Robot Hendrix

In Hwan ”Chris” Baek, Joshua Rooks, Hanwen “Kevin” Wang, Tianrui "Ray” Zhang
Department of Electrical Engineering, University of California Los Angeles
Henry Samueli School of Engineering and Applied Science
Email: chris.inhwan.baek @gmail.com, jrooks@ucla.edu, hanwenwang @ucla.edu, jlhsrayzhang @ gmail.com

Abstract—In this paper, we will describe the overall design of
our Robot Hendrix guitar playing robot and the design decisions
and implementation of the systems that comprise it. Our system is
evaluated with qualitative analysis and quantitative analysis. The
evaluation results conclude that our robot is able to successfully
play songs on the guitar in rhythm.

I. INTRODUCTION

The goal of our project was to create an electromechanical
robot that is able to take in music files and then play the
contents of those files on a guitar as instructed by a user. Our
system is made up of three parts, a left hand that presses down
on the guitar strings at the proper fret to select designated notes
and chords, a right hand that picks or strums the strings to play
the selected chords and notes in time with the designated song,
and a control system that interacts with the user and sends data
about the selected song to the left and right hands to play.

II. BACKGROUND
A. Guitar

A guitar is a string instrument with a fretted neck. There
are two different types: acoustic and electric. It is a versatile
instrument that can be played with a number of different
techniques. Robot Hendrix is designed to play an electric
guitar with different techniques.

Fig 1 is a diagram showing the parts of an electric guitar. A

. Tuners
Bndge Pickups Tuning Machines
Machine Heads
BOdy Neck Tuning Keys
Tuning Pegs
Pegheads
Fretboard \
e e | Lop
:@@©
Pickguard \ /
OO —= Nut
Frets
String Headstock
Pickup selector
Volume & P
Tone Knobs

Fig. 1. Electric guitar parts [1]

typical electric guitar has six strings that are tuned to different
notes. A guitarist presses strings against frets, metal bars on
the guitar neck, to make different notes. The closer the fret is
to the body, the higher the note. As shown in Fig 1, frets are
not evenly spaced. We had to take into account this uneven
fret spacing when we designed Robot Hendrix’s left hand.

Another important characteristic to be considered for the left
hand design is the string tension. Because the left hand must
be able to exert more force than the string tension in order to
press the strings, smaller string tension is preferred. The string
tension is mainly affected by the string gauge. Typically guitar
strings are sold as sets of six strings. A light gauge set includes
thinner strings than those in a heavier gauge set. Each string
within a set also has different gauge. The first string is the
thinnest while the sixth string is the thickest. It is important
to test the left hand’s strength against the sixth string.

In addition to the string tension, there are other factors that
affect the amount of force required to press the strings: string
action and fret location. String action is the distance between
a string and a fret. The higher the string action, the more the
string needs to bend to touch the fret. On most of guitars,
the string action is adjustable. We made the string action as
low as possible for our system to make our robot’s left hand
require less force to press the strings. Which fret a string is
pressed onto greatly affects how much force is required. It is
much easier to bend a string near the mid point than near the
ends of the string. The mid point of the strings on a guitar is
the twelfth fret. Closer the fret to the twelfth fret, less force
is needed to press a string onto. Thus, we need to test the left
hand’s strength against the fret that is farthest from the twelfth
fret to ensure it is strong enough.

The acoustic sound generated by the guitar strings are
converted into an electric signal through pickups. Pickups have
magnets that magnetize the strings. In addition, as shown in
Fig 2, the pickups also have inductive coils that generate an
electric signal as the magnetized strings vibrate. As such, the
pickups are sensitive to magnetic interference. The robot’s

Tore
Pat Outpat
Jack
Aclop wp‘:;m e, p
Tone —— | |
Capacitor i
/77 Ground

Fig. 2. Guitar Circuit [2]

right hand is what strums or picks the strings. Where strings
are strummed or picks affects the tone. Strumming near the
midpoint of the strings gives smooth but dull tone while
strumming near the ends of the strings gives clear but sharp
tone. The most balanced tone is achieved where the pickups
are located.

B. Related work

We searched online and found two guitar playing robotic
systems similar to what we wanted to accomplish.

1) FolkBox: FolkBox is a robot designed to help people
with limited left-hand dexterity to play the guitar. The left
hand motions to select different chords play a important role in
guitar performance and can be fairly complex. Folkbox allows
users to select chords using buttons and forms the chord for
them. The main part of Folkbox is a stand embedded with
three rows of solenoids. The solenoids are placed right above
different chord positions, and are controlled directly through
buttons located close to the body of the guitar.

Fig. 3. Folkbox Robot [3]

2) Robot Guitar: Robot Guitar is also a project developed
with emphasis on human robot interactions. The main part is a
metal stand with six servos attached on both sides. The servos
are positioned above six strings with just enough height to
perform picking motions. All six servos are directly controlled
by an Arduino Uno, which in turn is connected to a Raspberry
Pi. The Raspberry Pi is used as a development platform to
write Arduino sketches, which are then uploaded to Arduino
directly from the Raspberry Pi. Buttons connected to the
Arduino allow users to interact with servos.

Fig. 4. Robot Guitar [4]

III. SYSTEM DESIGN
A. Overview

We are building a robotic system which can interact with
human and play guitar. This system is composed of three parts
just like how human brain control the left and right hand to
play a song. The central part is the Edison board which listen
to user command and sends control signals to both right and
left hand. In order to send the right control signal, the Edison
board has a list of songs hard coded into the system as a
reference when a certain song needs to be played. The song
is stored in the format of MIDI file which then is translated
into data structures containing the variables to tell right and
left hand what to do.

The user interaction interface is implemented based on
speech recognition. The microphone will transfer and collect
the analog signal into digital speech signal for the Edison
board to process. It will then be recognized through Google
speech recognition service. Based on the text file returned
by Google service, Edison board can take corresponding
reactions.

Since the overall system is composed of several separate
pieces, it needs ways to effectively communicate with each
subparts. The data transfer between audio interface and Edison
is through USB since large about of data need to be transferred
in a short amount of time. The Edison sends commands to
the left hand circuits through GPIO since our left hand only
respond to a press or release signal, which means one bit for
each “finger” is enough. The Arduino and Edition communi-
cate though UART. Since we have six servos to control and
sometimes we need some of them to work simultaneously, it
requires a signal sent in the scale of byte to identify the servos.

