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Abstract of the Thesis

Neural Network Control of A Chlorine Contact Basin

by

Michelle Hyeseung Park

Master of Science in Civil Engineering

University of California, Los Angeles, 1996

Professor Michael K . Stenstrom, Chair

Studies on the brain function have been conducted for many years . One of the useful

results is the introduction of neural networks . Neural networks have been used to solve

non-linear problems and provide a simple way to solve complicated problems without

using the modeling process .



In this thesis, the application of a neural network technique to solve the problem of

chlorination process control has been examined . Chlorination has been the method of

choice for disinfection of water and wastewater treatment . The reaction between the

dissolved chlorine and the nitrogen compounds has been modeled using very

complicated non-linear equations . Moreover, the conventional feedback process control

method is not well suited to chlorination process control because of the relatively long

retention time and the transportation delay of the process . However, using feed-

forward, back-propagation neural network technology, one can achieve relatively stable

operation without knowing the precise model for the chlorination process . It is also

shown that a neural network can tolerate noise in the input data and still achieve

satisfactory performance .

x



1. Introduction

For the disinfection of wastewater, chlorination has been the method of choice since the

early part of this century. Its simplicity and inexpensive operation are the advantages

which make it so popular. However, there are people who are very critical about the

use of chlorine . They criticize the effectiveness of chlorination for disinfection and the

harmful byproducts that are produced. In fact, this criticism is leading to the

development of alternative method for disinfection, and better chlorination process

control mechanisms .

The chlorination process is a complex non-linear system using reactors with long

detention times . Usually a plug flow reactor is used . These facts make it hard to use the

conventional feedback control mechanism for chlorination process control . Even though

a process model has been developed [Stenstrom 1976, 1980], it is not clear how to

build a feed-forward control system using conventional techniques . To overcome these

concerns, an artificial neural network was used .

In recent years, many research groups have begun to consider artificial neural network

technology for solving various problems which can be characterized as having massive

amounts of data, non-linear behavior, and little or no understanding of the deterministic
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processes . Advances in computer technology provide tools to accurately measure,

transfer, and store vast amounts of data . Consequently, there is a large database to

describe empirically many processes for which there is no fundamental understanding .

An artificial neural network provides a powerful tool to analyze data and build a model

to duplicate the process' behavior .

The non-linear nature of the chlorination process is well suited to demonstrate a neural

network's problem solving capability . Since the chlorination process has been used for

many years, there is a large amount of available data . This combination lead us to

explore the possibility of using a neural network for chlorination process control .

The goal of this thesis is to build a feed-forward neural network controller . The

controller must define the proper value for hypochlorous acid concentration at the

beginning of chlorination process to keep the concentration of hypochlorous acid at a

suitable minimum value at the end of the process . Effluent concentration stability must

be maintained during periods of variable flow rate and contaminant concentration .

Maintaining this effluent concentration will optimize process efficiency, and minimize

chlorine usage and byproduct formation. As the result, a neural network controlled

chlorination system can be more economical by reducing the amount of chlorine usage

while maintaining proper disinfection efficiency . The complexity of the system makes it

a good candidate for an artificial neural network controller .

2



This thesis is organized as follows . Chapter 2 explains the model of the chlorination

process, mainly proposed by Stenstrom [1976, 1980] . Chapter 3 provides a basic

description about the neural network technology which is focused on the back-

propagation network . The construction of the neural network for chlorination process

control is described in Chapter 4. In Chapter 5, the experiments are explained . Chapter

6 provides discussion about the results generated by the experiment. Chapter 7

summarizes the conclusion of the thesis . The last chapter describes the limitations of

this study and improvements for future research .
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2 . Chlorination

Chlorination is currently the most popular method for disinfection in water and

wastewater treatment . It serves as an important process in reducing various waterborne

diseases .

In this chapter I develop a simple model of the chlorination process for the use of the

development of chlorination process control system .

2.1 Chemistry of Chlorination

No model for chlorination would be complete without consideration of its chemistry .

When gaseous chlorine is dissolved in water, the following hydrolysis reaction occurs :

Cl2 + H20 H HOCI + H+ + CV, ,

	

(2.1 .1)

or

C12+ OH- ++ HOCI + Cl -

4

(2 .1 .2)



Consideration here is restricted to chlorination using gaseous chlorine . Furthermore,

changes in pH due to addition of chlorine are not considered . Hypochlorous acid

dissociates according to the following equation :

HOCIH OCl- + H +

Hypochlorous acid is weakly acidic and its dissociation constant at 20°C is 2 .611x108

moles/liter. Therefore the pH level of water influences the distribution between HOCI

and OCI- . As the pH increases from 6 to 9, the relative fraction of HOCI decreases

while the corresponding fraction of OCI - increases [Montgomery 1985] . The time

required to complete hydrolysis (equation 2 .1 .1) is in the order of only a few tenths of a

second, while the time to complete the dissociation reaction (equation 2 .1 .3) is in the

order of nano seconds [Stenstrom 1976] .

The dissociation constant is defined as follows :

(HOCI)

(2 .1 .3)

K = (H+ )(OCl - )
1

	

(2.1.4)

The dissociation constant, Ki, is temperature dependent. The values of this constant

have been computed using a best-fit technique [Morris 1996] from the acid dissociation

constant, pKa, as follows :
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3000.00pKa =

	

T -10.0686 + 0.0253T

	

(2.1 .5)

where

T is temperature in °K

It is generally known that hypochlorous acid is a more effective disinfectant than

hypochlorite ions, especially at short contact times . However, the bacterial inactivation

by these chlorine is similar equivalent to long contact times [Montgomery 1985] .

2.2 Reaction with Inorganic Nitrogen

Chlorine (HOCI) reacts with inorganic nitrogen and most waters and wastewaters have

measurable concentrations of inorganic nitrogen. Chlorine and ammonia nitrogen react

to form several chloroamines and other nitrogeneous compounds such as nitrate . The

final products [Stenstrom 1976, 1980] are a function of pH, temperature, the velocity of

the flow, and initial chlorine concentration relative to initial ammonia nitrogen

concentration. The formation of the three fundamental chloramines containing inorganic

and organic nitrogen has been summarized by White [1992] as shown in Figure 2 .1 .

The empirical reactions for chloramine formation in dilute aqueous solutions (1-50

mg/liter) are described as follows [White 1992]
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Chlorine Dose mg/L

` Predominantly monochloramine ; R-NC1Y titrates as dichloramine

"R-NC1Y = organochloramines

Figure 2.1 Relationship between Ammonia Nitrogen, Organic Nitrogen and Chlorine
[White 1992]
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HOCl + NH3 (aq) -> NH2 Cl (monochloramine) + H2O (2 .2 .1)

HOCL + NH2Cl -+ NHC12 (dichloramine) + H2O (2.2 .2)

HOCI + NHC12 -* NCl3 (trichloramine) + H2

	

(2.2 .3)

The kinetics and equilibrium concentration of these reactions are a function of

temperature and pH . The greatest rate of formation of monochloramine(NH2C1) is at

pH = 8.3 . The strong relationship between the reaction rate and pH can be modeled by

the following equations :

rl = K, (HOCI)(NH3 )

	

(2.2 .4)

or

rl = K1 (OCl - )(NH4)

	

(2.2 .5)

Both equations represent the experimental results equally well ; however, the first one is

preferable due to the greater electrophilicity of undissociated hypochlorous acid [Morris

1965] . The rate constant is given as :

K, = 9 .7 x 10'e (-3000/R•TK)

	

(2 2 6)

where R is gas constant and K is the temperature in °K .
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The time required for 99 percent completion of free chlorine to monochloramine at

25°C with molar ratio of 0.2x10-3 moles/liter HOCI and 1 .0x103 moles/liter NH3 are

summarized in Table 2 .1 .

