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The earliest one-dimension dynamic clarifier model is established on the 

basis of mass conservation law for an ideal clarifier composed of a finite 

number of layers, and is used to simulate both underloading and 

overloading conditions. The estimation results indicate the original model 

can provide a sound predication in an underloading situation, but fails in 

identifying the sludge blanket level and underflow solids concentration in 

an overloading situation. Two improved models: the gravity flux 

constraint model and the dispersion model have been used to simulate 

both underloading and overloading conditions in order to test their 

reliability. Even though both of them can show the rise of sludge blanket 

height under the condition of overloading, their simulation results do not 

converge. Another obvious flaw of these two models is their sensitivity to 

the number of model layers, which means the simulation outcome is a 
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function of the number of layers. This inappropriate phenomenon has been 

demonstrated by testing these two models in 10-layer, 30-layer and 

50-layer situations，and the variation tendencies of their simulation 

outcomes are opposite. Method of characteristic (MOC) is a kind of 

numerical methods used to solve nonlinear hyperbolic partial differential 

equation. Given the fact that the original model is a nonlinear first-order 

hyperbolic partial differential equation, MOC is applicable to solve it. 

However, a brief analysis illustrates the mass conservation equation can 

only provide a positive characteristic line, and the negative line remains 

unknown. A possible method to figure out the negative one is set another 

equation based on the momentum or energy conservation.  
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1. INTRODUCTION 

A major advance in water quality protection in the United States occurred 

with the passage of the Clean Water Act Amendments in 1972, which 

required all dischargers to met treatment goals of 85% five-day 

biochemical oxygen demand (BOD5) and total suspended solids (TSS). 

Prior to 1972, many US cities only had primary treatment. In most cases, 

upgrading the primary treatment requires a biological secondary treatment 

process, which is highly dependent on the ability of microorganisms to 

convert dissolved organic material into suspended material and to 

bioflocculate fine colloidal material into larger particles or flocs. 

Biological secondary treatment processes are now widely used in 

wastewater treatment plants to remove organic matter and sometimes to 

reduce nutrients such as nitrogen and phosphorus [1]. The produced 

biomass removes nutrients by oxidation or incorporation. In all cases, 

efficient operation requires the biomass to be removed from the 

wastewater by sedimentation, filtration or other solids-liquid separation 

process

For sedimentation to be successful, the biomass must be composed of 

large particles or flocs which have sufficient settling velocity to be 

removed in a clarifier of manageable size. To achieve this goal it is 

necessary to grow the biomass to select floc-forming organisms as well as 

understanding clarification process to create well-designed clarifiers. 

Reactor designs are now optimized to select floc-forming organisms as 
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opposed to filamentous or foam-producing organism.  

The biomass leaving the reactor is a mixture of biosolids and water, 

commonly referred to as a slurry or sludge. The separation of slurries can 

be achieved by several types of treatment processes, but secondary 

clarifiers are most commonly used. Secondary clarifiers, also known as 

sedimentation basins or solids-liquid separators, use gravity to separate 

the biosolids from the fluid, and have two similar but distinct functions: 

clarification and thickening.  

Clarification is the removal of finely dispersed solids from the liquid to 

produce a low turbidity, low TSS effluent. Thickening is the process of 

increasing the biosolids concentration in slurry in order for it to be 

recycled or disposed in less volume. Both depend on the small differences 

in specific gravity of the biosolids and water. In clarifiers, the clarification 

process occurs in the upper zone while thickening occurs near the bottom. 

The result is an effluent from the top, low in suspended solids, and a 

second stream of settled, concentrated solids from the bottom, suitable for 

recycling or disposal.  

As one of the most important units in wastewater treatment process, the 

performance of a secondary clarifier often determines the capacity of a 

wastewater treatment plant (WWT). If the clarifier does not remove solids 

from the effluent, or fails to produce a recycle stream, process failure 

invariability occurs with effluent permit violations and loss of biomass 

from the reactor. Therefore, two commonly used design parameters: 

overflow rate and solids flux, have been developed to evaluate and design 
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clarifiers. Using these two parameters, engineers have created design and 

operation strategies for treatment processes by accounting for secondary 

clarifier limitations in order to provide high-quality, stable operation.  

Nevertheless, given the fact that the wastewater characteristics vary, such 

as flow rate and contaminant concentrations, traditional design procedures 

for secondary clarifier tend to be a more empirical and conservative by 

introducing averaged parameters with safety factors. Therefore secondary 

clarifier performance can suffer unanticipated fluctuations, which may 

cause secondary treatment control problems and increase the risks of 

failure. Stringent standards for effluent quality and urgent need for 

optimization of WWT performance have made such variations in effluent 

quality undesirable, and have encouraged the use of dynamic controls for 

wastewater treatment process. For the purpose of developing such an 

automatic control system to provide for uniform effluent water quality, a 

great amount of work has been performed to create accurate mathematic 

descriptions of wastewater treatment process, and the dynamic 

one-dimension model for predicting the time dependant responses to 

transient process inputs of secondary clarifiers is a good example.  

One-dimension clarifier models (1-D model), based on solids-flux theory, 

describe sludge transport by a mass conservation first-order partial 

differential equation. Several other extension factors: continuous settling, 

constraints of sedimentation flux from layer to layer, compressive effects 

and dispersion terms have been introduced to the initial equation in order 

to provide better agreement between model results and lab or full scale 
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observations. Although many 1-D models are available and some of them, 

especially Takács’ 10-layer model [2], have been widely utilized in 

engineering practice, the predication of the sludge settling characteristics 

and concentration profiles in and out of the clarifier are still far from 

satisfactory for practical purposes, due to obvious shortcomings and 

dilemmas.  

Firstly, the presently available 1-D models are highly dependent upon 

empirical equations to express clarification, thickening and compaction 

process and these equations or functions are an error source and can 

profoundly affect simulation results. A second challenge is the difficulty 

of making full-scale measurements on working clarifiers which has 

created a lack of data sets for model calibration and verification. This 

helps explain why previous work tends to use empirical equations, 

especially for the calculation of hindered settling velocity and 

compression. As a consequence, further research is still needed to improve 

the performance of the 1-D model. 

The goal of this thesis is to extend the knowledge of clarifier performance 

in order to improve 1-D models and especially to show their utility in 

predicting clarifier performance and failure conditions. An extensive 

literature review is provided, covering the classical, steady state research 

that has lead to the well-applied solids-flux theory of clarifier operation. 

From this foundation, 1-D clarifier models are reviewed and different 

available models are tested under various flux loading conditions. These 

models are then used to simulate practical situations, such as 
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time-to-failure after overloading. Finally, suggestions for additional 

research are provided.  
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2. LITERATURE REVIEW 

2.1. Background of the Secondary Clarifier 

As one of the most important units in a wastewater treatment plant, the 

secondary clarifier is often a “bottle neck,” limiting the capacity of the 

wastewater treatment process. Clarifier sizing must be combined with the 

aeration basin sizing to guarantee the minimum performance of secondary 

wastewater treatment pants, as well as maximizing its efficiency for 

contaminants removal. The significance of the final clarifier can be 

attributed to its three major functions: clarification, thickening, and 

storage.  

Clarification, occurring in the upper part of the clarifier, above the feed 

point (hence it is called the clarification zone) separates the suspended 

solids from wastewater flow by specific gravity differences to produce an 

effluent low in TSS concentration. A concentrated underflow must be 

obtained during the thickening process below the feed point, and the 

settled slurries must be transported to the bottom of the clarifier where 

they are removed and recycled to the aeration basin to maintain the mixed 

liquor suspended solids concentration. Storage refers to the function of 

temporary slurry storage during the changes in wastewater flow rate, such 

as the diurnal variations common in domestic treatment plants or upsets or 

shock loads. Storage prevents process failure by retaining the biosolids 

during short term flow variations.  

In spite of improved knowledge and recent modeling advances, the final 
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clarifier still remains a sensitive and complicated unit in an activated 

sludge treatment plant, and sometimes will suffer an unexpected failure 

deteriorating the overall efficiency of the treatment plant.  

Given these problems, a proper design and operating strategy for 

secondary clarifiers is an essential backbone of a wastewater treatment 

plant. A validated, user-friendly model for evaluating and predicting the 

behavior of the final clarifier will contribute to understanding the final 

clarifier’s responses to variable operating conditions such as loading rate, 

overflow rate, withdraw flow rate and upsets. Numerous studies aimed to 

develop better designing and operating strategies, some with mathematical 

models, have been carried out, with the goal of improving engineering 

understanding of secondary clarifiers, hopefully achieving more reliable 

and efficient activated sludge treatment plants. 

 

2.2. Brief Review of Thickening Theory 

2.2.1. Development of Thickening Theory 

Most early investigations for developing design and operating equations 

to predict the possible behavior of the secondary clarifier were based on 

the understanding and utilization of classic batch thickening tests results, 

which were believed to supply all necessary information for clarifier 

design and operation. In these classical experiments, a suspension of 

particles of known concentration was added into a graduated cylinder and 

thoroughly mixed by stirring. After mixing, the particles were allowed to 
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settle, and the height of the interface between the clear supernatant and 

particles was recorded over time. Coe and Clevenger (1916) conducted 

one of the pioneering works showing how a batch settling test can be used 

in the secondary clarifier design and operation. This classical 

methodology exerted a profound impact on clarifier design over the next 

half century [3].  