B. Control

On the top layer, Robot Hendrix has its control system. The
control system includes three main parts: human interaction,

Fig. 5. Robot Hendrix

Audio
Interface

Arduino
Uno

Right Hand

Intel
Edison

Microphone Left Hand

Fig. 6. Overall System

music interpretation, and actuation command control.
Fig 7 illustrates how the control system works. Our robot

Music-to-
Actuation
Conversion

Left Hand
Firmware

listens to humans and performs speech recognition. The text
translated from the speech is then fed into the decision and
song selection module, which gives a response in synthesized
voice and decides which song to be played. The selected
song is interpreted and converted into a form robot can
understand. The music is then translated into a series of
actuation commands, which are sent to the right hand firmware
and the left hand firmware. The firmware controls hardware
actuators such as servos and solenoids to play the guitar.

1) Voice control: The motivation for voice control is to give
an intuitive and natural way for humans to interact with our
system. We designed Robot Hendrix in such way that it can
adapt a humanoid form. As such, we decided to use speech, the
most common method of human-to-human communication, to
interact with our robot.

The human voice is captured by a microphone. The mi-
crophone generates an analog signal, which is converted to a
digital signal by an audio interface. The audio interface we

Music
Interpretation

Decision and
Song Selection

Speech
Recognition

Voice
Synthesizer

Feedback

Right Hand
Firmware

~

Fig. 7. Control System

Speech

— i Recersed Recognition

Advanced
Linux
Sound
Architecture

Audio
Interface

GPIO
Interrupt

Text

Feedback

Voice Response

Decision

Synthesizer

Fig. 8. Voice Control

used includes a mic preamp and ADC. It is ALSA-compatible
so that we could use it on an Edison. ALSA, also known as
Advanced Linux Sound Architecture, is part of Linux kernel
that provides an API for audio interface drivers [5]. It also
provides front-end software such as aplay and arecord.

We added a button to initiate the voice control. When the
user presses the button, the system starts recording at 44.1
KHz sample rate. Once the user is done, he or she can release
the button to stop, this is implemented with GPIO interrupt.
When the system detects a falling edge, it kills the recording
process and the captured audio is saved as a WAV file.

A robust speech recognition system is not easy to build from
scratch. Instead, our system uses Google Speech Recognition
APIL. First, the system converts the WAV file to a FLAC file
since Google only accepts audio files in FLAC format. Then,
it sends the audio file as an HTTP packet to Google servers.
This leads to a system limitation in that our robot requires an
Internet connection to have voice control.

Google Speech Recognition returns the generated text,
which is passed to a module that determines the response
and makes decisions. Our robot does not have a true natural
language processing, which is based on statistical machine
learning. Natural language processing is also a difficult task
and out of this project’s scope. Instead, our robot is given
a simple logic to process the commands. Some simple com-
mands such as "What is your name?” are directly compared
to predefined strings. In other cases, Robot Hendrix parses
the command by words and looks for keywords. For instance,
if the given command is “Let’s jam.”, it detects the keyword
”jam” and decides to play a blues jam track.

The returned text from the response/decision module is
fed into a voice synthesizer. We decided to use a compact
open source software called eSpeak. eSpeak uses a formant
synthesis method, which is based on additive synthesis and
an acoustic model rather than human speech samples [6].
A formant synthesis method made eSpeak a very compact
voice synthesizer, but it is not as natural or smooth as larger
synthesizers which are based on human speech recordings [6].
The synthesize audio is converted to an analog signal in the
audio interface, which includes a DAC. The analog signal is
amplified by the audio interface’s on-board headphone amp
and played on a speaker.

2) Music interpretation: As mentioned earlier, we wanted
to make our robot to behave as human as possible. Thus, we
designed a music interpretation system for our robot so that
it can interpret music and actuate based on the interpreted
musical information rather than make a series of hard-coded
actuation commands. Robot Hendrix can read music in the in-
dustry standard digital format for music called MIDI (Musical
Instrument Digital Interface). MIDI files are easy to generate.
There are software tools available to transcribe music and save
it as a MIDI file. You can also use a midi controller to record
music and save it as a MIDI file. Our robot is capable of
understanding MIDI files generated in any method.

Fig 9 illustrates our music interpretation system. MIDI files

pitch)
— Musical Note
tick
tempo — Timestamp
MIDI —>
resolution
—>

» Velocity
> Press/release

Fig. 9. Music Interpretation

consist of global settings such as tempo as well as series of
note events. Each note event contains pitch, tick, velocity,
press/release, note bending, fading, and other parameters. The
MIDI parser extracts necessary parameter values from the
global settings and each note event. As shown in Fig 9,
the necessary parameters are pitch, tick, tempo, resolution,
velocity, and press/release.

The pitch is given as a positive integer, which is directly
mapped to a musical note. For instance, the value of 41 is
mapped to F2 note. Incrementing the value by 1 shifts the
note up by a half step. So, the value of 42 is mapped to F2
note. Our robot is only capable of playing seventeen notes
between E2 and G4. The mapping function only maps pitches
that corresponds to the playable notes and mark non-playable
notes as "NA”.

The MIDI provides a relative information on when each
note event occurs. This is given as a tick. A tick represents
the lowest level resolution of a MIDI track [7]. Ticks alone
do not provide enough information on when exactly events
occur. In other words, we know how many ticks we have at
the instance a note event occurs, but we do not know how
much time each tick represents. We need two more types
of information, tempo and resolution, to find time. Tempo is
given as Beats Per Minute (BPM), which is the number of
quarter notes in a minute. Resolution is the number of ticks in
a quarter note. From tempo, we can calculate the duration of a
quarter note. The quarter note duration and resolution are used
to calculate the duration of a tick. With the number of ticks
and the duration of each tick, we can generate timestamps for
every note event.

As Fig 9 suggests, the velocity and press/release information
is used directly. Velocity is how hard a note is played, with a

higher value means the note is played harder. Press tells when
a note starts playing and release tells when the note stops
playing.

3) Actuation command control: The interpreted music is
then passed to the actuation command control system, which
converts musical information into a series of actuation com-
mands for the left hand and the right hand. Fig 10 illustrates
how this is done. We have a timer to handle note event at the

Interpreted
Music

Fig. 10. Actuation Command

correct time. For instance, if we have a press event at 0 second
and a release event at 2 second, first, the control system sends
actuation command to both left hand and the right hand at 0
second to press and play the note. A timer is used to wait for
2 seconds and then send another command to the left hand to
release. The left hand/right hand coordination module splits
the interpreted music into the left hand relevant information
and the right hand relevant information. The information is
then mapped to guitar relevant information, which involves
converting musical notes into where to press with the left hand
and what strings to pluck with the right hand.