The rate of formation of monochloramine decreases as the temperature decreases . It

requires almost five minutes for 90 percent completion at pH 7 at 0°C .

Table 2.1 Time Required for 99% Completion of Monochlorimine Formation Reaction
(White 19921.

Based upon the HOCI - - OCl" equilibrium, the pH dependence of this reaction is

represented precisely [White 1992] .

The reaction of dichloramine(NHC12) formation is second-order and can be described as

follows :

9

pH Seconds
2 421
4 147
7 0.2

8.3 0.069
12, 33.2



r2 = K2 (HOCI)(NH2 Cl)

	

(2.2.7)

where, r2 is the rate of dichloramine formation and K2 is a rate constant .

The reaction is catalyzed by the hydrogen ion and acetic acid . The reaction can be

described by the following equation [Morris 1965] :

K2 = Kuc1[1 .+(H+)+(HAC)]

	

(2.2 .8)

where

KUCL = uncatalyzed rate constant,

H+ = hydrogen ion concentration,

HAC = acetic acid concentration,

KUCL = 7.6x1O171001RII

Compared to the formation of monochloramine, the rate of this formation is slower . It

takes approximately one hour for 90 percent completion and up to 5 hours at pH 8 .5

and above when ammonia nitrogen concentrations are very low . This reaction depends

upon pH, initial ammonia nitrogen, and temperature . The reaction accelerates

measurably as the pH approaches 5 . The time-to-completion of this reaction is known

to be minutes when the initial nitrogen concentration exceeds 1 mg/liter [Morris 1965] .
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The kinetics of nitrogen trichloride(NC13) formation are not known well, especially in

concentrations less than 10 mg/L . If the pH is reduced to 5 or less, nitrogen trichloride

forms even when the mole ratio of chlorine to ammonia nitrogen is one to one (1/1) . At

one time it was thought that nitrogen trichloride would not form above pH 5 . It is now

known to occur in water treatment plants when the pH is as high as 9 . This happens at

very high chlorine to ammonia weight ratios, 25 to 1 [White 1992] . The formation of

nitrogen trichloride by a second-order reversible reaction was proposed as follows

[Morris 1969]

HOC! + NHC12 H NC!3 + H2 0 (2.2.9)

Only small quantities of nitrogen-trichloride exist after breakpoint chlorination at

neutral pH's. At higher pH's, almost no nitrogen-trichloride can be found; however

small amounts of nitrate may be produced .

The nitrogen-trichloride reaction seems to be in competition with the desired breakpoint

reactions which produce nitrogen gas . One proposed reaction for the nitrogen gas

formation is as follows [Rossum 1943] :

NH2C! + NHC12 -* N2 + 3HC1

11
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The decomposition of dichloramine to form an intermediate product, the nitroxyl

group, NOH is as follows [Chapin 1931] :

NHC12 + H2O -+ NOH + 2H+ + 20 -

	

(2 .2 .11)

This is followed by three competing reactions involving nitroxyl group, NOH, and the

other chlorine species . These equations for the reactions are as follows [Morris 1969] :

2.3 Reactions with Organic Compounds

Chlorine reacts with organic nitrogen as well as inorganic nitrogen ; consequently, these

reactions must be considered . Griffin [1940] noted that the effect of organic nitrogen

compounds on the normal breakpoint curve as early as 1940 . He referred to water

containing large quantities of organic nitrogen as "offset waters" since they did not

12

NOH + NH2 Cl -~ N2 + H2 0 + Cl - + H+ (2 .2.12)

NOH + NHC12 -~ N2 + HOC! + H+ + Cl - (2 .2.13)

NOH + 2HOCl- NO3 + 3H+ + 20 - (2 .2.14)



produce the normal breakpoint curve . Griffin and Chamberlin [1945] later noted that

the effects of super chlorination of wastewater in various stages of treatment . They

chlorinated raw influent, primary effluent, and final effluent from an activated sludge

plant. They also noted that the chlorine demand was greatest for raw influent, and that

the typical breakpoint curve was not necessarily observed in wastewater chlorination . It

was also observed that ammonia nitrogen reappeared after the breakpoint . The effects

of chlorination on albumonoid nitrogen were minimal . They observed reaction rates

that were first-order with respect to demand and somewhere between first and second-

order with respect to chlorine [Bryant 1972] .

Feben and Taras [1950] investigated the reactions between chlorine and nitrogen

compounds. They were able to characterize the chlorine-organic nitrogen reaction by

the following equation :

D = kt n

where,

D is chlorine demand at any time (mg/liter),

k is chlorine demand after one hour (mg/liter),

t is time (hours), and

n is experimentally measured coefficient .

13
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The equation was linearized by plotting on log-log paper . The value of n and k for a

number of specific organic compounds as well as raw water had been measured . From

this measured data, it is observed that the reaction with ammonia is complete within one

hour. Other compounds show one hour specific demands which vary from 0 .15 mg/liter

(hippuric acid) to 7 .0 mg/liter (phenol). These one hour demand values are for initial

concentrations of 1 mg/liter of the specific compound and different chlorine

concentrations. The exponent n varies from 0.0 (ammonia) to 0 .30 (gelatin) . The

chlorine reactions with nitrogenous compounds can be divided into three categories

with respect to speed of reaction : the ammonia reactions were most rapid, being

complete in less than one hour; amino acid reactions were slower than ammonia

reactions, "reacting slowly over an extended period of time", and reactions with

proteins required even greater periods of time to reach completion . In some cases, the

protein chlorine reactions were not be complete after 72 hours [Taras 1953] .

2.4 Reactions with Other Inorganic Compounds

Chlorine rapidly reacts with many reduced inorganic compounds such as sulfides,

which explains chlorine's early use for odor control. Taras [1950] investigated the

chlorine demand of sulfide, nitrite, and ferrous sulfate . He did not report the kinetic

data necessary to determine a reaction rate, but he stated one hour chlorine demands

which indicated that the reactions between chlorine and each of the previously

14



mentioned reduced species was complete in less than one hour . Later, Kokoropoulos

and Manos [1973] measured the rates of reaction of chlorine with nitrite, manganese

(II), iron (II), and detergents. They found out that the reactions with these species were

two to five orders of magnitude slower than the ammonia or disinfection reactions .

They also noticed that the amounts of ammonia, other nitrogen compounds, and

impurities in wastewater determined the chlorine dosage necessary to achieve adequate

disinfection .