With qualitative expressions, Coe and Clevenger firstly distinguished the 

four zones generated during batch settling tests in cylinder column [4]. 

The first zone named clear water zone was a clear supernatant in low 

suspended solids concentration. Underlying the first zone, the secondary 

zone had a similar concentration as the initial feed MLSS. The third zone 

was a transition zone between the constant solids concentration zone (the 

second zone) and the fourth zone known as compression zone due to the 

compression effect caused by a relative higher solids concentration 

compared with the other three zones. Since similar classification of zones 

can also be found in a real continuous thickener[5], the study of the batch 

settling test can be used to estimate the real situation of the secondary 

clarifier[4]. Identifying the constant solids concentration zone and the 

transition zone as two free settling zones different from the compression 

zone, Coe and Clevenger divided the continuous settling process into two 

distinct stages: free settling governing the clarifier area requirement, and 

compressive settling determining the requirement of the depth of the 

thickening zone [3].  

Another important conception discussed in Coe and Clevenger’s classical 



9 

paper was the solids handling capacity, now known as solids flux-density. 

Their observations demonstrated the ability of one layer with certain 

solids concentration to convey solids flux to the next layer showed a 

maximum value [4] . The minimum value of all layers was the upper limit 

of feed flux the clarifier can handle, also known as the maximum feed flux 

that can be transmitted to the bottom of the clarifier. To determine the 

solids handling capacity based batch settling tests, Coe and Clevenger 

provided an empirical relationship. Tracy [3]modified it by expressing it 

in terms of concentration units as equation 1. 

                  

ui

i

cc

V
11

C
∗

=                 (1) 

Where C = solids handling capacity or the maximum flux which can be 

transmitted; ci = solids concentration of the layer under consideration; cu= 

desired underflow solids concentration; Vi = gravity settling velocity of a 

solids suspension has a concentration. As mentioned above, the layer 

having the minimum flux handling capacity determined the requirement of 

thickener area. Since equation 1 expressed this special layer as well as its 

solids concentration, it became a basic mathematic approach to calculate 

the area requirement for the secondary clarifier. Once the gravity settling 

velocity was determined, the area can be calculated.  

Coe and Clevenger were not so specific in the subject of selection the 

depth of the thickener as they were in determining the requirement of the 

clarifier size [3]. Using a simple hypothesis that the loss of water or the 
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sludge compaction level in the compression zone was a function of time, 

Coe and Clevenger suggested that a more desired withdrawal 

concentration can be obtained with a sufficient depth by providing a 

longer compacting time. Even though Coe and Clevenger emphasized the 

great practical value of conducting batch settling tests in predicting the 

probable behavior of the secondary clarifier, they also stated that 

conducting batch tests was not enough; one has to perform continuous 

thickening tests for a satisfactory evaluation [3]. 

Coe and Clevenger’s empirical design procedure was widely accepted and 

further extended due to its simplicity and practicality, and was the only 

available quantitative design method during the first half of the 20th 

century. This design strategy was prevalent and dominant until a more 

theoretical description of the batch settling process was presented by 

Kynch in 1951 [6]. To entirely describe the settling process without an 

intricate mathematic expression and the necessity of knowing actual 

forces on the particles in detail, Kynch made two types of assumptions as 

followings:  

1. The particle concentration is uniform across any horizontal 

layer. 

2. The initial concentration increases towards the bottom of the 

“dispersion.” 

3. The velocity v tends to zero as ρ (density) approaches to ρm 

(maximum density). 
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4. The velocity of fall depends only on the local particle density. 

5. Wall effects can be ignored. 

6. The particles are of the same size and shape. 

In his celebrated paper, Kynch gave an analysis of each assumption, 

except the fundamental assumption 4, and recognized the fact that it was 

impossible to verify the validity of this hypothesis until the details of the 

forces on the particles can be specified. The settling process was 

represented by the continuity equation of the solids phase:  

               ( ) 0=
∂
∂
⋅+

∂
∂

x
V

t
ρρ

ρ                 (2) 

Where ρ = the local concentration of particles (the number of particles per 

unit volume of the dispersion); V = the velocity of fall, a function only of 

the local concentration ρ of particles; X = the height of any level above the 

bottom of the column of dispersed particles; equation 2 can be further 

discussed by the mathematical technique of using the characteristics of a 

partial differential equation with proper initial and boundary conditions[7]. 

Therefore, the discontinuous settling behavior can be analyzed based from 

equation 2 without knowing the precise mechanism of different settling 

methods [7]. 

Kynch also described the formation and propagation of the particle 

concentration discontinuity, occurring in the zone settling, by introducing 

the following expression: 
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21

21

ρρ −
−

=
SSU                    (3) 

Where U = the upwards velocity of the discontinuity; S = Settling Flux; ρ 

= the local concentration of particles (the number of particles per unit 

volume of the dispersion). Kynch’s theory is a great breakthrough, since it 

contributes greatly to the understanding of the batch settling process and 

promotes the development of clarifier thereafter.  

However, what Kynch did not analyze was the relationship between batch 

settling tests and continuous thickeners [8]. Therefore, for the purpose of 

integrating Kynch’s theory and real continuous thickener design, Talamge 

and Fitch[8] developed a designing procedure after demonstrating the 

validity of Kynch’s analysis.  

Using various settling materials, Talamge and Fitch performed a series of 

batch settling tests with different initial concentrations. The experimental 

data sets were analyzed by the Coe and Clevenger procedure and Kynch 

procedure respectively. The results showed that the Kynch method was 

always as good as the Coe and Clevenger method, and in many cases, the 

Kynch theory was better. The field observations also showed a good 

correlation with Kynch theory [8]. Afterwards, Talamge and Fitch [8] 

developed a new design strategy based upon an extension of Kynch theory, 

suggesting that the slope of the tangent to the interface subsidence curve 

of a batch settling test is equal to the settling velocity of the layer which 

has the same solid concentration. They also followed Coe and Clevenger’s 

suggestion that only free settling zones govern the unit area requirement. 
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The technique can be expressed as the following equation: 

                   
00

u

C
t

AreaUnit 
H⋅

=               (4) 

Where Unit Area = the area required to allow one ton of solids to settle 

through the layer concentration in one day; C0 = the initial concentration 

of a column of pulp in a batch settling test; H0 = the initial height of a 

column of pulp in a batch settling test; tu = the time for the total quantity 

of solids to subside past through the layer, propagated up from the bottom 

of the column. Equation 4 indicated that the Talamge-Fitch design 

procedure was dependent upon precisely determining the compression 

point, tu. However, Talamge and Fitch did not give any suggestions to 

evaluate tu. Lots of approaches have been proposed by other scholars, but 

most of them are empirical [9-11] . 

Beyond the lack of theoretical methods to determine the compression 

point, tu, an obvious drawback of Talamge-Fitch procedure is a tacit 

assumption that the solids handling capacity of the thickener is controlled 

by the concentration which exists at the liquid-solid interface at the 

moment when all solids pass through into the compression zone [3]. The 

correctness of this fundamental but tacit assumption still remains unclear.  

Subsequently, environmental engineers observed an unexpected problem 

that this design method was conservative, underestimating the solids 

handling capacity of a real thickener, and always caused some unfavorable 

results, such as oversizing.[1, 12] Even Fitch himself admitted that the 
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solids handling capacity estimated by this method was drastically less than 

the real one. Aldeton demonstrated this result showing that the 

experimentally observed flux can be 1.5 times larger than the estimated 

flux [1, 13]. One possible explanation of this underestimation is that 

during the compression, the settling velocity is no longer only  a function 

of the concentration, contradictory to the original Kynch hypothesis [3]. 

However, in spite of the tacit assumption and conservative tendency, 

Talamge-Fitch Method was still advocated by many  practitioners, 

because of its improved veracity, especially compared with Coe and 

Clevenger multiple batch settling tests method [14-17]. 

2.2.2. Verification of Kynch Theory 

In Talamge and Fitch’s paper, the Kynch theory, particularly the 

assumption that the free settling velocity is a function only related to the 

solids concentration has demonstrated its value as a powerful and feasible 

approach transforming the intricate batch settling process to a simple 

mathematic expression. However, in consideration of the possibility of 

creating conservative design and other unfavorable problems, additional 

research was motivated to demonstrate the validity of the Kynch theory. 

Most researchers focused on the ability of the free settling velocity 

obtained in laboratory scale batch settling conditions can accurately 

represent the observed velocity in the full-scale continuous thickeners. 

Due to the limitation of experiment conditions, such as the small settling 

vessel, the continuous stirring for complete mixing, and the limited 

number of slurries, the experimental conditions, such as the diameter of 
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the cylinder and the initial height of tested slurries, can be greatly 

magnified.  

When the diameter of the batch test container becomes fairly small with 

respect to the diameter of the particle, the particles or the flocs within the 

slurries will tend to form “bridges” or “arches” between the walls to that 

creates a mechanical support force to deter the settling or reduce the 

settling velocity.  Once the collapse of the “bridges” or “arches” occurs 

because of the overweight slurries, an accelerated settling of the interface 

of the slurries will be observed. Another impact from the wall effect is the 

movement of liquid along the cylinder wall rather than through the more 

circuitous path of the slurry. In this instance, the water loss is more rapid 

than normal, and the apparent subsidence velocity is noted to be higher 

than would occur in a larger container [3]. The impact of wall effect has 

been confirmed by Vesilind (18) with compressive data showing that a 

small diameter cylinder can produce a higher settling velocity for dilute 

suspensions, while decreasing the velocity with concentrated suspensions. 