If the robot is playing the same note two times consecu-
tively, it would press and pick the string, then release, then
press and pick, and then release again. This is not desirable
and affects the sound of the guitar. What we want instead is
to press down on the string and pick twice before releasing
it. To address this, it must detect consecutive notes and
remove release events before the system divides the musical
information into the left hand part and the right hand part. If
there is two consecutive same note, the release event of the first
note is at the same timestamp as the press event of the second
note. Our system is capable of detecting this and instead of
processing each note event at a time, the system creates a
dynamic buffer to store all note event at the same timestamp.
Then, the note events in the buffer are processed together
to find the optimal motion to be done at every timestamped
instance. The example above is optimized by replacing the
first release event and the second press event into hold events.
This results in the desired actuation sequence.

C. Right hand

For the right hand, our goal is to design a system that can hit
the correct strings in time and at the desired speed and angle.
Moving the pick in a similar manner to a human right hand
is critical to generating an authentic sound. We will discuss
more details in the following sections.

1) mechanical: One method of implementation is using a
kinematic chain with a guitar pick as an end effector. By
adjusting the angle between links on the chain we can move
the pick in the right trajectory. After evaluation, this approach
has the benefit of generating a more human like strumming
trajectory on strings since the movement of the end effector
can fully be controlled. However, this approach has has many
issues. First, it has the potential for a noticeable delay between
two strums which means the song cannot be played in rhythm.
Second, to have an end effector hit just on one or two strings
when playing a song, we need very precise control, which
cannot be implemented easily by servos and arms within our
budget.

For our second method of implementation, we decided to
use six actuators, one for each string. Although this cannot
give us the optimal strumming trajectory, it gives us a very
reliable solution. This design gives us guaranteed timing to
pick one or multiple strings. Since the actuator is very close
to the surface of strings it only needs a very small angle of
rotation to pick a note.

For the actuator, we choose to use servos because they
compact enough to easily fit in position over the strings.
Moreover the feedback control feature in servos allow us to
efficiently and precisely control the rotation angle.

Once we decided to use servos for the actuators, we
designed a 3D printed frame which can be easily mounted
on top of the six strings. The frame holds two rows of servos
with one row holding the servos for the even numbered strings
and the other row holding the servos for the odd numbered
strings. This approach gives us the space needed to pick the
strings.

2) electrical: Since we decide to use six servos to hit every
one of the strings and each servo has one signal wire, we
need to generate six PWM signal simultaneously to effectively
control them and play in rhythm. The Edison board that is
used for central control cannot be directly used because it only
supports 4 PWM pins and 11 of the 13 GPIO pins are used
to control the left hand. Because of this, we decided to use an
Arduino Uno board to generate the six PWM signals according
to the data sent from Edison over UART. UART was used
because this it gives us simple and reliable communication
from Edison to Arduino.

To supply the six servos with stable power, just using the
power supply on the Arduino is not good enough since the I/O
pins can only supply at maximum 50 mA of current and the
LDO on the arduino can only supply a max of 150 mA which
is much lower than what we need to six of them. Because of
that, we decide to use an external power supply to generate 5
volts DC and connected it to all six servos.

Servo motors have one ground wire. The ground wire should
be connected to a ground pin on the Arduino board. Since we
are using an external power supply, we need to make sure
its ground wire is also connected to the ground pin on the
Arduino board.

The signal pin is typically yellow, orange or white and
should be connected to a digital pin on the Arduino board.

One issue we considered when designing the power supply
circuit is voltage sag. At the moment when the servos start to
move, they draw a lot of current from the voltage source. This
can cause the voltage output to sag or even brown out. To make
the power supply stable, we connected a decoupling capacitor
across each servos’ power and ground wires to minimize the
voltage sag.

The electric guitar is a good music instrument to be played
by a robot since the sound can be amplified by a speaker.
However, since the guitar uses inductive pickups to detect
string vibration, the EMF generated by the servos can also
be captured by the pickups leading to noticeable servo noises
at the output. By wrapping each servo with a piece of
conductive material to block the magnetic field we can create a
pseudo Faraday cage to block EMI from the servos. We used
aluminum tape is an easy way to wrap conductive material
around the servo.

| |
Tt

\||—<

Fig. 11. Right Hand Power Supply Circuit

D. Left hand

The goal of the left hand is to replicate the way a human
hand is able to press down on the guitar strings at different
frets to form chords or selected notes when the strings are
strummed or picked by the right hand. In order to play a wide
range of songs, we picked 11 finger positions for the left hand
to press, combinations of which allow us to play 7 of the most
widely used chords. The chords G, Em, C, Am, D, Dm and
F can all be played from a mix of the finger positions along
with other, lesser used chords, such as Dsus4 and Em7. The
11 finger positions can be seen in the figure below. In order to
reach our overall left hand goal, the following tasks need to
be accomplished. First we need actuators to push down on the
strings at all 11 positions we designated. The actuators have
to be fast enough to quickly change chords, strong enough to
firmly push down on the strings so that we get a clear note,
small enough that we can fit all 11 on the fretboard and able
to retract from the strings so that a higher note on the string
can be played. In addition to the actuators themselves, we
needed a method to hold the actuators in the correct position
in relation to the guitar. Finally we needed a method to control
the actuators electronically.

1) mechanical: The first step of our left hand design
is part selection. There are two potential design directions
we considered for the actuators to obtain controlled linear
motion, pneumatic actuators and solenoids. Pneumatic actu-
ators usually consist of a piston inside of a cylinder that is
forced to move in a desired direction using a compressed gas,
typically air. For our project, we would use a double-acting
cylinder which allows us to extend and retract the piston using

Fig. 12. Finger Positions

a solenoid valve to control the direction of actuation. The
solenoid valve allows us to control the actuation electronically
by feeding compressed air onto one side of the piston while
releasing air from the other side. In addition to the actuator and
the valves used to control them, a typical system also needs a
compressor to compress air to the proper pressure and a tank
to store the compressed air. Plastic tubing is used to allow
air to flow between all of the components. The advantages
of using pneumatics are that very small cylinders are readily
available, the typical actuation distances are larger than for
solenoids and you can easily adjust the force that the actuator
exerts by changing the pressure of the gas used in the system.
In addition the amount of power needed for normal operation
is fairly small compared to using solenoids. The most critical
disadvantages of using pneumatic actuators are the high cost
of components, as well as the amount of space required for
the control and supporting infrastructure.