2.5 Assumptions on Chlorination Model Development

Using the previously described reaction rates for chlorine with ammonia, it is possible

to mathematically model the disinfection process . The reactions involved are both serial

and competitive. The following assumptions are made [Stenstrom 1976, 1980] :

1 . Since the hydrolysis of chlorine gas is essentially complete in a few tenths of a

second, it is considered to be instantaneous .

2 . The dissociation of hypochlorous acid is complete in approximately 10" 9

seconds ; therefore, it is also considered to be instantaneous .

3 . The second-order reactions between ammonia and hypochlorous acid to form the

various chloramine are used . The concentrations of the unionized hypochlorous

acid and ammonia are calculated from the equilibrium relationships . The

15



equilibrium reaction between ammonia and ammonium is considered to be

instantaneous . It is assumed that only the hydrogen ion concentration has

significant catalytic effects .

4. Nitrite, iron (II), and manganese (II) are assumed to have no significant effects

on the reactions with chlorine .

5 . The reactions for the formation of nitrogen gas and nitrogen-trichloride are

used .

6 . The only chlorine species which exerts disinfecting power are hypochlorous acid

(HOCI), the hypochlorite ion (OC1-), and monochloramine . Any concentrations

of dichloramine and nitrogen-trichloride which exists are treated as if they have

the same disinfecting power as monochloramine .

7 . The model is restricted to cases where well-treated effluent is chlorinated .

Therefore, the concentrations of hydrogen sulfide and highly reduced

compounds are assumed to be zero .

The previously described model is capable of describing all the breakpoint chlorine

reactions . At wastewater treatment plants, breakpoint chlorination is usually not

practiced; only enough chlorine is used to produce monochloramine. Monochloramine

is usually sufficient to provide the needed disinfection .

16



The next section describes a simplified model which can describe monochlorination .

The simplified model can also be used in a control system .

2.6 Simplified Model Description

This section describes plug flow reactors and a second-order reaction model to simulate

monochlorination . The final result is a hyperbolic one dimensional partial differential

equation with a single reaction term .

Continuous-flow reactors, such as the reactor basins or aeration tanks used for the

activated sludge process, may be classified according to their flow regime as plug-flow,

dispersed plug-flow, and completely mixed reactors . In a plug-flow reactor, the

elements of the fluid that enter the reactor at the same time flow through it with the

same velocity and leave at the same time . The flow through the reactor is similar to a

piston or plug moving through it . The travel time of the fluid elements is equal to the

theoretical detention time, and there is no longitudinal mixing [Reynold 1982] .

The material balance of a plug-flow reactor is performed as follows :

Input - Output + Reaction = Accumulation

17



divide by AxA

Q * CIX -Q*C`(x+°z)+r=
oC,

A Ax A Ax

	

of

Q=v
A

	

x

.' . V * (Cix -Ci(x+°z)) +r=
oC;

x

	

Ax

	

Ot

By taking the limit Ax ->0,

_V aC,
+r=

oCl
x 9x

	

0 t

where

x is distance,

t is time,

A is the cross-sectional area of the flow,

18
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at

(2.6.1)

(2 .6 .2)
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V is the volume of the flow,

r is an arbitrary reaction,

Q is the flow rate,

C1 is the reactant concentration, and

VX is the average velocity .

The simplified model considers only a reaction with free chlorine, represented as HOCI

and oxygen demanding materials, represented as S . The reaction is assumed to be

second-order as follows :

r=-K*S*HOCI

K is the rate coefficient .

After the substitution of Ci =HOC1, the entire simplified model becomes :

-Vx OHOCI - K * S * HOCI = OHOCI

	

(2.6.6)
ox

	

opt

This equation is solved analytically in Chapter 4 for specific conditions and the solution

is used with the neural network to simulate chlorination process control .

19
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3. Basic Description of Neural Networks

A neural network is an information processing system that simulates the way a human

brain works . It is a computer-based simulation of a human nerve system, which works

differently than a conventional computer .

Even though studies of human brain functions began late in the 19th century, it is not

understood well enough to construct a system that performs in the same way a human

brain works . There are many researchers who are very actively investigating this

subject, and they are attempting to build a system which can be called an "artificial

brain" . The limited results of the studies provide some suggestions to utilize the brain

theory to practical applications . The results suggest that the conventional computing

paradigm is far different from the behavior of the brain . The brain function can be

better described as connectionist model of computing, apart from the conventional von-

Neuman model, which proceeds sequentially through a set of instructions . In a

connectionist model of computing, a large number of simple processing elements are

heavily connected. Information is passed among processing elements, and each

processing element collects and processes the information with its simple, non-linear

function .

20



3.1 Brain Structure

Neurons are the processing elements in human brain. A typical neuron consists of three

parts ; cell body, dendrite, and axon . A cell body contains a nucleus in its middle and

extends to dendrites and axons . Dendrites receive the impulses of human nerves from

neighboring neurons ; the cell body collects and processes them, and the axon sends the

resulting signals to other neurons . The point where the signal is exchanged between

neurons is called a synapse . According to the results of the studies of brain activities,

the synapses have the ability to modify the signals as they pass them . The amount of

change in the synapses as the signals pass through is determined by the synaptic

strength on the connection. The changes of the synaptic strength are caused by fatigue,

oxygen deficiency, and agents such as anesthetics . The brain adapts to external changes

by changing the synaptic strengths in the response to the external changes . After

signals reach the synapses, they are weighted by the synaptic strengths, and all

weighted signals are collected and summed together at the receiving neuron . Finally the

cell body processes it using its simple function to generate the corresponding output . A

threshold value can be used to determine whether the sum produces output [Nelson

1991] .

A human brain consists of ten billion neurons and each neuron can interact with as few

as one thousand or as many as two hundred thousand other neurons through synaptic

21



connections . These huge number of neurons and interconnections make the brain adapt

to the external signals to produce reasonable reactions . The real wonder of the brain

comes from the fact that there is no central controller to coordinate the operation . Even

though so many neurons are interacting with each other through these massive

connections, without any form of the central controller, the brain reacts to the external

changes properly and promptly, and even to the signals which it has never experienced .

The correct reactions are due to the genetic programming capability and the learning

ability of brain to respond to the events . This fact is the main focus of the development

of an artificial neural network, or simply a neural network [Zupan 1993] .

3.2 Artificial Neural Network

Building a neural network is not like conventional programming, nor it is building an

artificial brain. It requires constructing a system which utilizes the understanding of

brain function to solve a problem. There have been many efforts to build a machine that

simulates the function of a human brain . Even though this research is still far from

successful in building an artificial brain, there has been some degree of success in

understanding the learning mechanism of the brain . In particular, researchers have

some understanding of how a brain collects signals from the outside world, processes

22



them, and responds to them . This progress has resulted in the construction of artificial

neural networks .

The structure of a network is conceptually very similar to that of a human brain . It

consists of a number of simple, highly interconnected processing elements which are

the analog of the biological neurons connected through synapses . The synaptic strengths

are implemented as the weights on the connections and the threshold values on neurons

are implemented as the biases on the processing elements . Electrical signals are passed

through the interconnected network of processing elements. To solve non-linearly

separable problems', one needs to have several layers of the interconnecting structure .