Based on these notable experiment results, Dick [18] stated that increasing 

the diameter of the cylinder can decrease the settling velocity in batch 

settling tests, and the diameter effect tended to be more apparent with 

concentrated suspensions than the dilute ones. Based on the preceding  

discussion, the cylinder with a larger diameter is preferable, but the 

utilization of larger cylinders requires a greater volume of fresh slurries 

for batch settling tests, and presents a new problem of how to maintain a 

uniform initial settling concentration through the cylinder without 

introducing turbulence, which may alter the subsidence characters of the 
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slurries[3]. To avoid altering the subsidence characteristics and to avoid 

the difficulty of managing large volumes of slurries, cylinders with small 

diameter are more wildly applied in real batch settling tests, ignoring any 

potential wall effects.  

To offset the impact of wall effects, a slow speed mixer has been 

introduced. It has been shown that a slow speed stirrer will not impose the 

settling velocity of dilute slurries [3]. Dick further demonstrated that 

mixing process was indispensible to counteract the influence of the wall 

effect, when the slurries concentration exceeded 6000 to 7000 mg/l[18].  

The possible impacts upon the solids settling characteristics also have 

been estimated. Kammermayer [19] found that the slow stirring process 

can produce more compact final slurries, supported by Eckenfelder and 

Melbinger [11]. Nevertheless, many researchers record free settling 

velocity using a stirrer in the batch settling tests. As a result, extending the 

mixture to the entire depth of the batch settling column has been strongly 

recommended by a lot of researchers, while the stirring in most cases 

show more profound effect in the zone with relative high concentration[20, 

21]. Another result of stirring is that it provides a more uniform initial 

settling concentration through the cylinder column and prevents a 

subsidence lag time from occurring.  

The Kynch theory has also been questioned a lot, since it did not consider 

the relationship between the settling velocity and the initial height of the 

slurries suspension. Several experiments have been designed to evaluate 

the effect of height by conducting the settling tests at different initial 
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settling heights. The experiment results showed that the initial settling 

height can greatly alter the settling character of the slurries, and a higher 

initial height brings better settling characters [19, 21]. Dick made an 

assessment of the initial height effects and concluded that increasing the 

initial height six feet greatly improved the subsidence velocity, which 

contradicted to Kynch theory totally [18]. However, after changing the 

settling materials from activated sludge to sand, the experiment results 

tended to support Kynch theory that the settling velocity is independent of 

the slurry height [18]. The discrepancies of experiment results can be 

attributed to the fact that activated slurries deviate greatly from Kynch’s 

fundamental assumption that the ideal settling particles having uniform 

shape and size, while sand meets this assumption much better [3].  

Further studies have been conducted to ascertain the validity of Kynch’s 

analysis by using more ideal particles. By doing a series of batch settling 

tests, Shannon and Tory [22] demonstrated that experimental batch 

settling behavior of rigid spheres in water was found in qualitative and 

near quantitative agreement with settling behavior predicted from a solids 

flux plot assuming that the solids settling velocity is a function of solids 

concentration only.  The small observed deviations were believed to be 

caused by the slightly non-uniform initial concentration and the particle 

segregation effect in dilute concentrations. Solids having a Gaussian 

distribution show that no noticeable segregation at reduced concentrations 

of 0.15 (Ci /ρs) or higher, therefore the assumption of uniform shape and 

size particles no longer constrains the Kynch theory [22].  
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One of the major criticisms to Kynch theory was that it was difficult to 

predict the settling behavior at a high slurries concentrations, especially 

the subsidence occurring in the compression zone[3]. Conducting batch 

settling experiments with calcium carbonate slurries having initial 

concentration at compression concentrations (> 145 g/L) indicated the 

settling velocity was still largely determined by the local solids 

concentration, and the solids profiles were fairly similar to the ones 

predicted by Kynch theory for rigid sphere [23]. The mechanical stress 

was believed to be the major reason for the gradual increasing of 

concentration and the curved concentration profiles near the bottom area 

[23]. 

 

2.3. Investigation of the Continuous Settling Process 

Most previously discussed cases were focused on the study of batch 

settling process, and scholars believed that the classical batch settling tests 

can provide almost all information to describe the continuous settling 

process. With the attempt to evaluate how the operating or controlling 

factors were related to the subsidence behavior, certain experiments were 

carried out to observe the behavior in the compression and settling 

zones[24] . To control the detention time and the depth of the compression 

zone, Coming [24] in his experimental investigation, chose feed flow rate 

and the underflow rate as variables, demonstrating that the underflow 

concentration was negatively correlated with the underflow rate. He also 
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showed that increasing the detention time or the depth of the compression 

zone can increase the underflow solids concentration. Coming also 

compared the effects of two different rake mechanisms: a standard rake 

and a picket rake (with vertical bars extending above the rake), and found 

that no discontinuity in the concentration-height curve was observed, as 

well as a more uniformly increasingly concentration using a picket rake. 

Another interesting observed experiment phenomenon was a zone of 

constant solids concentration was produced with successive increases in 

feed flow rate with constant underflow rate. Coming emphasized the 

importance of this zone controlling the limiting capacity of the thickener, 

since it determined the rate at which the solids reached the compression 

zone[24]. 

Yoshioka [25] supported  the assumption that batch tests can provide 

sufficient information to describe continuous thickening. Yoshioka’s most 

important contribution was to provide graphical analysis method of batch 

flux data, and showed how it can be used to predict the underflow 

concentration. His procedure is the most accepted method today. His 

statement that the subsidence occurring in the compression zone was not 

due to the compression effect, but just a function of the solids 

concentration in that zone, was in accordance with Kynch theory. By 

expressing the settling rate as a function only related to the local solids 

concentration, the underflow concentration can be predicted based on the 

limiting solids handling capacity and underflow velocity, and it was the 

first analytical approach to predict the underflow concentration [3]. The 

discrepancies between Yoshioka and Coming are the perspective of the 
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function of detention time and compression zone depth upon the 

underflow concentration. Yoshioka concluded that neither the thickness of 

compression zone nor the detention time affected the underflow 

concentration[25].  

Hassett [26] developed an analyzable method to evaluate the settling 

capacity of a specific thickener. By conducting numerous continuous 

thickening tests with various settling slurries, Hassett found that both the 

requirement of size and the underflow concentration can be briefly 

estimated from the minimum point from the total flux curve, such as 

Figure 3. He derived a quantitative expression to explain the independence 

of the concentration discontinuity and the mechanical agitation, and 

confirmed that the slurry depth was unrelated to the settling behavior. He 

showed that a rising of slurry blanket did not increase the underflow 

concentration when feed flow was increased which was in conformity 

with Yoshioka’s conclusion based on the analysis of batch settling 

tests[26].  

Yoshioka’s batch flux diagram was extended to a double concave flux 

diagram by Shannon and Tory. The double concave flux diagram 

demonstrated that two stable constant solids concentration zone can exist 

in a continuous thickener [27, 28] . Opposite to Coming’s conclusion, 

Shannon and Tory found that the detention time had no relationship with 

the settling behavior, and the underflow rate was the determining factor of 

underflow concentration [27].  

The existence of two constant solids concentration zones under a critical 
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or overloaded condition has been confirmed by Dick and Javaheri [29]. 

The observed concentration profile was approximate to the theoretical one 

with two constant solid concentration zones presented in Shannon and 

Tory’s paper[23]. With the goal of investigating the non-ideal slurries 

concentration profile, Javaheri introduced a mixture containing calcium 

carbonate, lime softening sludge and activated sludge as a compressive 

and non-ideal slurries sample. Though there were small quantitative 

deviations between the observed concentration profile and the predicted 

one, basic agreement was obtained, confirming the soundness of the 

predication strategy [30]. 

2.4. Mathematic Modeling of the Sedimentation Process  

Although a number of continuous settling studies have been conducted, 

almost no research was performed to describe the settling process using 

continuous differential equations.  Several empirical models, such as 

Edde and Eckenfelder model and the model recommended by the 

Environmental Protection Agency, were developed, and they all contained 

specific empirical parameters, resulting in  unexpected deviations 

between the simulation results and real data sets [31].  

The first attempt to develop a dynamic model for continuous thickening 

was presented by Bryant [32]. Bryant’s idea was divide the clarifier into 

several layers along vertical direction, and the total flux in and out of each 

layer was separated into two parts: the bulk flux, caused by the underflow, 

and gravity flux, caused by the gravity settling. By the use Kynch theory, 
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Bryant generated the following partial differential equation upon the basis 

of mass conservation law: 
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Where C = the solids concentration in each layer; t =time; u=the 

underflow rate in the thickening zone; Gs = the gravity flux of each layer 

and Z =the vertical distance in the thickener. 

Simulating underloading conditions confirmed the existence of constant 

solids concentration zone below the feed layer which was in accordance 

with Kynch theory. Since the operation flux was transmitted to the bottom 

of the thickener and went back to the aeration tank, steady state  

conditions were maintained in the thickening zone [32]. Neither the 

clarification zone nor an overloading condition was investigated, although 

both are essential to estimate the effluent solid concentration and prevent 

thickener failure.  