Linear solenoids usually consist of an inductive coil that
is wound around a ferromagnetic armature, with the armature
free to move forward in back through the coil. When a current
is applied to the coil, a force is applied to the armature

proportional to the current and position of the armature. Most
solenoids have some sort of return mechanism, typically a
spring, so that the armature moves in the desired direction
when current is applied and then returns to its initial position
when the current is cutoff. The solenoid is typically controlled
by a relay or transistor which will be discussed further in
the electrical section. Solenoids are cheaper than pneumatic
actuators and can be controlled electronically, but tend to
be bigger and draw a lot of current. They also actuate very
quickly. The greater the distance a solenoid actuates, the
weaker the amount of force it can can apply becomes. This
problem can be addressed to some extent by using Pulse Width
Modulation (PWM) to increase the total amount of force the
solenoid applies, however this can drastically increase the
current consumption of the solenoid. For example, for the
solenoid we used, at a 2 mm actuation distance, the force
applied using continuous current is 260 grams while the force
applied using 10% duty cycle PWM is 1200 grams according
to the data sheet. This a substantial improvement with the force
applied increasing by a factor of over 4.5 by using PWM.
The drawback to this though is that while a solenoid using
continuous current would pull 5.5 Watts, a solenoid using 10%
PWM would pull 55 Watts of power at the same voltage, 10x
what the continuous current solenoid would pull. The increase
of power needed by using PWM is over double the increase
of force achieved.

The small size of the pneumatic actuators combined with
the longer actuation distance and the ability to adjust the force
exerted by the actuators would allow our design to be more
straightforward and flexible, making them an ideal choice.
Unfortunately, one of the main considerations for our design
is budget, and to stay within our budget using pneumatic
actuators we would have to scale back on the number of finger
positions we cover. This would, in turn, reduce the number of
chords and notes available, limiting the types and amount of
music we can play. Solenoids allow us to hit all 11 finger
positions, giving us the musical flexibility we want, while
staying within our budget constraints.

One of the most important aspects to look at when choosing
a solenoid is the amount of force it can exert. In order to press
down on the guitar strings in the region of the guitar we want
to play on, we need to exert a force of at least 80 grams. Any
solenoid we use needs to be able to apply at least that much
force at a distance of 2 to 4 mm in order to not interfere with
the string when the solenoid is in its initial position and be
able to press down the string to the fret when it is actuated.

Space constraints also play a large role in picking a solenoid.
As the strings travel from the top of the neck to the base of
the guitar, the space between the strings widens as does the
width of the neck. In addition, the spacing between the frets
gets narrower as you move from the top of the neck to the
base. The spacing between the strings is between 7 and 8 mm
for the first 7 frets and the spacing between frets changes from
36 mm to 22.9 mm in the same stretch. Because the smallest
solenoids that we could find that can exert enough force are
larger than 8 mm, some offset is needed to fit the solenoids

in proper position.

Solenoids typically come as either tubular or open frame.
A tubular solenoid allows you to panel mount the solenoids,
while an open frame needs a more complicated method of
attaching the solenoids. Because of this extra complication and
the fact that the open frame solenoids we found were larger,
we decided to use tubular solenoids. The smallest tubular
solenoids we could find that exerted enough force at distance
were Sun Magnet SMT - 1632S Solenoids, with an outer
diameter of 16mm and an applied force of 100 grams at 4
mm.

The other part of the mechanical design is the frame
holding the solenoids in position above the strings. The most
straightforward design we could think of consists of two plates
offset by standoffs and held together with screws as seen in
the figure below. The top plate has holes drilled into it for all
11 solenoids as well as for the screws to attach the plate to
the standoffs. The bottom plate acts as a base.

Fig. 13. Model of Frame Design

Because of how much bigger the solenoids are compared to
the spacing in between the strings, solenoids within two strings
of each other have to be offset vertically along the fretboard.
If possible, this should be kept to a minimum since the further
away a string is pressed from the fret, the more likely it is to
make a buzzing sound when picked. In the initial design, as
seen in the figure below, the solenoids were able to fit so that
every finger position is covered, but some armatures are very
far from the frets and the solenoids are very close together,
some with less than 1 mm spacing between them. Since the
section of the solenoid that mounts is only 11 mm in diameter,
this leaves less than 6 mm between some of the holes drilled
in the plate to mount the solenoids.

To improve the spacing between the solenoids as well as
their proximity to the frets, we came up with a new design
where the solenoids on even numbered strings stay in their
normal position while solenoids on odd numbered strings are
put 4 frets down from their normal locations. By detuning the
odd number strings 4 half steps and putting a capo that only
affects the odd numbered strings on the 4th fret we increase the
pitch on those strings by 4 half steps, effectively allowing us to
achieve normal tuning while increasing the space between the
solenoids. This also allows us to keep the armatures close to

Fig. 14. Initial Solenoid Positioning

the frets to avoid buzzing and increases the distance between
holes in the plate to over 8.5 mm. This can be seen in the
figure below.

RLIRG: S

Fig. 15. Final Solenoid Positioning

Both plastic and aluminum were considered as the base
material for the frame. By making the frame out of plastic
using 3D printing, we could easily go through multiple design
iterations giving us more flexibility to address unforeseen
problems. It also allows us to be fairly precise since we can
configure all the dimensions using 3D modeling software. The
downside to plastic however is that it is weaker than aluminum
and the 3D printer readily available to us has a hard time with
the resolution of small holes. Aluminum is strong, lightweight
and cheap, but needs to be cut and drilled to be made into
the frame that we want. We chose aluminum as our material
because the distances between holes is very small and we were
concerned about the plastic cracking under the pressure when
the solenoids press against the strings.

2) electrical: The design goal of the electrical system for
left hand is to provide sufficient voltage and current to drive all
the solenoids needed during a performance. Therefore, our first
step is to make sure that the chosen power adapter is capable of
supplying such voltages and currents, and the wires picked are
thick enough to tolerate the current draw. From the datasheet,
each solenoid requires 12V and at least S00mA to operate.
However, at least three different solenoids will be needed at

the same time while chords are being played. This imposes
the lower limit for our choice of adapter and wires. Since 3
simultaneous solenoids require about 1.5 Amps of current, we
chose a 12V, 2A adapter and wires that can tolerate 3.5A.

Next, in terms of controlling the solenoids, we have a choice
between PWM signal and continuous signal that can be output
by GPIO pins. According to the datasheet, solenoids can
output stronger forces when inputs are PWM signals with the
proper period. This may be useful depending on the strength of
the solenoid return mechanism. However, due to the fact that
Edison only has four PWM pins, the overall circuit design will
be more complicated if we adopt this method. For example, we
will need to use an external PWM board or IC to generate more
PWM signals. In order to select the correct PWM pins, we may
have to set up communications between this external board
and Edison as well. This will introduce higher complexities to
the overall circuit designs and make the system more error-
prone. As mentioned above, solenoids driven by PWM waves
can draw as high as ten times more power than when driven
using continuous signals. This not only puts extensively more
pressure on the amount of current provided by the power
adapter, but can generate a considerable amount of heat at
the same time. Since our system ended up working with the
amount of force produced when using continuous current, that
became our final choice.