Even though artificial neural networks are very similar in structure to brain, they are

far from being artificial brains in terms of capability and adaptability . This is because

researchers do not have enough understanding of brain functions and there is no means

of constructing the enormous size of the required neural network. Therefore current

technology allows them to build a system that can only solve problems in limited

domains with limited capabilities . The capability of adapting the external changes

makes the resulting artificial neural network useful for certain problems [Nelson 1991] .

' A non-linearly separable problem is a kind of problem in which the classes of solutions can not be separated using
their hyper-plane. For example, exclusive-OR is not linearly separable because two solution classes, 0 and 1, are
not separable using a line .
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In a manner similar to the way synaptic strength has the ability to adapt the signals

from certain external activities and/or situations of human body, the connections in a

neural network have assigned weights which determine the effect of signals to the

neurons . Besides having weights on the connections, there is an additional parameter,

called bias, which affects the adaptability of a neural network to solve a decision

problem. Mathematically, the input signal to a neuron is the dot product of the vector

of input signals and the weight vector on the connections into the neuron . The result is

compared to the threshold value of the neuron to determine the output . If the product is

greater than the threshold, the neuron generates a signal according to the input values .

If the value is less than the threshold, no signal is generated . Both types of responses

are significant for determinating the corresponding result of the input signals [Zupan

19931 .

The exact output signal from a neuron is determined by the transfer function of the

neuron. The transfer function can be something as simple as a binary function . In this

case the output depends upon whether the product is positive or negative . When the

product is positive, the output is "1" . If the product is negative, then the output is "0" .

This type of transfer function is called a hard limiter or step function . Another type of

transfer function, ramp function or threshold function, mirrors the product only within

a given range . As the product value moves outside of the range, the function value stays

at certain levels (maximum and minimum values) . It can be viewed as a linear function
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clipped to minimum and maximum values, which transforms it into a non-linear

function. Yet another option would be a sigmoid or 'S' shaped curve . The curve

asymptotically approaches a minimum and maximum . Mathematically, the exciting

features of these curves are that both the function and its derivatives are continuous .

This type of transfer function works fairly well and is often the transfer function of

choice . Any of these functions would introduce non-linearity into the neural network.

This non-linearity combined with the interconnections of neurons accomplishes proper

mapping from input signals to the corresponding output activities [Zupan 1993] .

One aspect of building a neural network is determining how one can interconnect

several layers of neurons. The input layer receives signals from outside world . This

layer typically performs no other function than buffering the input signals . The outputs

of a neural network are generated from the neurons of the output layer . Between the

input layer and output layer there can be several layers of neurons . These layers are

called hidden layers, signifying they are hidden from the outside world . It is the

presence of these hidden layers that enables neural networks to be able to solve non-

linearly separable problems, which represent many real world problems . The

connectivity between layers determines how the outputs of neurons in one layer are sent

to the other neurons . The output signal from a neuron in a layer may be passed to a

neuron or neurons in other layers as inputs, or possibly sent back as an input to its own

layer, or even to itself. Researchers classify neural networks into two groups ; feed-
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forward and feedback networks . For a feed-forward network, the signals can only flow

in the forward direction from the neurons of the input layer to the neurons of the output

layer . In contrast to feed-forward networks, a feedback network can direct outputs from

one layer backward or even back into the layer itself . In this sense, a feedback network

can also be called a recurrent network [Zupan 1993] .

3.3 Neural Network Learning

The main advantage of neural networks over the conventional computing paradigm is

their adaptability to the problem space . The adaptability is the ability of a system to

self-adjust itself according to the changes given to the system . In the conventional

programming paradigm, the behavior of a system is determined at the time system is

built. In contrast, neural networks can reconfigure themselves to adapt to the signals

given to them, so that they can make reasonable response to the signals . The

adaptability of a system can be divided into four categories : learning, self-organizing,

generalization, and training [Nelson 1991] .

Learning can be defined at the level of a single processing element . Learning occurs

when the weights on the connections are adjusted to reduce the errors of the outputs

generated. Choosing specific algorithms for particular problems would make the

solutions so specific that their use would be severely limited . In contrast, a neural
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network can generate its own algorithm by adjusting the weights on the connections to

solve many problems, even for the problems never included in the network's design .

Self-organizing is the capability of configuring many processing elements at once .

During the training sessions, the strength on connections is modified using the rules for

learning throughout the entire network system . It functions as if the neural network is

developing its own heuristics to solve the problems as it goes through the iterations .

It has been shown theoretically that the network will converge to a stable response,

even though it sometimes takes too long to be practical .

Generalization is the ability to make hypothetical response to an input that has not seen

before. Generalization takes place when a set of values are presented to the system

during training . The network compares the values and composes some characteristics

which can distinguish one from another . As the result, the system can hypothesize its

response to unseen inputs and make a reasonable response .

Training is the way a neural network learns . The method of training can be categorized

into two groups: supervised or unsupervised . In supervised training, the neural network

uses a set of input vectors and corresponding or desirable output vectors to learn a

problem. During training, the network reduces the errors on network generated results

by comparing them to the desirable output values and adjusting the weights on the
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connections . Unsupervised training does not require the knowledge of the desirable

outputs; it only requires a set of input vectors . The network can group the input vectors

according to the training rules to find the solution to the problem .

In the case of a feed-forward neural network with supervised training, the network

determines the relationship between input and output by looking at examples of many

input-output pairs . The network processes the inputs presented to it and adjusts the

weights on the connections to produce outputs that correspond to the known inputs .

This process can be viewed as a self-organization because the network structure is

constantly changing as the training takes place . By knowing what output is expected

from each input value, the network learns by adjusting or adapting the strengths of the

connections between processing elements to reduce the error . The method used for

adjusting weights on the connections is called a learning rule .

There are many suggested and commonly used learning rules. Many researchers are

still trying to find new learning rules and make existing learning rules more efficient in

order to reduce the training time and increase the accuracy of the resulting solutions .

However, researchers do not know much about how learning occurs, and experimental

evidence is hard to obtain . The actual learning processes by which a human adapts to

the environment are very complicated, and there is no way of achieving the same

results by the simplified learning rules proposed by current research . However, there
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are some learning rules which are proven to be efficient in solving certain types of

problems .

Among many learning rules, the delta rule is one of the most commonly used learning

rules . It is based on the simple idea of continuously modifying the strengths of the

connections to reduce the difference (delta) between the desired value and the current

output value of each processing element . This rule is also known as Widrow-Hoff

learning rule or Least Mean Square (LMS) learning rule [Nelson 1991] .

The gradient descent rule is an implementation of delta rule . The weights are modified

by amounts proportional to the first derivatives of the errors between actual outputs and

their desired values. This rule is commonly used, but it is very slow to converge to

produce minimum error. To make the learning process more efficient, many rules and

suggestions have been made . Each rule has strengths and weaknesses for specific

problems. Therefore, it is very important to choose the right learning rule for the

proposed application of the neural network [Nelson 1991] .