Instead of analyzing the solids concentration layer by layer as Bryant[32], 

Tracy developed an inventory model[3]. In implementing the inventory 

model for the continuous thickening process, the vertical section of the 

thickener was considered as four different zones with variable volumes. 

The area above the feed point was named the clarification zone, due to its 

relatively low suspended solids concentration.. The second zone, called 

the dilution zone, extended from the inlet downward to the sludge blanket 

surface. Beneath the dilution zone was the portion of the thick blanket, 
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called thickening zone, usually with a constant and uniform concentration. 

Both the existence of the dilution zone and thickening zone were 

dependent upon the loading conditions. The bottom was called the 

compression zone and contained the rapidly increasing solids 

concentration. Mass conservation equations were built in order to describe 

the change of height and solids concentration in each zone. For example, 

equation 6 was used to predict the level of sludge blanket in overloading 

condition.  
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Where Gin = settling flux into the thickening zone; Gout = settling flux out 

the thickening zone; C = the solids concentration in thickening zone; Delt 

= simulation control increment, normally 0.01 h; Z∆ = the level variation 

of sludge blanket height. The essential foundation of Tracy’s model was 

the identification of four different zones with different properties and 

solids concentrations, and the zone definitions were based upon Hassett’s 

observations[12].The zone heights and their concentration were calculated 

from mass balances, as opposed to using discrete layers, as Bryant did[32].  

Tracy’s model provided an inventory of the solids in the sedimentation 

tank, and could be used to predict clarifier overloading.  

Stenstrom modified Bryant’s model, because he observed that Bryant’s 

continuity model could not predict clarifier overloading [33]. In order to 

model the overloading condition, especially for estimating the sludge 

blanket level, Stenstrom gave the following assumptions: 
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1. The dispersion is zero (plug flow). 

2. The mass flux flows into a differential volume can never exceed the 

flux which the volume is capable of passing nor it can exceed the next 

higher differential volume is capable of transmitting. 

3. The settling velocity is a function only of the solids concentration, 

except when assumption 2 is violated.  

4. The bottom of the clarifier represents as physical boundary to 

sedimentation; therefore the settling flux at the bottom of the clarifier 

is zero. 

5. The solids concentration is completely uniform in any horizontal 

plane. 

6. There is no biological reaction in the separator. 

The assumption 2 is the most significant one, because it exerts an extra 

restriction to the gravity settling flux, which the original continuity model 

does not contain. So, Stenstrom wrote the following equation based on the 

mass conservation law around each layer. 
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Where C = solids concentration; vu = bulk downward velocity; Gi = the 

gravity settling flux in layer i; dz = the thickness of each layer. Stenstrom 

demonstrated that the modified model was capable of simulating the 
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overloading condition much better than the original continuity model[33]. 

With the thought that a thickening failure will occur when the sludge 

blanket level exceeds the feed point, Stenstrom did not simulate the 

settling behavior in the clarification zone.  

Vitasovic noticed that the dynamic model developed by Bryant and 

modified by Stenstrom was effective in predicting the underflow 

concentration, but believed that it failed in estimating the sludge blanket 

height under different feed flux conditions. The strategy for thickening 

zone simulation was similar to Stenstrom’s model, except an introduction 

of one special threshold Ct, the concentration of the certain layer that the 

solids flux of this given layer can affect the settling flux in the next upper 

layer. The top layer of the sludge blanket was defined as the closest layer 

to the top of the clarifier with the concentration equal or greater than the 

Ct [34]. To model the clarification zone, Vitasovic assumed that the 

precondition for a successful settling required the gravity settling velocity 

to be larger than the upward flowrate or overflow rate, Vb, [34]. His model 

contained five zones or layers with potentially different solids 

concentrations: the top layer, the layer between the top and feed layer, the 

feed layer, the layer between the feed and the bottom layer and the bottom 

layer. Each layer was described by its each unique different equation. In  

his dissertation, Vitasovic presented the following suggestions to improve 

the model: 

1. Modify the assumption that the radical concentration profile is 

uniform through the layer thus allowing a concentration gradient in 
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two dimensions rather than one. 

2. Include the turbulence effects on the conveyance of solids between 

each layer. 

3. Structure the solids with respect to the settleability. 

4. Use a more realistic velocity profile. 

His suggestions essentially are a proposal for a two dimension model with 

dispersion.  

To evaluate the peak loading effects from the storm and snow-melt waters 

to the operation of the secondary clarifier, Laikari developed a dynamic 

model to the sludge blanket height deviations in various loading 

conditions[35]. The method to determine the level of the sludge blanket he 

used the method originally proposed by Tracy and Keinath. He improved 

the model by accounting for the conical shape of the clarifier, and by 

adding a turbulence effect by introducing a dispersion coefficient D. His 

use was unconventional in that he multiplied D times the first spatial 

derive of C. The strategy of handling the limiting flux was to transfer flux 

exceeding the limiting flux in a layer to the layer just above it. Instead of 

following Kynch theory to handle the gravity settling velocity  (solids 

concentration only a  function of concentration), the gravity settling 

velocity was determined by various batch settling tests and calibrations in 

Laikari’s model [35] . According to obtained data sets from this model, a 

brief conclusion was that the influent solids flux, available solids storage 
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capacity and sludge settling velocity in the clarifier were the three major 

factors determining the efficiency and capacity of the clarifier [35]. 

Laikari also looked forward to combining the clarifier model with a 

possible aeration model.  

One of the most well-known and widely used one-dimensional multi-layer 

dynamic models is Takács 10-layer model. Based on the solids flux theory 

and the mass conservation law around each layer, the equation was 

deviated as a first-order particle differential equation with the Stenstrom 

flux constrain for solids flux controlling in two adjacent layers. For the 

purpose of simulating the settling behavior in the clarification zone, 

Takács developed equation 8 to describe the settling velocity for both 

types of discrete and hindered sedimentation.  
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Where the Vsj = settling velocity of solids particles in layer j; V0 = the 

maximum settling velocity; rh = the settling parameter characteristic of the 

hindered zone; ro = the settling parameter characteristic of the low 

concentration zone; Xj = suspended solids concentration in layer j; Xmin = 

the minimum attainable suspended solids concentration; X*
j = Xj-Xmin 

[2].Compared with Vesilind velocity equation[36], Takács velocity 

equation was able to work in both discrete and hindered concentration 

zones as shown in Figure 1. The steady state and dynamic simulation 

results have been verified using Pflanz’s full-scale data and Thompson’s 

pilot plant data. These verifications illustrated that the 10-layer clarifier 
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model can predict the concentration profile along the height of the clarifier, 

the effluent solids concentration, and the underflow concentration very 

well under both steady state and dynamic conditions. But, Takács also 

admitted that the modeling results were not so perfect since the mass of 

solids entering the clarifier was larger than the solids leaving the clarifier 

in an underloading situation[2]. 

Hamilton drew a conclusion on the previous dynamic clarifier models that 

the these models were based on the discretization of the first-order partial 

differential equation derived from the mass conservation law, and the 

drawback of the these models was that they failed in  predicting the 

continuous variation of solids concentration with depth [37]. To remove 

this shortcoming, a second-order parabolic partial differential equation 

including a Fickian dispersion term was introduced, as show in equation 9, 

and the gravity settling velocity equation was Vesilind equation as 

equation 10.  
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Where V0 and b = coefficients dependent on the settling characteristics of 

the sludge; C = the total particulate concentration; Gs = the gravity settling 

flux; D = a dispersion coefficient; ∂ Z = the height of each layer [37]. The 

difference between Laikari and Hamilton dispersion equation is that 

Laikari’s equation is a first-order partial differential equation, while 
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Hamilton’s formulation corresponds to accepted dispersion model theory.  

The predicted concentration profile supported Hamilton’s assertion that 

the introduction of a dispersion term D enabled the prediction of the 

continuous variation of solids concentration in thickening zone. However, 

the shortcoming of the dispersion equation was that the simulation result 

was sensitive to the number of model layers, which was obviously 

inappropriate, a comment from Hamilton [37]. 

Not all of the dynamic models have been based on the flux theory. Hätel 

and Pöpel stated that under a steady state condition, the solids profile over 

the tank depth can not be derived from the solids flux theory, since the 

solids flux was independent of the depth Z [38]. A special gravity settling 

velocity equation was illustrated as equation 11: 
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Where Vs.0 = the upper limit of gravity settling velocity, a function of the 

sludge volume index (SVI); SS = the solids concentration; nv = velocity 

parameter, a function of the sludge volume index (SVI). In addition, to 

express the settling velocity for in domain of transition and compression, 

the velocity of hindered concentration zone was adjusted by a Ω 

correction function, which only dependent upon the position of 

compression hc=f(SVI), defined as the height as which the settling curve 

has the largest curvature [38]. Finally, they derived equation 12 to predict 

the concentration profile through the thickener: 
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Where QRS = the underflow rate; As c= the area of the thickener. With a 

further investigation of the possible application of this model, Hätel and 

Pöpel found that the integrated model including the clarifier model always 

gave a larger cell concentration predication in the aeration basin, but a 

smaller effluent solids concentration predication [38]. 

