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ABSTRACT OF THE THESIS

An Evaluation of ARIMA (Box-Jenkins) Models

for

Forecasting Wastewater Treatment Process Variables

by

Kevin Michael Reagan

Master of Science in Engineering

University of California, Los Angeles, 1984

Professor Michael K . Stenstrom, Chair

In the water pollution control field, ARIMA (Box-Jenkins) models

have been applied to model the flow rate and composition of wastewater

treatment plant influent and effluent . ARIMA forecasting has also

been proposed, with the objective of maintaining real-time control

based on current measurements and short-term predictions of the

important treatment process variables . To achieve successful control,

reasonably accurate predictions of future values are required .

However, few published results have reported or even addressed the

forecasting accuracy of ARIMA models when applied to wastewater

treatment data .

This thesis presents results obtained when ARIMA models were

developed for field-measured wastewater data sets and then employed

xi



for forecasting . The forecasts are compared to the values which

subsequently occurred, and various measures of forecast error are

presented and discussed . A uniform approach to classifying forecasts

and presenting results is proposed for such studies . The forecasting

accuracy of the models is found to vary for each data set, with

average forecast errors ranging from 4% to 24% of the observed values .

In addition, ARIMA forecasting is performed in conjunction with a

dynamic wastewater treatment plant simulation model to evaluate the

benefits of a real-time control strategy incorporating hourly

predictions of influent flow rate . The ARIMA forecasts are found to

improve the control strategy, providing an additional reduction in

process variability of 6% beyond the reduction achieved by the

corresponding control strategy without flow prediction .

xii



Chapter I

INTRODUCTION

"When the Lord created the world and people to live in
it--an enterprise which, according to modern science, took a
very long time--I could well imagine that He reasoned with
Himself as follows : 'If I make everything predictable,
these human beings, whom I have endowed with pretty good
brains, will undoubtedly learn to predict everything, and
they will thereupon have no motive to do anything at all,
because they will recognize that the future is totally
determined and cannot be influenced by any human action . On
the other hand, if I make everything unpredictable, they
will gradually discover that there is no rational basis for
any decision whatsoever and, as in the first case, they will
thereupon have no motive to do anything at all . Neither
scheme would make sense . I must therefore create a mixture
of the two . Let some things be predictable and let others
be unpredictable . They will then, amongst many other
things, have the very important task of finding out which is
which ."'

From the book Small is Beautiful
by E . F . Schumacher

Interest in forecasting the future has captivated the imagination

of mankind throughout history . From tarot cards and horoscopes to

highly sophisticated computer models for weather prediction,

forecasting methods have been developed and are being used routinely

in various aspects of daily life . In many scientific and managerial

applications, short-term predictions for the next few values in a

series of numbers or measurements can be extremely useful for

planning, preparing, or controlling the system under study . In 1970,

1



following a series of articles, George E . P . Box and Gwilym M . Jenkins

published a book entitled Time Series Analysis, Forecasting and

Control, in which they set forth a comprehensive methodology for

modeling and forecasting time series data . Their work has had a far-

reaching impact on the entire practice of time series analysis, and

has found broad application in numerous fields--particularly

economics, management science, and the physical sciences . In the

context of the present thesis, it can be stated that the Box-Jenkins

approach is one of the most well-known and "fashionable" stochastic

modeling techniques in water resources systems engineering today .

As with all mathematical models, much has been written about the

theoretical assumptions, implications, and limitations of Box-Jenkins

models, also known as ARIMA models (see Chapter 2) . The orientation

of the present research is, by contrast, quite practical and

empirical .

In the field of wastewater treatment, ARIMA models have been used

to analyze the flow rate and composition of treatment plant influent

and effluent . Forecasting has also been proposed, with the objective

of maintaining real-time control based on current measurements and

anticipated future values of important process variables . To achieve

successful control, reasonably accurate predictions of future values

are required . However, few published results have reported or even

addressed the forecasting accuracy of ARIMA models when applied to

wastewater treatment data . This is in surprising contrast to other

fields which utilize quantitative forecasting methods, where various

2



measures of forecast error are routinely reported in the presentation

of results (Carbone and Armstrong, 1982) .

	

Numerous quantitative

forecasting methods exist ; almost all are easier, less costly,

less labor-intensive than ARIMA models (Makridakis et al ., 1982) .

Hence, it is important for the wastewater treatment field to gain

experience concerning the accuracy of ARIMA models, so that they may

be compared to simpler forecasting procedures .

This thesis is intended to promote better understanding than

presently exists regarding the practical utility and limitations of

ARIMA models in the wastewater treatment field . From reviewing the

water pollution literature it is evident that, thus far, ARIMA models

have remained within the realm of the theoreticians . This is because,

for the most part, theoreticians have not attempted to make their

results understandable to the practitioners . Admittedly, the Box-

Jenkins methodology requires some background in probability theory and

mathematical statistics that cannot be imparted within a single

research paper . However, it should be possible to convey the basic

idea of forecasting, and to present practical results accompanied by a

discussion of their significance for engineering applications . That

is the basic goal of this thesis .

The specific objectives of the present research are to :

1 . Perform Box-Jenkins time series analysis and forecasting for

some illustrative wastewater treatment data sets, and present

the results in a way which provides a much more revealing

picture of the forecasting performance of ARIMA models than has

previously been reported,

3
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2 . apply an ARIMA model in conjunction with a dynamic wastewater

treatment plant model to simulate real-time control of an

operating treatment plant, where forecasts of the future

influent flow rate are used in the control algorithm, and

3 . compare the simulated treatment performance obtained using a

control strategy incorporating Box-Jenkins forecasting with

results from the corresponding control strategy without

forecasting .

It is helpful to briefly describe the organization of the thesis .

In Chapter 2, an introductory overview of Box-Jenkins modeling and

forecasting is given . This provides the background and terminology

necessary for presenting the subsequent literature review, Chapter 3 .

The review chapter in turn describes the forecasting results obtained

by previous researchers, and indicates the need for improved,

standardized terminology and evaluation criteria when reporting such

results .

Chapter 4 presents results obtained when ARIMA models were

developed for field-measured wastewater data sets and then employed

for forecasting . The forecasts are compared to the values which

subsequently occurred, and various aspects of forecast error are

discussed . A uniform approach to classifying forecasts and presenting

results is proposed for such studies .

Chapter 5 represents the portion of the thesis where an ARIMA model

is applied in a way which, to the author's knowledge, has not been

previously reported .

	

Box-Jenkins forecasting is performed in
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conjunction with a dynamic wastewater treatment plant simulation model

to evaluate the benefits of a real-time control strategy incorporating

predictions of hourly influent flow rate as inputs to the controller .

The results of this simulation are compared to the results from the

corresponding control strategy without flow prediction .

Chapter 6 presents the conclusions from the literature review and

the modeling studies of Chapters 4 and 5 . Chapter 7 provides comments

and recommendations concerning possible areas for future additional

research .

5



Chapter II

BACKGROUND AND OVERVIEW OF THE METHODOLOGY

"The true logic of this world is in the calculus of
probabilities ."

James Clerk Maxwell

2 .1 INTRODUCTION

This chapter introduces the general subject of quantitative

forecasting and presents a qualitative overview of the basic concepts

and procedures involved in Box-Jenkins modeling . Several references

of interest to those unfamiliar with the Box-Jenkins approach are

cited .

The most important concept presented in this chapter is the

classification of Box-Jenkins forecasts into several distinct

categories . This distinction is necessary for understanding the

results obtained by previous researchers as discussed in the

subsequent literature review chapter .

6



2 .2 QUANTITATIVE FORECASTING

The Box-Jenkins approach to modeling and forecasting time series

data is but one of a large family of quantitative forecasting methods

which have been developed in the fields of operations research,

statistics, and management science . Box-Jenkins models are also known

as "ARIMA" models, the acronym standing for Autoregressive Integrated

Moving Average . This terminology will be made clear in the following

sections . Exponential smoothing, linear regression, Bayesian

forecasting, and generalized adaptive filtering are some of the other

techniques which are termed «extrapolative" forecasting (Makridakis et

al ., 1982) .

Many of these methods have a common element ; they utilize only the

previous values of a series of numbers to forecast the future values

of interest . Hence, they are referred to as univariate models, since

the values from a single variable are used to predict the future

values of the same variable . This is in contrast to multivariate

models, where the variable of interest is also considered to depend on

other variables .

Several introductory texts on forecasting are available (Pyndick

and Rubinfeld, 1976 ; Montgomery and Johnson, 1976 ; Makridakis and

Wheelwright, 1978) . The Journal of Forecasting and Journal of Time

Series Analysis should be consulted for the latest developments and

applications . Makridakis et al . (1982) give summary descriptions of

24 important extrapolative forecasting methods in current use .

7



2 .3 GENERAL REFERENCES FOR BOX-JENKINS MODELING

Newbold (1983) has provided an authoritative review of the current

state of the art in Box-Jenkins modeling . Box and Jenkins (1968,

1974, 1976) remain the classic references ; however, they assume a

mathematical and statistical background which may be too advanced for

those mainly interested in applications . A number of introductory

texts present the Box.-Jenkins method at a more applied level (Nelson,

1973 ; Pyndick and Rubinfeld, 1976 ; Montgomery and Johnson, 1976 ;

Makridakis and Wheelwright, 1978 ; McCleary and Hay, Jr ., 1980) .

Perhaps the best single reference in this category is Pankratz (1983),

who provides fifteen detailed case studies illustrating the Box-

Jenkins approach .

2.4 STOCHASTIC PROCESSES AND TIME SERIES

Here the term time series will refer to a set of N ordered

observations or measurements

zi p z2 , .

	

, zt , -

separated in time . By this definition, a time series is a discrete

set of numbers . A discrete series may arise from instantaneous

sampling of a continuous process (e .g ., flow rate measurements) or by

obtaining cumulative values over specified periods (e .g ., total hourly

flows) . In the Box-Jenkins methodology, successive values of the

series under study must be separated by equal time intervals . The

discrete series is often a measure of some underlying continuous

8
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process . If the observations are recorded appropriately, the discrete

series will convey sufficient information about the continuous

process . Motivation for discrete analyses arises from the difficulty

of processing continuous data on digital computers .

It is important to make the distinction beween an observed time

series and the stochastic process from which the series emanates . A

stochastic process is represented by a set of N random variables, each

of which corresponds to one value of the time series . This collection

of random variables is governed by a joint probability density

function . A time series should be visualized as one possible

realization of the stochastic process . That is, if the process was

monitored repeatedly, the random variables would take on different

values, resulting in different time series, each being a member of an

infinite ensemble of realizations . The basic tenet of the Box-Jenkins

methodology is that any actual observed time series bears the

signature of the underlying process, and hence may be used to identify

an appropriate mathematical model for the process .

There is a fundamental difference between most time series and the

familiar "random sample" used for standard statistical analyses . For

a time series, the order of observations is important, and they

generally cannot be considered independent . In fact, it is the form

of dependence which is of interest . The correlation between

successive values of the same series, i .e ., autocorrelation, is the

tool used to identify a model for the underlying stochastic generating

process .

9



2 .5 STOCHASTIC VS . DETERMINISTIC MODELS

As opposed to deterministic models, in which a time-dependent

quantity evolves exactly in accordance with certain known

physical/mathematical laws (e .g ., Newton's laws of motion), Box-

Jenkins models fall under the category of stochastic models, for which

unknown intervening influences are viewed as prohibiting exact

prediction of future outcomes . The key difference lies in the

probabilistic description associated with stochastic models . A

stochastic model can be used to calculate the probability that a

future value will fall between certain upper and lower limits, in

contrast to an exact prediction . While Box-Jenkins models are used to

generate point forecasts (single numerical values), they also

an estimated confidence interval for each forecast value .

2 .6 UNIVARIATE BOX-JENKINS MODELS : THE BASIC IDEA

provide

In the Box-Jenkins approach, the values zt of an observed time

series are considered to be the outputs of a black box (unobservable)

process whose inputs at are called independent random shocks . This

description is represented schematically in Figure 1 .

The independent random shocks often cause confusion for the

uninitiated, and as such need to be carefully defined . These inputs

are regarded as disturbances of randomly varying magnitude, each

independent of the preceding one, which enter the black box and are

transformed and combined into observed output values . The inputs occur

1 0
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Figure 1 : Time Series Viewed as Result of Random Shocks
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at equally spaced intervals with the same time index t as the outputs .

They do not represent any physical inputs which may be present in the

system being studied ; they are statistical constructs .

For statistical purposes, time series analysts assume that the

random shocks are independent and normally distributed with mean zero

and constant variance . A sequence possessing these properties will be

referred to here as white noise, although white noise need not be

normally distributed . Thus, the Box-Jenkins approach views a time

series as the result of a transformation of a white noise process .

The black box which transforms the noise into an observed series is

called a linear filter . Checking the adequacy of the model used to

describe the stochastic process consists of verifying that the model's

residuals (observed minus model-calculated values) are white noise .

This may be thought of as "running the filter backwards"- -the result

must be white noise .

The essence of univariate Box-Jenkins models will now be stated .

It seems reasonable that the outputs (observed time series values) may

depend on

1 . the previous and current inputs . The most important factor

influencing the current output z t is the current input a t . In

addition,

	

lingering

	

effects

	

from

	

previous

	

inputs

at-1' at-2, . . . may also play a role, but probably to a lesser

extent .

12



2 . the previous output values z
t-1 , zt_2 , .

	

. For example, a

particularly large recent output may somehow affect the nature

of the process . This change could evidence itself in the next

output .

Specifically, the Box-Jenkins approach proposes a simple linear form

for the above relationships :

zt = 0 1 zt-1+ 02zt-2+
. .' +

0pzt-p+
at -

A1 at-1 82 at-2-
. - - 0gat-q

(2 .1)

which shows the current output consisting of a linear weighted sum of

previous outputs and inputs (the negative signs on the 0 parameters

are chosen for a notational convenience to be introduced later) .

Note that only "p" nonzero output terms and "q" nonzero input terms

are included ; this reflects the fact that only a finite number of

recent inputs and outputs will have a statistically significant effect

on the current output . All earlier influences need not be included in

the model . Note also that the current input at is always assigned a

weight of unity .

1 3



2 .7 AUTOREGRESSIVE (AR) MODELS

As stated above, an observed value of a time series can be viewed

as an output which may depend on previous outputs as well as inputs .

When the value of the current output (observation) zt depends solely

on "p" prior outputs and the current input (random shock) at , the

model

zt = 0 1zt-1+ 02zt-2+ . . . + 0pzt-p+ a t

(2 .2)

is called an Autoregressive model of order p . The common notation is

AR(p) . The name is appropriate, as the model involves regressing a

variable on previous values of itself (cf . ordinary multiple linear

regression), plus an error or random term .

2 .8 MOVING AVERAGE (MA) MODELS

When the current output depends solely on the current input and "q"

prior inputs, the model

zt = at - 91 at-1 62 at-2- . . - 0ga t-q

(2 .3)

is called a Moving Average model of order q . The notation is MA(q) .

This is a misnomer, since the model is not the familiar moving average

consisting of the arithmetic mean of past observations .

term has become traditional .

14
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The idea that an observation could be modeled as a linear weighted

sum of random numbers is unfamiliar to most nonstatisticians . It is

important to realize that a series composed of such linear sums of

white noise elements is not itself white noise, but rather has a

definite autocorrelation structure .

2 .9 MIXED AUTOREGRESSIVE AND MOVING AVERAGE (ARMA)
MODELS

A process which involves elements of both AR and MA processes is

modeled by

zt = 0 l zt-1+ 02zt-2+ . . . +
0pzt-p+ at -

81 at-1 82 at-2-

	

- 8gat-q

(2 .4)

and referred to as an Autoregressive Moving Average model of order

(p,q), or ARMA(p,q) .

2 .10 ARIMA MODELS AND STATIONARY STOCHASTIC PROCESSES

The basic elements of univariate Box-Jenkins models have been

presented . A

	

additional question remains : What is the

(integrated) in ARIMA? It will be seen shortly that the "integrated"

portion of Box-Jenkins modeling is concerned with transformations of

the original raw time series data which may be necessary before the

above AR, MA, or ARMA models may be applied . It should be noted that

the ARIMA labels (AR, MA, ARMA) refer either to the stochastic process

or its model ; the proper model form is sought to describe the process

under study .

1 5
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The Box-Jenkins methodology requires that the time series to be

analyzed be stationary . Strictly speaking, stationarity is a

mathematical property of the collection of random variables which

constitute a stochastic process, as defined in advanced probability

theory . However, it is common practice to refer to the data

themselves as being stationary or nonstationary . Rigorous discussions

of stationarity may be found in the stochastic process literature ; for

the purposes of this thesis, the operational "definition" used by

practitioners will be followed .