3.4 Backpropagation Learning Algorithm

The most popular learning algorithm is back propagation . It is a generalization of the

delta rule and supervised training . It can be described in two phases : forward and
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backward . During the forward phase, the training examples are presented to the

network and they propagate in the forward direction through layers of neurons to

compute output values . At the end of the forward phase, the network compares the

outputs to the corresponding, desired outputs in the training set and generates the error

values. In the backward phase, these errors values are propagated in the backward

direction through the layers of neurons . The network adjusts the weights on the

incoming connections and the biases on each of the neurons to reduce the errors

presented to the neuron . These forward and backward operations are repeated until a

predetermined error goal is reached or the number of iterations of applying the training

sets, called epochs, exceeds a predetermined maximum . The later case is called a

network training failure, denoting that the neural network failed to find the appropriate

relation between input and output values in a specified number of attempts . It has been

mathematically proven that this simple approach can find the relations between a set of

inputs and outputs when there exists such relation [Zupan 1993] .

Even though it is possible to solve any problem with the back-propagation learning

algorithm, it is often impracticable to train the neural network because of computational

complexity [Freedman 1995] . In other words, too much computer time is required to

train the neural network to solve the problem. This is a fundamental difficulty that all

neural network developers face, and an enormous amount of research has been devoted

to this problem. The problem occurs because of two main reasons : one is that the
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problem space is too large to handle with a limited number of observations in the

training set ; the other problem is local-minima . Since many real world problems have

continuous variables, the problem spaces normally have infinitely many possibilities .

Only a limited number of states can be presented to the neural network for training .

Often the presented values may not represent a good sample of the problem space, so

that the neural network can not find the desired solution from the training set . It is

necessary to select the training set to include instances of the problem which well

describe the entire problem domain .

The local minima problem can be described using the concept of an error surface . An

error surface is a multidimensional surface which represents the sum of squared errors

(the sum of the squared differences between the desired outputs and the actual outputs) .

The height of a point on the surface represents the amount of error across the instances

in the training set with given values of weights and biases . Neural network training can

be described as finding the lowest point of the surface . Weights and biases are adjusted

to reach the lowest point of the error surface, which is called the global minimum .

There can also be a number of local minima on the error surface . Under certain

circumstances, the search for the global minimum terminates at one of these local

minima. As a result, the solutions generated by the neural network are not optimal

solutions [Caudill 1994] .
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Even though the basic learning rule is a back-propagation learning using gradient

descent, there are many variations to choose from . These variations are attempts to

reduce computational complexity and avoid local minima . Each has its own strength

and weakness . Among many learning algorithms, Levenburg-Marquardt learning

algorithm was chosen because it can converge faster than other learning algorithms .

Since it stores all the intermediate results in the memory, it may suffer from a lack of

memory which can slow down the training process dramatically. However, the neural

network under construction does not show this degradation of the training [Freedman

19951 .

To perform training using Levenburg-Marquardt, one needs to determine some

parameters to perform the training of a neural network . The parameters are error goal,

learning rate, and momentum. These parameters can affect the training and the

performance of the network after training [Demuth 1994] .

The error goal is the error between the desired outputs and the network generated

outputs for the training set . The sum of squared errors is often chosen for the error

measure. Training stops when network performance exceeds the arbitrarily set error

criteria . The determination of the actual value for the error goal is somewhat arbitrary .

If the criteria is too strict, over-training may result. Alternatively, poor performance

may result from using loose criteria. The notion of over-training is introduced because
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training with too strict an error goal can result in a network that works very well for the

cases in the training set, but works poorly for the cases not included in the training set .

This phenomenon results because the network fits the training values too tightly, and

cannot tolerate variation in the input values .

The learning rate determines how fast the network adjusts itself in the response to

errors . The value of learning rate should be set to the maximum value which does not

cause oscillation . When a learning rate is too high, the adjusted weights on each

instance may oscillate between points with similar heights on the error surface. If the

learning rate is too small, training will be slow and the process is more susceptible to

"local minima" . Therefore the choice of the learning rate should be balanced to provide

reasonable training time and overall error reduction [Freedman 1995] .

Momentum is introduced as a means to reduce the chance of oscillation for a given

learning rate. Momentum is a modification of the generalized delta rule in which the

equivalent of physical momentum added to the system to keep the network on its

downward path on the error surface . It allows the use of a higher learning rate while

avoiding oscillation. Consequently, one can reduce the network training time by

introducing momentum [Caudill 19941 .
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The next chapter applies these criteria to build a neural network to control the

chlorination process .
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4. Neural Network Chlorination Process Control
System

4.1 Process Control System

A typical process control system consists of a plant or process which can be composed

of smaller sub-plants or sub-processes . The process has numerous inputs, but these

inputs may be divided into two main categories : disturbances and manipulated

variables . Manipulated variables are the inputs that can be changed by the plant

operator or controller, while disturbances are the inputs which can not be changed by

the operator or controller . The object of the control system is to minimize the effects of

these disturbances . The controlled variables are the outputs of the process which the

controller or the operator tries to keep at some predetermined level, called the set point .

There are usually some intermediate variables which may or may not be outputs of the

process, but they are usually quantities which can be calculated or determined from a

combination of the inputs, outputs, or the specific values of parameters internal to the

process. Furthermore, these intermediate variables may become controlled variables in

different control schemes [Stenstrom 19761 .
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Process control systems can be divided into a number of categories, but one of the more

common methods of classifying process control systems is using the direction of data

flow : feed-forward and feedback. Feedback type controllers are frequently used. They

normally have the advantages of simplicity and low cost, but they have a distinct

disadvantage in that a disturbance in the controlled variable must occur before any

control action is initiated . Alternatively feed-forward type controllers eliminate this

disadvantage, but they require sensing or predicting the disturbances in the process

inputs. For certain situations, this type of controller is theoretically capable of

achieving perfect control . However, this can not be achieved in practice because it is

not physically possible to sense the disturbance perfectly or predict the perfect control

action. Therefore, a feed-forward controller is usually augmented with a feedback

controller .

There are many possible benefits which can be realized from process control . The

major benefits are improved performance, reduced capital requirements, increased

reliability and process stability, lower operating and maintenance cost, and flexibility .

In this thesis, a neural network for chlorine contact basin is developed . The overall

structure is depicted in Figure 4 .1 and the following section describes the approach in

detail .
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Figure 4. 1 Overall Structure of the Chlorination Process Control System
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4.2 Chlorination Process Control using a Neural Network

The benefit of using a neural network is that one can build a system without a

deterministic model for the system . One can build a system with representative samples

of measured values . An advantage of a neural network is that it can still provide

satisfactory performance in the presence of noisy data . The neural network can produce

good mapping from a data set with some degree of errors .

4.2.1 Generation of Data Set

To build a neural network that controls a chlorination process, it is first necessary to

provide a set of data that well represents an actual chlorination process . Since the

necessary data are not available and its collection is beyond the scope of this thesis, the

data set can be constructed from the model given in Chapter 2 . The partial differential

equation for the reaction in chlorination process has the solution as follows :

HOCI (x, t) = H00 (0, t - L / V) * e-K*S(r-L/V)*L/v(t)

	

(4.2 .1 .1)
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By assuming that S(t) and V(t) are stationary, the model equation becomes as follows :

HOCI (x, t) = HOCI (0, t - to ) * e-x*s(r-ro)*Lw(r-tO)

	

(4.2 .1 .2)

where to is the hydraulic retention time of the reactor .