For controlling the high voltage circuit with the low voltage
outputs from Edison board, we have also tried two different
methods. First, we were considering using a relay board. The
relay board has 16 relay module on it which are electrome-
chanical switches that can be controlled by a 5V header pin.
The relay board gives us a easy solution to control all eleven
solenoids at the same time. Also, because relay is a mechanical
switch in essence, when it is at off state, it has a very high
breakdown voltage and, therefore, can protect the rest of the
circuit. However, there are also drawbacks associated with
it. It cannot react swift enough to the control commands.
The fastest reaction time is around 2ms, but sometimes we
need the solenoids to react faster. At the same time, it is
very noisy during operation. The noise may affect our guitar
performance and we may have to find other ways insulate
the noise. The other option for controlling the high voltage
circuit is to use a transistor. Both MOSFETs and BJTs act
as switches, allowing us to control whether current is passed
through or not depending on the voltage applied to the gate or
base terminal. Both transistors allow for much faster switching
than the relay, although the BJT disipates more current across
it and switches slower than a MOSFET. In this design, we
used 12 N-channel MOSFETs to instead of the relays. The
details will be discussed in the implementation section.

3) control: The left hand control module is relatively sim-
ple. It listens for a command from the control layer’s, which
contains the information of (string number, fret number), and
then triggers the operation of corresponding solenoids.

Fig. 16. 16 Channel Relay Board

IV. SYSTEM IMPLEMENTATION

A. Control

The control system is hosted on an Intel Edison, which run
embedded Yocto Linux. Having Linux enables many different
options for software implementation. In the interest of saving
development time, the software side of the control system is
implemented in Python. Instead of implementing from scratch,
we also utilized Python libraries and software.

1) Voice control: In order to have voice control, our robot
must be able to listen and speak. This requires hardware to
capture and play audio. We implemented this with a micro-
phone, an audio interface, a speaker, and other miscellaneous
components. The complete setup of the hardware is shown in
Fig 17. The box-shaped component on the left is the speaker.
The component with six knobs in the center is the audio
interface. Lastly, we have a microphone on the right.

The audio interface we chose is Lexicon Lambda, which
can be connected to the Intel Edison via USB. As mentioned,
the Lexicon Lambda is ALSA-compatible. We tested its com-
patibility with a software tool provided by ALSA called aplay.
”# aplay -1IL” command displays all hardware audio interface
devices ALSA detects. Fig 18 shows the list of audio interfaces
available with our setup. We wrote a simple configuration file,
as shown in Fig 19 to set the Lexicon Lambda as the default
device.

Another ALSA tool, arecord, is used as the audio recorder.
When a user presses the button, the Python program makes
a system call to start an arecord process to record audio and
save it as a WAV file. When the button is release, the program
kills the process.

Fig. 17. Audio Hardware Setup

sk List of PLAYBACK Hardware Devices sk
card @: Loopback [Loopback], device @: Loopback PCM [Loopback PCM]
Subdevices: 8/8
Subdevice #0: subdevice #9@
Subdevice #1: subdevice #1
Subdevice #2: subdevice #2
Subdevice #3: subdevice #3
Subdevice #4: subdevice #4
Subdevice #5: subdevice #5
Subdevice #6: subdevice #6
Subdevice #7: subdevice #7
card @: Loopback [Loopback], device 1: Loopback PCM [Loopback PCM]
Subdevices: 8/8
Subdevice #@: subdevice #0@
Subdevice #1: subdevice #1
Subdevice #2: subdevice #2
subdevice #3
subdevice #4
subdevice #5

Subdevice #3:

Subdevice #4:
Subdevice #5:
Subdevice #6: subdevice #6
Subdevice #7: subdevice #7

card 1: dummyaudio [dummy-audiol, device 0: 14 []
Subdevices: 1/1
Subdevice #@: subdevice #0@

card 1: dummyaudio [dummy-audiol, device 1: ((null)) [I
Subdevices: 1/1
Subdevice #@: subdevice #0@

card 1: dummyaudio [dummy-audiol, device 2: ((null)) []
Subdevices: 1/1
Subdevice #0@: subdevice #0

card 2: Lambda [Lexicon Lambda], device @: USB Audio [USB Audiol
Subdevices: 1/1
Subdevice #0@: subdevice #0

Fig. 18. List of Detected Audio Interfaces

The WAV file is converted to a FLAC file, which is then sent
to Google Speech Recognition web service as an HTTP packet.
This process is done with the Python speech recognition
package, which provides functions that further abstract the
Google Speech Recognition API. The response from the web
service is stored as a string for the response/decision module
to process.

The response to the command is returned as a string and
rearranged into a Linux command for the control program to
make a system call with. With the Linux command, we run
eSpeak and pass the response as its argument.

pcm. !default {
type plug
slave {
pcm "“hw:2,0"

}

ctl.!default {
type hw
card 2
device 0

Fig. 19. Audio Hardware Configuration

2) Music interpretation: All MIDI files are stored in a
directory on the Intel Edison for the control system to read
from. It is easy to add more MIDI files to expand our robot’s
song repertoire. Although any method to generate MIDI files
is supported, we used a software application called Guitar Pro
to transcribe songs and save them as MIDI files.

We used a Python MIDI library function to read the MIDI
files. As it reads a MIDI file, it will reorganize it into a list of
objects. We created a program that extracts useful parameter
values from the objects. It translates the parameter values into
timestamps, notes, velocity, and press/release. These translated
values are rearranged into a data structure that is understood
by our robot. An example of rearranged music data is shown in
Fig 20. Each row corresponds to note event. The first column

'ON']

'NA', 'OFF']
72, 'ON']
'NA', 'OFF']
80, 'ON']

[0.0, 'E2', 72,
[0.49968, 'E2',
[0.49968, 'G2',
[0.99936, 'G2',
[0.99936, 'C3',
[1.2492, 'C3', 'NA', 'OFF']
[1.2492, 'B2', 8@, 'ON']
[1.4990400000000002, 'B2',
[1.4990400000000002, 'A2', 80,
[1.99872, 'A2', 'NA', 'OFF']
[1.99872, 'A3', 64, 'ON']
[2.4984, 'A3', 'NA', 'OFF']
'G3', 64, 'ON']
IG3I'
'C4', 88,
'NA', 'OFF']
'D4', 88, 'ON']

'D4', 'NA', 'OFF']
'E4', 88, 'ON']
'"E4', 'NA', 'OFF']
'F3', 88, 'ON']
[3.7476, 'F3', 'NA', 'OFF']
[3.7476, 'E3', 88, 'ON']
[3.9974399999999997, 'E3',

'NA', 'OFF']
'ON']

[2.4984,
[2.9980800000000003,
[2.9980800000000003,

'NA', 'OFF']
"ON']

[3.123,
[3.123,
[3.24792,
[3.24792,
[3.49776,
[3.49776,

IC4I'

'NA', 'OFF']

Fig. 20. Rearranged Music Data Example

is the timestamp. The second column is the note. The third
column is the velocity. The fourth column is press/release.
For instance, [0.49968, G2, 72, ON] means Hit G2 note with
velocity value 72 at 0.49968 seconds.