To forecast the possible response of a clarifier under dry and wet weather 

conditions, Otterpohl and Freund used the Hätel and Pöpel’s Ω correction 

function’s advantage in adjusting the gravity settling velocity at the 

domain of transition and compression, and Takács’s 10-layer model’s 

advantage in predicting the level of sludge blanket[39]. An important 

initial contribution made by Otterpohl and Freund was that they divided 

the solids in the secondary clarifier into two components: small solids and 

macro flocs, and modeled them respectively. The macro flocs settling 

velocity was determined by Härtel’s velocity equation [38] and small 

solids had a constant velocity. The verification results indicated that the 

model roughly corresponded to the full-scale data. The deviation between 

the simulation result and the real data can be attributed to the change of 

slurries’ settling characteristics in the combined water flow. An effective 

deviation reducing strategy was to set the volume of each layer at least 

one magnitude larger than the underflow volume in one time interval [39].  

Another available dynamic model was presented by Dupont and 
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Henze[40]. In that model, the Vesilind equation was used to calculate the 

gravity settling velocity in the thickening zone. By dividing the clarifier 

into several horizontal layers and assuming there was no solids 

concentration gradient in horizontal direction, the limiting flux was 

calculated in each layer and compared with the feed flow from upper layer, 

similar to Laikari’s strategy. Based on the influent characteristics of the 

clarifier, equation 13 was derived to describe the relationship between the 

effluent concentration and the MLSS in the aeration tank:  
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Where XF = the effluent solids concentration; Xmin = the constant solids 

concentration which always will be non-settleable; XAT = MLSS in the 

aeration tank; Q0/A = hydraulic load to the clarifier; SVI= sludge volume 

index; Xhyd = Monod constant for load. However, equation 13 was highly 

dependent upon the empirical observation and conceptual idea, and is 

difficult to use in practical cases. 

A comprehensive comparison of the one-dimension dynamic models 

discussed above has been conducted by Grijspeerdt et al [41]. To make a 

selection of these models, the simulation results from each model were 

fitted to the measured data collected in a downscale decanter. An 

advanced approach called a posteriori technique selecting models on the 

basis of certain parameter invariant characteristics of the models was 

introduced to fit the model results and observations. Four major selection 



32 

criterions were:  

1. The goodness of model fit.  

2. The complexity of the model. 

3. The level of difficulty of estimating the parameters.  

4. The ability to develop unique model parameters based on the 

available data sets. 

The steady-state fitting results showed that both Takács’s 10-layer model 

and Hamilton’s dispersion model provided a better model fit compared 

with other models. The dispersion model took less time to calculate the 

parameters, because it only contained three parameters as opposed to five 

parameters needed in the 10-layer model. However, the dispersion model 

failed to pass the cross-validation test, because the dispersion term D was 

too sensitive to various operation conditions, and ranged widely for 

different datasets. Under dynamic simulation condition, the 10-layer 

model results also fitted the real measured data sets better than others, but 

still took longer time for parameter estimation [41].  

For a well known reason that the short-circuiting and the density current 

greatly impact the settling behavior in the thickener, Dupont and Dahl 

proposed a special dynamic model to simulate both phenomena. The 

strategy to deal with the short-circuiting was to add a short-circuiting 

factor Ω, a simple dilution factor, which can be calculated by forming a 

simple mass conservation equation for thickener [42]. The density current 
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problem can be handled by adjusting the height of the inlet according to 

the feed flow solids concentration. Plósz [43] utilized the same strategy to 

simulate the density current, and indicated that the maximum height of the 

feed layer should be restricted to 53% of the clarifier height. In a fashion 

similar to Otterpohl’s previous work [39], Dupont and Dahl divided the 

components of influent solids into three categories: soluble components, 

primary particles unable to settle, macroflocs able to settle. They proposed 

that the concentration of primary particles in the influent flow be 

described as the following equation 14:  

2

1inf

K
efl

PP A
Q

KSSX 







⋅+=          (14) 

So the concentration of macroflocs can be expressed as: 

                   ppjssss XXX −= ,               (15) 

The settling velocity of macroflocs was determined by an original 

equation as follow: 
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The simulation results indicated that it was possible to set up a 

one-dimensional model including both of the short-circuiting and density 

current. This model can predict the solids concentration profile through 
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the thickener and the effluent solids concentration very well. More 

investigations were required to investigate the relationship between the 

short-circuiting factor and other parameters. 

One remaining problem of one-dimensional clarifier model was that the 

concentration profile based on the analytical solutions was sensitive to the 

number of model layers, as discussed in Hamilton’s paper[37]. One 

possible reason causing this problem was the numerical methods used in 

solving these partial differential equations were not accurate enough. 

Jeppsson and Diehl proposed a new numerical method called Godunov 

flux [44].  

Another significant adjustment of the traditional dynamic model was the 

boundary condition. Instead of prescribing a boundary condition that the 

effluent and underflow solids concentration are same as the concentration 

within the settler at the bottom and top, Jeppsson and Diehl stated that the 

only correct boundary condition was the conservation law. A source term 

was also added to the traditional partial differential equation. The 

well-known 10-layer model was selected for comparsion, because of the 

confirmed validity confirmed by Grijspeerdt [41]. The comparison 

showed that the Jeppsson and Diehl was not sensitive to the number of 

layers, and the solids profile more closely resembled the ideal 

concentrations calculated from inventory models such as Tracy’s[3]. 

Jeppsson and Diehl also recommended that 30 layers as the lower limit to 

guarantee reliable simulation results under normal operation 

conditions[44]. Jeppsson and Diehl[44] noted that their results tended to 
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be mathematically elegant  solutions rather than real predicted values for 

practical application.  

Noticing that the main drawback of Takács’s constraint model and 

Hamilton’s dispersion model was the layer’s number n became a 

parameter and seriously affected the simulation results, David et al. 

proposed a new numerical approach called method of lines (MOL) with 

different boundary conditions to solve the dispersion model[45]. His 

method was different from the traditional up-wind schemes and implicit 

boundary condition. His solution proceeded in two steps: 

1. Spatial derivatives are first approximated using, for instance, 

finite-difference methods. 

2. The resulting system of semi-discrete (discrete in space but still 

continuous in time) equations is integrated in time. 

The new boundary conditions were as equation 17 and 18: 
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The simulating result of the Hamilton’s dispersion model with different 

numbers of layers showed that the application of MOL and the new 

boundary condition can provide numerical solutions insensitive to the 

layers’ number. Another sound advantage of the application of the MOL 
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and the new boundary condition was that the model was able to be 

implemented in a MATLAB simulator conveniently [45]. In accordance 

with Jeppsson and Diehl’s conclusion, David also suggested that 

increasing the number of model layers can improve the numerical 

accuracy of the solids concentration profiles[45].  

Though both Takács’s 10-layer model and Hamilton’s dispersion model 

provide reliable predictions of the solids concentration profile, the 

possible correlation between them still remains unknown. Watts et al. 

illustrated that the function of Stenstrom’s gravity flux constraint was 

equivalent to adding a solids concentration and layer’s thickness 

dependent dispersion term as shown in equation 19 to the original 

discretization equation[46].  
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In equation 19 the dispersion coefficient disappears as the layer thickness 

δZ approaches zero, which was not physically plausible. Therefore Watts’  

modified equation 20, where α is a constant as follows: 
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The dispersion term D was no longer sensitive to the layers’ thickness [46]. 

A special threshold concentration was introduced as Ccrit = 2/b, (b=rh, rh is 

one parameter in Takács’s settling velocity equation). The dispersion 

coefficient equaled to Dmax, a function dependent on the feed flow velocity, 
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when the solids concentration was larger than Ccrit；otherwise it can be 

calculated by equation 20.  

A new dynamic clarifier model was proposed by Clercq et al.[47]. The 

special characteristic of this model was that it included a two flow rate 

dependent dispersion term in clarification zone and thickening zone 

respectively.  
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Where the D11, D22, α and β are the dispersion parameters that need to be 

calibrated, but for a specific clarifier, these parameters are constants [47]. 

The model also included a height-dependent cross sectional area, which 

was similar to Laikari’s strategy. Excellent descriptive capabilities were 

obtained for sludge profiles and sludge blanket height, but not for the 

effluent solids concentration, due to the poor quality measurements at the 

surface of the clarifier [47]. 

Plósz et al. conducted a further investigation of the dispersion coefficient, 

and confirmed that the dispersion coefficient should not be only governed 

by the feed flow, but also by other factors, as the outflow velocities,  as 

also noted by  Clercq et al[43]. They also showed that Watts’ exponential 

approach to determine the dispersion coefficient can not work under the 

condition R (R=Vun/Vf) ≧0.45, and Clercq’s idea that two different 

dispersion terms in clarification zone and thickening zone always gave a 

over-predication in high concentration zone and under-predication in the 
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low concentration zone [48]. Instead of being a function of the feed flow 

velocity, the dispersion coefficient in this model was expressed as a 

function related to the overflow rate. Other adjustments of the traditional 

dispersion model were the addition of a feed flow dependent reduction 

factor into the downward convection term μ to improve the simulation 

accuracy in the thickening zone, and the suction-lift sludge removal 

system was simulated by an array of fluxes, withdrawing sludge not only 

from the last but from several other layers up to the height of the suction 

collector. This clarifier model can provide an improved assessment of the 

clarifier storage capacity and the sludge concentration in the effluent flow 

[43]. 