In order to define a realistic problem and to restrict its size to a set of equations

solvable in a reasonable time, the ranges of three primary model variables were

restricted as follows :

S

	

:

	

[5, 15]

	

(mg/liter)

V : [0.0175, 0 .0525] (m/min)

HOCI(L, t) : [0 .5 1 .5] (mg/liter)

with L = 40 (meters) and K = 1 .66 x 10' (liter/mg-sec) .

These values are necessary to provide a set of good samples that represent the probable

range of an actual chlorination process . HOCI(0, t) is the initial concentration of

chlorine injected to the system at the beginning of the chlorination process . The system

will determine the proper value of HOCI(0, t) in response to the other parameters, S,

V, and HOCI(L, t+L/V).
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The simplified chlorination model described in Chapter 2 was used with the following

additional restrictions :

1 . The data values are lump-sum averaged over the bisection area of the process

chamber .

2 . The changes on the data values are slow, so that each instance can be treated as

independent .

3 . The velocity of the flow is stationary over the period of chlorination process and

all points on the same bisection .

After applying these assumptions, the following relation between HOCI(0, t), S(t), and

V(t) to HOCI(x, t) is applicable :

HOCI (x, t) = HOCI (0, t - to ) * e-x*s(r-ro)*Lw(r-ro)

	

(4.2.1 .3)

where to is the time it takes for water flow through the chlorination process .

Using assumption 1, each data set can be treated as independent so that it is possible to

define a set of values for training and testing . In order to cover the problem space, it is

necessary to determine the data range for each variable, as follows :
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with L = 40 (meters) and K = 1 .66 x 10' (liter/mg-sec) .

To obtain total coverage of the problem space, I divided each of data ranges in equal

distances and found all permutations to form the input data set for the neural network

training. From these values, the corresponding value of HOCI(L, t) was computed

using equation 4 .2 .3 to form the training set . To distinguish HOCI(0, t) and HOCI(L,

t+L/V), they were renamed HOCIB(t) and HOCI(t), respectively .

The same equation can be used to generate the testing set . This time the input data

values, S, V, and HOCI(t), are generated using a sine function . The sine function was

chosen because it simulates the diurnal variation frequently observed at treatment

plants .

The values of the constants, ki , k2 , and k3, were selected to make the resulting data set

represent the actual operation observed in the chlorination process .
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S(t)

	

= 10.0 + 5 .0 * sin(kit) (4 .2 .1 .4)

V(t)

	

= 0.035 + 0.0175 * sin(k2t) (4 .2 .1 .5)

HOC1(0, t) = 1 .0 + 0.5 * sin(k3t) (4 .2 .1 .6)

S(t) : [5, 15] (mg/liter)

V(t) : [0 .0175, 0.0525] (m/min)

HOCI(L,t) : [0 .5, 1 .5] (mg/liter)



4.2.2 Implementation of Neural Network using Matlab

Matlab (Mathworks, Inc ., 24 Prime Park Way, Natick, MA) was used for developing

the neural network . It has several toolboxes for specific applications including neural

network development. Matlab was originally developed as a tool for matrix

computations . Since neural network operations are well expressed as set of matrix

operations, Matlab is a natural fit for neural network development .

A Sun Sparcstation 5 was used to for simulating the neural network . Since I chose to

use the Levengerg-Marquart training algorithm, I needed to find a proper computing

platform which has a sufficient computing power and reliable memory management

system for the training algorithm . A Sparcstation 5 from Sun Micro Systems was

chosen because it met both criteria .

Given the data generated using the method in the previous section and a back-

propagation neural network, a neural network was constructed for the chlorination

process control . The purpose of the chlorination process control system is to minimize

the amount of the chlorine usage to achieve the desired level of disinfection . It will also

reduce the amount of chlorine residual at the end of the process as it achieves the

optimum value of HOC1B(t) for given conditions .
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The input data consists of the desired chlorine concentration at the end of the process

(HOCIB(t)), the velocity of the water (V), and the concentration of the chlorine

demanding compound in the influent (S) . The output is the initial amount of chlorine

for the chlorination process(HOCI(t)) to produce the desired end concentration . Given

this information, it was determined that three input neurons and one output neuron were

needed .

As mentioned earlier, it was decided to use the feed-forward, back-propagation neural

network. The number of layers in the network must be determined . Even though any

number of the hidden layers can be chosen, it has been shown that this type of problem

can be solved using a three layer back-propagation neural network with tangent-sigmoid

and linear transfer functions on the hidden layer and output layer, respectively

[Freedman 1995] . Therefore, only one layer of hidden neurons with the tangent-

sigmoid transfer function was selected .

The next step was the determination of the number of neurons in the hidden layer .

There is a trade-off between the number of neurons, training time, and problem solving

ability. With too few neurons, the network can not be trained to solve the given

problem or the trained network can not handle the problem properly . Alternatively, a

large number of neurons requires excessively long training time . There is no proven

method to find the proper number of hidden neurons [Freedman 1995] . It requires trial-
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method to find the proper number of hidden neurons [Freedman 19951 . It requires trial-

and-error to determine the number of hidden neurons . After several attempts, it was

found out that twenty-nine hidden neurons were adequate for the project .

The resulting neural network has the structure depicted in Figure 4 .2 .

The neural network toolbox of Matlab provides three learning algorithms . One is based

on the simple delta rule, and the other two provide some improvement in terms of

training convergence time . Since it is very time-consuming to train a neural network, it

is important to select a learning algorithm with favorable training characteristics . The

Levenberg-Marquardt learning algorithm is very efficient in terms of time required for

training . It requires a large memory to store the transient results . According to the

technical support personnel at Mathworks, Inc . (24 Prime Park Way, Natick, MA), the

memory required for the execution of Levenberg-Marquardt algorithm can be computed

by the following equation :

M=k*N*n, *nh *no *nw

	

(4 .2 .2 .1)

where

M is the memory requirement,

N is the number of instances in the training set,
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ni is the number of neurons in the input layer,

nn is the number of neurons in the hidden layer,

no is the number of neurons in the output layer,

nw is the unit size of data, and

k is the multiplication factor .

For the case of the neural network in this thesis, the memory requirement is :

M = 348,000k (Bytes)

From external measure, k has a value ranging 5 to 15 in most cases . The memory

requirement for these conditions is between 1 .6 to 4.8 MBytes . For some instances, the

memory requirement for the program is much larger than this estimate so that the

system is busy swapping memory to the hard disk, which is evidence that the algorithm

requires more memory than the available physical memory . In such instances, the

virtual memory system of SunOSTM on Sparcstation provides enough memory with

reliability to guarantee the completion .
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Figure 4. 2 The Architecture of a Neural Network for Chlorination Process Control
[Nelson 1991]
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The training parameters were initially determined as follows :

If the training can not reach the error goal within the maximum number of epochs, it

can mean one of two things :

1 . The data set does not provide enough relation for neural network to reach the

error goal, or

2 . It requires more training epochs to reach the error goal .

