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Summary. — In a collisionless plane discharge the stream of ions falling
to the walls is found to be stable against ion wave instabilities for the
case in which the ionization function is constant. If ionization in the
sheath region is suppressed, however, ion oscillations may be excited
in the sheath. Such oscillations would resemble those recently observed by
others.

1. — Introduction.

In a previous article (*) the author pointed out the possibility that ion
waves can be excited by the streaming of ions into a sheath, but that it is
in general extremely difficult to predict whether or not the stability criterion
is satisfied because the ion velocity distribution is ordinarily unknown. Tt is
the purpose of this article to investigate the stability of the ion stream in and
near a sheath in a particularly simple case in which the ion velocity distri-
bution is known. This is the case of a low-pressure discharge between infinite
parallel plane electrodes with a spacing much smaller than the ion-neutral
mean free path, so that the ions make no collisions before reaching the wall.
This theoretically simple example has previously been analysed by several
authors (*4) with the result that the ion distribution is independent of the
manner in which the ions are created.
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This distribution is shown in Fig. 2 and will be derived in Section 3. Since
the distribution is sharply peaked (in fact, it has an integrable singularity at
the maximum velocity) and the mean velocity is greater than (k7,/M)* even
outside the sheath, there is a possibility that the ion stream is unstable even
in the plasma region; this possibility will be discussed in Section 4.

tven if the ion stream were stable in the plasma, it may become unstable
in the sheath, where it undergoes further acceleration. If the growth rate were
large enough (Imw A~ Re w), an initial perturbation can grow perhaps 200 times
in the sheath, since the latter is of the order of 5 Debye lengths in thickness
in Hg (3). This possibility is discussed in Section 5. Of course in this case the
oseillations will not propagate backward into the plasma as was suggested
in ref. (*), since the walls are assumed to be cold and will not emit primary
electrons.

A recent experiment by OTT et al. (*) under conditions approaching those
considered here revealed low frequency oscillations in the sheath on an elee-
trically floating flat metal plate inserted into a low-pressure mercury discharge.
Thexe oscillations were detected by a thin electron beam traversing the sheath
in a direction parallel to the plate. A weak magnetic field was used to com-
pensate for the curvature of the beam caused by the electric field of the sheath.
Although the observations indicated that the oscillations were connected with
this magnetic field, it is interesting to see whether such oscillations would in
principle be expected in the absence of such a magnetic field.

2. — Statement of the problem.

Suppose that a plasma is created by an unspecified mechanism between
two infinitely large flat plates placed at #= 4 L. In practice, the ionization
is usually accomplished by a stream of fast electrons moving parallel to the
plates; but since we shall neglect both the density of the fast electrons and
the magnetic field of their current, one can imagine that ions are formed by
ultraviolet radiation.

Poisson’s equation is, in the usual notation,

d«Vv
(1) Qv — 47e(n; — ne) .

It will be assumed that the potential falls monotonically from 0 at the origin

2=0.

®) G. v. GIERKE, W. O1T and F. SCHWIRZKE: Proc. Fifth Intl. Conf. on Iowization
Phenomena in Gases, Munich, 1961 (Amsterdam); W. O1r: Thesis (Munich, 1961).
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[700] F. F. CHEN 3
If the electrons are nearly in thermal equilibrium, their density is given by
(2) He= % nyexp [eV/kT] |1 -+ erf 7\—6T (V—=T1,

where n, is the density at 2=:0, k7T is the electron temperature, and V  is
the potential of the walls. The term containing the error function takes into
account electrons lost to the walls under the assumptions that the electrons
have an exactly Maxwellian distribution at z = 0 and that they make no col-
lisions in a length L. The requirement on the mean free path is easily satis-
fied, but one would expect that the high-energy tail of the distribution would
be replenished by collisions, so that the two assumptions are not consistent.
However, the work of GABOR et al. (*) has shown that perhaps high frequency
oscillations in the wall sheath populate the tail of the distribution much faster
than collisions, thus accounting for the observed lack of depletion of fast elec-
trons. Thus the use of eq. (2) is experimentally justified, although it is un-
reasonable theoretically. Tn any case, the computation of the rate of replenish-
ment of the high-energy tail and of its shape, either by collisions or by oscil-
lations, is beyond the scope of this paper.