Most of the available dynamic models were derived based on the 

empirical equations, however these empirical equations had no 

relationship with the physical properties of the activated sludge flocs and 

solid-water interaction [49]. Clercq provided a new mechanistic model 

based on the conservation law of mass and momentum. This model 

included a Kynch batch density function fbk(C) and an effective solids 

stress σe(C) as shown in equation 24. The gravity settling velocity in the 

hindered zone was described by the Cho equation, and equation 23 was 

used to express the gravity settling velocity in the compression zone. 
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Where C = solids concentration; t = time; z = depth in settling column; fbk 

= Kynch batch density function; ρs = solids mass density; g = gravity 

constant; σe = effective solids stress as shown in equation 25: 








 +−
⋅=

β
β

ασ C
e

CC
ln               (25) 

Where α and β = calibration parameters, Cc = the compression solids 

concentration, defined as the concentration at which the concentration 

gradient reaches the values below 200g/l/m within the sludge blanket. The 

numerical method used up-wind differencing for the first-order term and 

central differencing for the secondary-order term. The batch tests 

indicated that this model can describe the settling behavior significantly 

better than any other model [49]. 

To build consensus on a constant modeling methodology (CMM), Bürger 

et al drew a comprehensive conclusion of previous works and separated 

the model building process into six steps as follow: 

1. Construction of a mathematical model on the basis of physical law; 

2. Estimate well-posedness; 

3. Numerical method and simulation program; 

4. Calibration;  

5. Validation; 
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6. Rebuilding or extension of the model; 

The key principles of the CMM was that for a real process that occurs in a 

continuous time and space, the modeling should be done in continuous 

time and space, resulting in a PDE as mathematical model, and the 

parameters should never be introduced into the simulation model directly 

[50]. 

Following the six steps in CMM, Bürger et al built a robust dynamic 

model which included most of the previously described physical 

phenomena as hindered settling, compression and dispersion. They 

believed that time has come to incorporate established mathematical 

techniques into environment engineering, and waste water modeling in 

particular, and to use proven reliable and consistent simulation models 

[50]. 
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3. RESULTS AND DISCUSSION 

3.1. Original Dynamic Settling Model 

3.1.1. Rebuilding the Original Dynamic Settling Model 

To proceed to establish a dynamic secondary clarifier model, it is 

necessary to make several assumptions in order to create a solvable 

mathematical problem. The following assumptions are made:  

1. The clarifier is circular and central-feed. 

2. No density currents happen in the clarifier. 

3. The biochemical reaction rate approaches to zero in the clarifier. 

4. Uniform loading rate neglecting any wild influence.  

5. Mechanical sludge scraper does not affect the sludge settling 

behavior. 

6. Wall effects can be ignored. 

The secondary clarifier can be divided into several vertical layers. For 

each layer, the following assumptions are made to simulate the settling 

behavior without knowing the specific forces acting on the particles.  

7. The area and the thickness of each layer are fixed. 

8. Incoming solids are distributed instantaneously and uniformly in the 
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feed layer.  

9. The settling velocity is function only related to the solids 

concentration in the specific layer. 

10. The gravity settling flux in the bottom layer is zero, since it is a 

physical boundary of the clarifier. 

11. The dispersion flux is zero (plug flow). 

Based on flux theory, a mass conservation can be defined for layer i: 

             Accumulation= Input – Output ± Reaction     (26) 

Since the Reaction term equals to zero, according to the assumption that 

there are no biochemical reactions in the clarifier, equation 26 can be 

simplified as: 

Accumulation= Input – Output           (27) 

So for the layer above the inlet, containing the feed point and below the 

feed point, equations can be expressed as equation 28, 29, 30: 

( ) ( )ioioiiii CuCuACvCvA
dt
dCV ⋅−⋅⋅+⋅−⋅⋅= +−− 111      ( clarification zone)  (28)   

( ) ( ) ( ) MLSSuuACuCuACvCvA
dt
dCV uoiuioiiii ⋅+⋅+⋅+⋅⋅−⋅−⋅⋅= −− 11   

(feed point)  (29) 
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( ) ( )iuiuiiii CuCuACvCvA
dt
dCV ⋅−⋅⋅+⋅−⋅⋅= −−− 111        (thickening zone)  (30) 

Where V= volume of every layer; A=the area of every layer; vi=the gravity 

settling velocity in layer i; Ci=the solids concentration in layer i; uo=the 

overflow rate; uu=the underflow rate; MLSS=the initial feed solids 

concentration. 

Since a layer volume is the product of layer area and thickness (V=A·dZ), 

dz is the thickness of each layer, equation 28, 29, 30 can be transformed as 

follows:  

( ) ( )
dz

CuCu
dz

CvCv
dt
dC ioioiiii ⋅−⋅

+
⋅−⋅

= +−− 111      ( clarification zone)  (31)       

( ) ( ) ( ) MLSS
dz

uu
dz

CuCu
dz

CvCv
dt
dC uoiuioiiii ⋅

+
+

⋅+⋅
−

⋅−⋅
= −− 11   (feed point)   (32) 

( ) ( )
dz

CuCu
dz

CvCv
dt
dC iuiuiiii ⋅−⋅

+
⋅−⋅

= −−− 111        (thickening zone)  (33) 

Recalling the definition of the flux theory, Vi·Ci can be defined as the 

gravity settling flux Gs: 

            
dz

dCu
dz

dG
dt
dC os ⋅

+=       ( clarification zone)   (34)  

( ) ( )
MLSS

dz
uu

dz
CuCu

dz
dG
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dC uoiuios ⋅

+
+

⋅+⋅
−=  (feed point)   (35)  

             
dz

dCu
dz

dG
dt
dC us ⋅

+=          (thickening zone)  (36)     
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By letting the finite difference operators approach zero, a first-order 

partial differential equation can be derived to describe the continuous 

settling process in the secondary clarifier.  

         ( ) ( )( ) ( ) ( ) ( )zts
z

tzCu
z

tzCG
t

tzC s δ=
∂

∂
+

∂
∂

+
∂

∂ ,,,         (37) 

Where u stands for the flow rate, u=uo in the clarification zone, u=uu in 

the thickening zone; s(t)δ(z) is a source term and δ(z) is the delta function, 

equal to one when z=height of the feed point, otherwise, δ(z) equals to 

zero.    

3.1.2. Simulation of the Underloading and Overloading Conditions 

According to assumption 9 that the gravity settling velocity is determined 

by the solids concentration, two previously-defined equations can be used: 

Vesilind equation 39 [36]and Takács et al equation 38[2].  
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                (38)  

             cb
sj eVV ⋅−⋅= 0                (39) 

Li and Ganczarczyk showed that the Vesilind equation can only be applied 

to the hindered settling condition, which means it probably can not 

adequately describe the gravity settling velocity in the clarification 

zone[51]. Finally, Takács equation is selected in this study for an accuracy 

issue. Data for the simulated WWT plant are given in the Table.1 [44]. 
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Table 1- Data for the simulated WWT plant  

Settling Velocity Parameters 

V0 6.04 m/h 

V0
’ 4.17 m/h 

rp 0.005 m3/g 

rh 0.00042 m3/g 

Xmin 10 mg/l 

Design and operational variables  

Settler surface area 500 m3 

Settler depth 4 M 

Settler inlet depth 1.8 m 

Influent flow rate  250 m3/h 

Recycle flow rate 200 m3/h 

Dispersion term 0.542 m2/h 
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The double exponential Figure 1 describing the evolution of the gravity 

settling velocity includes five parameters as discussed in the literature 

review, and their functions are also shown in Figure 1. So the gravity 

settling flux Gs (Gs=vs·C) under different solids concentration conditions 

can be calculated from the relations in Figure 1, as shown in Figure 2.  

Figure 2 is the gravity settling flux, and shows that in the low 

concentration domain, the gravity settling flux increases with 

concentration, but decreases as the concentration grows in the high 

concentration domain. There always exists a peak gravity settling flux for 

the slurries with specific subsidence characteristics.  

Yoshioka [25] showed that the gravity settling flux can be utilized to 

determine the limiting flux, the maximum flux that can be conveyed to the 

bottom of the thickener without causing a sludge blanket rise. However, 

Yoshioka’s method is not so explicit as Hassett’s strategy of determining 

the limiting flux upon a total flux figure (total flux= gravity settling flux + 

bulk flux) [26]. Both methods when applied correct yield the same result. 

The limiting flux in this study is determined by Hasset’s total flux method 

as shown in Figure 3.   

Based on Hassett’s theory that the minimum point governs the solids 

handling capacity of the thickener, and a line tangent to the minimum 

point intercepts the ordinate at the limiting flux, the limiting flux of the 

simulated thickener is 4844.8 g/m3-h, meanwhile, the intersection of this 

tangent line with the bulk flux curve dictates the maximum recycle solids 

concentration Cr=12112 g/m3. Simulation results are presented with more 
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significant figures that warranted for a physical clarifier, but are provided 

to document the actual simulation results, should a reader want to 

reproduce them.  
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The numerical method to solve equation 37 is the first-order up-wind 

scheme, and the analogs are given as follow: 
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To completely test the accuracy and feasibility of the original dynamic 

model, the model is used to simulate two different loading conditions: 

underloading condition which means the operation flux is smaller than the 

limiting flux, and overloading condition which means the operation flux is 

larger than the limiting flux. 