A time series is considered stationary if its sample mean and

variance are not significantly different, in the statistical sense,

for any major subsets of the series . If this is not the case, then

the series mean and series variance lose their meaning and cannot be

estimated using the familiar formulas . Note that a series can be

nonstationary in the mean or the variance . However, a variance-

stationary series is, by definition, also mean-stationary .

Practically speaking, if a series displays shifts in level or

increasing variability over time, it is nonstationary and must be

transformed prior to analysis .

Simple transformations exist which will induce mean stationarity in

many observed time series . These take the form of simple differences

performed on the raw series values . A difference of order one means

that each value of the series is subtracted from the next neighboring

value :

wt = zt - zt-1

	

(2.5)

1 6



This results in a new time series wt , having one less observation than

the original series . A difference of order two means that the order-

one differenced series is differenced again

yt = wt- wt-1= (zt zt-1 )

	

(zt-1 zt-2) = zt- 2zt-1+ zt-2

(2 .6)

leaving a new series yt with two fewer observations than the original

series . This may be generalized to d th order differencing, where "d"

is the order of differencing required to achieve mean stationarity .

After modeling the differenced series with an appropriate ARMA

model, to reclaim the the modeled values corresponding to the original

undifferenced series it is necessary to reverse the differencing

transformation and "integrate" (sum) "d" times . This is the reason

for the "I" (integrated) in the acronym ARIMA .

To achieve stationarity in variance, it may be necessary to perform

other types of transformations such as taking logarithms or square

roots of the raw series values . For details, the introductory

references provided may be consulted . The central point is that,

prior to analysis, the series must be made stationary in both mean and

variance by suitable transformations . Then the proper AR, MA, or ARMA

model is sought for the transformed series .

A process which requires dth order differencing is called an

Integrated process of order d, or in notation, I(d) . A model which
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incorporates aspects of AR, MA, and I models is called an ARIMA(p,d,q)

model of order (p,d,q) . Note that any AR, MA, I, or combined process

may be expressed in this notation by setting p, d, or q to zero

separately or in combinations .

2 .11 MULTIVARIATE ARIMA MODELS

Thus far, the discussion has been limited to univariate Box-Jenkins

models . Of equal importance are the multivariate ARIMA models, for

which the variable to be forecast depends not only on its own previous

values, but also on current and previous values of related time series

variables measured simultaneously . If two time series are involved,

the model is bivariate and is referred to as a "transfer function"

model by analogy to linear systems theory . The variable to be

forecast (the "output") is considered to depend on its own previous

values as well as the values of the related ("input") variable .

As might be expected, the modeling process for multivariate ARIMA

approaches is considerably more difficult and less developed than the

univariate methodology . This thesis will be confined to univariate

applications to wastewater treatment data . At present, univariate

models stand a much better chance of being applied for real-time

forecasting in the wastewater treatment field .
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2 .12 THE ITERATIVE BOX-JENKINS MODELING STRATEGY

This section outlines the procedures that Box and Jenkins recommend

for constructing a univariate ARIMA model from a given time series .

The Box-Jenkins approach to model building is represented

schematically in Figure 2 . The model may then be used to forecast

future values . Three different categories of forecasts are described,

and a terminology for discriminating between the three types is

introduced .
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2 .12 .1

	

The Identification Stage

Identification is the stage at which a tentative model for the

series is selected from the large family of candidate ARIMA(p,d,q)

models . Clearly there are many possible combinations of the orders p,

d, and q . Thus, the identification stage consists of specifying the

AR, I, and MA orders (p,d,q) . Fortunately, it has been found that, in

practice, adequate models rarely have values of p, d, and q greater

than two . That is, the autoregressive order, moving average order, or

degree of differencing required to induce stationarity rarely exceed

two . This empirical fact is also related to the "principle of

parsimony" to be discussed shortly .

The basic tools for model identification are the graphs of the

sample autocorrelation function (ACF) and sample partial

autocorrelation function (PACF) obtained from the series . The ACF

(sometimes called the correlogram) indicates the degree of correlation

within the series for lags 1, 2, 3, . . . etc . In a similar fashion, the

PACF indicates the degree of correlation at a given lag after

accounting for the correlation from the intervening lags . Pankratz

(1983) gives a lucid explanation of the PACF . The ACF and PACF are

plotted as spikes occurring at each lag order . Examples are shown in

Figure 3 . Estimated 95% confidence intervals are also plotted at each

lag order in order to check whether each lag's individual

autocorrelation coefficient is significantly different from zero or

not, indicating the absence or presence of correlation for that lag

order . If a spike lies outside the confidence limit lines, the

correlation at that lag is significant .
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To determine the order of differencing d, the time series must be

checked for nonstationarity . If nonstationarity is indicated,

differencing or other transformations must be performed prior to

further analysis . There are basically two methods currently in use by

practitioners (Ali and Thalheimer, 1983) . One is to simply inspect

the plotted time series for shifts in level or increasing variability .

The other involves examination of the ACF . If the ACF spikes fail to

die out rapidly (i .e ., remain statistically significant at high lag

orders), differencing may be required .

	

The required order of

differencing determines tt d" Ali and Thalheimer (1983) recently

proposed

	

more

	

formal

	

statistical

	

tests

	

for

	

determining

nonstationarity .

To determine the AR and MA orders p and q, inspection of the ACF

and PACF of the series (or differenced series, if called for) is

performed . It can be shown that, in theory, the number of successive

ACF spikes at lags greater than zero equals the order of the moving

average component, q . In a similar fashion, the number of significant

PACF spikes at lag orders greater than zero indicates the order of the

autoregressive component, p . In addition, other patterns in the ACF

and PACF help validate these tentative indications .

The identification techniques just described are based on the

mathematical fact that the theoretical ACF and PACF for a particular

ARIMA(p,d,q) process are unique . That is, for any specified set of

integer values (p,d,q), the theoretical ACF and PACF from such a

stochastic process provide unique "fingerprints" for identifying the
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process . However, in practice the idealized procedure of counting

significant spikes is confounded by sampling error in the estimated

ACF and PACF, and proper identification can become quite difficult

(some analysts call them "smudged fingerprints") . It should be borne

in mind that the time series under study is only one realization from

which one attempts to estimate the ACF and PACF . The appearances of

the ACF and PACF also depend on the signs of the AR and MA parameters

0 and 9 . It is useful to compare the the sample ACF and PACF to plots

of the theoretical ACF's and PACF's from various AR, MA, and ARMA

processes of orders (p,q) less than or equal to two . Pankratz (1983)

contains a good collection of plotted ACF's and PACF's for comparison .

Because of the described identification procedure, proponents of

Box-Jenkins models proclaim that the methodology is superior to other

modeling techniques because it "lets the data speak for themselves,"

rather than imposing a specific model form onto the data a priori .

However, for the sake of presenting a balanced discussion, it should

be noted that Klemes (1982) has provided arguments (his own as well as

those of noted statisticians) against this philosophy . It is feared

that the analyst will not bother trying to understand the physical

basis for the data . It is also felt that the assumption of system

linearity implicit in ARIMA models is itself a type of a priori model

specification .
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2 .12 .2 The Estimation Stage

After a tentative model has been identified, the AR and/or MA

parameters 0 and 8 are estimated from the time series data using an

efficient nonlinear least-squares algorithm . The residuals, i .e ., the

differences between the observed time series values and the model-

calculated or "fitted" values, are also obtained at this stage . The

least-squares estimates of 0 and 8 are those values which minimize the

sum of the squared residuals .

It is extremely important to understand how the fitted values are

obtained, and what the residuals represent in the context of ARIMA

models . The model-calculated values are found by inserting initial

estimates m and 0 for the AR and MA parameters, setting the current

random shock term at to its expected value of zero, and using the

resulting estimated model together with the observed data to

sequentially generate a series of fitted values . This procedure is

repeated, adjusting the parameter estimates at every iteration, until

the least-squares fit is obtained . It then follows that the

differences between the observed and fitted values, the residuals,

will be estimates of the random shocks at .

This is how statistical estimates for the unobservable random

shocks, which constitute the conceptual driving force in ARIMA models,

are obtained . Notice that in the context of ARIMA models, the

residuals can never all be zero (corresponding to a "perfect fit" to
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the data) because they are estimates of shocks which have zero mean

but randomly varying magnitudes . Instead, the residuals from a

properly identified ARIMA model indicate the magnitude of the "noise"

present in the observations which is not accounted for by the model .

Pankratz (1983) presents a detailed example of how fitted values and

residuals are calculated .

In addition to the above considerations, at the estimation stage

there are certain conditions which the parameter estimates must meet

in order for the proposed model to be deemed acceptable . First, all

AR and MA parameter estimates must be statistically significant (i .e .,

significantly different from zero) . This is verified by simple t-

tests for the estimates . If any parameter is not significantly

different from zero, it should be dropped from the tentative model .

Second, the parameters must satisfy certain inequality relations known

as the stationarity and invertibility conditions .

A detailed discussion of the stationarity and invertibility

conditions is not central to this presentation . The stationarity

conditions apply only to the AR parameters, whereas the invertibility

conditions pertain to the MA parameters . These inequalities reflect

the fact that the influence of time series and random shock values in

the past must diminish with time, in accordance with common sense .

Finally, it is necessary to ensure that the parameter estimates are

not too highly correlated . Pankratz (1983) suggests 0 .9 correlation

as a rule-of-thumb cutoff level . Checking is performed by inspecting

a correlation matrix, which shows the correlations between all pairs
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of AR and/or MA parameter estimates . High correlation often indicates

that the estimates are of poor quality . A model based on such

estimates will not be robust to changes in the pattern of the data,

and hence will perform poorly for forecasting .

If the tentative model has significant parameters, whose values lie

within the bounds of stationarity and invertibility and are not highly

correlated, then the analyst may proceed to the last stage : diagnostic

checking . If not, the analyst must return to the identification stage

and formulate an alternate model based on the information gained at

the estimation stage .

2 .12 .3 The Diagnostic Checking Stage

During the estimation stage, the residuals (which constitute

estimates of the random shocks) are obtained . Now, the basic idea of

Box-Jenkins modeling is to explore the autocorrelation structure of

the data and use that information to identify an adequate model for

the series of interest . When an adequate model has been fitted to the

data, it should have "filtered out" (accounted for) the

autocorrelation structure, leaving uncorrelated residuals . Hence, the

diagnostic checking stage consists of verifying that the residuals

obtained at the estimation stage are white noise .

By definition, the ACF of a white noise series will show no

significant autocorrelation at any lag order . Thus, an ACF plot of

the residuals is inspected to verify that they have no remaining

autocorrelation pattern . The autocorrelation at each lag may be
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tested for significance using a t-test, which is equivalent to

inspecting the ACF for spikes which lie above the confidence limit

lines . In practice, there may be a few ACF spikes which are close to

significance ; one might expect approximately 5% to be statistically

non-zero by chance alone for a 95% confidence limit Lest . It is

generally more important to consider at which lag-orders such

"borderline" cases occur, because they may indicate an improperly

identified model .

In addition to testing the significance of the individual ACF

spikes at each lag, the residual autocorrelations are also tested as a

set using a chi-square statistic computed from their values . If this

statistic is too large (because some autocorrelations are still

significant), then the hypothesis of white noise residuals must be

rejected .

It may also be useful to check whether the residuals can be

accepted as normally distributed with mean zero and constant variance .

The extent to which these assumptions are violated indicates how much

faith one can put in the proposed model and its statistically derived

results .

If the ACF of the residuals displays a pattern of autocorrelation

not accounted for by the tentative model, then it is necessary to

return to the identification stage and reformulate the model . This

may be done simply by reexamining the original series ACF and PACF for

another interpretation, or the model reformulation may be based on the

pattern remaining in the residual ACF . Often the significant spikes
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remaining in the residual ACF or PACF will provide clues as to how the

initial model should be modified .

In theory, the three-stage iterative process of model

identification, estimation, and diagnostic checking is repeated until

an adequate model yielding white noise residuals is arrived at . In

practice, however, the analyst may have to settle for the model which

has the "whitest" residuals, i .e ., the model which least seriously

violates any of the Box-Jenkins screening criteria for model adequacy

outlined in this section and summarized in Figure 2 .

2 .12 .4

	

Forecasting

Once an adequate model has been identified and its parameters

estimated, it may be used for forecasting future values of the series .

To see how this is done, consider the general ARMA(p,q) model

zt = 0 1 zt-1+ 02zt-2+ . . . + opzt-p+ at -
01at-1 02 at-2- - - - 0gat _q

(2 .7)

and replace the time index t by the time one step ahead, t+l :

z t+1 = 0 1zt+ 02zt-1+ . . .+ 0pzt_p+l+ at+1- 0 1 a t- 02at-1- . . .- 0q at-q+l

(2 .8)

This equation states that, if the current time is t, then the next

value zt+l will be made up of the "p" previous observations and "q"

previous random shocks, plus the shock at time t+l . Now, at the

estimation stage, estimates 0 and 0 are obtained for the parameters,
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so their values are determined . In addition, the fitted residuals at

are obtained, and hence estimates for the shock terms are also

available, except for the next shock at+1 which has not yet

"occurred ." This is simply set to its expected value of zero . The

previous values of the time series have all been observed, so they are

known as well . Substituting in the estimates and known quantities and

setting the next shock to zero yields the forecast

zt+1 = 0 1zt+ ~2zt-i+ . . . + mpzt-p+l- 8 1at - 92at-i-

	

- egat-q+l

(2 .9)

for the next value in the time series .

The expression obtained by replacing the parameters with their

estimated values and setting the future shock term to zero is called

the forecast function associated with the model . It may be applied to

forecast future values in several ways . The time t beyond which

forecasting is to be performed is called the forecast origin . The

following subsections explain three different types of forecasting

which may be undertaken and the important differences between them .

2 .12 .4 .1

	

One-Step-Ahead Within-Sample Forecasts

The first type of forecasts to be discussed are not really

forecasts at all . It is common practice for the fitted or model-

calculated values obtained at the estimation stage to be called the

"one-step-ahead forecasts" by some Box-Jenkins analysts . The reason
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for this becomes clear if one recalls that the fitted values are

calculated by inserting initial estimates for the model parameters,

setting the random shock term to zero, and using the resulting model

together with the data values to sequentially generate a new series

corresponding to the observations . This process is repeated,

adjusting the parameters at each iteration, until the least-squares

fit is found . In light of the previous discussion of the forecast

function, it should be apparent that, upon convergence, the fitted

values obtained in this manner represent a series of one-step-ahead

forecasts using a model with parameters estimated from the entire time

series .

These forecasts might be called "forecasts of hindsight," because

the parameter values used to generate the forecasts are obtained from

a least-squares fitting of the entire time series . Such "forecasts"

cannot be determined until all the observations in the series have

occurred . They are not true forecasts because they do not extend past

the last observation in the series . This type of "forecast" will be

called a one-step-ahead within-sample forecast . The one-step-ahead

within-sample forecasts constitute a check on model "calibration,"

since the data used to estimate the parameters are also used to

generate the model-calculated values . These forecasts do not provide

model "verification," however .
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2 .12 .4 .2 Multi-Step-Ahead Beyond-Sample Forecasts

The second type of forecasts that may be produced using the

forecast function are forecasts that extend beyond the last

observation in the series, and for which it is assumed that future

observations have not occurred (become available as new information) .

If the current time is t, and the forecast function containing

parameters and residuals estimated from the observations up to and

including time t is

zt+1 = 0 1
z
t
+

02zt-1+ . . . + 0pzt-p+l- 8 1at - 82at-1-

	

- 8qat-q+l

(2 .10)

then it is possible to make a one-step-ahead prediction for the next

observation zt+i, because all quantities in the forecast function have

been observed or estimated . However, if it was desired to forecast

two steps ahead, it would be necessary to have a value for the

observation zt+1, and also an estimate at+l for the shock at+1 to put

in the forecast function

zt+2 = 01zt+1+
02zt+ . . . + 0pzt-p+2 91 at+1- 8 2 at -

	

- 8qat-q+2

In practice, what is done is to use the one-step-ahead forecast zt+1

as the best estimate for the unknown zt+1, and to set the unknown

random shock at+1 to its expected value of zero :
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zt+2 - 0lzt+1+ ~ 2 zt+ . . . + 0pzt-p+2 - e2at-

	

- e gat-q+2

(2 .12)

By repeating this process recursively, it is possible to generate

forecasts as far beyond the last observation in the collected series

as desired . Note that the farther out one forecasts, the more random

shock terms will have to be set to zero . Thus, if the forecasts

extend far enough, the forecast function becomes purely AR in nature

and each new forecast is based solely on previous forecasts, and not

on any previous observations . Pankratz (1983) has called this type of

forecasting "bootstrap" forecasting, because it constitutes "pulling

oneself forward by one's bootstraps," with no new information being

used to produce the forecasts . Clearly, the forecast error would be

expected to increase rapidly a few steps beyond the last observation,

and this is indeed what occurs . This type of forecast is, however, a

true forecast and will be called a multi-step-ahead beyond-sample

forecast . The number of steps ahead to be forecast is known as the

forecast lead time .