If the assumptions leading to eq. (2) are valid, the equality of ion and
electron fluxes to the walls requires that —eVy/kT be of the order of 5 in
mercury, so that we may safely replace the error function by unity in the
plasma region. In the immediate neighborhood of the wall, the electron den-
sity will depend sensitively on the mechanism of population of the high-energy
tail; for lack of a better approximation, we shall assume eq. (2) is valid.

As for the ions, if ¢(z) is the number of ions created per cm?® per s and if
the ions are created at rest and fall unhindered toward the wall under the
force of the electric field in the plasma, the jon density at any point is given by

,. o (aEa
(5) l?i(~) —/ ?,’(2, .Z/) y
where

1 2e Tl 7 4
(4) v @) = |5, (VE) — V()

We shall now employ the following dimensionless variables:

n=—eV/kT,

u=v/v,, vy= (2kT| M)},
(5)

& =z/h, b = (kT /4mnqe?)}

g = qh/n,

(°) D. GaBor, E. A. Asu and D. DracorT: Nature, 178, 916 (1955).
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4 ELECTROSTATIC STABILITY OF A COLLISIONLESS PLANE DISCHARGE [701]
Tu these units, velocity is directly related to potential difference: w’ = I
we combine eqs. (1)-(5), Poisson’s equation becomes

| a gy dy 1
(6) T _ j g A/ dn’) dy”

dé:z (7,} _nr),} 5 €xp [_ T/] [1 + erf ("Yw—’?)] .

This is a singular integral equation which can be solved numerically to give
7n(&) everywhere in the region i{z|< L. The boundary conditions are that
dn/dé =0 at z=0 and that the ion and electron currents to the wall be equal.
The ion current is merely J‘q(z)dz; i.e., the total number of ions created per
second. The electron current is given, as a function of #,, by a knowledge
of the shape of the high-energy tail of the distribution function. If the latter
is known, %, is determined by the equality of currents, and this boundary
condition assures a unique solution of (6). Since the electron current is not
known, however, there is not much to gain by an exact numerical computation.
We shall, instead, take advantage of the known analytic solution (3) for the
quasineutral region and use an approximate equation for the sheath region,
which, as indicated above, cannot be treated exactly in any case. In this
manner, we hope to gain more physical insight into the problem than by a
numerical computation.

Our procedure, then, is as follows. To determine whether an ion wave
instability is possible, we need to know the derivative of the ion velocity dis-
tribution. In the plasma region, where quasineutrality obtains, an expedient
way to find this is to invert the equation

7
To do this, we shall follow the procedure of HARRISON and THOMPSON (2),
but shall retain the correction term d2y/d£2, which measures the deviation
from neutrality. This correction term will be evaluated by using the quasi-
neutral solution. The latter is known to be inaccurate beyond n = 0.854 and
may not be sufficiently accurate even at lower values of #. Consideration
of the correction term will show that indeed as far as the derivative of the
ion distribution is concerned, the quasineutral solution is insufficiently ac-
curate beyond #=0.6. It will then be assumed that the quasineutral solu-
tion can be trusted up to n=0.6, and it will be shown that the plasma is
stable up to this point. Beyond 5 = 0.6, we shall use an approximate sheath
equation, in which the electron density is assumed to be given by eq. (2), and
the ions are assumed to be monoenergetic. This equation should be fairly
accurate except in the part of the sheath nearest the wall, where ion waves
do not have time to grow anyway, even if they could be excited.

o
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[702] F. F. CHEN

3. — The distribution funetions.