In order to obtain a steady-state underloading condition, which means the 

effluent solids concentration and the underflow solids concentration do 

not change with time, the MLSS and simulation time interval are fixed at 

5000 g/m3 (the operation flux=4500 g/m3-h<the limiting flux) and 20 

hours. The initial concentration C(x,0)=0. 

Figure 4 is the calculated solids concentration profile at 20 h, and Figure 5 

is a dynamic solids concentration profile simulated from 0 to 20 h. Figure 

5 shows that the clarifier reaches steady-state in less than one hour.  

Figure 4 presents the evaluated underflow solids concentration Cr=11234 
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g/m3, similar to the predicted value 11250 g/m3, and the effluent solids 

concentration Ce= 11.06 g/m3.  

Under an overloading condition, the MLSS and simulation time interval 

are fixed at 6000 g/m3 (the operation flux=5400 g/m3-h>the limiting flux) 

and 20 hours. The initial concentration C(x,0)=0. 

Under an overloading condition, a continuous sludge blanket rise can be 

observed until the sludge blanket level exceeds the clarifier effluent weir, 

resulting in sludge waste. However, the dynamic simulation results in 

Figure 7 shows that a steady state can still be observed under an 

overloading condition, similar to what happens in the underloading case. 

Another contradiction is that the underflow solids concentration Cr 

predicted in Figure 6 is 13484 g/m3, much larger than the possible 

maximum underflow solids concentration C’
r=12112 g/m3, predicted in 

Figure 3 upon the basis of flux theory and Hassett method.  

As a conclusion, the original dynamic (no constraint on flux) model can 

exactly predict the solids concentration profile, as well as the effluent and 

underflow solids concentration in an underloading situation. Nevertheless, 

for an overloading condition, the original model fails in predicting the rise 

of sludge blanket height and underflow solids concentration. The piratical 

application value of this model deteriorates seriously, due to these obvious 

drawbacks. Bryant noted this back in 1972. 
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3.2. Modification of the Original Dynamic Model  

3.2.1. Gravity Flux Constraint Model and Dispersion Model 

As supplements of the original dynamic model, several approaches have 

been developed to enhance the initial dynamic model’s reliability in 

overloading condition. Based on a comprehensive analysis of various 

factors, including fitting results, the complexity of the improved model, 

the difficulty level to calculate modeling parameters, two of them 

Stenstrom’s gravity settling flux constraint and Hamilton’s dispersion term, 

have been demonstrated to be most effective, confirmed by Grijspeerdt 

[33, 37, 41].   

To deal with the deterioration in overloading condition, the strategy 

developed by Stenstrom was to add an extra assumption to impose a 

special  restriction on the gravity settling flux: the mass flux into a 

differential volume can never exceed the flux which the volume is capable 

of passing nor can it exceed the flux which the next higher differential 

volume is capable of transmitting[33]. Therefore the gravity flux 

constraint model is expressed with the following up-wind scheme: 
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In Hamilton’s dispersion equation, the addition of an effective dispersion 

term provides an extra mixing effect, and converts the original first-order 

hyperbolic partial differential equation to a second-order parabolic partial 

differential equation by adding a second-order derivative. 
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2 ,D-,,,  (47)  

The up-wind differencing is used for the first-order time and spatial terms, 

same as the analogs used in the original model. Conservative 

discretisation of the secondary-order spatial term is achieved by using the 

following second-order analog, so the Hamilton dispersion model can be 

discretized as follows: 
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3.2.2. Simulation of the Underloading and Overloading Conditions 

Both the gravity flux constraint model and dispersion have been employed 

to simulate the underloading and overloading situation respectively, for 

the purpose to verify possible improvements in predication.  

The underloading operation parameters are the same as those used in the 

original model simulation: the MLSS and simulation time interval are 

fixed at 5000 g/m3 (the operation flux = 4500 g/m3-h<the limiting flux) 

and 20 hours. The initial concentration C(x,0) = 0. 

Based on the gravity flux constraint model, Figure 8 shows the calculated 

solids concentration profile at 20 h, and Figure 9 is a dynamic solids 

concentration profile from 0 to 20 h. Figure 9 shows that a stead state 

situation can be attained in less than one hour, similar to the original 

model estimation. Figure 8 presents the calculated underflow solids 

concentration Cr = 11238 g/m3, similar to the predicted value 11250 g/m3, 

and the effluent solids concentration Ce = 11.14 g/m3. Both Figures 8 and 

9 illustrate the gravity flux constraint model can succeed in predicting the 

existence of compression zone, the huge concentration gradient occurring 

near the thickener bottom, which matches the actual observation results in 

both batch and continuous settlings, while the original model fails in 

predicting the existence of compression zone.  

Based on the dispersion model, Figure 10 shows the calculated solids 

concentration profile at 20 h, and Figure 11 is a dynamic solids 
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concentration profile from 0 to 20 h. The Figure 11 shows that the 

dispersion model illustrates a sludge blanket rise which is inexistent under 

an underloading condition. Figure 10 presents the evaluated underflow 

solids concentration Cr = 9578 g/m3, much smaller than the predicted 

value 11250 g/m3. Consequently, both Figures 10 and 11 indicate the 

dispersion model fails in predicting the solids concentration profile and 

the underflow solids concentration in an underloading situation.  

For the purpose of comparing simulations, the same parameters are used 

in an overloading situation: the MLSS and simulation time interval are 

fixed at 6000 g/m3 (the operation flux = 4500 g/m3-h<the limiting flux) 

and 20 hours. The initial concentration C(x,0) = 0. 

The dynamic simulation results in Figure 13 shows that a sludge blanket 

rise occurs under an overloading condition, which matches the 

observation in both batch and continuous settling processes. Therefore the 

gravity flux constraint model can work well in predicting the sludge 

blanket height rise, while the original model can not. The underflow solids 

concentration Cr evaluated in Figure 12 is 11974 g/m3, similar to the 

theoretically maximum recycle solids concentration C’
r = 12112 g/m3, 

predicted in Figure 3 on the basis of flux theory and Hassett method. 

Figure 15 shows that the dispersion model can also predict the sludge 

blanket rise under an overloading condition. But the predicted sludge 

blanket rise rate from the gravity flux constraint model and the dispersion 

model are not similar: the rise rate observed from dispersion model is 

mush faster than the one from gravity flux constraint model. The sludge 
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blanket height has exceeded the effluent weir in Figure 15, while Figure 

13 shows that it is only above the feed point within the same time interval. 

The underflow solids concentration Cr evaluated in Figure 14 is 9986g/m3, 

much smaller than the theoretically maximum recycle solids concentration 

C’
r = 12112 g/m3, predicted in Figure 3 on the basis of flux theory and 

Hassett method. So, in an overloading situation, the dispersion model can 

succeed in predicting the rise of sludge blanket, but underflow solids 

concentration evaluation still remains inaccurate. 

In conclusion, either of the gravity flux constraint model and the 

dispersion model can evaluate the sludge blanket rise in an overloading 

condition, though the predicted rise rates are different. In addition to 

estimating the sludge blanket rise, the gravity flux control model can work 

well in evaluating the underflow solids concentration in both underloading 

and overloading situations, while the dispersion model can not give 

accurate underflow concentration predication in both situations.   
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3.3. Flaws of Gravity Flux Constraint Model and 

Dispersion Model 

The gravity flux constraint model and the dispersion model still have 

flaws in evaluating the continuous settling behavior. One flaw in both of 

them is sensitivity with respect to the number of layers used in simulation, 

which means the simulation results are highly dependent on the number of 

model layers [37, 44, 46]. This is clearly inappropriate, since the solids 

concentration profiles are totally independent of the number of model 

layers. Another shortcoming is that these two models can not provide 

uniform or similar estimations for the same loading situation. The 

difference in the calculated results between the two models diverge as the 

number of layers increases.  

Table 2- The key variables for Gravity Flux Constraint Model and 

Dispersion Model in the underloading situation 

Variables 
Gravity Flux Constraint Model Dispersion Model 

10 layers 30 layers 50 layers 10 layers 30 layers 50 layers 

SSunderflow 

(g/m3) 

 

 

10687 11161 11238 8748.2 9403.2 9578 

SSoverflow  

(g/m3) 

 

18.83 11.55 11.14 42.13 35.71 21.71 

Sludge 

Blanket 

  

  

2.42 0.92 0.64 2.43 2.61 3.00 

Figures 16 to 18 are the static underloading simulation results of 10, 30, 

50 layers gravity flux constraint model, and Figures 19 to 21 are the 
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dynamic results. A particularly interesting observation is the notable 

difference between the 10-layer result and the 30 and 50 layer results.  

The effluent solids concentration and the sludge blanket rise rate decrease 

with an increasing number of layers, while the underflow solids 

concentration increases and approaches the theoretical value predicted by 

Hassett method. The changes in solutions for the dispersion model and the 

gravity flux constraint model with an increasing number of layers in this 

underloading case are similar.  

Several previous investigators have confirmed the sensitivity of the 

simulation results with the number of layers used in simulation, and 

shown that increasing the number of layers can profoundly improve the 

predication accuracy [37, 44, 45]. A minimum of 30-layer has been 

recommended as the lower limit for gravity flux constraint model and 

dispersion model simulation [44, 45].  