2 .12 .4 .3 One-Step-Ahead Beyond-Sample Forecasts

In light of the drawbacks associated with multi-step-ahead beyond-

sample forecasts as just described, it is preferable to perform a

similar type of forecasting which incorporates the observations

occurring after the original sample used for identification and

estimation .
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Suppose that the current time is t, so that the most recent

observed value is zt . A one-step ahead forecast zt+l is then made for

the next value . The analyst then waits until time t+l and observes

the true value zt+1, which will differ somewhat from the forecast .

The amount of difference, or error, is an estimate of the random shock

at+l'

at+l
=

zt+1 z t+l

(2 .13)

Given the new observation zt+l and the estimated shock at+1 , it

becomes possible to make another one-step-ahead forecast zt+2 for the

value at time t+2 . This forecast will depend on observations and

estimated shocks, and should therefore be an improvement over a multi-

step-ahead forecast which does not utilize new available information .

The process may be repeated indefinitely .

This type of true forecasting, with continual updating of the

observations and random shocks (forecast errors), will be called one-

step-ahead beyond-sample forecasting . Within this classification,

there are actually two types of forecasting which may be performed,

depending on whether the parameters in the forecast function are

updated as well . It is possible to reestimate the parameters after

every new data point becomes available, but this is usually
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unnecessary because the estimates generally do not change

significantly over only one period . Pankratz (1983) suggests that a

change in parameter value greater than 0 .1 be considered significant .

It is often sufficient to forecast a number of steps using fixed

parameter estimates obtained at the most recent estimation . After a

significant number of periods (perhaps ten or twenty) have passed, it

will be necessary to reestimate the parameters using the new, most

recent observations . Some of the data at the beginning of the data

set may be dropped off after new observations are included . The

updated model may then be used to forecast again, using new fixed

parameter estimates . The decision to utilize continual or

intermittent parameter updating involves making a tradeoff between

computational time and forecasting accuracy . If forecasting takes

place over an extended period, it may even become necessary to

completely reidentify the model, which may change its functional form

(orders p, d, and q) over time as the data pattern shifts .

Clearly, such updated forecasting is ideally suited for real-time

control applications . However, it is equally clear that the amount of

work required for continual updating and periodic checks on the model

identification is much greater than for multi-step-ahead (non-updated)

forecasting .

2 .12 .4 .4

	

Summary of Forecast Classifications

In summary, three types of forecasts have been discussed :

35



1 . One-step-ahead within-sample : These are the values obtained

from "fitting" a model to past observations .

forecasts of future observations .

2 . Multi-step-ahead beyond-sample : These are true forecasts which

can be generated without waiting for new observations occurring

after the initial sample . Each successive forecast is based on

preceding forecasts, a procedure referred to as bootstrapping .

The forecast error increases rapidly for longer lead times .

3 . One-step-ahead beyond-sample : These are also true forecasts,

generated one at a time as each new observation becomes

available . They do not depend on previous forecasts ; instead

they are based on the most recent observations and forecast

errors (shock estimates) . The lead time for each forecast is

only one interval, thereby improving forecasting accuracy .

They are not

2 .13 SEASONALITY AND SEASONAL ARIMA MODELS

Thus far, the discussion has been limited to the so-called

nonseasonal ARIMA(p,d,q) models, which apply to time series which

contain no "seasonal" component . However, many time series display

periodic behavior . The term "seasonal" has become traditional because

time series models are frequently used to analyze monthly or quarterly

cyclic data . The period of the cycle is denoted by the letter "s" .

Depending on the data being modeled, a "season" can be a day, a week,

a year, or a century . For example, in wastewater treatment plants

there are often diurnal cycles present in the influent flow and
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composition,

	

Thus, for hourly measurements the data display a

periodicity of s = 24 hours .

It can be shown that the entire procedure for identification,

estimation, and diagnostic checking of seasonal ARIMA models is

identical to that for nonseasonal models, except that attention

focused on the autocorrelation patterns in the ACF and PACF occurring

at the seasonal lags . The seasonal lags are those separated by the

period of interest "s" ; i .e ., s, 2s, 3s, . . . etc . .

First, there may be seasonal nonstationarity . This is indicated by

ACF spikes at the seasonal lags which die out slowly . It may be

necessary to perform seasonal differencing, which consists of

subtracting observations "s" intervals apart . The order of seasonal

differencing required is given the letter "D ."

Second, the ACF and PACF may indicate

autoregressive at the seasonal lags . The model for a seasonal AR

process of order P is written as

Zt - 1 1zt-s+ 12zt-2s+ . . . + IPzt-Ps+ a t

which shows the current observation

is

that the series is

(2 .14)

represented by a linear

combination of "P" previous observations occurring every period, plus

the usual random shock .

Similarly, the ACF and PACF may suggest a seasonal moving average

component . The model for a seasonal MA process of order Q is written

as
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zt = at - 0 1at-s 02 at-2s+ . . . + OQat-Qs

(2 .15)

which shows the current observation as a linear sum of "Q" previous

periodic shocks, plus the current shock .

In general, a time series may contain both seasonal and nonseasonal

components . A model which has been found useful for representing such

series is the mixed seasonal-nonseasonal model denoted by

ARIMA(p,d,q)(P,D,Q) s . The lower-case letters in parentheses refer to

the non-seasonal orders, and the upper-case letters refer to the

seasonal orders . The subscript for the period s will be omitted ; its

value will be specified when describing a particular model . The

identification of ARIMA(p,d,q)(P,D,Q) models is more complicated than

identification of the simpler ARIMA(p,d,q) models because the

superimposed seasonal and nonseasonal patterns complicate

interpretation of the ACF and PACF .

When written out explicitly, the general ARIMA(p,d,q)(P,D,Q) model

will be a complicated linear combination of previous time series

values and random shock values, occurring at both seasonal and

nonseasonal lag orders . It is still possible to write a linear

forecast function based on this explicit form . Just as for

nonseasonal models, this is determined by substituting in estimates

for the parameters and random shocks (residuals) obtained by fitting

the seasonal model to the observed series at the estimation stage, and

setting the current random shock term to zero . Any of the three types

of forecasting discussed previously may then be carried out .
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2 .14 ARIMA ALGEBRA AND NOTATION

As seen in the preceding sections, it can be cumbersome to explicitly

write out models of higher orders . Box and Jenkins analysts use a

shorthand notation for succinctly representing their models . While

simplifying the writing of models, the notation may appear strange or

difficult when first encountered .

explanation .

Consider the general AR model of order p, or AR(p) :

zt = 0 1zt-1+ 02zt-2+ . . . + 0pzt-p+ a t

(2 .16)

Bring all the z-terms to the left hand side, yielding

zt 0 1 zt-1

	

02zt-2- . . - Opzt-P at

(2 .17)

Define an operator B called the backshift operator such that

kB zt
= _

zt-k

(2 .18)

i .e ., B operating "k" times shifts the time index of the variable back

"k" periods . Then the AR(p) model may be written compactly as

(1 - 01B - 02B2- . . - 0pBp)zt = at

(2 .19)

Similarly the general MA model of order q, MA(q)

This section provides a brief
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zt = at - 01 at-l 0 2 at-2- - - - 0gat-q+ a t

may be written as

zt = (1 - 0 1B - 6 2B2 - . . - 0gBq )at

where

kB at
= _

at-k

The process of differencing may also be expressed

notation . Define the differencing operator (1-B) such that

(1-B)zt = zt - Bzt = zt - zt-1

Similarly, for seasonal differencing of period "s"

S

	

s(1-B )zt = zt - B zt = zt _ z t-s

Combining all the notation,

general ARIMA(p,d,q) model is then

(1 - O1B - 0 2B 2 - . . .- 0pBp)(1-B) dzt= (1 - 0 1 B - 0 2B 2 - . . .- 0 gBq )at

for differencing of order
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(2 .24)

the
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Corresponding expressions may be written for the seasonal

ARIMA(p,d,q)(P,D,Q) models .

2 .15 THE PRINCIPLE OF PARSIMONY

The principle of parsimony is a statistical concept credited to J .

W . Tukey (1961), which states that the best model for a given set of

data is the very simplest model which can account for the observed

properties of the data . In the context of ARIMA models, a

parsimonious model is a model which contains the minimum number of

parameters necessary to yield white-noise residuals . If two candidate

models are comparable in terms of fit to the data and whiteness of

residuals, then the analyst will always prefer the model having lower

parameter-order . As stated earlier, it has been found that adequate

models for many observed data sets require only nonseasonal and

seasonal orders p, d, q, P, D, and Q less than or equal to about two .
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Chapter III

LITERATURE REVIEW

"A prudent man foresees the difficulties ahead and prepares
for them ; the simpleton goes blindly on and suffers the
consequences .

Proverbs 22 :3
Tynedale Translation

3 .1 BACKGROUND FOR THE PRESENT RESEARCH

This research was motivated by the work of Stenstrom (1976) and

Stenstrom and Andrews (1979) . Stenstrom and Andrews used a Fourier

series model for hourly flow prediction in conjunction with a

wastewater treatment plant simulation model to test various plant

control strategies . A finite Fourier series model was fitted to

hourly influent flows recorded in a field survey (Anderson, 1973) . A

random noise component was then superimposed on

this combination was used as the simulated input to the treatment

plant model . Tanthapanichakoon and Himmelblau (1980) have

subsequently utilized this form of stochastic input sequence also .

The smooth, time-dependent function expressed by the pure Fourier

series model was evaluated at discrete intervals into the "future" to

simulate flow prediction in advance of occurrence . The variance of
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the random noise sequence was set equal to the variance of the

residuals obtained from fitting the Fourier series model to the

observed data . In this manner, the error that would occur in

forecasting was simulated .

Maintaining constant organism growth rate in the activated sludge

treatment process is known to improve performance, but this can be

quite difficult to achieve in light of the dynamically varying nature

of the influent . A useful measure of growth rate is the specific

oxygen uptake rate (SCOUR) . Stenstrom and Andrews (1979) found that

utilizing the additional information of predicted flow for 1-, 2-, and

3-hour lead times decreased the variability of SCOUR by as much as 48%

over a corresponding control strategy without flow prediction . They

recommended that future research be directed at improved forecasting,

and indicated that Box-Jenkins models could be utilized . The present

thesis was undertaken in direct response to these comments .

3 .2 SCOPE OF THE REVIEW

This review will primarily be concerned with previous applications

of univariate ARIMA models to wastewater treatment flow and

composition data . A number of applications of multivariate ARIMA

models have also been reported (Shih, 1976 ; Berthouex et al ., 1976,

1978a, 1979, 1983 ; Berthouex and Hunter, 1982 ; Labadie et al ., 1976 ;

Murphy et al ., 1977 ; Adeyemi et al ., 1979 ; Filion et al ., 1979 ;

Debelak and Sims, 1981), but their level of complexity relative to

univariate models appears to have hindered their application to real-
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time forecasting . Other closely related references which provide

perspective on time series applications in the water quality field

include Fuller and Tsokos (1971), Young and Whitehead (1975), Beck

(1976, 1977), Olsson (1976), Berthouex et al . (1978b), D'Astous and

Hipel, 1979 ; Hansen et al ., 1980 ; and McLeod et al ., 1983 . Far more

extensive use of ARIMA models has been made in the field of stochastic

hydrology (see for example Carlson et al ., 1970 ; McMichael and Hunter,

1972 ; McKerchar and Delleur, 1974 ; McLeod et al ., 1977 ; Kottegoda,

1980 ; Salas et al ., 1980) .

3 .3 PREVIOUS APPLICATIONS OF UNIVARIATE ARIMA MODELS

The earliest published application of Box-Jenkins models to

wastewater treatment data appears to be the work of McMichael and

Vigani (1972) . In a discussion paper extending the work of Wallace

and Zollman (1971), McMichael and Vigani introduced Box-Jenkins models

for representing hourly grab samples of chemical oxygen demand (COD)

from a municipal combined sewer system . No mention was made of a

specific practical use for the models ; rather, the paper was intended

to introduce the Box-Jenkins approach to water quality data analysts .

For six data sets, the authors showed that low parameter-order,

nonseasonal ARIMA(p,d,q) models could explain from 25% to 50% (R-

squared) of the data variance . Superimposed plots were presented

showing the observed COD data and the fitted model values, described

as "one interval ahead forecasts ." These results were presented in a

section entitled Forecasting . As described in the previous chapter,
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one-step-ahead within-sample forecasts are not true post-observation

forecasts, and do not necessarily reflect the future forecasting

performance of a proposed model .

In the same year, Goel and LaGrega (1972) presented a paper in

which they analyzed hourly averages of the influent flow rate to a

conventional activated sludge wastewater treatment plant . They

developed a seasonal ARIMA(2,1,0)(0,1,1) model (s = 24) for

forecasting hourly average flow values 24 hours in advance of

occurrence . An example was presented in which the proposed model was

used to perform multi-step-ahead beyond-sample forecasting 48 hours in

advance (i .e ., for lead times = 1, 2, . , 48) . The next 48 hourly

flows were then measured and found to be in close agreement with the

predicted values (Goel, 1984 ; LaGrega, 1984) . This modeling was

carried out as one component of a broader study of the beneficial

effects of flow equalization on treatment plant unit processes

(LaGrega and Keenan, 1974) . It appears to be the only reported study

where ARIMA forecasts were actually used to influence the operation of

a wastewater treatment system .

Huck and Farquhar (1974) modeled hourly chloride and dissolved

oxygen (DO) levels in the St . Clair River, Canada . Although their

study did not involve wastewater treatment systems per se, it is

included here because the authors presented many important concepts

pertinent to water quality forecasting not found elsewhere . The

authors described in detail the actual steps taken in the

identification, estimation, diagnostic checking, and forecasting
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stages . These are features frequently lacking in other reported

results .

Huck and Farquhar (1974) set forth important contrasts between the

"time domain" approach (of which Box-Jenkins modeling is an example)

and the "frequency domain" (spectral analysis) approach to time series

analysis of water quality data . Many earlier studies utilized the

variance spectrum and Fourier series frequency component decomposition

method (Gunnerson, 1966 ; Thomann, 1967 ; Wastler and Walter, 1968) .

Thomann (1970) applied spectral analysis to characterize the

variability of daily effluent biochemical oxygen demand (BOD) from

eight wastewater treatment plants . As Huck and Farquhar pointed out,

these approaches result in complex spectral models, whereas "a single

parameter in the Box-Jenkins model could replace the contribution of a

score of amplitude and phase parameters of a response Fourier series

model ." Furthermore, they noted that the frequency domain approach

requires that the data be made stationary, while ARIMA models

accomodate typical forms of nonstationarity directly .

Upon applying Box-Jenkins models to four river quality data sets,

Huck and Farquhar (1974) found that low parameter-order, nonseasonal

ARIMA(p,d,q) models could account for 60% to 70% of the variance in

the series under study . However, the authors made the important

observation that the remaining (unexplained) variance, which for a

properly identified ARIMA model measures the the magnitude of the

purely random disturbances in the system, could pose significant

problems in applications .
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Using the models developed, Huck and Farquhar (1974) presented

"forecasts" for lead times of 1 hour and 24 hours, and compared the

results to observed values . However, the authors' figures show that

the time origin of the forecasts was chosen within the period during

which observations were taken . Hence the results are not true post-

observation forecasts, since the model parameters were estimated using

data beyond the forecast origin . In their literature review, Huck and

Farquhar also asserted that McMichael and Vigani (1972) "fitted models

to <Wallace and Zollman's> data and then employed the models for

forecasting ." As discussed previously, McMichael and Vigani only

presented one-step-ahead within-sample forecasts, which are simply

fitted values .

A discussion of the forecasts presented by Huck and Farquhar (1974)

was provided by Litwin and Joeres (1975), who admonished Huck and

Farquhar for drawing sweeping conclusions about the forecasting

potential of Box-Jenkins models from their limited results . Litwin

and Joeres made the important point that Box-Jenkins models are best

suited for forecasting with continual updating (one-step-ahead beyond-

sample) as new observations become available . In their response, Huck

and Farquhar (1975) conceded that updated forecasting could have

readily been performed .

