© 2000 Michael K. Stenstrom

Membrane Technologies for Water Treatment

Michael K. Stenstrom Professor Civil and Environmental Engineering Dept UCLA May 29, 2001

- Some History
 - Early development
 - Tubular membranes
- Classifications
 - Microfiltration
 - Ultrafiltration
 - Nanofiltration
 - Reverse Osmosis
- Configurations
 - Tubular
 - Spiral wound
 - Hollow fine fiber
- Test Configurations
- Lake Arrowhead Demonstration Project
- Applications

© 2000 Michael K. Stenstrom

© 2000 Michael K. Stenstrom

University of California, Los Angeles

Original Invention

- Loeb-Sourirajan invented the Cellulose-Acetate membrane at UCLA in early 1960's. With UCLA they had the original patent, but it was never licensed due to its poor writing
- Originally used in a plate and frame apparatus
- Discovered accidentally that it was asymmetric
 - One-half of the time, their experiments worked, one-half of the time they failed
 - Only after analysis did they learn to orient the membrane correctly
- Later produced a tubular membrane that was commercially viable, and used in some small production facilities and several pilot plants

© 2000 Michael K. Stenstrom

Classifications

- Microfiltration cutoff 0.15 to 50 $\mu m, \sim 200$ kPa operation
- Ultrafiltration 0.003 to 0.2 μm, > 3000 mw
 ~ 700 kPa
- Nanofiltration 0.001 to 0.003 μm, 200–10,000 MW,
 ~ 700 kPa
- Reverse osmosis 0.0005 μm, < 200 MW, ~3000 kPa for reclamation, ~ 10,000 kPa for seawater

University of California, © 2000 Michael K. Stenstrom Logarticles and Processes

(adapted from Osmonics)

University of California, © 2000 Michael K. Stenstrom Los Angeles Sharper Cutoff Allows More Control

© 2000 Michael K. Stenstrom

Tubular Membranes

- Rarely used today due to low packing density
- Applications for special recovery, such as concentrating oil/water mixtures
- Applicable when intense fouling occurs
- Approach used for ceramic membranes in membrane bioreactors
- Full-scale applications in the 1960s for reducing TDS of groundwater in remote San Joaquin Valley towns

© 2000 Michael K. Stenstrom

Tubular Schematic Diagram

University of California Tubular Membranes at Las Gallinas

End Connections and Product Recovery

MARCE /

10183

Product Water

Membrane End Connection

Connection nut

Tube End

CA membrane

Ceramic Membranes

© 2000 Michael K. Stenstrom

Spiral Wound Membranes

- High packing density
- Standard holders and configurations
- Many membrane alternatives (CA, thin-film composite, PA, etc.)
- RO, Nano and Ultra membranes available
- Some manufacturers make micro filters in spiral wound configurations
- Most common configuration in use today

© 2000 Michael K. Stenstrom

Feed

Water

Spiral Wound Configurations

Perforated central tube

Concentrate

Permeate

Alternating layers of spacers, membranes, and permeate collectors

Outer wrap

University of California, © 2000 Michael K. Stenstrom

Commercial Installation, West Basin in Calif.

End Configuration

© 2000 Michael K. Stenstrom

Hollow Fine Fiber

- Highest packing density
- Fewer membrane alternatives
- Requires high quality feed water
- Rarely found in water reclamation
- Exception configuration used for the most successful micro filter, as of today.

Hollow Fine Fiber Bundles

0

10 0

ACOCH MEMBERSHARE BYETEME PAC 850 Main Street Wilmington, MA 01587 (38) 84

Hollow Fine Fibers (Memcor Microfilter)

Multi-Membrane Cutouts

© 2000 Michael K. Stenstrom

Pilot and Test Apparatus

- Pilot studies usually performed before full scale plants are constructed
- Small test cells used for initial work, theoretical studies and membrane development
- Larger cells and pilot plants using a small number of full scale membranes often used for process evaluation

Test Cells

Unive

Effluent -

Influent -

Holders

Multipurpose Test Apparatus

Plate and Frame

2.5 cm household units, serving as test cells

University of California, 020 Los Angeles Arrowhead Pilot Plant

© 2000 Michael K. Stenstrom

© 2000 Michael K. Stenstrom

Lake Arrowhead Pilot Plant

© 2000 Michael K. Stenstrom

Some Results

Parameter	Sec. Effl.	Product	Units
рН	7.5 ± 0.4	6.3 ± 0.3	-
Alkalinity	78 ± 16	7.0 ± 3.0	mg/L
Hardness	90 ± 13	5.0 ± 2.0	mg/L
Turbidity	6.3 ± 2.8	< 0.1	NTU
TSS	12 ± 6.8	< 0.2	mg/L
Total Coliform	1.1 x 10 ⁶	< 2.2	#/100 mL
E. Coli (Fecal)		< 2.2	#/100 mL
Streptococcus	-	< 2.2	#/100 mL

University of California, Los Angeles Applications

© 2000 Michael K. Stenstrom

- MF replacement of granular media filters
- MF in water treatment plants, filter conventional backwash to prevent recycling protozoans
- NF, RO primary treatment method in reclamation for higher uses, provides disinfection
- NF water softening, phosphate removal
- RO brackish water treatment
- RO desalination beginning to compete with distillation, especially for smaller plants
- RO high quality water for semiconductors
- RO pretreatment for ion exchangers

© 2000 Michael K. Stenstrom

Pilot Tests

- Generally pilot tests of specific membranes for a specific application are recommended.
- The science is still has some "black art" aspects which can cause problems
- Manufacturers tend to have a wealth of unpublished but important data and results

© 2000 Michael K. Stenstrom

University of California, Los Angeles Predictions

- Membranes will gradually replace a number of existing technologies, such as granular media filtration
- In reclamation plants in California, we have already seen RO replace high-lime coagulation, carbon adsorption, granular filtration, and reduce disinfection requirements.
- They easily fulfill the double barrier concept for water reclamation
- Research in membranes is "tricky." Manufacturers have a lot of proprietary information, as well as control over the product. We will be moving from "open" technology to a "closed" technology as membranes are adopted for more applications

- Michael K. Stenstrom
- Stenstro @ seas.ucla.edu
- www.seas.ucla.edu
- Thanks to the Ahmanson foundation for their support
- Thanks to my past and future graduate students who make research possible