As shown in Appendix I, eq. (6a) can be inverted to give

aé oy (A

(@) mgn) g, = G o (4] + L,
where
(8) G) =7t —2F(n}),
(9) F(x) =exp[— (E:}J‘(‘Xp [t2]de,
and

Loy [ (o (a8) (@ )
10 L) = [ (&7} (9 .
(o o) ] (o) (@) (e

Here G(n) is the usual plasma solution which assumes strict charge neutrality,
and the other two terms in (7) are corrections due to the non-vanishing second

(¥9)
T
plasma
sheath

0
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Fig. 1. — The plasma solution for normalized

potential 7 as a funetion of normalized distance

& from the mid-plane, for the case g = 2/x.

The dashed curve shows schematically the
- sheath solution.

derivative of 7.
The solution of the approx-
imate equation

d
an g d—f — 260y,

for the case g = constant =2/n is
shown in Fig. 1. The curve for
the case when g is proportional
to electron density is quite simi-
iar (). At the point n =#,= 0.854
the function G(n) vanishes, and
hence, by (11), d&/dn vanishes and
the curve turns around. At this
point the quasi-neutral approxima-
tion has broken down, and eq. (6)
must be solved exactly. The
sheath solution presumably joins
on to the plasma solution in
some manner such as that de-
picted by the dotted line in Fig. 1.

-
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6 ELECTROSTATIC STABILITY OF A COLLISIONLESS PLANE DISCITARGE [703]

The value of 7, is independent of g(y), although the point & where # ==, may
vary with g(n); and it is convenient to think of » = .854 as the point of tran-
sition between the plasma and the sheath (%).

We wish to note in passing that although the function ¢(2) can be prescribed
by the experimentalist (by, say, shaping the beam of ionizing electrons), the
function g¢(n) cannot be arbitrarily chosen, since eq. (11) must be satisfied.
In particular, it is not possible to establish a cut-off #.< %, such that g(n) =0
for > n.. From (11) we see that if g(n) =0 when G(n) 0, dn/dé must va-
nish. The potential will then remain at #, until the sheath region near the
wall is reached, where eq. (11) can be violated. But in this case it will be
impossible to set up a sheath because the ions will not have enough energy
to satisfy the sheath criterion (7). This is not to say that there is no solution
to the problem. What will happen when one tries to establish such a cut-off
by concentrating the ionizing electron stream into a narrow beam at z=0
is that the potential will rise from 0 to essentially #, within the beam, so that
g(n) does not have a cut-off below 7,, and the potential will be nearly %, from
the edge of the beam up to the sheath at the wall. In this case the ion stream
will satisfy the sheath criterion. In this paper we shall be concerned not with
such pathological functions g¢(z) but with the physically interesting cases
g=—const. and g(n)~ e~ or cases in between; we may then assume that g
and all its derivatives increase monotonically with &.

If nyf,(n, w) is the number of ions per em?® with velocity between u and
u-+du at a point where the potential is », then we have

(12) = N, ‘fi(n, w)du .

0

In terms of the dimensionless variables (5), eqs. (3) and (4) become

(13) u(, &) = (n—n')k,

"9y’ (a&Jdn) dny’
14 = ny | IVIIESIN) G
(14) m=m| T

o

Since du=—i(n—7n')Fdy’, eq. (14) becomes

(15) 0= nO/Zg(r]’) (g_i) du

() F. F. CHEN: to be published; see also D. Boum: Characteristics of Flectrical
Discharges in Magnetic Fields, ed. by A. GUTHRIE and R. K. WARERLING (New
York, 1949), chap. 3.
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[704] F. F. CHEN 7

Comparison with (12) shows that

, dé&y’
(16) filn, w) = 2g(n") (d—f;) )

where n'=%n—wu? and the primed quantities are evaluated at the point at
which the ions were created in order to have velocity « at the point where
the potential is #.

When the plasma solution is valid, eqs. (11) and (8) give

) 211
(17) O, u) = - ;—217(.1‘)} ,
where
(18) T2y — ud .

Thus the ion velocity distribution is uniquely defined in terms of the poten-
tial everywhere in the plasma and is independent of the ionization function
g(z). This gives some hope of determining the stability of the ion stream
without knowing the exact experimental details.