In the former case, one needs to check the resulting network with the training set and

the testing set . If the performance is satisfactory, one can say the neural network is

trained and ready to use. Otherwise, one needs to find a better way to train the

network to improve the sum of squared errors . It is possible to change the number of

neurons, the initial values of weights and biases, and the learning algorithm parameters,
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Maximum epochs

	

: 500

Error goal

	

: 0.01

Learning Rate

	

: 0.001

Momentum

	

: 0.5

Increment factor

	

: 5

Decrement factor

	

: 0.2



such as learning rate, momentum, error goal, and increment/decrement factors. It is

easy to change the parameters in the learning algorithm because it does not require

restarting the algorithm . Other parameter changes require the training to be restarted .

In the latter case when an insufficient number of epochs were initially allowed,

additional epochs can be allowed to continue the training until the training reaches the

error goal, or the continued training fails to improve error . One can observe progress

by inspecting the changes in sum of squared errors . In case 1, the error will not show

improvement with additional epochs so that it will not reach the error goal no matter

how many epochs are allowed . In case 2, each epoch shows reduction in the error .
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5. Neural Network Training

Using the data and neural network described in the previous sections, the neural

network was trained and used in a chlorination process control simulation . Two goals

were established :

1 . To examine the ability of neural network to find the necessary relation between

input and output .

2. To examine the ability of neural network to handle the data with errors .

To achieve the second goal, I needed to introduce error to the training set . Uniformly

distributed random noise (white noise) was introduced into the data set. The amount of

error was adjusted to reflect different levels of data collection precision .

Appendix A shows the procedure used for the neural network training . The maximum

error levels examined are 0 .0%, 2 .5%, 5 .0%, 7.5%, and 10.0% . The procedure in

Appendix A was modified to reflect each of these error levels .

Table 5 .1 shows the summary of the neural network training . Each row represents a

different noise level in the training set . The network training started with maximum

epochs of 500 . When the first attempt of network training reached the maximum
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epochs, the resulting network was examined to use the training set and test set . If the

performance of the network was satisfactory, the network was considered to be trained .

If not, the training paramenters were changed and training was continued until the

network produced satisfactory results . Table 5 .1 contains the values of each training

parameter at the conclusion of training for each data set . The momentum, increment,

and decrement are same for all cases, and were the initial choices. The learning rates

and maximum epochs were changed for the efficient training . It was found that the

initial learning rate of 0 .001 was most efficient. Once the initial training of 500 epochs

failed, the pattern of the changes in the sum of squared errors was examined . If it was

improving at the end of the training period, the training of the network using the same

training parameters was continued. If the training was not improving, the learning rate

was reduced by a factor of 5 or 10 to make the training progress . The training was

considered to be progressing when the sum of squared errors level was continuously

decreasing . Unlike other learning algorithms, the sum of squared errors monotonically

decreases for the Levenberg-Marquardt learning algorithm . Therefore, it was concluded

that network training was not improving when the sum of squared errors was not

decreasing over a number of epochs . This indicated that the training should be changed .

It was necessary to repeat the training process over again when the training was not

successful because the initial values for weights and baises were important and

randomly chosen at the beginning of the training .
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Table 5.1 Neural Network Training Parameters

The initial network training did not achieve the error goal after 500 epochs . The pattern

of change in the sum of squared errors was also not showing improvement . At this

point the resulting neural network was examined to determine the desirability of further

training . By checking the resulting neural network with the training set and the test set,

it was concluded that further training was warranted . By trial-and-error approach, it

was decided to reduce the learning rate by a factor of 5 or 10 and continue the training

until the sum of squared errors reached less than 50.0. Through this procedure, neural

networks with satisfactory performance could be obtained . The neural network

performance was deemed satisfactory when it generated less than 10% error on the

training set and the test set . This strategy worked for most of cases, except for the

7.5% error case . For some unknown reason, when the error level in training data was

7.5 %, the sum of squared errors in the neural network training was not reduced below

1500; however, the resulting neural network showed satisfactory performance, and I

decided to use the resulting neural network as it was .
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Noise Level Learning Rate Momentum Increment Decrement Epochs SSE

0.00% 1 .00E-03 0.5 5 0.2 700 14.3
2.50% 1 .00E-04 0.5 5 0 .2 750 1 .4
5.00% 5 .00E-05 0.5 5 0.2 625 9.5
7.50% 1 .00E-04 0.5 5 0.2 1500 1557

10.00% 1 .00E-04 0.5 5 0.2 625 29.2



By applying the test set to the resulting neural networks, the performance of the n

networks was examined . Appendix B shows the procedure to generate the test set

examine a neural network using the data .

In next chapter, the result of this experiment are discussed in detail .
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6. Discussion

The results of the training can be examined by comparing the outputs generated by the

neural network to the outputs obtained by applying the model equation, Equation 4 .2 .3 .

The upper chart of Figure 6.1 shows the mean and standard deviation of the percentage

differences between the neural network generated values and the model generated

values . The lower chart of Figure 6 .1 shows the values of sum of squared errors at the

end of the network training . The x-axes of the both graphs are the amount of noise

introduced in the training set . Figure 6 .1 shows the neural network errors which are

within 10% limit, which was arbitrary selected as acceptable . Figure 6 .2 shows the

expected output for the first test set . In this test set, the required results of sine function

were supplied . From the model equation, the value of the initial hypochlorous acid was

obtained. Figures 6 .3 through 6 .7 show the neural network generated results . The

values represent the error in the results when applying neural network generated values

of the initial hypochlorous acid in to the model equation . This is equivalent to using the

neural network as a feed forward controller . The errors are computed using the

following equation :
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Error =
(TestHOCL - HOCL)

HOCL

	

(6.1)

where

TestHOCI is the neural network generated output and

HOCI is the desired results .

Figures 6 .2 through 6 .7 show that the neural network generated values stay well within

10% error range except in some extreme cases . Therefore, it is concluded that the

neural network can tolerate 10 .0% noise in the training set for chlorination process

control . However, I can also see that lower error in training set resulted in lower error

in the results generated by the neural network, except for the case with 2 .5 % error in

the training data . The amount of noise in the training set can affect the quality of the

network. As one can see in the upper-subgraph of Figure 6 .1, smaller noise in the

training set resulted in a neural network generating less error in the results . Therefore

obtaining the most accurate input data set is still important to ensure the quality of the

resulting neural network .
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Figure 6. 5 Error in Neural Network Controlled Results (S.0 % noise in Training Set)

0 .2

0 .15

a)

	

0 .1
O)
m
c 0 .05
N
U
L
G)
0.
L
0L

w -0 .05

-0 .1

-0 .15

-0 .2
0

	

200

	

400

	

600

	

800

	

1000
tim e

Figure 6. 6 Error in Neural Network Controlled Results (7 .5 % Noise in Training Set)
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Figure 6. 7 Error in Neural Network Controlled Results (10.0 % Noise in Training Set)
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The neural network generated results have the lowest sum of squared errors when the

amount of noise in the training set is 2 .5%, and not 0 .0% . For this training set, the

neural network reaches an unusually low sum of squared errors at the end of training,

which is 1 .4363 . For the other cases, the sums of squared errors are higher than 9 .0

(Table 5 .1) . This result suggests that reaching a lower sum of squared errors at the end

of training will construct a better quality neural network . However, this is not true in

general because of a phenomenon called overtraining .