Goel and LaGrega (1972), Huck and Farquhar (1974), and Litwin and

Joeres (1975) all indicated the potential application of Box-Jenkins

forecasts to real-time control of water quality systems . Berthouex et

al . (1975) took the first step by modeling hourly influent BOD to an
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activated sludge plant, with the anticipated goal of developing a

bivariate ARIMA model of effluent behavior based on previous effluent

observations, influent observations, and stochastic disturbances .

Berthouex's research team performed a massive data collection effort,

obtaining hourly grab samples (with two replicates) and flow

measurements at a municipal activated sludge plant over a two-week

period (Shih et al ., 1974) .

The starting point for the transfer function approach to

forecasting and control is the identification of a univariate ARIMA

model for the input time series (Box and Jenkins, 1976) . Following a

brief outline of the steps performed in model identification,

estimation, and diagnostic checking, Berthouex et al . (1975) proposed

that a simple, nonseasonal AR(1) model adequately represented the

influent BOD data and could be used for forecasting or "many

engineering purposes ." Evidence for this conclusion was presented in

a superimposed plot of the 332 actual data and corresponding

"forecasts" from the AR(1) model (Berthouex et al ., 1975, Figure 1, p .

129) . Elsewhere in the paper, however, the same figure was described

as "the fitted and observed values ." This is the more correct

description, since the forecasts shown were simply one-step-ahead

within-sample forecasts . The AR(1) model accounted for 65% of the

original series variance .

In a discussion paper reviewing the work of Berthouex et al .

(1975), Adams (1975) criticized their lack of distinction between

fitting and true forecasting, and pointed out that a plot of one-step-
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ahead within-sample forecasts from an AR(l) model will of course

closely resemble the plot of actual data . However, it should be noted

that Berthouex et al . (1975) included a proviso stating that the AR(l)

model identified might not be the best-fitting or most refined model

possible . They presented the (slightly lower) residual variance from

a second order AR(2) model as an example of alternative, higher

parameter-order models that could be explored .

In a comment with direct bearing on this thesis, Adams (1975)

further related that he had "encountered some instances in the

analysis of time-dependent treatment plant performance data where the

Box and Jenkins methods were of marginal value for these purposes ."

Adams also noted with irony that, "If BOD forecasts are made on a

1-hour lead time, it may prove most difficult to update the forecast

function with 5-day BOD measurements of the previous hour's input

provided for the next hour ." Adams expressed doubt about the

operational capabilities of Box-Jenkins forecasting for real-time

control of treatment plants if the time interval necessary for process

control is on the order of an hour . This statement was based on a

presumed "remote likelihood" of being able to obtain hourly

measurements for the "many variables" affecting treatment plant

performance . However, simple univariate and bivariate (transfer

function) ARIMA models require measuring only one or two variables

simultaneously .

Berthouex et

	

al .

	

(1975)

	

did not

	

report

	

any seasonal

ARIMA(p,d,q)(P,D,Q) models for their BOD series, although mention was
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made of the "diurnal and seasonal trends" present in wastewater flows .

In a subsequent discussion paper, Shahane (1975) stated that the

sample autocorrelation function (ACF) for the BOD data indicated

periodicity, and questioned the simple autoregressive identification

arrived at by Berthouex et al .

The paper by Berthouex et al . (1975) was based on a portion of a

Ph .D . dissertation by Shih (1976), which incorporated and resolved

the criticisms by Adams (1975) and Shahane (1975) . Shih developed

transfer function models relating effluent BOD to influent BOD and

flow rate using data collected in field surveys at three activated

sludge plants . In order to determine the (bivariate) transfer

function models, Shih modeled the influent series using univariate

ARIMA models . This was necessary because ARIMA models for the input

series were used for "prewhitening" (filtering) the output series as

part of the transfer function model construction procedure (Box and

Jenkins, 1976) .

Shih (1976) modeled twelve different input time series consisting

of hourly or bi-hourly influent BOD concentrations, flow rates, and

BOD mass loading rates . He obtained values of R-squared ranging from

42% to 82% . It is interesting to note that for all twelve series,

five were represented by AR(1) models, and the remaining seven were

represented by the same ARIMA(1,0,0)(0,1,1) model form (with s = 24 or

s = 12) . This is surprising, since the data sets involve different

variables, different times of observation, and different treatment

plants .
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For the influent BOD series previously reported on by Berthouex et

al . (1975), Shih compared 25 different seasonal and nonseasonal ARIMA

models of varying complexity . He concluded that a seasonal

ARIMA(1,0,0)(0,1,1) model (s = 24) best satisfied all the diagnostic

checks for model adequacy . However, he chose to report and utilize

the simpler, nonseasonal AR(1) model for prewhitening because it had a

higher R-squared, even though it yielded correlated residuals . This

appears to clear up the the issue of improper identification raised by

Shahane (1975), but raises new questions about the use of models which

are not developed in full accordance with the Box-Jenkins methodology .

This could be viewed as a retreat to ad hoc models in place of models

constructed according to a structured, rational methodology . Shih

stated that the AR(1) model was adequate for prewhitening, but that

the the seasonal model would be necessary if forecasting was the

modeling objective . Shih did not perform any forecasting . Apparently

in response to the comments by Adams (1975), Shih is to be commended

for describing his model-calculated results as fitted values, avoiding

the term "one-step-ahead forecasts" entirely . Shih's work formed the

basis for a series of papers by Berthouex et al . (1978a, 1979, 1983) .

Barnes and Rowe (1978) brought the wastewater treatment field up to

date with stochastic hydrology by applying univariate ARIMA models to

generate synthetic sewer flow sequences . This method had been applied

much earlier for synthetic streamflow generation (Carlson et al .,

1970) . Barnes and Rowe modeled time series consisting of flows

averaged over 4-hour periods, with six values per day over three
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months time . The flows were measured at the headworks of two

different treatment plants . Interestingly, it was found that the the

same model form, seasonal ARIMA(1,1,2)(0,1,1) (s = 6), was adequate

for both treatment plants . No forecasting was performed, although

synthetic generation is essentially multi-step-ahead forecasting with

random shocks being provided by a random number generator . This

method may be used to generate many different hypothetical design flow

sequences, each preserving the statistical properties of the

historically observed series . Such synthetic sewer inflow series

should be useful as simulation inputs for treatment plant modeling

studies .

A unique application of ARIMA models for forecasting was presented

by Maclnnes et al . (1978), who modeled 3-hour flow rate averages

measured at a primary treatment plant . Eight observations per day

were measured over a 2-year period . After removing the periodicity in

the data by spectral analysis, the first year's data was used to

identify and estimate a nonseasonal ARIMA(9,0,1) model for the

stochastic component . The inclusion of a ninth order AR component is

quite unusual . The second year of data was then used in conjunction

with the model . to simulate real-time, in-line flow equalization with

forecasting to remove diurnal flow fluctuations .

Maclnnes et al . simulated the operation that would have taken place

if forecasts and corresponding responsive adjustments in pumping

controls had been made every three hours . Each forecast was made for

the succeeding 24-hour period, i .e ., eight forecasts of 3-hour
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averages . The simulated pumping rate was then adjusted so as to

maintain the mean forecasted flow rate of the 24-hour period . The

model form and parameters were assumed to be constant throughout the

second year . The main objective was to develop flow equalization

basin sizing curves, showing the annual percentage diurnal variance

reduction as a function of basin design storage volume . No measures

of forecasting performance or accuracy were reported .

Since Maclnnes et al . subtracted out the periodic component from

the data and modeled the residuals with an ARIMA model, their approach

cannot be easily compared with a direct Box-Jenkins modeling of the

raw data . The periodic function accounted for 61% of the variance in

the first year's data, and thus should contribute a similar amount to

the forecasts for the second year . Therefore, the forecasts were

largely deterministic and not indicative of direct Box-Jenkins

forecasting .

As part of their work developing a transfer function model relating

influent and effluent COD measurements from an industrial activated

sludge process, Debelak and Sims (1981) found univariate ARIMA models

for both series . However, in place of the iterative Box-Jenkins

strategy of identification, estimation, and diagnostic checking,

Debelak and Sims relied on the "Akaike information criterion" (Akaike,

1974) to select the best models . They modeled daily influent and

effluent COD measurements taken over a 14-month span . In both cases

they found that the "best" (minimum information criterion) model was

the simple first-difference ARIMA(0,1,0) . They also found that upon

53



attempting to improve the effluent COD model by including influent COD

as a predictor variable, the information criterion approach indicated

that the univariate first-difference model was actually "better" than

the bivariate model . Debelak and Sims thus concluded that influent

COD had no explanatory power as a predictor of effluent COD .

It is important to understand what the ARIMA(0,1,0) or first-

difference model implies . This model states that each value of the

time series is equal to the preceding value plus a random shock . In

terms of forecasting, the model implies that the best forecast for

tomorrow's COD measurement is simply today's measured value (plus the

expected value of the random shock, which is zero) . Debelak and Sims

reported :

"A comparison of this model with the actual data for a one
step ahead forecast is shown in Figure 14 . The model does
predict the trends in the actual data but for the purposes
of control is probably not precise enough ."

This was certainly true, since the plot of one-step-ahead forecasts

was simply the plot of the original data shifted over by one interval .

Makridakis and Wheelwright (1978) have called the first-difference

model "The Naive 1 Model", and use it as the "worst case" for

comparing to all other proposed forecasting models .

In a subsequent discussion paper, Berthouex and Hunter (1982)

strongly criticized Debelak and Sims (1981) for "letting the Akaike

criterion mechanically identify the 'best' model ." Berthouex and

Hunter pointed out that the Akaike criterion should not even be

applied to models which do not pass the basic diagnostic checks for
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model adequacy, and that the first-difference model did not pass, as

evidenced by the residual ACF . However, it seems ironic that

Berthouex and Hunter should criticize an inadequate first-difference

model, when Shih (1976) and Berthouex et al . (1978) have themselves

reported and utilized an admittedly inadequate (Shih, 1976, p . 74)

AR(1) model for prewhitening in transfer function development . A

first-difference model may be thought of as an AR(1) model with an AR

parameter of unity .
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Chapter IV

ARIMA MODELING AND FORECASTING OF WASTEWATER
TREATMENT DATA

"Nothing is easier than to 'prove' that a hypothesis is true
by testing it by an experiment which is sufficiently
inaccurate ."

F . Yates

4 .1 INTRODUCTION

This chapter presents illustrative results from ARIMA modeling and

forecasting of selected wastewater treatment data sets . Two of the

data sets and models are taken directly from the existing literature ;

however, the results obtained from fitting the models and employing

them for forecasting are reexamined using previously unreported

graphical and quantitative evaluation criteria . These additional

measures provide a more revealing evaluation of the forecasting

performance of ARIMA models applied to wastewater treatment data . For

one of the previously reported data sets, an alternative model is

identified and presented because it was found that the goodness-of-fit

and whiteness of the residuals could be improved . The remaining data

sets presented here have not, to the author's knowledge, been

previously analyzed using ARIMA models .
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4 .2 METHODS OF ANALYSIS AND EVALUATION CRITERIA

The data sets were chosen solely on the basis of availability to

the author and the sampling interval of the observations . For real-

time control applications, frequent measurements are required . The

more readily available daily average measurements

plants were not considered useful for this study . noted by

previous researchers (e .g ., Wallace and Zollman, 1971 ; Shih, 1976),

more frequent data are seldom available . The required sampling

frequency will depend on the intended application ; as a point of

interest it is noted that Berthouex et al . (1979) reported essentially

the same model form and information content (explanatory power) using

either a two-hour or a one-hour sampling interval, for the particular

data sets they studied .

All analyses were performed on the University of California, Los

Angeles campus IBM 3033 computer using the commercial statistical

software package "SAS" ; specifically, the "ARIMA" procedure (SAS

Institute Inc ., 1982) and "SAS/GRAPH" graphics system (SAS Institute

Inc ., 1981) .

For each data set, an ARIMA model was developed using the Box-

Jenkins strategy of identification, estimation, and diagnostic

checking . For a data set and model which had already been reported in

the literature, the model's adequacy was checked, and if found to be

acceptable, the previously proposed model was utilized. If the

previously reported model did not pass diagnostic checking (according

to present-day diagnostic test statistics which had not been developed
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at the time the model was first reported), an improved model was

sought and reported for comparison . The identified model was fitted

to a smaller subset of the original time series, and used to perform

both multi-step-ahead and one-step-ahead beyond-sample forecasting for

the remaining period at the end of the data set, chosen to be 24 hours

in order to simulate a typical day's forecasting results . Appendix A

contains a summary of all the models studied, together with their

estimated parameter values from the SAS ARIMA conditional least-

squares estimation routine (SAS Institute, 1982) .

The fitting and forecasting results were plotted and then evaluated

by examining the structure and magnitudes of the errors . The

following error criteria were also calculated : R-squared (fitting

only), the range of absolute errors (RAE), the mean absolute error

(MAE), the range of absolute percent errors (RAPE), the mean absolute

percent error (MAPE), and the root mean square error (RMSE) . Their

definitions are given in Appendix B . The term "absolute" refers to

absolute values of the errors, which may be positive or negative .

In the following section, the first data set is analyzed and

discussed at some length in order to illustrate the important concepts

and limitations associated with ARIMA forecasting of wastewater

treatment data . The remaining data sets reinforce these initial

indications .
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4 .3 MADISON NINE SPRINGS TREATMENT PLANT INFLUENT BOD

The first data set consists of N = 332 hourly observations of

influent BOD from the Nine Springs Sewage Treatment Plant at Madison,

Wisconsin . Figure 4 shows a plot of the data, with straight lines

connecting each hourly value . The data were taken from Shih et al .

(1974) . This data set has also been analyzed and discussed in

Berthouex et al . (1975, 1978a, 1979, 1983), Berthouex and Hunter

(1982), and Shih (1976) .
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4 .3 .1

	

Nonseasonal ARIMA(1,0,0) Model

As mentioned previously in the literature review, Berthouex et al .

(1975) proposed an AR(1) or ARIMA(1,0,0) model for the time series .

This model represents an observed value's deviation from the series

mean by a lag-one autoregression on the previous hour's deviation .

4 .3 .1 .1

	

Fitted Values

Figure 5 shows the fitted values obtained from the AR(1) model

(fitted to all N = 332 observations) as they appeared in Berthouex et

al . (1975, Figure 1, p . 129), where they were called "forecasts ."

Plotted on this scale, the fitted values appear to closely follow the

observed data with perhaps minor fitting errors However, Figure 6

presents the same fitted and observed values together with the

absolute values of the residuals (differences between observed and

fitted values) plotted as vertical deviations . This allows the

absolute error in mg/l BOD to be read directly from the same ordinate

scale used for the observed and fitted values . It can be seen that

many of the residuals are quite large, exceeding 50 to 75 mg/1, with

some errors extending into the same magnitude range as the data

themselves . This is particularly true at the "turning points" where

the time series takes large jumps upward or downward .

Figure 7 provides a magnified view of the last 45 data points

together with their corresponding fitted values and absolute errors .

In addition to the sizeable magnitudes of some residuals, a more

troubling problem can be seen--the fitted values or one-step-ahead
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within-sample forecasts appear to lag behind the observed BOD

measurements by one hour . That is, the predicted values achieve their

"peaks and valleys" (maxima and minima) one hour later than the actual

data .

Shih (1976, p . 74) also noted the failure of the AR(1) model to

reproduce jumps in the data and made mention of the lag effect . He

attributed the problems to the fact that "since no seasonal terms were

built in <the model> it cannot respond to the strong diurnal variation

fast enough ." However, the present author has observed the same one-

interval lag effect in every plot of observed and fitted values from

univariate ARIMA models reviewed in the references for this research .

This was true of both nonseasonal and seasonal models, for a broad

range of water resources quality and quantity data . This point will

be returned to in later subsections and in the conclusions .

4 .3 .1 .2 Multi-Step-Ahead Beyond-Sample Forecasts

Figure 8 shows a sequence of 24 multi-step-ahead beyond-sample

forecasts (lead times = 1, 2 , . . ., 24) that were made using the AR(1)

model . For this stage of the modeling, only the first N = 300

observations were used for estimation of the model . The resulting

estimated model (see Appendix A), which was still assumed to be AR(1),

was then used to forecast the next 24 values without using any

information (observations) occurring after hour 300 . Since hour 300

corresponds to midnight of Sunday, March 18, this sequence of

"bootstrap" forecasts simulates what would have happened if a
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treatment plant engineer had used the AR(1) model to forecast Monday's

entire hourly BOD profile in advance . The short-dashed line shows the

forecast values, which are bracketed above and below by the long-

dashed lines representing the upper and lower 95% confidence limits

for each forecast . It might be argued that the simulated forecasts

are not physically realistic, since it is not possible in practice to

obtain hourly 5-day BOD measurements in real time . However, the

results would be comparable if some surrogate measure of BOD such as

total organic carbon (TOC) were used instead . TOC can be readily

determined on an hourly or even more frequent basis .

