED 1.2 NEW 🛇 lphaSOTE / \mathbb{Z} (%/ft) OLD α**SOTE/Z (%/ft**) 4.30%/m U NEW ¢^{OLD} 3.8 OLD 3.75%/m \diamond 0.8 OLD >24 mo. 3.0 USED 8 USED **MCRT** (d) 2 4 MCRT (d) 10 MCRT (d) 13 15 17 19 21 22 14 18 0.4 CONVENTIONAL **N-ONLY** NDN

Copy right 2001, 2006 Michael K. Stenstrom

Clea

Aeration cost Diffuser clear

Ben Leu, 2005, Fine-pore Diffuser from Orange County

New Generation of Monitoring Equipment

- Most of the results you see where collected through off-gas testing
- Requires an expert operator, 8 to 24 hours of time
- Cost amounts to several thousand dollars per test
- New Generation of equipment-
 - Automatic
 - Digital
 - Inexpensive
 - Smaller!

Instrument sizes

Final Thoughts

- Engineers have a wide range of options for aeration
- Mechanical aerators
 - High speed simple quick solution, usually not best on any specific parameter
 - Low speed expensive but can be relatively efficient, good mixing
 - Both have high cooling rates and high VOC stripping rates. Not recommended for cold applications

Final Thoughts

- Coarse bubble diffusers
 - Low maintenance
 - Low efficiency
 - Never a good energy conserving solution but often the maintenance free solution
- Fine pore (bubble)
 - Best energy conservation
 - High maintenance
 - Commit to clean or do not purchase

Diffuser Cleaning

- Depending on fouling rates, diffuser cleaning will pay for itself in 9 to 24 months, depending on fouling tendency
- High MCRT systems foul more slowly
- Low MCRT systems foul more quickly

To BNR or Not?

Our work shows that

- LOW MCRT Systems have the lowest OTE
- High MCRT Systems have much higher OTE
- BNR systems like the MLE process have the highest OTE
- The improved OTE and the denitrification credit compensate for the additional oxygen requirements of High MCRT operation
- BNR systems, because of the selector effect of the denitrification zone, resist bulking and are inherently more stable.
- Why build new low SRT systems ????