Overtraining occurs when a network has learned not just the basic mapping associated

with the input and output data presented to it, but also the subtle nuances and even the

errors specific to the training set . An overtrained network performs very well on the

training set, but performs poorly on data values not included in the training set

[Freedman 1995] . To examine the neural network for overtraining, one needs to

provide a test set which contains some variation of data values . At the end of network

training, the test set is applied to the network to see how well it performs on unseen

data values . Therefore, the training of a neural network is terminated when the network

performs well on both the training and test sets .

The neural network under investigation does not seem to suffer from over-training

because the data in the training set well cover the ranges for each input variable .

Conceptually, the neural network is finding a mapping between the input data and
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output data throughout the course of training . Therefore, when one provides the

training set that well covers the ranges of the input parameters, the resulting neural

network is not overtrained . For the cases for which one can not provide a data set to

cover the data ranges, one needs to provide many test sets with different combinations

and carefully examines the neural network during the training for different sum of

squared errors .

Figure 6 .8 through 6.12 show the results of applying a second test set to the neural

networks. In this test set, the hypochlorous acid concentration at the end of the

chlorination process is constant, 1 .0 (mg/liter) . The neural network generated values

are applied to the model equation, Equation 4 .2 .3 . As shown in the figures, the neural

networks generate satisfactory results . All neural networks keep the hypochlorous acid

concentrations within 10% of the desired values .

60



O)

a>
m 1 .05

0 .85

0 .8

Figure 6. 8 Comparison of Expected Output and Neural Network Generated Values
Noise in Training Set)

•=° 1 .15
rn
! 1 .1
a)
m° 1 .05

T
m°

	

1
C
7
°

	

0 .95
M

° 0 .9

0 .85

0 .8

100 200 300 400

	

500

	

600
tim e

- Reference
Neural Net

100 200 300 400 500 600 700 800 900 1000
tim e

Figure 6. 9 Comparison of Expected Output and Neural Network Generated Value
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7. Conclusion

This thesis showed that a neural network could determine influent chlorine

concentration for a simplified ideal chlorine reactor to provide the desired effluent

chlorine concentration for varying flow velocities and chlorine demand concentration .

For this study, I used a simplified model for the chlorine reactor assuming that chlorine

reacts only with a single, chlorine demanding substance to generate data sets necessary

to build and examine the neural network . To replicate the real situation, I introduced

different levels of noise which reflect the different accuracy of measurements .

The neural network consisted of 3 layers with 29 neurons in the hidden layer . The

neural network was trained using 5 different training sets, each containing diffrent noise

levels ranging from 0 % to 10% . The training was completed in 625 to 1500 epochs

depending on the noise level in the training set . The resulting neural network was able

to predict the influent chlorine concentration within the error tolerance of 10

regardless the noise level of the data in the training set .

From the result, an efficient chlorination process control system could be built using

neural network technology with a set of measured data . After the completion of training

using the data set, the neural network found necessary correlation of input data values
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(the desired effluent chlorine concentration, the chlorine demanding compound

concentration, and the flow velocity) to the desired output value .

This result suggests that neural network based control system is a promising method for

chlorination process control, and further research and development are warranted .
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8. Limitations and Further Research

For this project, I have made a great deal of assumptions for simplicity as listed

Chapter 4. These assumptions are reasonable for a first attempt in developing a net

network control system for a chlorination, but impose severe limitations on

resulting neural network . To eliminate these assumptions, one needs to include rr_

parameters in the input data set . Additional values of HOCI(x, t), V(t), and S(t) r

need to be included to introduce non-stationary behavior into the chlorination mo

One will also need to include other parameters such as pH and temperature .

In this project, I assumed a strong correlation between the HOCI concentration and

level of disinfection. This relationship has been confirmed by many research

however, it may be better to have a measure of disinfection such as the concentratio

coliform bacteria . At present, real time indicators of disinfection efficiency

measure indicator organisms or pathogen concentration are not available ; neverthe

such indicators would improve the control system .

In the process of modeling, it is better to include more mechanisms and relati

which will increase the size of neural network training program. The increas

computer technology will facilitate the development of more advanced neural netwc
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It provides a new opportunity for the investigation of the optimization

chlorination process .
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Appendix A

Neural Network Training Procedure without Error

°

	

Determine the error level introduced into the training set
Noise = 0 .0 ;

% Determine the number of steps within the range of data values
n=9;

°

	

Input data generation
for i=1 :n,
for j =1 :n,
for k= 1 :n,
index =(i-1)*n*n+(j-1)*n+k ;
HOCI(index) = 0.5+(i-1)*1/(n-1) ;
S(index) = 5 + (j-1)*10/(n-1) ;
V(index) = 0 .0175+(k-1)*0 .035/(n-1) ;

end
end

end

°

	

= 1.66e-4 ;
°

	

=40;

% Desired output given the input generated earlier, it includes the
% error defined earlier .
HOC1B = HOCI.*exp(K*L*S ./V) ;
ntl = HOCIB .*(Noise*rand(l,n*n*n)+l) ;

npl(1, :) = HOCI ;
np1(2, :) = S ;
np1(3, :) = V ;

°

	

Number of neurons in hidden layer
NoNeurons = 29 ;
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Define and set the training parameters
P = [min(npl')*0 .99 ; max(npl')*1 .01]' ;
disp freq = 1 ;
max epoch = 250 ;
err_goal = 0 .01 ;
lr = 0.001 ;
momentum = 0.5 ;
inc = 5 ;
dec = 0 .2 ;
[wl,bl,w2,b2] = initff(P, NoNeurons, 'tansig', HOC1B, 'purelin') ;
tp = [disp freq max epoch err_goal lr momentum inc dec] ;

% Actual training procedure
[wl,bl,w2,b2,te,tr] = trainlm(wl,bl,'tansig',w2,b2,'purelin',npl,ntl,tp) ;
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Appendix B

Neural Network Testing Procedure

° This program is a test program for neural network for chlorination

°

	

process control . It is to beused for generating resut for report .

% number of steps in the testing set
time = 1 :1000 ;

% Generating test input data using sine functions
TestHOCI = 1 + 0.5*sin(2*pi*time/70) ;
TestS = 10 + 5 *sin(2 *pi *time/ 180) ;
TestV = 0.035 + 0.0175*sin(2*pi*time/400) ;

°

	

Some parameters
°

	

= 1 .66e-4 ;
L=40;

°

	

Computing the desired output for the test input data
TestHOC1B = TestHOCI.*exp(K*L*TestS ./TestV) ;

% Form test input set for neural network
testp(1, :) = TestHOCI ;
testp(2, :) = TestS ;
testp(3, :) = TestV ;

% Applying test input to the neural network
TestHOC1B = simuff(testp, wl, bl, 'tansig', w2, b2, 'purelin') ;

°

	

Applying the result into the model equation
TestResult = TestHOC1B .*exp(-K*L*TestS./TestV) ;

°

	

Comparing the result with expected output
TestResult2 = (TestResult-TestHOCi) ./TestHOCI ;

% Computing mean and standard deviation of error
[mean(abs(TestResult2)), std(TestResult2)]
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