It is apparent from the figure that the AR(1) model is of little

use in predicting future BOD values via multi-step-ahead forecasts,

i .e ., for long lead times . This is to be expected, since it can be

shown that multi-step-ahead forecasts from such an AR(1) model simply

converge to the mean of the series (Box and Jenkins, 1976) . The

forecasts display no pattern or structure such as would be needed to

anticipate the observed diurnal variation . This is where a seasonal

model might be of significant benefit .

Of equal importance are the extremely wide confidence intervals for

the forecasts from the AR(1) model . It should be understood that

although stochastic ARIMA models are used to generate point forecasts

(single predicted values), a point forecast is simply a conditional

expected value based on the previous history of the series . The

proper interpretation of the forecast is actually as follows : the

future value is "expected" to be the model-generated value, but the
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true value will fall between .the upper and lower confidence limits

about 95% of the time . Since the confidence limits in Figure 8

encompass almost the entire range of observed BOD values

(approximately 50 to 200 mg/l BOD), such probabilistic information is

of little value .

The width of the confidence interval depends on the estimated

variance of the forecast errors, which is in turn proportional to the

estimated variance of the random shocks (Box and Jenkins, 1976) .

Since the variance of the random shocks is estimated by the sample

variance of the fitted residuals from the estimation stage, which is

seen to be large (Figure 6), the confidence intervals will therefore

be relatively wide . Practically speaking, this means that if the data

contain large unexplained variation (e .g ., experimental error from BOD

tests) so that the ARIMA model developed has a low R-squared, then the

forecast errors will also display large variation and the confidence

intervals will be wide .

4 .3 .1 .3 One-Step-Ahead Beyond-Sample Forecasts

Figure 9 shows a sequence of one-step-ahead beyond-sample forecasts

that were generated from the AR(l) model . Again, the model

estimated using only the first N = 300 observations . The resulting

model was then used to generate a series of one-step-ahead forecasts,

this time utilizing one additional observation to make each successive

forecast . That is, the forecast for hour 301 was based on the

observation from hour 300, the forecast for hour 302 was based on the

6 8
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observed value from hour 301, and so on, up to hour 324 . This is in

contrast to the multi-step-ahead forecasts in the preceding

subsection, where each new forecast relied solely on the previous

hour's forecast . The parameter values were held fixed throughout the

24-hour forecast period . This is a good assumption, since Appendix A

shows that the parameter estimates obtained using N = 300 or the full

N = 332 observations are not significantly different . This was

verified by a t-test at the 5% level (Pankratz, 1983) .

Careful study of Figure 9 and comparison with Figure 7 indicates

that the one-step-ahead beyond-sample forecasts are almost identical

to the fitted values ; displaying the same one-hour lag effect and

hence failing to predict rapid changes in level of the series . This

is to be expected, since it can be shown that if the parameter values

do not change from hour 300 to hour 332, the one-step-ahead within-

sample forecasts (fitted values) from hour 301 to hour 324 are the

same as one-step-ahead beyond-sample forecasts from hour 301 to hour

324 .

The one-step-ahead beyond-sample forecasts simulate what would have

happened if forecasting had been performed hourly, as new observations

became available . Note the increase in effort required compared to

multi-step-ahead forecasting, where the entire 24 hours can be

forecast in advance (e .g ., at midnight of each day) . Note also the

improved forecasting accuracy as indicated by the reduced magnitudes

of the absolute errors and the decreased width of the 95% confidence

intervals .

	

This illustrates an important point concerning the
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tradeoff between computational labor and accuracy for one-step-ahead

versus multi-step-ahead beyond-sample forecasting .

4 .3 .1 .4 Fitting and Forecasting Accuracy

Fitted

	

Multi-Step-Ahead One-Step-Ahead
Values

	

Forecasts

	

Forecasts
Criterion

	

(N = 332)

	

(N = 24)

	

(N = 24)
--------------------------------------------------------
R-squared

	

0 .65
--------------------------------------------------------
RAE

	

0 - 104 mg/1

	

6 - 77 mg/1

	

2 - 104 mg/1
--------------------------------------------------------
MAE

	

19 mg/l

	

41 mg/1

	

22 mg/1
--------------------------------------------------------
RAPE

	

0 - 147

	

4 - 141 %

	

1 - 67
--------------------------------------------------------
MAPE

	

17 %

	

38 %

	

20 %
--------------------------------------------------------
RMSE

	

25 mg/l

	

46 mg/1

	

31 mg/1

TABLE 1

Error Criteria for ARIMA(1,0,0) Model

Figures 6 and 7 provide a qualitative, intuitive view of the

overall accuracy with which the AR(1) fitted values match the observed

values . While such plots are extremely useful, the graphical

description can be made quantitative by computing the error criteria

shown in the first column of Table 1 . These criteria indicate several

important aspects of the fitted values, which are enumerated

explicitly in order to illustrate the utility of the quantitative

criteria :
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1 . The model explains only 65% of the variance in the data (R-

squared) .

2 . Some residuals (fitting errors) are as large as 104 mg/l (see

RAE) .

3 . On the average, the absolute fitting error (see MAE) is about

19 mg/l .

4 . Some absolute percent errors are as large as 147% (see RAPE) .

5 . On the average, the absolute percent error (see MAPE) is about

17% .

6 . The overall fitting error, as measured by RMSE, is 25 mg/l .

By themselves, these numbers provide practical information about

the amount of error incurred in fitting the AR(l) model to the

observed data . More importantly, they may be used for comparison to

alternative models as a basis for selection .

Figures 8 and 9 indicate visually the relative accuracy of the

AR(1) model for forecasting 24 hourly values in the observed influent

BOD series . The accuracy of the forecasts can be evaluated by

reviewing the error criteria computed in the second and third columns

of Table 1 .

Several important points can be seen from consideration of these

values :

1 . Although the maximum absolute forecast error (see RAE) is

larger for the one-step-ahead forecasts, on the average the

absolute errors (see MAE) are nearly halved by performing one-

step-ahead forecasting .
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2 . The range of absolute percent errors (RAPE) is also greatly

reduced for one-step-ahead forecasting .

3 . On the average, one-step-ahead forecasting reduces the

percentage error (MAPE) .

4 . Overall, the RMSE was reduced by one-step-ahead forecasting .

Consider the one-step-ahead beyond-sample forecasts, which would

clearly be preferable if real-time forecasting were to be performed .

It should be noted that, in practice, an error as large as 104 mg/l or

67«0' when forecasting influent BOD which ranges from 50 to 250 mg/1

could have important consequences . This is particularly disturbing

because the largest errors occur when forecasting the critical maxima

and minima, which may affect process stability .

The preceding subsections indicate that there are many more

considerations inherent in forecasting with an ARIMA model than are

conveyed in a single plot of fitted values such as Figure 5 .

4 .3 .2

	

Seasonal ARIMA(2,0,0)(0,1,1) Model

As discussed in the literature review, Shih (1976) tested 25

nonseasonal and seasonal ARIMA models for the Nine Springs influent

BOD series and found that the model which best passed the diagnostic

checking stage was a seasonal ARIMA(1,0,0)(0,1,1) model with s = 24 .

However, Shih found that this seasonal model had a lower R-squared
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value (0 .63) than the simpler AR(1) originally reported by Berthouex

et al . (1975) . For this reason, as well as parsimony of parameters,

Shih chose to use the AR(l) model for prewhitening in transfer

function development . However, he mentioned that the seasonal model

should be used for forecasting . The following sections illustrate the

utility of this suggestion .

Shih (1976) reported that the AR(1) model did not pass diagnostic

checking, but found that the ARIMA(1,0,0)(0,1,1) model did so . In

order to apply Shih's seasonal model for forecasting, the present

author first ran diagnostic checks to verify the model's adequacy . It

was found that the ARIMA(1,0,0)(0,1,1) model (see Appendix A) showed

small but significant spikes at lags one and three in the residual

ACF, and at lag one in the residual PACF . The author also observed

that the residual ACF did not pass the chi-square test ; the chi-square

value was significant at the 1% level for all lag orders up to lag 42

(see comment below) . On the basis of these findings, an alternative

model was sought .

Prior to reviewing Shih's dissertation (Shih, 1976), the present

author had independently analyzed the Nine Springs influent BOD series

using the data given in Shih et al . (1974) . As expected, the present

author arrived at almost the same seasonal model form as Shih ;

however, the author found that including one additional nonseasonal AR

term at lag two, i .e ., ARIMA(2,0,0)(0,1,1), yielded white noise

residuals . Appendix A gives the parameter estimates for the proposed

ARIMA(2,0,0)(0,1,1) model . It was found that the ACF spikes at lags
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one and three were eliminated, as was the lag-one PACF spike . In

addition, the chi-square statistic was not significant at the 5% level

(ranging from significance at the 15% level to over the 40% level for

all lag orders through lag 42) . It should be pointed out, however,

that Shih (1976) used the older "Box-Pierce" chi-square statistic and

included 50 lag orders, whereas the present author used the more

recently developed "Ljung-Box" statistic for all analyses and included

42 lag orders (see for example Pankratz, 1983 for a discussion of the

differences) . Lastly, the R-squared value (0 .65) for the proposed

ARIMA(2,0,0)(0,1,1) model was slightly higher than for Shih's seasonal

model . The proposed model is a better model in terms of present-day

formal Box-Jenkins diagnostic checking procedures . Notice, however,

that the seasonal model provides no improvement in fit over the AR(1)

model, which also had an R-squared of 0 .65 .

4 .3 .2 .1

	

Fitted Values

Figure 10 shows the fitted values and residuals obtained from the

proposed seasonal ARIMA(2,0,0)(0,1,1) model . Twenty four fitted

values at the beginning of the series are not calculated due to the

seasonal differencing with s = 24 . It is immediately seen that the

residuals do not appear any smaller overall than those from the AR(1)

model, as expected from the equal R-squared values for the models .

Figure 11 shows a magnified view of the last 45 data points, fitted

values, and residuals obtained from the proposed model . It is

apparent that the seasonal model also displays the one-interval lag
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effect noted previously for the AR(l) model . Again, the largest

residuals occur at the turning points of the series . Thus, for this

particular data set, a seasonal model does not alleviate these

problems .

4 .3 .2 .2 Multi-Step-Ahead Beyond-Sample Forecasts

Figure 12 shows 24 multi-step-ahead beyond-sample forecasts (lead

times

	

=

	

1,

	

2, 24) generated using the seasonal

ARIMA(2,0,0)(0,1,1) model fitted to the first N = 300 observations

(see Appendix A) . No observations occurring past hour 300 were

utilized in producing the forecasts . It is seen that a marked

improvement in multi-step-ahead beyond-sample forecasting accuracy is

gained from the seasonal model as compared with the AR(1) model (cf .

Figure 8) . The forecasts follow a structured pattern which

anticipates a diurnal cycle, based upon the previous cycles in the

data . This occurs because the seasonal model's forecast function

incorporates information from not only the two preceding lag

intervals, but also from the corresponding lags 24, 25, and 26 hours

before . By contrast, the forecast function for the AR(1) model only

utilizes information from the preceding hour . These statements may be

verified by expanding the AR and MA polynomials in the backshift-

operator forms for the models, as shown in Appendix A .

It is particularly interesting to note that the 24 forecasts from

hour 301 to hour 324 correspond to Monday, March 19 and are partially

based on observations from Sunday, March 18 (hours 277 to 300) . The
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diurnal variation for Sunday's BOD is quite different from the other

days of the week, yet the forecasts anticipate Monday's profile

reasonably well . The relative utility of the seasonal model over the

nonseasonal AR(l) model for multi-step-ahead beyond-sample forecasting

is apparent . Recall that-this could not be inferred on the basis of

the fitted results from the two models alone .

4 .3 .2 .3 One-Step-Ahead Beyond-Sample Forecasts

Figure 13 shows a sequence of 24 one-step-ahead beyond-sample

forecasts (all lead times = 1) from the seasonal model fitted to the

first N = 300 observations . While the one-step-ahead beyond-sample

forecast errors are somewhat lower than the multi-step-ahead errors

(cf . Figure 12) as expected, the forecasts do not appear to be much of

an improvement over those from the simpler AR(1) model (cf . Figure 9) .

This is a potentially significant result, because it implies that in

some cases a much simpler model may suffice if one-step-ahead

forecasting is the objective . Examination of the largest forecast

errors (hours 310 and 321) indicates that for this particular data

set, the seasonal model performs no better than the AR(1) model for

predicting rapid changes in the concentration of incoming BOD .

4 .3 .2 .4 Fitting and Forecasting Accuracy

The first column of Table 2 shows the fitting error criteria

calculated for the seasonal model . Comparison with the corresponding

values from Table 1 for the AR(1) model reveals the following :
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Fitted

	

Multi-Step-Ahead One-Step-Ahead
Values

	

Forecasts

	

Forecasts
Criterion

	

(N = 308)

	

(N = 24)

	

(N = 24)
--------------------------------------------------------
R-squared

	

0 .65
--------------------------------------------------------
RAE

	

0 - 104 mg/l

	

1 - 104 mg/l

	

1 - 104 mg/l
--------------------------------------------------------
MAE

	

18 mg/1

	

26 mg/l

	

18 mg/l
--------------------------------------------------------
RAPE

	

0 - 171 %

	

1 - 53 %

	

1 - 57
--------------------------------------------------------
MAPE

	

17

	

19 %

	

15
--------------------------------------------------------
RMSE

	

24 mg/1

	

35 mg/l

	

28 mg/1

TABLE 2

Error Criteria for ARIMA(2,0,0)(0,1,1) Model

1 . The maximum absolute error is the same as from the AR(1) model .

2 . The MAE is only 1 mg/l lower for the seasonal model .

3 . The maximum absolute percent error is higher for the seasonal

model .

4 . The MAPE is the same as found with the AR(1) model .

5 . The RMSE is only 1 mg/l lower for the seasonal model .

Overall, from the standpoint of fitting error only, the seasonal model

seems to be no better than a simpler, more parsimonious AR(1) .

The second and third columns of Table 2 provide the error criteria

for both types of forecasts obtained from the seasonal model . Several

points arise from comparison of the multi-step-ahead and one-step-

ahead beyond-sample forecasts :
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1 . Neither type of forecast anticipates the large BOD peak at hour

310 (absolute error = 104 mg/l) .

2 . The overall MAE, MAPE, and RMSE are reduced by performing one-

step-ahead beyond-sample forecasting .

3 . Both types of forecasts yield a similar range of absolute

percent errors .

It is also instructive to compare the forecasts from the seasonal

model to those from the AR(1) model (cf . Table 1) . The following

facts are noted :

1 . The overall MAE, MAPE, and RMSE are demonstrably improved by

using the seasonal model

forecasting . In fact, the multi-step-ahead beyond-sample

forecasts are comparable in accuracy to the one-step-ahead

beyond-sample forecasts from the AR(1) .

2 . The overall MAE, MAPE, and RMSE are only slightly improved by

using the seasonal model for one-step-ahead beyond-sample

forecasting .

3 . The accuracy difference between one-step-ahead and multi-step-

ahead beyond-sample forecasts is not as dramatic as with the

AR(1) model .

8 3
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4 .3 .3 Comments About the Nine Springs Models

It should be emphasized that the presentation of the

ARIMA(2,0,0)(0,1,1) model is not intended to discount the AR(l) or

ARIMA(1,0,0)(0,1,1) proposed by Berthouex et al . (1975) and Shih

(1976) . A seasonal model was presented in order to highlight the

differences in forecasting (particularly multi-step-ahead beyond-

sample) performance and character between seasonal and nonseasonal

models . The same conclusions would have been reached had Shih's

ARIMA(1,0,0)(0,1,1) model been used for forecasting instead . In fact,

the author found that the inclusion of the additional AR term at lag

two made little difference in terms of fitting or forecasting

accuracy . Plotted results from both seasonal models were almost

indistinguishable .

4 .4 MINNEAPOLIS-SAINT PAUL SEWER STATION 004 COD

The second data set analyzed consists of N = 96 hourly COD grab

samples from Sewer Station 004 of the Minneapolis-Saint Paul Sanitary

District's combined sewer system . The data were taken from Table 1 of

Wallace and Zollman (1971), and cover a four-day period during April,

1967 .