0.4 j 0.854
/

t i

U 06 0.8 1.0

Fig. 2. — The ion velocity distribution f{°(y, u), corresponding to the plasma solution,
for various values of 7.

The function f(», #) is shown in Fig. 2 for various values of 7. This
distribution is peaked at high velocities, since it is apparent from Fig. 1 that
most of the ionization oceurs at small values of 5. The integrable singularity
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8 ELECTROSTATIC STABILITY OF A COLLISIONLESS PLANE DISCHARGE [705]

at u = u* arises because dy/dé = 0 at 5 = 0 for reasons of symmetry (cf. eq. (16)).
One notes alzo that df”/du vanishes at w =0 but that f* vanishes at u =0
only for n=r1,.
The correction to f® due to charge unbalance is defined as f*, so that
fi_f(m_}_fimy and, by (7),
2 2n
(19) P, u) = E[ {; (gé?é)o + Ly(a?)] .

If the electrons are assumed to be in thermal equilibrinm, their velocity
distribution is given by

£

(20) fol, ) = _exp [—n] exp [—e2u?],
T

where

(21) e = (m/M)*.

By using Appendix II, it can be verified that

Jf“” du = f du = exp [— 7] .

4. — Stability in the plasma.

A necessary condition (%) for the onset of an electrostatic instability is that
the total distribution function, weighted by the masses, have a minimum, or

af. | df,

22 hd hat'l
(22) du £ du

=0.

Let us first consider the lowest order distribution funection f”. Differenti-
ating (17) with the help of Appendix II, we have

o 0) __ (0) k_ﬁib ‘%7_‘
(23) P = uf. (g, w) = —~ (@) =

1 ¢ {0}/ ..
i afs (.1)} .

For the electrons,

23

d & 2g3 :
@) Ja=g g u)=——puexp[—glexp[—eu] ~ — awexp [l

(®) O. PENROSE: Phys. Fluids, 3. 258 (1960).
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[7¢6] F. F. CHEN 9

Because of the smallness of ¢, the last approximation is always good for the
velocities under consideration.

As a consequence of (22), ion waves will be damped by the thermal spread
of the ions unless

(25) r=" T

o __'fe1$§
From (23) and (24),
(26) R = ¢ 'ztexp ] [x® + 7fi®)] .

Since f®(x)>0, #2<n,, and >0 in the plasma region,
(27) R>e iyt = 430

for Hg. Hence the condition (25) is far from satisfied for any » or %, and the
ion stream is stable to this order of approximation. Since it is obvious that
an instability will occur near 7, if it is to oceur at all, a more realistic lower
limit for I can be obtained by including the factor e™, so that

(28) R>10° tor Hg.

We now consider the effect of the correction terms #” on K. One can see
qualitatively what this effect will be from eq. (16):

dn’ d !
2¢ =2 —
(29) fu du dn’ g

N daxg  dgdé
[(n)dn’}i w‘gdn“ dy dn|

Since it is evident from Fig. 1 that d2/dx® is negative, we have for constant g:
(30) fo = 4ugidz/dn> .

From the dotted line in Fig. 1 it can be seen that |d2£/dxn?| is smaller every-
where in the exact solution than in the « plasma solution »; hence f, is less
than f. The question is whether it can be a factor of 10% less. To estimate
this, we shall evaluate the correction terms ", given in eq. (19), using the
« plasma solution » of eq. (11). This first-order correction will diverge at %,,
but it will allow us to get a better estimate of f, near 7,.