3) Actuation command control: The actuation command
control system is implemented in pure Python. It reads the
music data structure and computes the time duration between
two consecutive note events. If the time duration is 0 second,
it increments a counter. The counter value is used to find the
events that occur at the same instance and store them into
a buffer. A nested loop checks all events in the buffer and
finds all notes that are played multiple times consecutively.
This process is not as simple as comparing one event to the
next event. We can have multiple “press” events at the same
instance when the robot is pressing multiple string at once. The
algorithm must search through the whole buffer. The redundant
consecutive notes are marked as "hold” events.

The music data is divided into the left hand data and the
right hand data. The timestamps are necessary for both hands
as the left hand needs to know when to press/release and
the right hand needs to know when to pick. The notes are
necessary for both hands as the left hand needs to know where
to press/release and the right hand needs to know which string
to pick. The velocity is only relevant to the right hand control
because the note velocity determines how hard the string is
picked. Press/release information is necessary for both hands
as it tells the left hand whether to press or release and the
right hand whether to pick or not.

The note information is mapped to the string and fret
numbers for the left hand control. The left hand control system
is modular and only knows what string and fret to press on.
The mapped string number and the fret number is arranged
along with press/release/hold into a list, which is passed to
the left hand control firmware at the correct time based on
the given timestamp. The note information is also mapped the
string numbers for the right hand control. The string number
is passed to the right hand control firmware at the correct time
based on the given timestamp.

B. Right hand

1) mechanical: Since each servo is only 9 grams, the total
weight can easily be supported by normal plastic material.
Moreover, to build a reliable frame with precise servo posi-
tions, it requires an efficient way to build new frames based
on the adjustment made on the last version. Based on these
two reason, we decided to use a 3D printer to implement our
design.

To generate the 3D model, we used SketchUp which is an
software that is free and easy to use. Since the space between
two adjacent strings is too small to fit adjacent two servos,
we decided to use two rows of servos to eliminate the picking
interference. As you can see in the figure below.

The arms on the servos doe no have a good shape to
effectively pick strings and since it’s too short, the linear
velocity at the end of the arm is not big enough to generate the
sound. To solve this, we mounted a guitar pick on each of the

servo arms. To make the two separate pieces connected tightly
together, we need to use screws. Since we want to make them
all have the same length so that they can generate a uniform
sound, the drill position on all the picks needs to be the same.

Fig. 21. Servo Arm Shape

When human being plays guitar, they usually use hands to
mute the sound when it is needed. To let our robot have the
similar ability, we paste a thick piece of tape at the end of the
string to dampen them and reduce the time the strings vibrate.

Fig. 22. Right Hand Frame 3D Model

2) electrical: All servos are connected in parallel with a 5V
DC voltage source and a ground pin on Arduino board. The
signal wire between power and ground wire is connected to
five PWM pins on the Arduino board. To prevent the voltage
sag , every servos’ power and ground wires are also connected
with a decoupling capacitor. The signal wire of every servo is
connected to one of the PWM pins on the Arduino board.

3) control firmware: The control of the six servos are done
by the Arduino board. We wrote firmware on the Arduino

ofI}o

5“ O 10
=
tf

3o

BlueSninr

|

0
=

|
DESO

b
e ro0Cc000"

Fig. 23. Right Hand Power Supply

board which allows it to interact with the higher level control.
In the firmware, we provide two kind of functions. First one
is for picking a desired string. We first map every string to
its respective servo. To let each servos’ arm start to pick from
the appropriate position, we set 6 offset variable to adjust the
initial configuration of the servo. During the setup, we also
need to connect the correct PWM pin number with the correct
servo. This is done by the function attach(int PinNumber) in
the servo library.

After the setup, to we address the complication of control-
ling the servo according to their previous position. This is
necessary because after every strum, different servos arms will
be at a non-uniform position. So, we set a flag for every servo
as a reference to their current state. When the flag is one, it
means it’s in its most right position. Negative one means the
opposite. After a pick function call to a servo, their state is
multiply by a negative one. In the pick function, it will check
servo’s current state and do the right rotation.

Another function provided by this framework is for strum-
ming. To get the closest performance effect, we separate the
strumming functions into up strumming and down strumming.
That is because when a human strums the strings the effec-
tively pick each string in order with a small delay in between.
To fully mimic this behavior, we add a small delay in every
pick function with a down strum starting from the top string
and an up strum start from the bottom string. For even more
accuracy, we multiple that delay with a scale number passing
from higher layer of control. For example, if the robot is
playing a fast song, the delay in the strum needs to shrink.

C. Left hand

1) mechanical: To find the exact locations needed for the
solenoids and standoffs, we first modeled the guitar neck in
Sketchup. We then modeled the actuators and moved them into
the correct position on the neck so that the armatures are as
close to the frets as possible while maintaining at least 3 mm
between the solenoids. The standoffs were positioned so that

they hugged the neck of the guitar. A model of the standoffs
and and armatures was created based on those positions and
3D printed. It was then placed on the guitar neck to confirm
the locations. Once the position of all the solenoids and the

-

Fig. 24. Model and Print of Solenoid and Standoff Placement

standoffs were finalized, we found the center point of each hole
and then created a mechanical drawing in AutoCAD to use
when machining the aluminum for the frame. The mechanical
drawing can be seen in the figure below.

© 0
0.0 0

0125 o125

Fig. 25. Mechanical Drawing of Left Hand Frame

To make the frame, first the two 6 x 12 aluminum plates
were cut down to 3.5 x 9.25 using a shear. Next the two
plates were stacked together and clamped, and the four screw
holes for the standoffs were drilled. Using a mill with an x-y
coordinate display, the holes were then drilled in the top plate.
Each hole was drilled 3 times using progressively larger drills
bit to achieve the 7/16 opening and then cleaned up using a
dremel. The standoffs were then attached to the base plate
using 4 4-40 screws and the solenoids mounted to the top
plate.

One of the biggest issues we faced with the solenoids is that
they didnt come with any return mechanism. To address this,
we first ordered springs that fit the armature, however they
had a spring constant of .9 1b/in or 157.6 grams/mm. With
these springs all of the force the solenoids output is used up
compressing the spring even at the minimum 2 mm distance.
We searched for springs of the appropriate size and spring
constant, but they were unavailable in such small quantities.
Instead we discovered some foam around the lab and found it
to be an ideal replacement for the spring, easily compressible
but able to return to its initial height after being compressed.