4 .4 .1

	

Nonseasonal ARIMA(0,1,1) Model

McMichael and Vigani (1972) proposed a nonseasonal ARIMA(0,1,1)

model for the "Table 1" COD series . This model represents the first

difference of the data by a lag-one moving average component .
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4 .4 .1 .1

	

Fitted Values

Figure 14 shows the fitted values obtained from the ARIMA(0,1,1)

model as they appeared in McMichael and Vigani (1972), where they were

referred to as "one interval ahead forecasts ." The fitted residuals

are also shown in order to indicate the magnitudes of the absolute

errors . One fitted value is lost due to the nonseasonal differencing

of order one .

While the ARIMA(0,1,1) fitted values display a different character

than those from an AR(1) model (which always appear as lagged, scaled

versions of the original data), it can be seen that a one-interval lag

effect is also present in these results . As a consequence, the model

fails to predict the turning points, particularly at hours 22 and 42 .

4 .4 .1 .2 Multi-Step-Ahead Beyond-Sample Forecasts

Figure 15 shows 24 multi-step-ahead beyond-sample forecasts

generated from the ARIMA(0,1,1) model fitted to the first N = 72

observations (see Appendix A) . Those unfamiliar with Box-Jenkins

models may be surprised to see that the forecasts after hour 73 simply

follow a straight line . It can be shown that all forecasts for lead

times greater than one from an ARIMA(0,1,1) model are equal to the

forecast for lead time = 1 (Box and Jenkins, 1976) . Clearly, such a

model is entirely unsuitable for multi-step-ahead beyond-sample

forecasting of treatment plant influent, which will never remain

constant over time . This drawback of the ARIMA(0,1,1) model has also

been noted by Litwin and Joeres (1975) .
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4 .4 .1 .3 One-Step-Ahead Beyond-Sample Forecasts

Figure 16 shows 24 one-step-ahead beyond-sample forecasts from the

ARIMA(0,1,1) model fitted to the first N = 72 observations . The

confidence intervals are markedly reduced . These forecasts generally

appear to follow the data fairly well, but this is largely due to the

fact that this portion of the series (hours 73 to 96) does not exhibit

any large, sudden fluctuations . The choice of scale for the ordinate

axis (determined by a figure size limitation) also affects the

appearance of "accuracy ." The one-interval lag effect can again be

clearly seen .

4 .4 .1 .4

	

Fitting and Forecasting Accuracy

Table 3 shows the fitting and forecasting accuracy results for the

ARIMA(0,1,1) model . Several considerations about the results may be

noted :

1 . The ARIMA(0,1,1) model only accounts for 42% of the variance in

the data .

2 . The multi-step-ahead beyond-sample forecast errors are rather

large as expected, since the straight line forecast provides no

information about future COD variability . The absolute error

averages 261 mg/l, and the overall RMSE is 283 mg/l over a

portion of the series where the COD ranges from 669 to 1090

mg/1 .

3 . The one-step-ahead beyond-sample forecasts are much more

useful, with absolute errors averaging only 93 mg/l and
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--------------------------------------------------------
R-squared

	

0 .42
--------------------------------------------------------
RAE

	

1 - 509 mg/1

	

63 - 484 mg/l

	

11 - 265 mg/1
--------------------------------------------------------
MAE

	

88 mg/1

	

261 mg/1

	

93 mg/1
--------------------------------------------------------
RAPE

	

0 - 94 %

	

9 - 44 %

	

1 - 36 %
--------------------------------------------------------
MAPE

	

13 %

	

29 %

	

11
--------------------------------------------------------
RMSE

	

120 mg/1

	

283 mg/1

	

110 mg/1

TABLE 3

Error Criteria for ARIMA(0,1,1) Model

absolute percent errors averaging only 11% . The maximum

absolute error from these forecasts is about as large as the

average absolute error for the multi-step-ahead forecasts .

It is clear from the results presented that the ARIMA(0,1,1) model can

only be considered useful for one-step-ahead beyond-sample

forecasting .

90

Fitted Multi-Step-Ahead One-Step-Ahead
Values Forecasts Forecasts

Criterion (N = 95) (N = 24) (N = 24)



4 .5 ATLANTA R . M . CLAYTON TREATMENT PLANT INFLUENT BOD

The third data set analyzed consists of N = 168 hourly measurements

of influent BOD from the R . M . Clayton wastewater treatment plant in

Atlanta, Georgia . The data were taken from Briggs (1972), and have

been previously cited and analyzed using a Fourier series model by

Stenstrom (1976) . Hour "0" corresponds to midnight, Sunday night and

the data cover exactly a one-week period .

4 .5 .1

	

Seasonal ARIMA(3,0,0)(0,1,1) Model

The Atlanta BOD series was analyzed using the Box-Jenkins approach .

The following subsection describes the modeling steps .

4 .5 .1 .1

	

Model Identification, Estimation, and Diagnostic Checking

Stationarity of the series was first checked by plotting the data

and computing the raw series ACF and PACF . Determination of the total

mean square (sample variance) was made by fitting an ARIMA(0,0,0)

model to the deviations about the mean (following Berthouex et al .,

1975) . Large autocorrelations at lags 24, 48, . , etc . in the ACF

indicated the need for a first seasonal differencing of D = 1, s = 24 .

The seasonal difference was taken, and the ACF and PACF were computed

for the differenced series . The ACF showed autoregressive decay at

the first few nonseasonal lags, plus a single large, negative spike at

lag 24 . The PACF showed seasonal moving average decay at lags 24 and

48, plus three significant nonseasonal spikes at lags one, two, and

three . This led to a tentative identification of ARIMA(3,0,0)(0,1,1)

with s = 24 .
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When the tentative model was estimated, the nonseasonal AR

parameter at lag two was found to be insignificant, and was therefore

dropped . The resulting model was then reestimated (see Appendix A),

and its parameters were found to be significant, uncorrelated, and

within the bounds of stationarity and invertibility .

Proceeding to the diagnostic checking stage, the ACF and PACF of

the residuals were found to contain no significant correlations for

all lag orders through lag 24 . The Ljung-Box chi-square statistic

not significant (5% level) for all lag orders through lag 24, ranging

from significance at the 30% to the 46% levels . The

ARIMA(3,0,0)(0,1,1) model with zero lag-two AR parameter was therefore

deemed acceptable . An attempt was also made to fit an

ARIMA(2,0,0)(0,1,1) model because the model containing a nonseasonal

AR(3) component with no lag-two term was considered suspect (rare) .

However, this alternative model did not yield white-noise residuals

and was discarded .

4 .5 .1 .2

	

Fitted Values

Figure 17 shows the BOD values, fitted values, and residuals from

the ARIMA(3,0,0)(0,1,1) model fitted to all N = 168 observations .

Many of the fitted residuals exceed 50 mg/l BOD . Again, the largest

residuals occur at the turning points, and a distinct one-interval lag

effect is observed . Figure 18 provides a magnified view of the last

48 hours' fitted results .
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4 .5 .1 .3 Multi-Step-Ahead Beyond-Sample Forecasts

Figure 19 shows 24 multi-step-ahead beyond-sample forecasts from the

ARIMA(3,0,0)(0,1,1) model fitted to the first N = 144 observations

(see Appendix A) . The 24 hours (hour 145 to hour 168) correspond to

Sunday, the last day for which measurements were taken . It car_ be

seen that the forecasts consistently overestimate the actual BOD

profile that occurred . Since the behavior of the multi-step-ahead

beyond-sample forecasts is based only on information from Monday

through Saturday, which all had higher minima than Sunday, the model

cannot be expected to anticipate the Sunday cycle . The general

diurnal cycle is reproduced by the seasonal model, however .

4 .5 .1 .4 One-Step-Ahead Beyond-Sample Forecasts

Figure 20 shows 24 one-step-ahead beyond-sample forecasts generated

by the ARIMA(3,0,0)(0,l,l) model fitted to the first N = 144 data .

Each forecast is based on data from one hour, three hours, 24 hours,

25 hours, and 27 hours into the "past" (see Appendix A) . It is seen

that the forecasts track the observed data fairly well, but still tend

to overestimate the BOD concentration at most hours . The forecast

errors are greatly reduced compared to the multi-step-ahead beyond-

sample forecast errors .

4 .5 .1 .5 Fitting and Forecasting Accuracy

Table 4 shows the error criteria computed for the fitting and

forecasting results . The following general observations can be made :
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Fitted

	

Multi-Step-Ahead One-Step-Ahead
Values

	

Forecasts

	

Forecasts
Criterion

	

(N = 144)

	

(N = 24)

	

(N = 24)
--------------------------------------------------------
R-squared

	

0 .74
--------------------------------------------------------
RAE

	

0 - 109 mg/l

	

5 - 100 mg/l

	

0 - 56 mg/l
--------------------------------------------------------
MAE

	

23 mg/l

	

51 mg/l

	

21 mg/l
--------------------------------------------------------
RAPE

	

0 - 89

	

4 - 137 %

	

0 - 101
--------------------------------------------------------
MAPE

	

14 %

	

46 %

	

21
--------------------------------------------------------
RMSE

	

31 mg/l

	

58 mg/l

	

26 mg/l

TABLE 4

Error Criteria for ARIMA(3,0,0)(0,1,1) Model

1 . This model has a higher R-squared than previous models,

accounting for 74% of the observed variation about the mean .

2 . Because the multi-step-ahead beyond-sample forecasts

overestimated the observed BOD values, the MAE and the RMSE

were greater than 50 mg/l BOD, which are large for data ranging

from 55 to 208 mg/1 . The MAPE is also larger than was found

for previous models .

3 . Once again, one-step-ahead beyond-sample forecasting reduced

the overall forecast error approximately twofold as measured by

MAE, MAPE, or RMSE .
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4 .6 ATLANTA R . M . CLAYTON TREATMENT PLANT TOTAL
SUSPENDED SOLIDS

The fourth data set analyzed consists of N = 168 hourly

measurements of influent total suspended solids (TSS) from the R . M .

Clayton wastewater treatment plant in Atlanta, Georgia . The data were

also taken from Briggs (1972), and were previously cited and analyzed

using a Fourier series model by Stenstrom (1976) .

	

Hour

corresponds to midnight, Sunday night and the data cover exactly a

one-week period .

4 .6 .1

	

Seasonal ARIMA(2,0,0)(0,1,1) Model

The Atlanta TSS series was analyzed using the Box-Jenkins strategy .

The following subsection outlines the modeling steps performed .

4 .6 .1 .1

	

Model Identification, Estimation, and Diagnostic Checking

Stationarity of the series was investigated by plotting the data

and computing the raw series ACF and PACF . Determination of the total

mean square (sample variance) was also made . Large autocorrelations

at the seasonal lags in the ACF indicated the need for a first

seasonal differencing of D = 1, s = 24, after which the ACF and PACF

were computed for the resulting differenced series . The ACF suggested

autoregressive decay at the lower nonseasonal lags, and had a single

large, negative spike at lag 24 . The PACF showed seasonal moving

average decay at lags 24 and 48, plus two significant nonseasonal

spikes at lags one and two . This implied a preliminary identification

of ARIMA(2,0,0)(0,1,1) with s = 24 .

9 9
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When this model was estimated (see Appendix A), its parameters were

found to be significant, uncorrelated, and

stationarity and invertibility .

At the diagnostic checking stage, the ACF of the residuals was

found to contain no significant correlations for all lag orders

through lag 24 . The Ljung-Box chi-square statistic was not

significant (5% level) for all lag orders through lag 24, ranging from

significance at the 6% to the 19% levels . The PACF showed a single

"borderline" significant spike at lag 14 ; this was considered to be a

spurious correlation at a physically meaningless lag order (14 hours) .

It was felt that one stray spike out of 24 might be expected from

sampling error alone for a 95% confidence interval test . The

ARIMA(2,0,0)(0,1,1) model was therefore tentatively accepted as

adequate .

4 .6 .1 .2

	

Fitted Values

Figure 21 shows the TSS values,, fitted values, and residuals from

the ARIMA(2,0,0)(0,l,l) model fitted to all N = 168 observations .

This figure displays several interesting features . The observations

fluctuate erratically about a general diurnal cycle . The peak values

of TSS appear to decrease steadily throughout the week . Of greater

interest, however, are the peak values of the forecasts, particularly

at hours 37, 61, and 85 . These peaks are separated by exactly 24

hours . Due to the nature of the forecast function and the specific

parameter estimates for the ARIMA(2,0,0)(0,1,1) model (see Appendix

within the bounds of
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A), the forecast for a given hour is made up largely of the observed

value from 24 hours before . Therefore, the one-step-ahead within-

sample forecast (fitted value) occurring 24 hours after an extreme

observed peak will also form a large peak . This explains the large

fitted value at hour 61 . Another large component of each forecast is

the fitted residual from 24 hours before . Since the weighting

parameter for this fitted residual is negative (see the seasonal

moving average parameter in Appendix A), and since the fitted residual

at hour 61 is large and negative, this results in a large contribution

to the forecast for hour 85 .

Figure 22 shows a magnified view of the last 48 hours' fitted

results .

4 .6 .1 .3 Multi-Step-Ahead Beyond-Sample Forecasts

Figure 23 shows 24 multi-step-ahead beyond-sample forecasts from the

ARIMA(2,0,0)(0,1,1) model fitted to the first N = 144 observations

(see Appendix A) . The forecasts based on the previous days' cycles

overestimate the Sunday cycle, as seen before in the preceding data

set .

4 .6 .1 .4 One-Step-Ahead Beyond-Sample Forecasts

Figure 24 shows 24 one-step-ahead beyond-sample forecasts generated

by the ARIMA(2,0,0)(0,1,1) model fitted to the first N = 144 data .

These forecasts appear to follow the observed data fairly well, but

still tend to overestimate the TSS concentration at most hours . The

103



400-

T
0 350-
0
R
L

300-
S
U
S
P 250-
E
N
0
E 200-
E

S
0 150-
L
I
0
S 100-

M
G 50-

L

120
1

126

PROPOSED ARIMA(2,0,0)(0,1,1)
ATLANTA R . M . CLAYTON TREATMENT PLANT

DATA FROM BRIGGS (1972)

OBSERVATIONS	
FORECAST VALUES	
FORECAST ERRORS IIIIIIIIIII
95% INTERVAL	

132 138

	

144

	

150

HOURS FROM MIDNIGHT SUNDAY

MODEL

156
1

162

Figure 23 : Multi-Step-Ahead Forecasts from Atlanta TSS Model

168



L

PROPOSED ARIMA(2,0,0)(0,1,1 MODEL
ATLANTA R . M . CLAYTON TREATMENT PLR

DATA FROM BRIGGS (1972)

OBSERVATIONS	
FORECAST VALUES	
FORECAST ERRORS 11111111111
95Z INTERVAL - - - -

138

	

144

	

150

HOURS FROM MIDNIGHT SUNDRY

Figure 24 : One-Step-Ahead Forecasts from Atlanta TSS Model



forecast errors are only slightly, reduced compared to the multi-step-

ahead beyond-sample forecast errors . The confidence intervals are

also approximately equal in width for both types of forecasts .

4 .6 .1 .5

	

Fitting and Forecasting Accuracy

Fitted

	

Multi-Step-Ahead One-Step-Ahead
Values

	

Forecasts

	

Forecasts
Criterion

	

(N = 144)

	

(N = 24)

	

(N = 24)
--------------------------------------------------------
R-squared

	

0 .53
--------------------------------------------------------
RAE

	

0 - 114 mg/l

	

2 - 97 mg/l

	

3 - 67 mg/l
--------------------------------------------------------
MAE

	

27 mg/l

	

37 mg/i

	

24 mg/l
--------------------------------------------------------
RAPE

	

0 - 92 %

	

1 - 127 %

	

3 - 100
--------------------------------------------------------
MAPE

	

19 %

	

37 %

	

24
--------------------------------------------------------
RMSE

	

36 mg/l

	

44 mg/l

	

30 mg/l

TABLE 5

Error Criteria for ARIMA(2,0,0)(0,1,1) Model

Table 5 shows the error criteria computed for the fitting and

forecasting results . The following points emerge from examining the

table :

1 . This model has a poor R-squared value (0 .53), in accordance

with the appearance of the fitted residuals .
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2 . Although one-step-ahead beyond-sample forecasting reduces the

overall forecast error as measured by MAE, MAPE, or RMSE, the

improvement is not as notable as it was for the better-fitting

models in this study .