It will be convenient for us to adopt a notation in which subscripts on 7
and £ indicate the order of differentiation by the other variable; thus
7, = dn/d§, &= d3§[/dn3, etc. We must now also specialize to the case g = con-
stant. If instead g~ ¢™, we note that the two terms in (29) are of the same
sigh and that they must add up to approximately the same amount as for
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10 ELECTROSTATIC STABILITY OF A COLLISIONLESS PLANE DISCHARGE (707}

g = constant, since f{’ is independent of g. Now as £(3) is corrected toward

the exact solution, it can be seen from Fig. 1 that |d2£/dn?| decreases but

|d&/dn | increases at any 5. Hence the two terms change in opposite directions,

and the correction to f, will be less for g~ ¢ than for ¢ = constant.
From (19), we have

duf 1 d
_ = _— I_§' o o ! .
N ) + 3 L,(n")

b4 2

d
(31) h ==t & (7' ~2052)e + Lo(n')] =

(32) & =2aF@nt, a=mlgL

The derivatives of & are easily found, and the derivatives of n are given by
d/dé=£71d/dn. As shown in Appendix ITI, the quantities appearing in P

il
are as follows:
7

10 T T
33)  —dy = lwgy?, B
X
d ~
by . " = 42 0t ! Os
(34) By I,(n') = 472g n Lyxn'), oL _
where
v .
35) L) = | tn—n') 4 10 r
0
(966,86 — 1286 — 8E&) dy' .
10 + .
The quantity K'(5'), defined in
¢q. (A.22), which appears in the in-
tegrand of I, can easily be computed o L |
as a function of %’ by use of the re- n,
cursion formulas (A.14); this is shown
in Fig. 3. The integrand is seen to
2

be positive and to go rapidly to infi- 100.2 o.‘4 o6 0.8
nity as n’ approaches 7,. An upper ' .

limit to I,(7) can be obtained by re- Fig. 3. - The integrand a2K'(5) (see text).
placing K'(n’) by its maximum value

K'(n) and taking it outside the integral. Moreover, I;(n') < Is(n), so that

n

(36) Li(n') <Is(p) < K'(n) | (n —n')~Fdn' = 2 K'(n) .

4539



[705%] F. F. CHEN 11

Since a2K'(n) > 10% for #’s of interest, I, is greater than 103n%¢%;!. Thus the
other correction terms in (33) and (34) are entirely negligible with respect
to I,.

In order to evaluate I;, we must find the magnitude of g. This can be
done by considering the ion flux to the wall. Since g is constant, this is just

Lin

(37) ji— Jgdf — gLh' .
In terms of £, it is also

I]% né

(0) 2 [ 1 YA i 2 AFpve S 1
(38) ufi” (14, 1) du = 7] ;—_,lf ()| xde = ;lf () ~ =
(1} 0

by eq. (A.10). Therefore
(39) al'=nag= Lh ~ 102

for L ~1cm and h ~ 102 cm.
Using (31), (34), and (36), we find that f{’ is negative and that

(40) —fa'< 7}*“‘ Pk (n)]

Comparing this with f for @ =102, we find that fP and {9 are of the same
order of magnitude for n~0.6. Therefore f,< 10% and R<1 only for 5 = 0.6,
and no ion waves are excited in the plasma up to % = 0.6. This result is not
surprising, since the average ion velocity there is less than the acoustic velo-
city. Beyond this point the theory is not sufficiently accurate to tell. How-
ever, eq. (30) indicates that the n—¢& curve must be very nearly linear in
order to decrease f,, by a factor of 10%, and it is extremely unlikely to be so
for any appreciable distance (in terms of a Debye length) unless q(z) were
especially tailored to give this.

Our neglect of the erf term in the electron density, eq. (2), can have little
effect in the plasma, where V—V, is large. This term can have no effect
on f,, since the latter relates to electrons traveling toward the wall, whereas
the erf term describes the deficiency of electrons traveling away from the wall.

5. — Stability in the sheath.

In the sheath region, # > #,, Poisson’s eq. (6) must be solved more exactly.
Let us first consider the case in which no ions are produced in the sheath.

4540



12 ELECTROSTATIC STABILITY OF A COLLISIONLESS PLANE DISCHARGE [709]

At p=rm,, the ion distribution is approximately

2

o 1
(41) fi“”(ﬁoa u) = ;{;_ ZF(x)} y

where r2?=y,—u% If there is no ion production in the sheath, the ion distri-
bution there will be given by the same expression (41), except that now « is
given by »*=7y—u? and f” vanishes for u® < y— 7o and u?>>7. This re-
presents a simple acceleration of each ion in the sheath.