We also had an issue lining up the armatures to press down
directly on the strings without slipping. Since the armatures
are only 2.5 mm in diameter and both the armatures and the
strings are metal, the positioning precision required was hard
to achieve even with modeling the guitar neck and using the

Fig. 26. Preliminary Frame Assembly

mill. We cut rubber feet to size and epoxied them to the end
of the armatures. This gave us a larger area to hit the strings
as well as more grip.

Fig. 27. Left Hand Assembly

The final piece of mechanical design was to 3D print blocks
to hold up the neck and base of the guitar as well as the frame.
We used cardboard and sheets of paper to find the correct
height of the all 4 blocks and then measured them and created
models in Sketchup before sending them to the 3D printer.

2) electrical: The implementation strictly follows the de-
sign. For the MOSFET, we used a Sparkfun MOSFET break-
out board. It has screw terminals at both ends, which simplifies
our wire connections. Specifically, the positive end of the
power adapter is connected to the positive end of the solenoid.
The negative end coming out of solenoid is in turn connected
to the drain of N-channel MOSFET, and the source of the
MOSFET feed backs to the negative pin of the adapter. Lastly,
the gate of MOSFET is controlled by the GPIO pin of the

Edison board. The MOSFET are connected to the negative
pin of solenoid because N-channel MOSFET is more efficient
to pull down the voltage rather than pull up. All positive ends
of solenoids are daisy chained together so that they all share a
common VDD. All ground wires and the GND pin of Edison
board are also daisy chained to have a common ground. It is
also worth mentioning that we put a diode between the two
terminals of each solenoid to protect the rest of the circuit.
The helps protect the Edison from transient spikes that might
build up in the solenoids.
The schematic of the circuit is shown below:

Fig. 28. Left Hand Circuit Schematic

The actual circuit is shown in Fig 29 (The red breakout
board is one soldered by ourselves to make connections
between GPIO pins and MOSFET gate more portable):

Fig. 29. Left Hand Circuit layout

3) control: Given the tasks for the left hand control module,
the left hand low level control is implemented as a Python
function call. The module internally maintains a mapping
between the (String number, fret number) parameters and the
GPIO pin number for each solenoid. Whenever called, it will
turn on or off the required solenoid according to control layer
command using the mapping.

D. System integration

We decided to design the system to be highly modular with
interfaces between modules clearly defined beforehand. We
purposely did this so that each team member could work on
their own modules. More importantly, this makes the system
integration more easy as long as each module strictly follows
their interfaces. In fact, it turned out that this decision helped
us a lot during the final system integration.

Specifically, in terms of hardware, we wanted to keep the
hardware parts as few and simple as possible. Because the
Arduino Uno is necessary for right hand control and recording
devices are definitely needed to acquire the sound information,
we needed at least need these two components with addition
of Edison board. Next, in terms of the hardware interfaces
between them, the recording devices connect to Edison board
through USB serial port. We used a Lexicon Lambda Desktop
Recording device, and fortunately, the Edison Arduino break-
out board also supports USB interface.

On the other hand, the communication between the Edison
and the Arduino is up to us to choose. As mentioned earlier,
UART interface became our final choice. One competitor in
this case is I2C connection, which is also a common used
interface for short distance communication. 12C requires two
pull up resistors to operate adding additional parts to our
design and since it is half-duplex issues of bus contention
can arise unless properly managed. At the same time, UART
can perfectly do the job with two wires and is full-duplex.
Pin0 and Pinl on both the Edison and Arduino are reserved
to support UART communications so we simply crossed and
connected them together.

For the design of the software, in general, the whole robotic
system can be divided into three main parts, that is, the
control layer, left hand module, and right hand module parts,
in which the control layer can be further divided into two
subparts - voice control module and command generation
module. The whole control layer and the left hand control
module can coexist as a single large Python program and sit
in the same Edison device. Therefore, the interfaces between
subparts of control layers as well as interfaces between the
control layer and left hand module are all simply our own
defined python API calls. We just need to make sure that
the parameters of APIs defined include necessary information
that the upper layer needs to pass down. For example, the
API for left hand module is defined as (String Number, fret
Number, Press/Release). The API details can be found in our
source codes. As mentioned, the right hand control involves
UART communications. Therefore, the interface is defined as
the format of data sent through the wires. Since we only need
to know which string to pick for the right hand, one byte of
integer value will meet the requirements. Data is sent over the
UART at a baudrate of 115200.

During integration, we encountered several challenges such
that the whole system did not work as we expected. Because
the issue can come from mechanical implementations, circuit
problems, or simply software bugs, every time we encounter

RS232

Control Layer Left Hand Module Right Hand Medule

Fig. 30. System Overview

problems, we need to troubleshoot methodically. Luckily, the
problems we faced were not too serious and were solved
relatively easily. One typical problem we encountered was
wiring issues due to a cold solder joint on the protoboard or
loose connection in screw terminals. Another problem was that
we had software bugs when parameters passed are in boundary
cases. We believe that our choices during the design phase
were very helpful in this case.

V. SYSTEM EVALUATION AND RESULTS

The system is evaluated with qualitative analysis and quanti-
tative analysis. The qualitative analysis is human evaluation, in
which our robot plays various songs and test whether humans
can recognize. The quantitative analysis is waveform analysis
on audio recordings of the robot’s playing. The waveform
analysis is performed with Audacity and Apple Logic Pro’s
Flex time tool.

A. Human Evaluation

Songs we tested are "Sweet Home Alabama”, "Let It Be”,
”You Shook Me All Night Long”, ”Wonderwall”, "La Bamba”,
“Fortunate Son”, and “Blues Jam”. The quality of the robot’s
performance was different for different songs. The table I
shows the reviewers’ average score in a scale of one to ten.

Song Average Score
”Sweet Home Alabama” 8

“Let It Be” 0.19

”You Shook Me All Night Long” | 8.25
”Wonderwall” 7.5

”La Bamba” 6.5

”Fortunate Son” 7

”Blues Jam” 9

TABLE I
PERFORMANCE EVALUATION

Songs with high scores are "Sweet Home Alabama”, ”You
Shook Me All Night Long”, and "Blues Jam”. These songs
generally have low notes and chord strumming with some note
picking. Another common characteristic is that these songs
are very rhythmic. "Wonderwall” and “Fortunate Son” scored
slightly lower because they were chord-only songs and it was
harder to recognize these songs. “La Bamba” scored lower
because this song lacks stacked notes. The right hand picks
better on some strings than it does on other strings. When it
plays multiple notes at the same time, the performance gets
evened out. Because every note in "La Bamba” is played by

itself, the some notes sound louder than others. As such, the
performance is uneven. “Let It Be” received a very low score.
The MIDI file for "Let It Be” covers both the chord and the
melody. Our robot is not very good at play melodies. If a
human player is given the music sheet for ”Let It Be”, he or
she would pick the notes in the melody harder than the notes
in the chords so that the melody is well heard. Our robot is
not capable of distinguishing the melody from the chord and
pick strings with different velocities. The melody in “Let It
Be” is in high notes, which aren’t played well. ”Let It Be”
does not a distinctive rhythm pattern like other songs do.