4 .7 MINNEAPOLIS-SAINT PAUL INTERCEPTOR SEWER FLOW RATE

The fifth data set analyzed consists of N = 168 hourly averages of

wastewater flow rate measured in an interceptor sewer of the

Minneapolis-Saint Paul Sanitary District's combined sewer system . The

data were taken from Anderson (1973), and have been previously cited

and analyzed using a Fourier series model by Stenstrom (1976) . Hour

"0" corresponds to midnight, Sunday night and the data cover exactly a

one-week period .

4 .7 .1

	

Seasonal ARIMA(0,1,0)(0,1,1) Model

The Minneapolis-Saint Paul flow rate series was analyzed using the

procedures of Box and Jenkins . The following subsection summarizes

the steps performed in modeling the series .

4 .7 .1 .1

	

Model Identification, Estimation, and Diagnostic Checking

Stationarity of the series was first checked by plotting the data

and computing the raw series ACF and PACF . Determination of the total

mean square (sample variance) of the series was also made . Large

autocorrelations at lags 24, 48, . , etc . in the ACF indicated the

need for a first seasonal differencing of D = 1, s = 24 . The
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resulting seasonally differenced series was then used to compute a new

ACF and PACF . Slow, positive decay at the nonseasonal lags in the ACF

clearly indicated the need for an additional nonseasonal first

differencing (d = 1) . The resulting twice-differenced (D = 1, d = 1)

series was then used to calculate another ACF and PACF . The ACF

showed a single large, negative spike at lag 24, and the PACF had a

large, negative spike at lag 24 plus another small, negative spike at

lag 48 . This suggested a seasonal, first-order moving average

component ; i .e ., ARIMA(0,1,0)(0,1,1) with s = 24 .

This tentative model was estimated (see Appendix A) ; the MA

parameter estimate was found to be significant and to obey the

invertibility condition .

Proceeding to the diagnostic checking stage, the ACF and PACF of

the residuals were found to contain no significant correlations for

all lag orders through lag 24 . The chi-square statistic was not

significant (5% level) for all lag orders through lag 24, ranging from

significance at the 52/0 to the 73«0 levels . The ARIMA(0,1,0)(0,1,1)

model was therefore tentatively entertained .

4 .7 .1 .2

	

Fitted Values

Figure 25 shows the observed flow, fitted values, and residuals

from the ARIMA(0,1,0)(0,1,1) model fitted to all N = 168 observations .

The most striking feature of this data set is the lack of erratic

variation in the flow rate curve . This is due to the large volume of

flow (mean = 180 .4 MGD), which masks any disturbances due to sporadic
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municipal or industrial batch discharges . There is also less

experimental error in flow rate measurements than in chemical lab

analyses such as BOD or COD tests . As a result, the "noise" is

reduced and a better model fit is obtained, as indicated by the

relatively small absolute residuals .

Figure 26 provides a magnified view of the fitting errors for the

last 48 observations in the series . The largest residuals occur at

the turning points, and the one-interval lag effect can be discerned

at several of the relative maxima .

4 .7 .1 .3 Multi-Step-Ahead Beyond-Sample Forecasts

Figure 27 shows 24 multi-step-ahead beyond-sample forecasts from the

ARIMA(0,1,0)(0,1,1) model fitted to the first N = 144 observations

(see Appendix A) . Although the forecast profile reproduces the

general diurnal cycle, the forecasts overestimate the flow rates at

most intervals . Since the 24 hours (hour 145 to hour 168) shown fall

on a Sunday, the actual flow rate is lower than the forecasts based on

previous larger cycles .

4 .7 .1 .4 One-Step-Ahead Beyond-Sample Forecasts

Figure 28 shows 24 one-step-ahead beyond-sample forecasts generated

by the ARIMA(0,1,0)(0,1,1) model fitted to the first N = 144 data

points . The confidence intervals shown are the smallest ones obtained

in this study, reflecting the reduced forecast error variance implied

by the quality of fit of the proposed model . The one-interval lag
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effect is present at the relative maxima and minima, but the resulting

forecast errors are not excessive because the variability at these

turning points is relatively gradual .

4 .7 .1 .5

	

Fitting and Forecasting Accuracy

Fitted

	

Multi-Step-Ahead One-Step-Ahead
Values

	

Forecasts

	

Forecasts
Criterion

	

(N = 143)

	

(N = 24)

	

(N = 24)
--------------------------------------------------------
R-squared

	

0 .92
--------------------------------------------------------
RAE 0 .02 - 39 .0 MGD 0 .52 - 40 .6 MGD 0 .09 - 22 .1 MGD
--------------------------------------------------------
MAE

	

6 .09 MGD

	

14 .7 MGD

	

5 .83 MGD
--------------------------------------------------------
RAPE

	

0 - 21 %

	

0 - 30 %

	

0 - 11 %
--------------------------------------------------------
MAPE

	

4 %

	

9 %

	

4 %
--------------------------------------------------------
RMSE

	

9 .07 MGD

	

17 .9 MGD

	

7 .88 MGD

TABLE 6

Error Criteria for ARIMA(0,1,0)(0,1,1) Model

Table 6 gives the values of the fitting and forecasting error

criteria calculated for the proposed flow rate model . Several

interesting points emerge from reviewing this table :

1 . This data set and model achieved the highest R-squared value

(0 .92) in this study .
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2 . Because the multi-step-ahead beyond-sample forecasts

overestimated the true flow rates, one-step-ahead beyond-sample

forecasting provided a substantial improvement in accuracy as

measured by any of the error criteria .

3 . The MAPE's of 9% AND 4% for the multi-step-ahead forecasts and

one-step-ahead forecasts respectively are the lowest average

percent errors obtained for any model in this study .

4 . Considering one-step-ahead beyond-sample forecasting, the

maximum absolute error of 22 .1 MGD represents a flow volume of

920,833 gallons for a one-hour period . This is a large amount

of wastewater to be reckoned with if such a forecasting error

should occur in practice . Similarly, for multi-step-ahead

forecasting the maximum absolute error of 40 .6 MGD constitutes

a one-hour volume of approximately 1 .7 million gallons .

absolute error divided by the mean of

This last point is raised in order to illustrate the fact that it is

not always sufficient to consider only the percent error in

forecasting . Another useful measure of forecasting error might be the

1 15
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context, the fraction of the average flow by which the forecast was in

error .



Chapter V

SIMULATION OF REAL-TIME CONTROL WITH ARIMA
FLOW FORECASTING

"The question ultimately is whether we have developed a
mildly interesting academic curiosity or a potentially
useful management tool ."

W . 0 . Spofford, Jr .

5 .1 INTRODUCTION

Over the last decade, there has been increasing interest in dynamic

modeling and computer-compatible control strategies for activated

sludge wastewater treatment plants . It is not the intention of this

discussion to review historical developments or to reiterate the

benefits of real-time process control for treatment plants ; these have

been summarized by Stenstrom (1976) and Stenstrom and Andrews (1979),

among others . It will suffice to note that there are two ways in

which research on control strategies for treatment plants can be

carried out : by direct field experimentation, or by using dynamic

mathematical models which simulate the performance and operation of

treatment plants . The latter option, mathematical simulation, allows

candidate control strategies to be studied without requiring actual

plant interruption, costly experiments, and large investments of time

and personnel . Ultimately, of course, experimentation must always be

1 16



used to verify modeling results . Experimentation and modeling can be

utilized in a complementary, iterative way (Stenstrom and Andrews,

1979) .

As discussed in the literature review, the motivation for the

present research arose from the work of Stenstrom (1976) and Stenstrom

and Andrews (1979), who utilized a dynamic, deterministic computer

simulation model of a wastewater treatment plant to evaluate various

control strategies . They found that control strategies which

incorporated short-term predictions of influent flow rate as inputs to

the control law greatly reduced treatment process variability as

measured by specific oxygen uptake rate (SCOUR) . Their predictions

were made using a deterministic Fourier series model . Stenstrom and

Andrews noted that ARIMA models also showed promise for performing

such forecasting . The present thesis was undertaken in direct

response to this comment . The following sections describe results

from a simulated real-time control strategy using an ARIMA model for

hourly flow rate prediction in conjunction with the dynamic simulation

model utilized by Stenstrom and Andrews .

5 .2 METHODOLOGY

The dynamic mathematical model has been described in detail

elsewhere (Stenstrom, 1976) ; only a brief description is given here .

The portions of Stenstrom's model used for this investigation included

process models for the primary clarifier, aeration basin, and

secondary clarifier, and Fourier series input models for influent BOD,

1 1 7



total suspended solids (TSS), and ammonia nitrogen . The influent flow

rate sequence consisted of hourly average flows measured in a field

survey (Anderson, 1973) . For this analysis, the flow rate was scaled

by dividing by 1/10th of the mean of the observed series, yielding a

flow series with a mean of 10 MGD . The hydraulic retention time of

the aeration basin was 4 .3 hours, and a solids-liquid separator with

an area of 12,500 square feet was simulated ; this allowed mean cell

retention times (MCRT) of up to 10 days to be attained . The

biological reactor was formulated so as to simulate a "four-pass"

aeration basin with step-feed modification .

Stenstrom and Andrews (1979) demonstrated the'superiority of SCOUR

over the traditional MCRT or food-to-mass ratio (F/M) as a dynamic

control variable, pointing out that MCRT and F/M are founded in

steady-state assumptions . Only SCOUR retains a direct relationship to

the fundamental biological parameter, organism growth rate, under

nonsteady-state conditions . Hence, maintaining constant SCOUR implies

that growth rate is maintained constant, a desirable objective for

decreasing process variability . In this simulation study, the

dimensionless variance of SCOUR (Stenstrom, 1976 ; Stenstrom and

Andrews, 1979) was selected as the performance criterion for

evaluating the improvement provided by a real-time control strategy

with ARIMA flow prediction . The dimensionless SCOUR variance is

defined as the variance of SCOUR divided by the squared mean SCOUR

over a given period of plant operation .
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A two-loop control strategy was adopted for the simulation . SCOUR

was used as the controlled variable for the fast loop, and MCRT served

as the controlled variable in the slower loop . SCOUR was controlled

by manipulating the sludge recycle rate ; MCRT was controlled by

manipulating the sludge wasting rate . Sludge storage was provided by

directing the influent feed to the second segment of the four-pass

aeration basin . This control strategy was called "pseudo feedforward-

feedback" control by Stenstrom (1976) . Further details concerning the

control strategy and control law are given in Stenstrom (1976) and

Stenstrom and Andrews (1979) and are not central to the present study .

The result of interest is the comparison of dimensionless SCOUR

variance from three different simulation runs :

1 . Operation of the treatment plant with no control strategy ("No

Control" case) .

2 . Operation of the treatment plant with the pseudo feedforward-

feedback control strategy ("Control Without Prediction" case) .

3 . Operation of the treatment plant with the pseudo feedforward-

feedback control strategy incorporating hourly one-step-ahead

beyond-sample flow rate forecasts as inputs to the controller

("Control With Prediction" case) .
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5 .3 DESCRIPTION OF THE SIMULATION RUNS

For all three simulation runs, the dynamic model was

Fourier series model values as inputs for the influent BOD, ammonia

nitrogen, and TSS, and scaled flow rate measurements as inputs for the

influent flow rate . The flow rate series used was a portion of the

one analyzed and discussed in Chapter 4 in the section entitled

"Minneapolis-Saint Paul Interceptor Sewer Flow Rate ." In each case,

the dynamic model was run for 168 hours of simulated operation,

sufficient time to eliminate the transient effects of the initial

conditions . Subsequently, for the next 24-hour period (hour 169 to

hour 192), the dimensionless variance of SCOUR was computed .

For the "No Control" case, no control was implemented throughout

the entire 192 hours of operation . For the "Control Without

Prediction" case, the control strategy was implemented for all 192

hours . Lastly, for the case of greatest interest, "Control With

Prediction", control was implemented incorporating hourly one-step-

ahead forecasts generated from the ARIMA(0,1,0)(0,1,1) flow rate model

described in Chapter 4 . For the 24-hour period during which SCOUR

variance was computed, the influent flow rate values and corresponding

forecasts were exactly those shown in Figure 28 of Chapter 4 (with

scaling to obtain a mean of 10 MGD) . Computed values of the accuracy

criteria for the forecasts are given in Table 6 of Chapter 4 .
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5 .4 RESULTS

The three simulation runs were performed, and three corresponding

values of dimensionless SCOUR variance were computed . Each value was

computed for the last 24 hours of each simulation run . Figure 29

shows the controlled value of SCOUR over 24 hours for each of the

three cases . Table 7 gives the values of dimensionless SCOUR variance

obtained from each of the three cases, and the corresponding reduction

in variance for the "Control Without Prediction" and "Control With

Prediction" cases . It is apparent from the results that

implementation of the control strategy greatly reduced the variability

of SCOUR (by 77%) . It is also observed that the control strategy

incorporating ARIMA forecasts reduced SCOUR variability by 83%, an

additional 6% reduction beyond the case of control without prediction .
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Percentage
Dimensionless

	

Variance
Case

	

SCOUR Variance

	

Reduction
--------------------------------------------------------
No Control

	

0 .03156
--------------------------------------------------------
Control Without Prediction

	

0 .007224

	

77
--------------------------------------------------------
Control With Prediction

	

0 .005230

	

83

TABLE 7

Scour Variances and Percentage Variance Reductions

5 .5 DISCUSSION OF RESULTS

The additional 6% reduction in SCOUR variability achieved by ARIMA

flow forecasting is small in appearance, but potentially significant .

Stenstrom (1976) thoroughly evaluated the pseudo feedforward-

feedback control strategy, and found that there was little more that

could be done to reduce process variability without introducing

additional costly measures or some form of additional information .

Thus, the control strategy has been utilized to its maximum potential,

and further reductions in variability could have high marginal costs

(cost per unit of improvement) . It is not known at present how

beneficial an additional 6% reduction in variability might be for an

operating treatment plant . If a process control computer was

available and could be programmed to perform the forecasting, the

control strategy with forecasting might be an economical way to

achieve further improvement . The control strategy without prediction
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alone reduced variability by 77%, leaving only 23% additional possible

improvement . If the "point of diminishing returns" has been reached,

then an economical strategy which provides a 6% reduction out of 23%

may prove to be of significant interest .

It should also be emphasized that the results from the single

example of ARIMA forecasting presented here cannot be considered an

exhaustive evaluation of ARIMA models for forecasting wastewater

treatment process variables in general . These results should only be

interpreted within the context of the following qualifying factors :

1 . The particular single choice of performance criterion

2 . The particular set of input data (BOD, nitrogen, TSS, and flow

rate) .

3 . The arbitrary 24-hour period chosen for analysis .

4 . The particular choice of control strategy and control law .

5 . The particular variable chosen to forecast .

6 . The particular choice of forecast lead time .

7 . The particular simulation model utilized .

8 . The degree of correspondence between the simulation model and

an actual treatment plant operating under the specified

conditions .

This case study was presented solely as a preliminary step in

investigating ARIMA models for forecasting wastewater treatment

process variables . There has been much speculation in the literature
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about the forecasting potential of ARIMA models ; it is hoped that the

particular example presented here will stimulate interest and will be

followed by further investigations . It is clear from the list of

qualifying factors that there are many interesting variations of the

present analysis that could be investigated, and that dynamic

simulation models could be utilized for many of them . Of greatest

interest will be future experimental field studies and hybrid

modeling-experimental studies that utilize complementary features of

both modeling and experimentation .
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Chapter VI

CONCLUSIONS

From reviewing previous investigations of ARIMA models and the

results of the modeling performed for the present study, the following

conclusions can be drawn :

1 . In the water pollution control literature, four previous

investigations (McMichael and Vigani, 1972 ; Goel and LaGrega,

1972 ; Berthouex et al ., 1975 ; Debelak and Sims, 1981) involving

univariate ARIMA models applied to wastewater treatment data

have presented graphical results described as "forecasts ."

However, only one (Goel and LaGrega, 1972) actually performed

and reported true beyond-sample forecasts . The other reported

results were simply one-step-ahead within-sample forecasts ;

i .e ., fitted values .

2 . Graphs of one-step-ahead within-sample forecasts often appear

to closely follow the observed data . Thus, those unfamiliar

with the Box-Jenkins methodology and the concept of one-step-

ahead within-sample forecasts may have inferred that ARIMA

models can forecast the future rather well . However, what is

actually portrayed in such graphs is simply the fitting of a

model to past observations .
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3 . The only quantitative measure of goodness-of-fit reported by

previous researchers for their ARIMA models was the coefficient

of determination (R-squared), i .e ., the fraction of variance in

the data accounted for by the model . This has been variously

reported in terms of R-squared, residual sum of squares,

residual mean square, or "standard deviation" . All are

equivalent when converted to R-squared . Other traditional

goodness-of-fit criteria such as mean absolute error, mean

absolute percent error, and root mean square error have not

been presented .