At n=m,, f” is zero for u=0, as is shown in Fig. 2. At N>, £ is
still zero for w= u, = (y —n,)}, and the curve looks very much the same
except that it is slightly compressed. This is not true, however, for the deri-
vative of f®. From (23) we see that

19 (0)_% 8 0,
(42) = [x73 — afi®(x)] .

v

(0)
i1

At n=mn,, =0 for u =0; however, for » > 7,, # cannot vanish. At v — u
n 7o+ 3 ’ () o

min ¥
9
(43) 1= p M—n)tni>0.

Thus the slope of the shifted distribution is finite at its lower end. The expres-
sion (27) for R still obtains, so that at U= Uy, I2>103

This situation is shown in Fig. 4, in which the derivatives 1 0o, u), f9(n, u),
and f,(n, v) are schematically plotted (solid lines). The dashed line shows
what f, might look like in the sheath if the correction terms (19) were taken
into account. If there were strictly no ions produced in the sheath, the curve
would drop sharply to zero below u_, and would cross the line e~2f,, giving
a solution to eq. (22). However, the discontinuity is not physically real; in
practice, a small account of ionization in the sheath will extend /., smoothly
to zero as shown either by the dashed line, which does not cross &2 ' O
by the dotted line, which does. Since the magnitude of &2 ., has been ex-
aggerated a factor of 10* in Fig. 4, we would expect that the amount of ioniz-
ation in the sheath must be indeed small before an intersection can exist.

We next wish to show that an intersection cannot occur if the rate of
ionization in the sheath is the same as in the plasma, for the case g = cons-
tant. From eq. (30), we see that

(44) fu = dugly = dugn "y, .

It is evident from Fig. 4 that if an intersection is to occur, it will occur for
a velocity u close to zero. Therefore 5, %7, in (44) must be evaluated at a point

4541



[710] F. F. CHEN 13

very close to . The most unstable case is found by replacing " by 5. The
point, then, is to see whether or not there is a place in the sheath where #;°y,
is small enough to make R =1.

I

1'ig. 4. — The derivatives of the velocity distributions at the edge of the sheath and

in the sheath, drawn schematically. The slope of the electron curve has been greatly

exaggerated. The dotted and dashed portions of f;(s, u) show possible behaviors
near = 0 for varying amounts of ionization in the sheath.

To do this we shall solve an approximate sheath equation, in which the
ion distribution is replaced by a monoenergetic stream with the same average
velocity as the actual one. It can be shown that if the ion distribution has
a width 8, the ion density differs only by a term proportional to 62, so that
the monoenergetic approximation is a good one for computing n,. We shall
also neglect the contribution to », of the ions produced in the sheath, although
of course these ions are all-important as far as the factor g in (44) is concerned.
With these approximations, Poisson’s equation becomes:

(48)  a—1ps =Fe [ 1+ erf (1, — 7)1+ —n) ] — 2e™[1 + erf (. —n)],

where we have used the full expression (2) for n,, 7, is the potential at which
we shall start the solution, and u, is the average ion velocity there. The first
term on the right will be recognized as the usual expression for the density
of a monoenergetic ion stream with velocity u,; the factor in front is the
electron (or ion) density at »,.

Since we have found that the plasma solution breaks down around 5= 0.6,
we shall choose 7,=0.6 and match both »,, and 7., to the plasma solution
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14 ELECTROSTATIC STABILITY OF A COLLISIONLESS PLANE DISCHARGE [719)

there. For Hg, #,~ 6.2, so that we may safely replace the erf Mw—mns) by
unity. The average velocity u, is found as follows:

n¥ nt
(46)  @(n) = ] uf®(, w)du/ f 120, 1) du =
0 ' 0
n}
2 2 .
= exp [n]f;[l — 2wF(z)]dr = —exp (m] F(nt),
0

by eq. (A.10). Therefore
2 .