Table 3-The key variables for Gravity Flux Constraint Model 

and Dispersion Model in the overloading situation 

Variables 
Gravity Flux Constraint Model Dispersion Model 

10 layers 30 layers 50 layers 10 layers 30 layers 50 layers 

SSunderflow 

(g/m3) 

 

 

11203 11862 11974 9320 9971.6 9986.9 

SSoverflow  

(g/m3) 

 

524.03 22.04 11.18 56.05 3717.7 3393.4 

Sludge 

Blanket 

  

  

4.00 2.67 2.51 3.27 4.00 4.00 
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Solids flux theory predicts a continuous slurry blanket height rise starting 

from the thickener bottom can occur under an overloading condition until 

the level of the sludge blanket height exceeds the effluent weir. Figures 28 

to 39 show the overloading simulation results of gravity flux constraint 

model and dispersion model with different number of model layers. 

Although all of these models with different numbers of layers can 

qualitatively predict the rise of sludge blanket height, the calculated 

sludge blanket levels at the same time interval are vary greatly. For the 

gravity flux constraint model, the simulated sludge blanket rise rate 

decreases with the increase of number of model layer, and the height 

gradient is 1.49 m between the 10-layer and the 50-layer. However, a 

larger number of model layers means a more rapid sludge blanket rise 

according to the dispersion model simulation results, which is 

contradictory to the gravity flux constraint model’s conclusion. Because of 

a faster sludge blanket raising rate, the 10-layer gravity flux constraint 

model shows a higher effluent solids concentration, but a lower underflow 

solids concentration, while the tendencies are contrary in dispersion model 

with different number of layers.  

3.4. Summary of Existing One-Dimensional Clarifier 

Models 

In summary, the essential idea to build a thickener model is division into 

layers or discretisation. The thickener is divided into several layers along 

the height, and a continuous equation as equation 37 is built around each 
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layer based on the mass conservation law. However, as shown previously, 

the applicability of this original model is quite limited, since it can only 

give a satisfactory estimation for an underloading clarifier. Two improved 

approaches are available: Stenstrom’s gravity settling flux constraint and 

Hamilton’s dispersion term. Even if they are able to calculate the sludge 

blanket rise for an overloaded condition, their sensitivity with respect to 

the number of model layers and the divergence of their predication make 

the results of limited utility for practical application. Model refinements 

and advanced numerical methods are needed to improve the simulation 

quality.  
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3.5. Method of Characteristics  

The Method of characteristic (MOC) is a mathematic technique for 

solving partial differential equations. Typically, MOC is used to solve the 

initial value problem for first-order hyperbolic partial differential 

equations. The essential strategy of this numerical method is to reduce a 

partial differential equation to a collection of ordinary equations. 

Application of MOC to solve hyperbolic partial differential equations, 

especially for quasilinear and nonlinear problems, is highly dependent on 

identifying the characteristic curve or characteristic line. Only along the 

characteristic line can a solution be integrated from the given initial 

values.  

Equation 52-61 is a simple example to show how the MOC can be used to 

solve a quasilinear first-order hyperbolic partial differential equation.  

  

( ) xu
t
utx

t
u

=+
∂
∂

++
∂
∂     0, >∈ tRx            (52) 

( ) xxu =0,               Rx∈                 (53)                                   

Step one: calculate the characteristic line 

tx
t
x

+=
∂
∂    0>t                            (54) 

( ) cx =0                                      (55) 

Characteristic line: ( ) ( ) ( )11 +−+= tectx t  

 

Step two: set ( ) ( )( )ttxutU ,=  
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( ) ( ) ( ) )1(1 +−+=+ tectU
dt

tdU t     0>t        (56) 

( ) ( )( ) ( ) ccuxuU === 0,0,00                  (57) 

( ) ( ) ( ) tecectU tt −−++= −1
2
11

2
1                (58) 

 

Step three:   ( )( ) ( ) ( ) ( ) tecectUttxu tt −−++== −1
2
11

2
1,  

( ) ( ) ( ) ( )[ ] 1111 −++=⇒+−+= −tt ettxctectx     (59) 

( )( ) ( )[ ] ( )[ ]1
2
11

2
1, 2 +−+−++= −− ttxeettxttxu tt    (60) 

( ) ( ) ( )1
2
11

2
1, 2 +−+−++= −− txeetxtxu tt         (61) 

3.6. Possibility and Difficulty of Using Method of 

Characteristics  

An important, frequently used partial differential equation is for the 

conservation of mass, momentum or energy. The original dynamic model, 

equation 37, was based on mass conservation around each layer and can 

be expressed as follows:  

( ) ( )( ) ( ) ( ) ( )zts
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tzCG
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+
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∂ ,,,   (37) 

It is noteworthy that this partial differential equation is a nonlinear 

first-order partial differential equation. Therefore the MOC can be used to 
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solve this equation with the obvious advantage that the essential strategy 

of MOC is convert a partial differential equation to a collection of 

ordinary differential equations, and integrate the solution along the 

characteristic lines, instead of replacing the partial derivatives by their 

finite-difference approximations and calculating the solution layer by 

layer. Consequently, the solution presented by MOC can be totally 

independent of the number of model layers and overcome the problem 

caused by discretisation.   

Based on the assumption that the gravity settling velocity is only 

determined by the local solids concentration, equation 35 in thickening 

and clarification zone can also be expressed as follows: 
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The equation set can be expressed in the following matrix 
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To calculate the characteristic line, set the determinate equal to zero and 
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solve for the roots, as follows: 

( ) ( ) ucv
dt
dz
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 +
0

1
         (66) 

There the characteristic line is: 

( ) ucv
dt
dz

+=                          (67) 

 

 

Figure 40-The sketch profile of the characteristic line 

  

         

 

According to Figure 40, the characteristic line (the solid line) calculated in 

equation 48 is always a positive characteristic line, meaning its direction 

is from the feed point or effluent weir to the thickener bottom. So the 

value of the black grid 4 is affected by the point 1, since the information 

propagates along the positive characteristic line. From physical 

observations, the value of point 4 is also affected by the downstream point, 

such as point 3, especially under an overloading condition, when the 

sludge blanket level rises from the thickener bottom.  

Effluent Weir 
Thickener Bottom 

1 2 3 

4 
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The downstream information can propagate along a negative characteristic 

line (the dotted line). However, Figure 40 shows that the mass 

conservation equation 45 can not provide such a negative characteristic 

line, so the single mass conservation partial differential equation is not a 

sufficient condition for using MOC to calculate the routinely observed 

concentration profile during clarifier overloading. Another partial 

differential equation is necessary to provide the negative characteristic 

line, and such partial differential equation can be formed based on the 

momentum, energy conservation law.  Further investigations need to be 

conducted to develop the solution. . 
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4. CONCLUSION 

1. In order to reduce the computational burden, biological models are 

mostly combined with the 1-D secondary clarifier model to simulate 

the biological waster water treatment by the activated sludge process.  

By dividing the clarifier into several layers, a partial differential 

equation can be formed based on the mass conservation law around 

each layer, and this original model has been demonstrated to be 

effective in predicting the effluent and underflow solids concentration 

for underloading conditions. For overloaded conditions, the model 

fails to predict the routinely observed clarifier failures.  It fails to 

predict the rise of sludge blanket level, and the calculated underflow 

solids concentration also exceeds the observed maximum value. In 

conclusion, the original model is able to predict only under loaded 

conditions, which is unfortunate, since overloaded conditions are the 

conditions of interest. Under loaded conditions are of less interest 

because under loaded clarifiers do not fail from rising sludge 

blankets.  

2. Two different strategies are available as improvements of the original 

model: adding a constraint to limit the gravity flux or adding a 

dispersion term to convert the initial first-order hyperbolic partial 

differential equation to a secondary-order parabolic partial differential 

equation. The simulation results confirm the fact that both of them 

can predict the sludge blanket height rise in an overloading condition. 
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However, comparable simulations running the two improved models 

with same parameters show that the two models’ simulation results 

differ from each other, and the dispersion model even fails in 

predicating the underloading settling behavior. In addition to the 

differences in simulation results between two models, both models are 

sensitive to the number of model layers, which means the simulation 

results are highly dependent on the number of layers. Some previous 

investigators suggested that at least 30-layers model are necessary to 

guarantee high estimation quality. An interesting observation is that 

the change tendencies of the predicted effluent solids concentration 

and the sludge blanket rise rate of two models are opposite; as a result, 

the increasing of model layers can not improve the performance of the 

gravity flux constraint model and the dispersion model 

simultaneously.  

3. Method of characteristic (MOC) is a mathematic technique to solve 

partial differential equations, and is especially effective in solving 

first-order hyperbolic equations. Given the fact that the original model 

equation is a nonlinear partial differential equation, MOC can be used 

to solve it without introducing the layers sensitive problem, since the 

main idea of MOC is convert the partial differential equation to series 

of ordinary differential equations and then integrate along the 

characteristic line. A brief analysis indicates that the single mass 

conservation equation can provide only a positive characteristic line 

(downward sloped), an upper layer cannot be impacted by a lower 

layer, which is the opposite of physical observations. A second partial 
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differential equation is required to calculate a negative or upward 

pointing characteristic line, and this equation should be built upon the 

momentum or energy conservation.  
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