B. Waveform Analysis

First, we made the right hand to pick the same string as
fast as possible to measure the minimum note duration our
robot can support. The left hand speed analysis is omitted
because the servos on the right hand are the bottleneck of our
robot’s speed. We chose to test on the sixth string because it is
the thickest string and it is harder to pick than the others. The
open sixth string gives an E2 note, whose frequency is 82.4Hz.
In order to make the recorded waveform clearer, we applied
a low pass filter with the cutoff frequency at 90Hz. Fig 31
is the waveform of the recorded audio after applying the low
pass filter. Each burst represents a pick. We measured the time

Fig. 31. Picking at Maximum Speed Waveform

duration between two consecutive bursts. This time duration
represents the minimum note duration our robot can support.
The table II shows the time duration of the first six bursts in
the waveform. According the our measurements, it takes 0.2
second on average to pick once. In a music expression, the
fastest our robot can play is a sixteenth note at 75 BPM or an
eigth note at 150 BPM.

Burst Time duration (second)
#1 0.21
#2 0.19
#3 0.20
#4 0.21
#5 0.19
#6 0.19
[Average | 0.20 |
TABLE II

TIME DURATION BETWEEN EACH PICK

The timing analysis on our robot’s actual music performance
is as simple as that on repetitive picking. Fig 32 is the
waveform of an audio recoding of our robot performance on
the song "La Bamba”. Unlike the picking waveform, it is hard

Fig. 32. Waveform of Robot’s Performance on ”La Bamba”

to find the notes on the "La Bamba” waveform. Apple Logic
Pro’s Flex time tool comes in handy when finding beats in a
waveform. It adds markers to what it thinks is a beat. It often
misses some beats or adds a marker when there is no beat.
However, the tool finds the precise location of obvious notes.
Fig 33 is the waveform with the Flex time markers. As you

Fig. 33. Waveform Robot’s Performance on “La Bamba” with Flex Time
Markers

can see, most of the Flex time markers fit fairly well to the
musical grid on the top of the figure. Each tick on the ruler
represents a sixteenth note duration.

”La Bamba” only includes notes that are longer than the
minimum note duration our robot can support. The shortest
note in the song is 0.28 second long. We did the same
timing analysis on a different song that includes notes that
are shorter than the minimum note duration. "Sweet Home
Alabama” includes notes that are 0.15 second long. Fig 34
is the waveform of our robot’s performance on ”Sweet Home
Alabama”. The first note of the second bar fits to the grid fairly
well because the first bar does not include any short notes.
However, the second bar includes notes that are too short for

sweet home alabama

First note of 2nd bar|

First note of 2nd bar

Fig. 34. Waveform of Robot’s Performance on "Sweet Home Alabama” with
Flex Time Markers

our robot to play in time. The duration of these notes are 0.15
second and played with 0.2 second duration instead because
0.2 second is the minimum duration. There are five of these
short notes. Thus, (0.2s — 0.15s) * 5 = 0.25s delay added
to the second bar. In Fig 34, the marker position of the third
bar’s first note reflects this 0.25 seconds delay since each tick
is roughly 0.3 seconds in this case.

VI. LIMITATIONS AND FUTURE WORK

As section V suggests, Robot Hendrix has good perfor-
mance in general. However, there is room for improvement.
The voice control system requires an Internet access to send
the speech to Google Speech Recognition web service. There
is an offline speech recognition system called CMU Sphinx.
We have not been able to install it on the Yocto Linux image.
We can try installing Debian on the Intel Edison and then try
installing CMU Sphinx.

Since we are just using a simple one bit signal to control the
press and release of solenoid, every time the solenoid presses
on the string, it causes the string to vibrate and create noises
since the speed of it is not in control. In the future, we can
use PWM signal to slow the pressing with a low duty cycle.

The right hand picks strings by letting the servo rotate its
arm for a small angle. Such picking motion is different from
how human guitar players pick the strings. Humans not only
rotate their wrist but also move their whole arms. The servos
on the right hand picks the strings at a right angle while hu-
mans vary the angle to have different expressions. For instance,
if the pick is tilted during the contact with a string, the sound
has less attack leading to softer tone. Moreover, humans can
change how hard they pick and emphasise different notes while
strumming. In the future, we can focus on how to mimic the
human picking.

The right hand is the bottleneck of the maximum speed
our robot can achieve. The timing analysis in section V shows
that the shortest note duration our robot supports is 0.2 second.
Most guitar songs do not have notes shorter than 0.1 second.
If we add two servos per string, we can double the speed and
our robot will be capable of playing many more songs.

VII. CONCLUSION

This project gave our team great experience in system
design, electrical design and mechanical design and control

systems. By implementing our left hand, right hand and control
systems, we were able to realize a reliable robotic system, that
is able to successfully play songs on the guitar in rthythm and
interact with human beings through voice commands.
ACKNOWLEDGMENT

The authors would like to thank Professor Ankur Mehta.

REFERENCES
[1

—

parts, Aug 2014.

[2] R. Robinette How Guitar Tube Amplifiers Work,
https://robrobinette.com/How AmpsWork.htm.
[3] J. Lange FolkBox: more twang, more solder,

http://itp.nyu.edu/ jl4554/blog/?p=324, Apr 2012.

J. Hopson ROBOTIC PLAYER GUITAR ROCKS OUT ON ITS OWN,

http://hackaday.com/2015/04/11/robotic-player-guitar-rocks-out-on-its-

own/, Apr 2015.

[S] ALSA Project Advanced Linux Sound Architecture (ALSA) Project Home-
page, http://www.alsa-project.org.

[6] eSpeak eSpeak text to speech, http://espeak.sourceforge.net.

[7]1 G. Hall Python MIDI, https://github.com/vishnubob/python-midi.

[8] Intel Intel Edison Kit for Arduino Hardware Guide, Feb 2015.

[9] Intel Internet of Things: Using MRAA to Abstract Platform I/O Capabil-
ities,

[10] I. Baek and W. Kaiser Intel Edison Tutorial 5: SPI, PWM, and More
GPIO

[4

—

M. Starlin Guitar Parts, http://www.markstarlin.com/guitar/2014/8/28/guitar-