(47) u,=u(n,) = —exp [n] F(n}) = 0.6123  for 5,=0.6.
k14

It we let o =n—n, and b=n,—n,, eq. (45)
becomes

(48) ey = (1 + up) ™ — 1em?[1 L erf (b— )] + €y, .

Multiplying by ¢, and integrating from &, to & we have, after some alcebra,

(49)  dexp[ndef — @3] = 263 [(1 4 gu®) — 1] + §(e? —1) +
+3le"ert (b—g) —ertb] + L exf (b—3) — erf (h— 3 — )] -+ Ty .

Because of the size of b, the term 100
in ¢ can be neglected, and ert b

can be replaced by 1. Thus (49) be-

comes

(50)  "[g; — @l,— 2¢,p) =
= 4uf[(1+ gu*t —1] + 0=
+ e[l +erf (b —g¢)] —2. r

The boundary values of ¢,, and
@25 are found from (A.14) and (A.15)
to be ¢, =4.25-10-% and @ = 1072, 71—
For any #, it is then easy to com-

Fig. 5. — The quantity ¢73@,, which is
proportional to the derivative of the ion B
distribution, as computed from an ap-
proximate sheath equation for the case 0.
of constant g. 01 Vo 10
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[712] F. F. CHEN 15

pute ¢, from (48) and ¢, from (50). The resulting values for ¢ @, (or 1°n.)
are shown in Fig. 5. It should be noted that ordinarily no monotonic solu-
tion of (48) is possible for «, < 4/2 because of the sheath criterion (?). In this
case, however, the boundary values of ¢, and ¢, were not assumed to be zero
and, in fact, were large enough to allow a solution.

The ratio R, from (44) and (24), is

(51) R = 2e1ntgein Py, .
Using the value 102 for g, from (39), and replacing ¢” by ¢", we see that
7. < 0.1

for R-71, the condition for instability. Figure 5 shows that this condition
is not fulfilled up to » =25, which is almost at the wall.

6. — Conclusion.

We have shown that the classical « plasma solution » for a collisionless plane
discharge leads to an ion velocity distribution which is independent of the
mechanism of ion production, and that this distribution nowhere satisfies the
necessary condition for an ion wave instability. Consideration of the first-
order correction to the plasma solution showed that this result is accurate
only up to n=0.6. However, the solution of an approximate sheath equa-
tion showed that the ion stream is stable essentially everywhere, in the case
g = constant. If, on the other hand, ion production in the sheath is severely mi-
nimized, it is conceivably possible for the necessary condition for instability
(that the total distribution function have a minimum) to be satisfied. It seems
reasonable that the sufficient part of Penrose’s criterion (®) can be eventually
satisfied as the ions are accelerated in the sheath. Therefore, if ion pro-
duction in the sheath is eliminated, it is not impossible for ion waves to grow
in the sheath. Such waves will travel at a small velocity in the laboratory
system and will therefore appear as low frequency oscillations.

In the numerical computations performed in this paper we have assumed
a 2 em mercury discharge with a Debye length of 10-2 em, corresponding to
ET=2eV and n,=10? cm=3. We believe the conclusions are essentially cor-
rect also for other elements and other reasonable values of the parameters.

In this paper we have not considered the high-frequency oscillations re-
ported by GABOR ef al. (¢). Such oscillations would not be predicted by this
theory. At the same time, if such oscillations do exist, they would not affect
our calculations, since the motion of the ions would be unaffected by oscil-

4541



16 ELECTROSTATIC STABILITY OF A COLLISIONLESS PLANE DISCHARGE [713]

lations in the 10 GHz range. The electron distribution could be thermalized by
such oscillations, but we have already assumed a Maxwellian distribution
except very near the wall. One possible effect of large amplitude high-fre-
quency oscillations might be to increase ionization in the sheath to the extent
that low-frequency oscillations cannot arise.

The author is indebted to Dr. I. B. BERNSTEIN for his criticism of the
manuscript. This work was sponsored under contract with the U.S. Atomic
Energy Commission.