4 . No quantitative measures of forecasting accuracy were presented

for the only example of true beyond-sample forecasting reported

(Goel and LaGrega, 1972) . Generally accepted forecasting

accuracy criteria include absolute errors, mean absolute error,

percent errors, mean absolute percent error, and mean square or

root mean square error (Carbone and Armstrong, 1982) .

5 . There have been several reported cases (Goel and LaGrega, 1972 ;

Shih, 1976 ; Barnes and Rowe, 1978) where the same model form

adequately described data from different treatment plants, for

the same process variable . Similarly, the same model form has

been identified for different process variables at the same

treatment plant . More studies are needed to determine the

potential significance and usefulness of such results . The

common denominator may be similar diurnal variations in flow

and pollutant concentration at treatment plants . It has been
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observed that concentration variation tends to be positively

correlated with flow variation (Wallace and Zollman, 1971 ;

Young et al ., 1978 ; Berthouex et al ., 1978) .

6 . Very few investigations of Box-Jenkins forecasting for

simulated or actual control of wastewater treatment plants have

been conducted . The literature review for this thesis

uncovered only two (LaGrega and Keenan, 1974 ; Maclnnes et al .,

1978) .

7 . There is need for a uniform, standardized format and

terminology for presenting and discussing forecasting results

from ARIMA models . This would promote better understanding of

ARIMA forecasting, reduce misconceptions, and allow meaningful

comparisons to be made between diverse data sets and models .

It is proposed that the format and terminology introduced in

this study be used for presenting fitting and forecasting

results . The presentation of results would include :

a) A plot of the observed values, fitted values, and fitted

residuals .

b) A plot of the observed values, forecast values, confidence

limits, and forecasts errors .

c) A table of appropriate computed error criteria for both the

fitting and forecasting results .

d) A statement of the type of forecasts being presented, using

the classifications of "one-step-ahead within-sample"

forecasts (or "fitted values"), "multi-step-ahead beyond-
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sample" forecasts, and "one-step-ahead beyond-sample"

forecasts . The forecast origin and lead times of the

forecasts should also be specified .

8 . In general, goodness-of-fit statistics and graphs of fitted

values obtained at the estimation stage convey little

information about the future-forecasting performance of ARIMA

models . The main information about forecasting gained by

fitting a proposed model is an indication of the forecast error

variance, as measured by the sample variance of the estimated

random shocks (fitted residuals) . However, if the parameter

estimates for a proposed ARIMA model do not change

significantly over the last portion of the time series under

study, then the one-step-ahead within-sample forecasts (fitted

values) near the end of the data set are valid indicators of

the one-step-ahead beyond-sample forecasting capability of the

model . Virtually nothing can be inferred about multi-step-

ahead beyond-sample forecasting performance from the fitted

results alone .

9 . Graphical presentations of forecasting results, including 95%

confidence intervals and plotted forecast errors, are useful

for developing an intuitive feeling for the forecasting

accuracy of a proposed ARIMA model . These figures are also

helpful for conveying forecasting results to non-technical

persons . However, in order to fully evaluate a model for use

in forecasting wastewater treatment variables, it is necessary
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to consider quantitative measures of forecasting accuracy . In

this study, traditional error criteria such as the range of

absolute errors, the mean absolute error, the range of absolute

percent errors, the mean absolute percent error, and the root

mean square error were found to be useful for assessing the

forecasting performance of ARIMA models . The proper choice of

performance criterion will depend on the particular application

for which the model is being considered .

10 . The results of this study suggest that nonseasonal, low-order

ARIMA(p,d,q) models are not useful for multi-step-ahead beyond-

sample forecasting with long lead times, because the forecast

profiles from these models cannot anticipate the dynamic

variability displayed by wastewater treatment process

variables . For multi-step-ahead beyond-sample forecasting,

only seasonal ARIMA(p,d,q)(P,D,Q) models were found to provide

realistic forecast profiles, because they have longer

"memories" (i .e ., forecast functions which incorporate higher

lag orders) than nonseasonal models . By contrast, the results

of this study indicate that in some cases, nonseasonal models

may perform just as well as complicated seasonal models for

one-step-ahead beyond-sample forecasting . This implies that if

one-step-ahead beyond-sample forecasting is the modeling

objective, there may be no real justification for seeking a

complex model since a simpler one will suffice .
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11 . All of the one-step-ahead beyond-sample forecasts presented in

this study, from both nonseasonal and seasonal models, were

found to display a "one-interval lag effect ." That is, the

forecasted maxima and minima were often predicted to occur one

interval after the observed maxima and minima in the actual

data . This one-interval lag effect is a direct consequence of

the forecast functions for the particular models studied .

forms of the forecast functions (see Appendix A) indicate that

one of the largest terms in the forecast for the next interval

is the weighted observed value from the preceding interval .

Therefore, the one-step-ahead beyond-sample forecasts appear as

lagged, scaled versions of the observed values (to a varying

degree, depending on the magnitudes of the other terms in the

forecast function) .

12 . The results of the simulations performed for this study suggest

that ARIMA forecasting may prove useful for improving real-time

control strategies, without the need for additional equipment

or redesigning of facilities . Much work remains to be done to

fully evaluate the utility of ARIMA models for forecasting

wastewater treatment process variables .
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Chapter VII

RELATED TOPICS FOR FUTURE RESEARCH

"My interest is in the future, because I'm going to spend
the rest of my life there ."

Charles F . Kettering

7 .1 INTRODUCTION

During the course of this thesis, a number of potentially

interesting topics arose which were beyond the scope of the original

thesis objectives, but which appear to warrant further consideration .

The following sections outline these related topics and provide

comments about possible additional research .

7 .2 EFFECT OF THE NUMBER OF OBSERVATIONS

In this study, ARIMA models were developed and applied for

forecasting using data sets containing as few as N = 96 and as many as

N = 332 observations . For reasons involving statistical sampling

theory, Box and Jenkins (1976) recommend that at least N = 50

observations be used for model development, since the entire procedure

relies on good estimates of the autocorrelation structure as indicated

by the sample ACF and PACF . However, is there a useful upper limit

for the number of observations needed in ARIMA modeling and
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forecasting? Is it always "better" to have more data? What if the

underlying model form is different for different subsets of the data?

Also, when performing beyond-sample forecasting with updating of the

observations, parameter estimates, and model identification, is it

better to retain all the available observations including those at the

beginning of the collected series, or should the earlier observations

be deleted as the newer ones are incorporated? These are questions

which merit further investigation .

7 .3 PRACTICAL SIGNIFICANCE OF FORECAST ERRORS AND
ERROR CRITERIA

This study presented typical ARIMA forecast errors and utilized

various accuracy criteria for quantifying the errors . An important

area of research is the assessment of the engineering significance of

forecasting errors which occur in wastewater treatment plant control

strategies incorporating influent forecasts . How much error can be

tolerated by the control strategy before performance is seriously

impaired?

A related topic is the selection of the appropriate forecast error

performance criterion for a particular intended application . For

example, is the maximum allowable error for a single forecast the most

important consideration, or is the average error over some specified

forecasting period more physically meaningful? Answers to questions

such as these must be obtained through experimental field studies or

mathematical simulation using models which accurately predict observed

wastewater treatment plant operation .
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7 .4 DESEASONALIZATION AND ARIMA MODELS WITH SEASONAL
PARAMETERS

Several techniques used in stochastic hydrology or the social

sciences might be investigated for use in wastewater treatment time

series analysis . The first is known as cyclic standardization

(Yevjevich, 1966) . Cyclic standardization is a transformation

performed on the raw values of a periodic time series ; it involves

creating a new series by subtracting out periodic means and dividing

by periodic standard deviations . For hourly wastewater treatment data

displaying diurnal cycles, 24 hourly sample means and 24 hourly sample

standard deviations would be calculated, each corresponding to a

particular hour of the day . Note that this would require a total of

24M observations, where M is the minimum number of samples (one per

day) needed to obtain a valid estimate of the mean and standard

deviation for a particular hour . The cyclic transformation would be

applied, and the resulting standardized series analyzed with a

nonseasonal ARIMA model . The transformation would then be inverted to

obtain the fitted values corresponding to the original untransformed

series .

Other deseasonalization procedures such as those used by the U . S .

Bureau of the Census, Bureau of Labor Statistics, and in the field of

economics ("seasonal adjustment") might also prove useful .

Another modification of traditional Box-Jenkins analysis that

merits consideration is the class of ARIMA models with periodically

varying AR and MA parameters used in stochastic hydrology . Salas et

al . (1982) provide a review of these models .
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7 .5 INFLUENT- INFLUENT TRANSFER FUNCTION MODELS

As discussed in the literature review, a number of investigators

have developed transfer function (bivariate) models relating effluent

quality to various influent predictor variables . In light of the

previously mentioned positive correlation between influent flow rate

and influent pollutant concentration, and an observed degree of

correspondence between suspended solids and BOD, it seems feasible

that transfer function models relating one influent variable to

another influent variable might also prove useful . Successful results

could have significant implications for real-time forecasting, for it

may be possible to forecast a variable which cannot be measured in

real time using one that can be rapidly determined .

7 .6 AUTOMATED BOX-JENKINS MODELING

A significant limitation of Box-Jenkins forecasting for real-time

control is the need for human intervention in the modeling process

(e .g ., examination and interpretation of ACF's and PACF's) . However,

several recent developments show promise for fully automating the

procedure . Hill and Woodworth (1980) have reported results from an

automatic modeling algorithm utilizing pattern recognition and an

optimal model-order criterion . Reilly (1981) has described a

commercially available, fully automated, interactive Box-Jenkins

modeling program called "AUTOBJ", which can currently be implemented

on an IBM personal computer possessing expanded options (Reilly,

1984) . The program automatically performs identification, estimation,
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diagnostics, and forecasting, requiring only initial input and

subsequent updating of the time series . It is feasible to envision

such data logging and transmittal activities being carried out by an

integrated system of sensors communicating with a central process

control/modeling computer .

7 .7 COMPARISON OF CURRENTLY USED FORECASTING
TECHNIQUES

As mentioned in Chapter 2, numerous quantitative forecasting

techniques have been developed and are currently in use in the fields

of operations research, management

	

science,

	

and statistics .

Makridakis et al . (1982) recently conducted

forecasting-accuracy competition in which 1001 time series were

provided to expert proponents of 24 different forecasting techniques,

including ARIMA models . Forecasts for the last 6 to 18 observations

at the end of each series were made, and the results from the

different methods were compared and evaluated . The paper contains

summary descriptions of the 24 methods, over 25 tables containing

hundreds of numerical measures of performance, and the results are

still being debated in the literature (Armstrong and Lusk, 1983) . It

was reported that the Box-Jenkins methodology was the most costly and

time-consuming of the 24 techniques . It was further observed that

many simpler, automatic methods performed as well as ARIMA models .

Thus, it is important for the wastewater treatment field to gain

experience with many different forecasting techniques in order to

guide selection of the appropriate model for a given application .
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Appendix A

SUMMARY OF ARIMA MODELS PRESENTED

Note : The total mean square (TMS) is defined as the sum of the squares

of the original data about their estimated mean, divided by the number

of observations ; i .e ., the sample variance . The residual mean square

(RMS) is defined as the sum of the squares of the fitted residuals,

divided by the degrees of freedom . "Degrees of freedom" is equal to

the number of fitted values minus the number of estimated parameters .

MADISON NINE SPRINGS TREATMENT PLANT INFLUENT BOD

Determination of Total Mean Square

ARIMA(1,0,0)

Model : (1-01B)(zt-}t) = at

Forecast Function : zt= 0 1 (zt-1 -u) + V

Parameter Estimates : (N = 332) p = 123 .4 mg/l, 0 1= 0 .809
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Model : (zt -u) = at

Parameter Estimate : (N = 332) u = 122 .4 mg/1

Total Mean Square : (N = 332) TMS = 1739 .4 (mg/1) 2



(N = 300) u = 123 .7 mg/1, 0 1= 0 .811

Residual Mean Square : (N = 332) RMS = 607 .1 (mg/1) 2

ARIMA (2,0,0)(0,1,1) s=24

Model : (1-01B -02B2)(1-B24)zt= (1-0 1 B24 )at

Forecast Function : zt= 0 1 zt-1+0 2 zt-2+zt-24 -0 1zt-25 -02zt-26 -O 1 at-24

MINNEAPOLIS-SAINT PAUL SEWER STATION 004 COD

Determination of Total Mean Square

Residual Mean Square : (N = 332) RMS = 609 .5 (mg/1) 2

Forecast Function : zt= zt-1 -O 1 at-1
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Parameter Estimates : (N = 332) 0 1= 0 .569, 02= 0 .214, 0 1= 0 .831

(N = 300) 0 1= 0 .569, 0 2= 0 .231, 0 1= 0 .812

Model : (zt -fit) = at

Parameter Estimate : (N = 96) u = 697 .6 mg/l

Total Mean Square : (N = 96) TMS = 25,151 (mg/1) 2

ARIMA(0,1,1)

Model : (1-B)zt= (1-O 1B)at



Parameter Estimate : (N = 96) 0 1= 0 .549

(N = 72) 0 1= 0 .593

Residual Mean Square : (N = 96) RMS = 14,530 (mg/1) 2

ATLANTA R . M . CLAYTON TREATMENT PLANT INFLUENT BOD

Determination of Total Mean Square

Model : (zt-u) = at

Parameter Estimate : (N = 168) U = 183 .3 mg/l

Total Mean Square : (N = 168) TMS = 3774 .4 (mg/1) 2

ARIMA (3,0,0)(0,1,1) s=24

Model : (1-01 B -0 3 B 3 )(1-B 24)zt= (1-0 1B 24 )at

Forecast Function : zt= 0 1zt-1+03zt-3+zt-24 -0 1 zt-25 -0 3zt-27 -0 1at-24

Residual Mean Square : (N = 168) RMS = 984 .8 (mg/1) 2
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Parameter Estimates : (N = 168) 0 1= 0 .545, 0 3= 0 .268, 0 1= 0 .768

(N = 144) 0 1= 0 .488, 03= 0 .239, 0 1= 0 .733



ATLANTA R . M . CLAYTON TREATMENT PLANT TOTAL SUSPENDED SOLIDS

Determination of Total Mean Square

Model : (zt -u) = at

Parameter Estimate : (N = 168) u = 150 .8 mg/1

Total Mean Square : (N = 168) TMS = 2857 .4 (mg/1) 2

ARIMA (2,0,0)(0,1,1) s=24

Model : (1-01B -02B2)(1-B24)zt= (1-0 1 B24 )at

Forecast Function : zt= 0 1zt-1+02 zt-2+zt-24-0 1zt-25 -02zt-26 -O 1 at-24

Parameter Estimates : (N = 168) 0 1= 0 .323, 02= 0 .304, 0 1= 0 .586

(N = 144) 0 1= 0 .292, 02= 0 .268, 0 1= 0 .625

Residual Mean Square : (N = 168) RMS = 1339 .5 (mg/1) 2

MINNEAPOLIS-SAINT PAUL INTERCEPTOR SEWER FLOW RATE

Determination of Total Mean Square

Model : (zt u) = at

Parameter Estimate : (N = 168) u = 180 .4 MGD

Total Mean Square : (N = 168) TMS = 1039 .8 (MGD) 2
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ARIMA (0,1,0)(0,1,1) s=24

Model : (1-B)(1-B24)zt= (1-0 1B24)at

Forecast Function : zt= zt-1+ zt-24 zt-25 O 1 at-24

Parameter Estimate : (N = 168) 0 1= 0 .455

(N = 144) 0 1= 0 .497

Residual Mean Square : (N = 168) RMS = 82 .89 (MGD) 2
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Appendix B

DEFINITIONS OF ERROR CRITERIA USED

Note : The same notation is used here for comparing either fitted

values or forecast values to the actual observed values of the time

series .

t = time index

N = number of observations and corresponding fitted values (forecasts)

zt = observed time series value at time t

zt = fitted value (forecast) corresponding to z t

at = fitted residual (forecast error) = z t - zt

Absolute Error = AE = Izt - z t I = Iat l

Range of Absolute Errors = RAE _ (AEmin, AEmax)

N _
Mean Absolute Error = MAE = 1 E Iat l

N t=1

- zt I

	

Iat l

Absolute Percent Error = APE = 100

	

= 100
Izt l

	

Izt I

Range of Absolute Percent Errors = RAPE = (APE min' APEmax)
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100 N Iat I
Mean Absolute Percent Error = MAPE _ - E

N t=1 Izt I

N
Root Mean Square Error = RMSE = (N E a t2) 1 2

t=1
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