ArrEXxDIX I

If we let y=y* and %' =y sin® 6, eq. (6) becomes

nl2

ds(y* F . d
(A1) exp [— y2] +- d(gyz ) :j?y sin 6 g(y* sin2 0) d d
0

(y+ sins ) 17 -

This equation can be inverted by using Schlémilch’s transformation (?), which
states that if

n/2

D
(A.2) ply) = ;ffp(y sin 6) a6 ,
then
QIZ
(A.3) P = p(0) + j y'(y sin 6)d9 .
V]
Letting

_ 421 W)
(A.4) Y(y) = exp [—y?] “ae
and

d

(A.5) o(y) = myg(y?) d?yéi ;

(®) E. T. WiitTTaKER and G. N. Warson: A Course of Modern Analysis, 4th ed.
(Cambridge, 1952), p. 229.
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we see that eq. (A.1) is in the form of (A.2). Thus (A.3) becomes

2

d d: . .
(A.6)  7yg(y*) " =1 + ( 77) a yj (— 2y sin 6) exp [—y? sin* 6]d6 +
7=0

dy? dg?
o
n/2

d  [d*(y*sin §)
gl
[

The first integral, I,, can be evaluated by the substitution ¢2=y2 cos? 6, where-
upon it becomes

nt
(A7) I,=—2exp[—n]|exp[t-]dt = —2F(5}) .
0

The second integral, I,, when expressed in terms of %', is just

7}

dsyp’ dé dy’
. I, =] -4 = R
(A 8) 2 /dES d”r]' (7]"7]/)%’

[

where we have used d/dy'=(d&/dn')(d/dé).

APPENDIX IT

Properties of the function F(x) (1%):

1

(A.9) Pl =, =0541 at n,=0921,

dF(z)
(A.10) o =1—2F@),
(A.11) fF(ﬁ*)dn =nt—F(nt),

n d ,
' i 7

(A.12) fF(ﬁ‘ Y —p 3 (1—exp[—nl),

7 2 . 4 .

(% W. L. MiLLErR and A. R. GorDpoON: Journ. Phys. Chem., 35, 2875 (1931).
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ArPENDIX III

By using eq. (A.10) one finds for the derivatives of & the following:

& =2aF@}) ,
& =alyt—2F0h],
= lan¥t_—
(A.14) f=—tant—§,
dn
51) = 2a (i:'?T‘ (’I]é) — 57,,,1 .
Thus
(A.15) L Oy o
-1 772 1 dr/ 1 S1 2.
Since F(0)=0,
(A.16) (7]2)0 = (Za?)"".
From eq. (10) we have
nk
- "y
AT 1 :’ I
(A17) 2() Loy

This can be ittegrated by parts to give

n
I st 1\ d !l
(A.18) I,(n) = 2n}(néa)e + 2[(7/ =0 g, (e) Qi
s !
Therefore
4
(A.19) 4 () = 7 ¥maér)e + {(7 — ')t € (s€s) dy’ .
d772 310‘“ fi dn/
[i]

In terms of &'y, it is easily found that
(AQU) 7]351 = 51_4(352_ Exg:i) = 1((7]) .

For small % only the leading term, in 72, has to be retained. Using (A.14)
and (A.13), we have finally

(A.21) h'II(l) 7s€; = 4a=2 .
7]—)
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The integral in (A.19) can similarly be expressed in terms of the &,’s as
follows:

n n
(A.22) f(n — 'y K (y')dy’ :f(n — ') (966,86, — 128 — £&,) dny’ .

0

RIASSUNTO (%)

Si trova che in una scarica piana senza collisioni la corrente di ioni che cadono
sulle pareti ¢ stabile rispetto alle instabilitad dell’onda ionica nel caso in cui la funzione
di ionizzazione & costante. Se si sopprime la ionizzazione nella guaina, invece, 8i pos-
sono eccitare nella stessa oscillazioni ioniche. Tali oscillazioni rassomiglieranno a quelle
osservate recentemente da altri autori.

(*) Traduzione a cura della Red azione.
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